o WAY 1985
Do A

w .

o

o |

e

Q RELIABILITY ESTIMATION UNDER
<G  PLAUSIBLE ASSUMPTIONS

‘ 'r*% by

F. Proschan

TCOPY _B2—0F =

f— Y
ARDCOPY  §.9 oo
MICROFICHE ~ $., < o
| =27~
LRGHVE eopy
OPERATIONS RESEARCH CENTER |
COLLEGE OF ENG!NEERING T e
é_iii? T E
ST

UNIVERSITY OF CALIFORNIA-BERKELEY

—

esartmoimssasrncnne s s~ ap




RELIABILITY ESTIMATION URDER PLAUSIELE ASSUMPTIONS

by

Frank Proschan
Operations Research Center
University of California, Berkeley

May 1965 ORC 65-13(RR)

This research has been partially supported by the Office of Naval

Research under Contract Nonr-3656(18) with the University of California.
This paper will t=> pres::nted at the meeting of the Internetionsl Statistical
Institute in Belgrade, September 14-22, 1965. Reproduction in whole or in
vart is permitted for any purpose of the United States Government,

- T

-

. ———— )




kil ear e

L
p- o
3 =

]
bt 8

£

’1\5’

&

i

4 e ‘"
Vi ("‘m—| i AR
o, ] Pl

(%4
T

e 1l

It

e

,
ol o

Y
AT A

PRI 5 MR
PPoas :‘.(w&.t‘ﬁ.g@ﬁ\‘an FIR

il (g

RELIABILTTY ESTTMATION UNDER PLAUSIELE ASSUMPTIONS
by

Frank Proschsn

1. Introduction and Summary Most analyses of reliability

problems assume that the form of the underlying failure distribucicn{s)
is known; the parameter nay be assumed known or unknown, Families of
failure distributions commonly used are the exporential, gamms, normal,
and logrormal.

The weakness of such analyses is that the conclusions reached may
be grossly in error if the assumpticn as to underlying failure distri-
butions is incorrect., In fact, the error in the original assumption
may be greatly compounded in arriving at the final conclusion, esgpecially
if the conclusion concerns s taill probability or if the system analyzed
is complex,

In this paper we present an expository survey of recent research
in reliability estimation based on assumptions made not simply for
mathematical convenience but because they correspond to the physicel
situatior. The class of statistical problems considered thus lies
somewhere beiween parametric problems (in which the underlying failure
distributions are assumed known up to & finite number of parameters)
ard nonparametric provlems (in which no information is assumel available
concerning the underlying failure distributions).

In Secticn 2 we summarize research concerning the errors resulting

from using standard exponential life test and estimation procedures




when in fact the distribution has an increasing feilure rate or a decreasing
falilure rate, This raises the natural question: &Gilven a ssmple from an
unknown distribution, does the distribution have an increasing failure
rate (or alternately decreasing failure rate)? In Sention 3 we summarize
research on tests for increasing (decreasing) failure rate, Assuming then
that the assumption of an increasing {dGecreasing) failure rate is plausible,
the next problem, discussed in Section 4, is the estimation of the
failure rate function, the distribution, and the density, A dffferent
class of problems is discussed in Section 5, namely the estimation of an
evolving reliability, based on observations obtained at successive stages
of evolution., Unlike the usual treatwent in the literature, no assumption
is made conceruing the mathematical form of the reliability growth;
rather, only monotonicity of relisbility in succeeding stages is assumed,
Maximm likelihood estiistors and comservative confidence bounds are
obtained for parameters or functions arising in such reliability growth
»roblenms,

In order to present precisely the results of the succeeding
sections we introduce the foliowing definitions and notation., Let F
be a right continuous aistribution suck that F(0 ) =0 . If F has
a density f +then r(t) = g;ﬁl' is known as the failure rate, where

— F(t)
¥(t) =1 - F({t) represents the survival probebility or reliability.

