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RELIABILITY ESTIMATION UNDER PLAUSIBLE JASSUNPMIONS

by

Frank Proschan

1. Introduction and Summary Most analyses of reliability

problems assume that the form of the underlying failure distribution(s)

is known; the parameter may be assumed known or unknown. Families of

failure distributions commonly used axe the exponential, gamma, normal,

and lognormal.

The weakness of such analyses is that the conclusions reached may

be grossly in error if the assumption as to underlying failure distri-

butions is incorrect. In fact, the error in the original assumption

may be greatly compounded in arriving at the final conclusion, especially

if the conclusion concerns a tail probability or if the system analyzed

is complex.

In this paper we present, an expository survey of recent research

in reliability estimation based on assumptions made not simply for

mathematical convenience but because they correspond to the physical

situation. The class of statistical problems eonsidered thus lies

somewhere between parametric problems (in which the underlying failure

distributions are assumed known up to a finite number of parameters)

and nonparametric problems (in which no information is aseumea available

concerning the underlying failure distributions).

In Section 2 we summarize research concerning the errors resulting

t from using standard exponential life test and estimation procedures



when in fact the distribution has an increasing failure rate or a decreasing

failure rate. This raises the natural question: Given a sample from an

unknown distribution, does the distribution have an increasing failure

rate (or alternately decreasing failure rate)? In Section 3 we summarile

research on tests for increasing (decreasing) failure rate. Assuming then

that the assumption of an increasing (decreasing) failure rate is plausible,

the next problem, discussed in Section 4., is the estimation of the

failure rate function, the distribution, and the density. A dIfferent

class of problems is discussed in Section 5, namely the estimatlon of an

evolving reliability, based on observations obtained at successive ztages

of evolution. Unlike the usual treatment in the literature, no assumption

is made concerning the mathematical form of the reliability growth;

rather, only uonotonicity of reliability in succeeding stages is assumed.

Maximum likelihood estiators and conservative confidence bounds are

obtained for parameters or functions arising in such reliability growth

problems.

In order to present precisely the results of the succeeding

sections we introduce the following definitions and notation. Let F

be a right continuous distribution such that F(0-) = 0 . If F has

a density f then r(t) =f(t) is known as the failure rate, where
F(t)

F(t) = 1 - F(t) represents the survival probability or reliability.

Physically, "r(t)dt is the conditional probability of failure in (t

t+dt) given survival until time t . We may verify by differentiation

that under the assumption of increasing (decreasing) failure rate

log F(t) is concave (convex) on [0,•) . More generally, whether a density

exists or not, we shall say a distribution has an increasing failure
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rate (IFR) if log F(t) is concave on [0,w) , and a decreasing

failure rate (DFR) if log F(t) is convex on (0, o). Properties of

IFR and DFR distributions are discussed in Barlow, Marshall, and

Proschan (1963). Applications of such distributions to reliability

problems are presented in Barlow and Rroschan (1965).
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2. Errors in Uing Exponential Procedures When the Distribution

Has Monotone Failure Rate

This section is based on Barlow and Proschan (1964). We give

proofs initially to convey the type of mathematical argument involved;

after that we refer the reader to the source paper for detailed proofs.

2,1 Censored Sepling Without Replacement Assume n items are

put on life test simultaneously at time 0 . Let Xl <... " Xn

denote the ordered observations corresponding to successive failures.

If the failure distribution has exponential density

.g(x.) 1 -x/0

then r
(2.2) Xi + (n-r)X r rr

i=1 i:il

is the maximum likelihood (IL) , minimum variance unbiased (MVU)

estimator for Q based on'the first r order statistics. (Epstein

and Sobel, 195M) We shall show in alheorem 2. 2 below that this estimator

is biased high (low) when the underlying failure distribution is IFR (DFR).

We will need

Lemma 2.1 Let X1 .... < Xn be order statistics from F ,

IFR (DFR). Then the normalized spacings (n-i+l)(Xi - X i-) are

stochastically decreasing (increasing) in i

Proof Assume F is IFR. Then

x n-l
P[nX1 >_ x] = F n (F(n-'!)n

since (I(t)]1/t is decreasing in t by the log concavity of F
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Let F (x) = . ... the conditional distribution of an item of

age u . Then since F is IFRB Fu(X) ý F(x) . Given that X1 = u

is observed, X,-X is distributed as the first order statistic from

a sample of size n-1 each with distribution Fu(X) . Hence

P[(n-1)(X2 -X1 ) > x I X, = u] = (F _ )] .
A 2 u n-i

Conditioning on X, we have
-- x n-1

P[n > x] un-i ( n-= P[(n-4(X 2-X) > x I X1 uS u > 0

Unconditioning,

P[nXi > x] f u n-1 dG(u) = P[(n-1)(X2 -Xl) x]

0

where G(u) = 1- (F(u))n is the distribution of

Thus we have shown that nX. is stochastically larger than

(n-1)(x 2 -X1) In a simiiar manner we can show that (n-i+l)(X -X .I)

is stochastically larger than (n-i)(Xi+l-Xi) for i = 2,3,...,n

All, inequalities are reversed for DFR distributions. II

Now we can show
^ ng

Theorem 2.2 a) If F is IFR with mean 9 , then G9 E rn <. r

for r=1,2,...n. b) If F is DFR with mean 9 , then 0 -' E9rn

for 1 e r n . All inequalities are shaip.

Proof a) From Barlow and Proschan (1965), p. 33, we know
A

that EGin @9 . Also

r

h(r) = r{ - G} -

S~i=i

exhibits at most one sign change as a function of r since E(n-i+l)(Xi-Xi-i
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is decreasina in i by Lemma 2,_ "Th-. hl( n Q ,nA i1,A, =I

so that h(r) > 0 for r = 1,2,...,n . Hence E9 rn G . Clearly

the bound is attained by the exponential distribution so that it is sharp,
r n

To show the upper boundnote that Z X + (n-r)Xr < Z X for every
A r=l i=lJ

sample realization. Hence Erg <• ng , so that
rn

A nQ
Frn - r . Since equality is attained with distributions degenerate

at 9 (which is the limit of IFR distributions) the bound is sharp.

For the proof of b), see Barlow and Proschan (196k), Corollary 2.3. H

2.2 