Physically, “r{t)at is the conditional probability of failure in (t ,
t+dit) given survival until time t . We may verify by differentiation
that under the assumption of increasing (decreasing) failure rate

log F(tj 1s concave (convex) on [6,m) . More generally, whether a density

exists or not, we shall say a distribution has en increasing failure

-o-




cctiada AP RS spisi. e ygram Spstctite s Woperteticr Al e

rate (IFR) if log F(t) 1s concave on [0,=) , and a decreasing
failure rate (DFR) if 3log F(t} is convex on (0,w). Properties of
IFR exd DFR distributions are discussed in PBarlow, Marshall, and

Proschan (1963). Applications of such distritutions to reliability

problems are presented in Barlow and Proschan (1965).
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2, Errors in Using Exponential Procedures When the Distribution

Has Monotone Fallure Rate

This section is based on Barlow and Proschan (1964)., We give
proofe initially to convey the type of mathematicel argument involved;

ter that we refer the reader to the source paper for detailed proofs.

2.1 Censored Sampling Without Replacemeaf Assume n Items are

put on life test simulteneously at time O . Iet Xl <. L Xn
denote the ordered obsexvations corresponding to successive failures,

If the failure distribution has exponential density

1l -x/90
(1) sx®) =g x50 650,
then 7 r
ST T IS
(2.2) 8 =% Z. X, + (@)X =2 ) (n1a)(X-% ) ,1¢<r<n,
i=1 1=

is the maximum likelihood {ML) , minimum variance unbiased (MVU)
estimator for @ based on'the first r order statistics., (Epstein
and Sobel, 1953) We shall show in Theorem 2,2 below that this estimator
is blased high {(low) when the underlying failure distribution is IFR (DFR).
We will need

Lemma 2,1 Let Xl < ... {X, Ve order statistics from F,

IFR (DFR). Then the normalized spacings (n-i+1)(Xi - ) are

xi-'J..
stochastically decreasing (increasing) in 1 ,

Proof Assume ¥ is IFR . Then

Plax, > %] = FEN" > FE™

since {f(t)}l/t is decreasing in t by the log concavity of F .
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exhibits at most one sign change as a function of r since E(n-i41)(X,-X

Let F (x) = F_'ME)_:..Ll

u » the conditional distribution of an item of
F(u)
age u . Then since F 1is IFR, F, (x) > F(x) . Given that Xi =u

is observed, XQ-Xi is distributed as the first order statistic from

a sample of size mn-l1 each with distribution Eu(x) . Hence

P(L3{(X,-X) > x | X =] = (F(ZH" .

Conditvioning on Xl , we have

Playy 3 x) = (FCN" > (7, (PN ™= PL(n-d(xy-X) > x | x=u] , up 0.

Unconditioning,

P[nxl > x] Zfo [F ’—-))n L aG(u) = P[(n-l)(Xa-X_L) >x],

where G{u) = 1- [f(u)}n is the distribution of X .
Thus we have shown that nXi is stochastically larger than

(n-l)(Xe-Xi) . In a similar manner we can show that (n-i+l)(Xi X l)
is stochastically larger than (n-i)(Xi+l-Xi) for 1 =2,3,,

All inequalities are reversed for DFR distributions. "

Now we can show

~ ne
Theorem 2.2 a) If F is IFRwithmean © , then 6 {EQ__ { —

for r=l,2,,..n. b) If F is DFR withmean 6 , then O {B_ <9

for 1 {r<n. All inequalities are shaip.

Proof a) From Barlow and Proschan (1965), p. 33, we know

= iZl{r:(n-:m)(xi-xi_l) - e}

~
that Eeln_z_e . Also

)

i 1-1




is decreasing in i by Lemma 2.1, BEat h(1)

so that h{r) > 0 for r =1,2,...,n . BHence B 26 . Clearly
the bound is attained by the exponential distribution so that it is sharp.
r n
To show the upper bound,note that 2 X, + (n-r)X ¢ Z X, for every
i r > 4 1
~ 1=1 i=1
gample realization. Hence ErGrn { ne , so that
5, <2
rn < . Since equality is attained with distributions degenerate
at © (which is the limit of IFR distributions) the bound is sharp.

For the proof of b), see Barlow and Proschan (196L), Corollery 2.3, ||

2.2 Censored Sampl.ing with Replacement  Suppose now that failed

items are replaced at failure, In this case the bias of the usual

exponential estimate for © 1is even greater than in the non-replacement

case,
%* th
ILet Xi denote the time of the 1 failure when failed items
are replaced. Then under the exponential assumption, the ML, MVU
N nX*
*
estimste of © based on the first r failure times is O_ = —rll .

Then Bsrlow and Proschan (196L4) prove

Theorem 2.3 If the underlying failure distribution F is IFR

with mean © , then

A ~
X 7
géEgrng rn\*

H B

Em} ; 1<L{r<n.

2.3 Inverse Binomial Sampling Nadler (1960) has considered

the following type of sampling. An item having life distribution F

with mean © 1s put on test until it fails or reaches age + , whichever
occurs first, At this time the item is replaced by a fresh item,

This procedure is repeated sequentially until r actual failures are

observed. The number N of items that have to be tested until the

-6-
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r actual failures sre obtained is a rardom variable. Nadler (1960)

~-X/0
showed that when F(x) = 1-e / , an unbiassed estimate of € is

gr(t) - %{ixi + (N-r)t}
1=1

where the Xi,...,X} are the r 1life lengths not exceeding t .

Following the proof in Barlow and Proschan (196h), we show

Theorem 2.4  If F is IFR (DFR) with mean © , then E_(t)> () o .

Proof Let F Ve IFR, Zi denote test time elapsed
]
between the i-1 k failure time and the ith failure time, i=1,2,...,r,

th
where the O feilure time is defined tc be O ., Then
r

ar(t) - % Ez zi :

i=1
Next consider an alternative testing procedure differing in that
replacement occurs only upon failure, Let Zi = test time elapsed

th

between the i-lst failure and the 1 failure under the alternsate

testing procedure, Now since F is IFR, 2, is stochastically larger

i
than Zi . It follows that
r T
~ 1 1.2
t) == EZ, = EZ2' =6,
EGr( ) by }Z i 2'r i ®
i=1 i=l

The inequelity is reversed when F is DFR . ||

Additional results are obtained in Barlow and Proschan (1964)
for other sampling procedures which illustrate the general thesis that
the use of exponential life test and estimation procedures when the
underlying distribution is IFR {DFR) yields estimates of mean life

which are biased high (low) .
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3, Tests for Increasing (Decreasing) Fsilure Rate

3.1 The Test It is apparent from Section 2, that we should be
cautious about the use of exponential 1ife test procedures if we suspect
that the underlying failure distribution may be IFR (DFR). Thus it is
appropriate now to consider tests for constant vs, increasing (decreasing)
failure rate, In this section we summarize results obtained ir Proschan
and Fyke (1965).

Let X < X2 < ... & Xn be an ordered. sample from the
distribution F , with density f , where f(t) =0 for t <0 , and
failure rate r(t) . We wish to choose between the following:

Null Hypothesis, H. : r(t) = A, A an unknown positive constant.

4]
Alternative Hypothesis, K, : r(t) is strictly increassing.

The (nonparemetric) test statistic is computed as follows. Let

Df = Xl ’ D"é = XQ-Xl,..., D: = Xn—xn-l , the spacings, and Dl = an ,
D, = (n-l)Dg,. ..,D =D¥X, the nomalized spacings. Let
v {l if DiZDj for 1, j=1,2,...,n

i O otherwise

The test statistic is

(3.1) v s Z vj_j )

We reject the null hypothesis at the «a level of significance if
Vp > Vg 0 where Vo is determined so that P[Vr; Vi ] HOJ =a.

Heuristically we may justify the test as follows. Under the null

hypothesis, Dl R D2,,,, ’Dn are independently distributed, each with

8-




~At
density 2e A , as shown in Epstein and Sobel (1953), so that the D;

are stochastically identical and therefore the V are equally likely

iJ
tobe O or 1. BHowever, under the alternative hypotheeis, each Vij ’
and consequently Vh , tends to be larger, so that rejection of the null
hypothesls occurs for large values of Vh . Since under the null

hypothesis, the distribution of Vﬁ is known, we have available Vﬂa .

3.2 Distribution Under the Null Hypothesis Under Hb all

orderings of Ql,...,Dn are equaily likely. Thus we may use the resultis
obtained by Kendall (1938) and Mann (1945) for the number of orderings
of Ql,...,Dn with exactly k inversions of indices; an inversion of
indices 1 < j occurs vhen Diz_DJ . Both Mann and Kendall provide
tables for P[vn <k], n<l0. For n> 10, we may approximate

P[vn < k] closely using the fact that Vh is asymptotically normal

with mean '_Ln = -Il(-né]:l and variance oﬁ - (2n+gg(n-ljn . Thus

Vo is available for given «a .,

3.3 Unbiasedness of Test Following Proschan and Pyke (1965) it
is easy to show that the test statistlc V is unbiased, i.e.,
P[anVmIHl] >a for 0<agl,n=23.,..

To prove unbiasedness, make the transiormation Xi = ~-log F(xi) .

It Zi(zi) ,i=1,...,0, are the unordered Xi(Xi) ,1i=1,...,n, then

= = -u u
P[z} > u] = Pllog F(2,) < -u] = P[F(z,) < e "] =e ", Thus each Z;
is distributed according to the exponential distribution with unit mean,
Moreover since the Zl,...,Zn are independent, so are the Zi,...,Zé .

Next let D = (n-i+1)(xi - xi_l) i=1,...,n, wvhere X' =0 .

0
Now note that Xi is a convex increasing function of Xi which ig¢ O
for Xi =0, It follows that IE 2_D3 implies Di Z-Dj for 1< j,4,

-9-




j=l,...,n . Thus vi,j Zvij’ i< j,1,§-1,...,n , vhere Vij 2l
1 ! S !
if Di ZDJ . Hence Vn}_ Vn , Wwhere Vn TV j so that

. 1
iy
PV > vmlnl] >0 for 0<agl, n=2,3..., by Lehmann (1959,p.73).

3.4 Asymptotic Distribution Under Aiternastive Hypothesis  Proschen

and Pyke (1965) prove that the statistic Vv~ when suitably normalized
is asymptotically normally distributed for a wide class of alternatives.

Theorem 3.1 Let the distribution F be an absolutely continuous

IFR with failure rate function r . Let p exist and be continuous

a.e. on (0,1) , vhere pfu) = l/r(F-l(u)) , the reciprocal of the failure
rete after it is transformed by means of F-:L onto the unit interval.
Then n~3 / 2(vn- 1) converges in law as n - o %o & normal random

2
variable with mean O and variance O , where

pipt Ve ¢ -1
(3.2) w=/] | plwilp(u) + o(v)] ~ av au ,
Y 0%u
2 2 z
(3.3.\‘ g = \')'; + EJSR + (.R s

"l;‘:v v lpipl r.lnlp‘v"} o
02 = {;’ f +f / -2 | / Jl }p(u)p(W)p (v)[{p()+p(v)}p(v)+p(¥)}
¢ ov vV oY vvYo

2
= [ ()e()o(u) + o)1 “lB(e) - B(v)lav a
USR"'J'J gla)pl(rdipl{u) + piv)i "[B{:) - B(v)]av du ,
12
Gsz A (u)du , and
t \_O

R 1 ri -0 1 v -2
A(w)=(1-w) fuiru); pdv)ple)to(v)l “av au-/ p'(VQA-v) [p(w)+p(V)]
l{j; 0 Jur”f plul+p _/;p fop(u)p +p(

du dv}
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3.5 Asymntotic Relative Efficiancy To compare the v, test
with other possible tests wn use the criterion of asymptotic relative
efficiency (ARE). For some specified set of elternatives indexed Ly
6 , the ARE of one sequence of tests based on a sequence of asymptotically
normal test statistics (Tn] agalnst a second seauence of tests based

- .

on the asymptotically normal test statistics (Th} is defined as
’ 2 2 2,2 -1
o’" ! g g .( > (
{(3.4) TCRY /08,0 (11 (6,)17/c {6,)]
whenever it exists. In (3.2), uT(G) and 02(9) denote the limiting
mean and variance respectively of (Tn) ’ ué denotes the derivative of

Hep with respect to © and ©_ denotes the null hypothesis, A similar

0

interpretation is understood relative to T.

(&) Likelihood-ratio test for Weibull altermatives Suppose tha%

HO is as before, but Hi is specialized to the case in which the underlying

distribution is the Weibull with increasing failure rate:

_)xg
F(x) = 1-e , A>0,8>1, x>0, :
where A assumed known. We may readily verify that the likelihood ratioc
n
W W
h = - log X . .
test is to reject HO if 1%_) Cq 2 wit Tn i=1(l %Xhi) og 4

Also, we may calculate for the derivative of the limiting mean and for the

i

W - )
limiting varierce of T_, u'w(l)=(£n A+T1 -1) 4+ % =0 w(l), where

T
Y = .577215..., so that (u'w(l) 2/oew(l) = (fna+ 1 -1)°2 4 %?
T T
For v, using (3.2) and (3.3), after some calculation we find

(e (£)%/65(1) = 210g 2)° .

Thus the ARE of Vh with respect to Tz reduces to
AREW - 1.0809 5
(£n A-.14228)%41 . 6LL9)

. As A+ 0 or ®, ARE_ -~ 0 . For

PRt




all A> O, AREwg_,6571;eqtmlity is attained for fn A = 4228 .,

(b) Likelihood-ratio test for Gemma alternatives Next assumg

that Hl ie specialized to the case in which the underlying distribution

is the Gamna with increasing failure rate, The density is

}?xg-le-lx

£(x) = ey — 6>1.

The likelihood ratio test i3 to reject Hb if
n

G
Tn = zgllog Xhi > ca .
i1

By calculation similar to that in (a), we obtain for the ARE of

V relative to TG :
n n

ARE,, = .2040 ,

G

-

independent of A .
In a similar fashion, Proschan and Pyke (1965) compute the ARE
of Vh relative to the likelihood ratic test against the Gamma when
the true distribution is the Weibull, and the ARE of V_ relative to the
likel’hood ratio test against the Weibull when the true distribution
is the Gamma. For certain values of the parameters in each case, the
ARE is > 1 , implying that the v, test is better.
Other nonparametric tests for IFR (DFR) are possible, For example,
the coefficient of variation under H

0
Moreover, as shown in a forthcoming paper by Marshall, Olkin, and

is 1, and < 1 wunder H1 .

Proschan, the sample coefficient of variation is stochastically smaller

under El than under Bb . Thus an unbiased test of Hb vs., Bi

may be constructed using as test statistic the sample coefficient of

variation.

-12-
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y, Maximum Likelihood Estimation for Distributions with

Monotone Failure Rate

Suppose now we have established either from physical considerations
or from tests on observed data that the underlying failure distribution
is IFR or DFR. How do ve estimzte the density f , distribution F ,
or failure rate funetion r»r ?

Grenander {1956} derives the maximum likelihood estimator (MLE)
assuming F 4s IFRK . Marshall and Proschan (1965) present ar alternate
derivation of the MLE in the IFR case and also obtain a MLE for the DFR
case, They show that these estimators are consistent,

4.1 Derivation of MLE ILet X, < X2 ... X Dea sample

of n oxrdered observations from F , TFR ., Using the fact that

X
_ - rlz)dz
(ll-.l) F(X) = e

2

we may express the log likelihood L s&s

n n n .2{1
(4.2) L= z log f(Xi) =Zlog r(Xi) - Zf r(z)az .
isl 1= 15

Without further comnstraint, L can be made arbitrarily large by
taking f(xn) correspondingly large. Consequently, we first consider
the class 3’“ of IFR distributions with fsilure rate bounded by M .
We shall first fiad the unigue distribution %: in 3:M for which.
(4.2) is maximized, Then letting M-+ » , we shall find ?‘:
converges in distribution to an estimator ;ln which we call the MLE

for F in F , the class of IFR distributions.

-13-
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As shown by Grepander (1556), I is maximized over o by
a distribution with faijure rate constant between observations,
(Beuristically, this is aprarent, since on the one hand the failure rate
cannot decrease between observations, and on the other hand, any increase
in failure rate between a pair of observations can oply result in
diminishing the possible values of the density at the remaining

observations.) Thus we msy replace I by the function

n—l
(&.3) 2 log r(X;) - L(n 1) (%, % )r(X)) .
i=1 i=l

The maximization of (4. 3) subject to r(Xi) §:..ﬁ.r(Xn) =¥ is
performed by Grenander (1956); it can also be performed as a direct
application of Brurk (1958), Corollary 2.1 and the discussion following
{see also van Eeden (1956, 1957)). This yields for r (corresponding

M
to F in F ) the estimator

(. 4) r (X ) = min(min max { .i_ [ru ot r;]-.l])-l’M) )

i+l udi

where r =M and
n
. -1
(uOS) rj = [(n-J)(Xj+l-Xj)] for j=l’2,'00)n-l .

The estimator ?§ given in (4 4) differs in form from the one given
in Grenander (1956) but is equivalent to it.
The maximization wh.ch yields (4.4) may be described as follows.
First, £ind the maximum cf (4 4) obtaining (4. 5). If there is a
r 3 ) = (k. a eat
reversal, say I, > Ty 4, hen set r(Xi) r(Xi*l) in {4.3) and rep

the procedure, After at nost n steps of this kind, a monotone

-1k~




estimator is obtained. The maximum derived with r(Xi) = r(Xi+l)

can be directly obtuined by replacing ry and ri+1 by their harmonic
mean, [; r;l + r;];l)]‘.l . Succeeding steps emount to further such
averaging which is extended Just to the point necessary to elimdinate
all reversals., It can be seen that this is exactly what is called fcr
in (4. 4) taking into account r{(x) ¢ M. (In this comnection see also
Ayer, Brunk, Ewing, Reid, and Silverman (1955) end Brunk (1955).) The

M
resulting estimator T is of the form

%, x <X
M
r =< min(r M), X <x<X
n ry +1, ni-i-l n, +1 o4 +1
| M, X > Xn ,

Where rlnl < rn1+l,n2 ... % rnka-l,n-l , 0= nO < nl Kool n, < n-l,

and r is the harmonic mean of r r I . The
+l.n s Y TR
B ha BTy Dyl
n, are Jdetermined by the rule which determines the extent of the averaging.

i
The estimator for r corresponding to F in T is obtained by

letting M~ » in (4. 4), and is given by

(%.6) T (X)=min max [v-u][(n-u)(X Ses

-X .4 - -
wisl wd U+l u) *oeot {n-vil) (xv Xv-

1

~
i=1,2,...,n-1 and rn(Xn) = o, For the remaining values of x ,
rn(x) is 0 for 0 x<( Xl , ® for x> Xn , sud constant between
N ~
observations, The corresponding estimators Fn and f,‘n for F and f

A A A A
are obtained from rn using (4.13) and the relation fn(x) = rn(x)Fn(x) .

4,2 Consistency In Marshsll and Proschan (1965) s the consistency

of the MGEof F , £, and r are proven. The results may be summarized

as follows:
-15-




Theorem 4.1 If r is increasing, then fer every ¢t

0 2
} wit+™

(7))  ={e)) {lm dnf x, t,) < 1m sup r (t,) < r(t))

with probability one,

A
Corollary 4.2 If r is increasing, then for all t , lim Fn(t)ﬂ (t)
oo

witl probability one.

Corollary 4.3 If r is increasing and continuous on [a,b] , then

(1) 1m swp |z () -x(t)|=0,
I GG

”
(11) 1lim sup an(‘b) -F(t}|=0,
I+ oot

(111) 1m swp | (3) - £(t) |=0,
mo atch

each with probability oue,

s
4,3 Ajuiti. sl Results With respect to a certain meiric rn(t)

is closer tc r(t) than is rn(t) , where

0 for 0¢t<X

. -1 = -
rn(t) =< {(n~,3)(XJ+l-XJ)] for Xj <t < X,j+l’ J=1,2,...,n-1

o for Xngtg’m.

—

Rote that 1-n(t) represents the "unaveraged" estimate of the failure

rate, i.e , Lthe estimate that does not take into account the requirement
that r(t) ©be increasing, Let Fn(t) be the usuel empirical distribution,
Then the following inequality, a special case of the results of Brunk (1961),

is obtained directly in Marshail and Proschan (1965).

-16-




Theorem 4.4  With probability one,

B~ 0 B A 0 B A o
fw (r (t) - r(t)) aFn(t) z[w [rn(jc)-r(t)] aF (t)+ -m[rn(t)-rn(t)] aF (t) .

In addition, Barlow and Proschan (1965) obtain the MLE's of r ,
f,aad F for F DFR and show the consistency of these estimators.
Fipnally, they discuss maximum likelihood estimation in the case of discrete

IFR and DFR distributions.




Se timation of Relisbility Growth

An important group of reliatility problems consists of these in
which the reliability of an evolving system is to be estimated at
successive stages of its evolution, Most studies in the literature
heve assumed a priori knowledge of the form of the function governing
reliabiiity growth, (See for exemple, Lloyd and Lipow (1962), Chapter
11, Wolman (1963), and Corcoran, Weingarten, and Zehna (1964). )
Unfortunately, in many cases the only a priori knowledge actually
available is that the reilability at successive stages of evolution is
monctonicaelly inereasing, In the present secticr we shall show how %o
obtain & maxiwmum likelihood estimstor and establish conservative
confidence bounds for reiiability assuming monotonicity in reliability
at successive stages. A more detailed treatment will appear in forth-
coming pspers by Barlcw, Proschan, and Scheuer,

5.1 Maximum Likeiihood Estimastior of Reliability 3rowth A system

iz being improved at successive stages of development, corregponding,
say, to besic design changes, At stsge 1 the failure distribution of

gystem lifc length is F, 5 no assumpilion is made as to the form of

i 3
FpseeesF, OF the relstionship among them except that Fl(t) Z.Fe(txb~°2ﬁk(t)
for ail t > O . Inderendent life length observations Xil""’x*n
i

are obtaired at stage 1 , i=1,2,...,k ., From theze we wish to estimate
Fl,Fz,...,Ek , especially 3k .

To cbtain the MLE of F,(t) , 0 t < o, i=l,...,k , ve use the
procedure developed by Brunk (1955, 1958). If we fix % , the problem is

similar to the cne discussed by Barlow and Scheuer (1964) and by Ayer,
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Brunk, Ewing, Reid, and Silverman (1955). For i=l,...,k obtain the

empirical distribution function F, (t) = m.i(t)/ni , where mi(t) = pumber

in,

PN

of observations among xil""”xin not exceeding t . Then the
i

Brunk procedure yields for fixed t the MLE

a mr(t)+...+ms(t)
(5.1) Fi(t) = max min — , 1=1,2,...,k .
o1 i ceetn

To prove that each gi(t) is monotonic increasing in t and so
qualifies as a distribution function, we simply note that each mi(t)
is monotonic increasing in t , implying by (5.1) that gi(t) is also
increasing in t . Thus gi(t) » 0t < », is the MLE of Fi(t) ’
i=1,...,k .

5.2 Conservative Confidence Bounds on Final Reliability Ordinarily,

to obtain a confidence bound on a parameter, we use a statistic with
known distribution. Unfortunately, in the present case the relevant

distributions are unknown., However, we can still obtain a conservative

confidence bound using the following general theorem.

Theorem 5.1 Let {a) Y be an observation on a random variable

(in general vector valued) having distribution function G(y,0) , ©

a one dimensional parameter, (b) g(X) be a one dimensional statistic
based on the observed vector ¥ , (c) p(g(l)) be a 1-0 upper confidence
bound on © , where p(u) is a decreasing function, (d) X be an
observation on a random varisble {in general vector valued) having
distribution function F(x,8) , and (e) 8(1) be stochastically

> 3(}_{) . Then P[p(g(}_{)) > 0|F(x,0)]>1a; i.=., p(g(gc_)) is a
conservative l-a upper confidence bound on © , the parameter of the

distribution F .

-19-
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u be the inverse of the function p . (In case of smbiguity, let u(x)
be the largest value satisfying p(u) = x). The
l1a= P[p(g(g)) > 6] 6(y,0)] = P[g(u_t) < u(0)] ; the first inequality
follows from (c), the second holds since u is the inverse function
of p and p is decreasing, By (e)
PI6(Z) < u(6) | 6(y,0)] < PIO(X) < u(0) | F(x,0)] = PIp(6(X)) > @ | F(x,0)] ;
the last equality holds since u is the inverse of p and p is
decreasing. Combining the statements above we obtain
P[p(g(z)) 20 [F(z0)]>1a.

If p is not cuntinuous or strictly increasing, the same result may be
obtained by limiting arguments. ||

Other cases of interest are covered in

Corollary 5.2 (1) If p is an increasing function and 6(X) is

stochastically larger than g(_Y_) , then the same conclusion follows,

(2) If p is a decreasing function, p(g(l)) is a 1- lower
confidence bound on the varameter & of G, and '9\(_}2) is stochastically
larger than ,g\(_g‘) , then p(g(g)) is a conservative 1-0 lower confidence
bound on the parameter © of F .,

(3) If p is an increasing functicn, p(g(l) is a 1-a lower
confidence bound on the parameter © of G , and 5(_)}_) is stochastically
smaller than 3(;3 , then p(g(z)) is a conservative 1-0 lower confidence
bound on the parameter © of F .

The proof in each cese is similar to that of Theorem 3,1.

Returning to the model described in Section 5.1, let us set up a
conservative confidence bound (a) on fk(to) , the reliability at the final

stage corresponding to fixed t, and (b) on the entire distribuition

0

function Fk .
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(a) Let X' be a binomial random variable repregentiag the number

k .
of successes in n = 2 ni independent trials, where thz probability
3=l
of success on each individual trial is Ek(to) . ‘Then X' is
k
stochastically larger than X = I [ni-mi(to)] since X' is the sum of
i=l

n independent binomial random variables each of which is stochastically
larger than the n corresponding binomisl random variables comprising
X . Thus using Coroliary 5.2 (3) we may obtain a conservative 1-O

lower confidence bound for ?g(to) as follows:
X ny i n-i
1. Find the value p(x) satisfying I (i)P q = 1-0 ,where
k i=0

qQ=1-p, x =i§l<ni-mi(to)) .

2. Then P[fk(to) > p(x)] > 1-0; i.e., p{x) 1is a conservative
1~ lower confidence bound for ﬁk(to) , the reliability at the lasi stage
of development,

(b) To obtain a conservative confidence bound on the entire

distribution function Fk , we first show
Lemma 5.3 Let Xil""’xini be independent observations from
F; » 1=1,...,k , with Fl(t) > .. 2_Fk(t) for all t , and F(t) be

the empirical distrivution formed from all the observations X D ¢

i1’ "’ in,’
i=l,...,k . Let Xil""’xin , 1=1,...,k , be indepcndent observations
- i
from Ek(t) and F'(t) be the empirical distribution formed from
XjyseeesX 5, isd,...,k . Then given any function u(t) ,
i
A ~
P[F(t) > ult),~» < ¢t < «)> PIF'(t) > u(t),~- =< t ¢ «]
Proof First assume each Fi continuous. and strictly increasing.
-1
n = F X' .= ¢ o0 H = . 3 .
Define Xj, = F, Fk( iJ) » d=l,e.m g 1=l 0k
Then the set of random variables ng ’ j=l,...,ni ;3 1=1,...,k,

has the same joint distribution as the set Xij’ J=l,...,ni; i=1,...,k .
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Thus for each t , F"(t) zf*'(t') , where F"(t) is the empirical
distribution formed from ij , le,...,ni , i=1,...,k . The conclusion
of Lemma 5.3 follows from a generalization of the Lemme on page 73 of
Lehmann (1959).

If any Fi is not continuous or strictly inc~casing, the same
regult may be obtained by limiting argumeats, ||

Now we may form a conservative 1l-0 upper confidence bound on
the entire distribution function F, as follows, Let g(t) te the

k

empirical distribution formed from all n observations J=l,.-.,nii

Xij’
i=l,...,k . PFrom Birnbaum and Tingey (1951), we may find € o satisfying
PE _(t) + €2 H(t),- o< t <] = 1-a , where H(t) is a distribution
function, and Hh(t) is the corresponding empirical distribution function
based on a sample of size n from H(t) . The value €y 1s independent
of H(t) . Then we may claim P[g(t) + Gm}_Fk(t), 0t >l
That is, ;(t) + €, is a conservative 1-0 upper confidence bound on
the entire distribution function Ek(t) . This is an immediate consequence
of Lemma 5. 3.

In a similar manner we may obtain MLE's and conservative confidence

bounds in a variety of other reliability improvement mcdels. A forthcoming

paper by Barlow, Proschan, and Scheuer will give details.
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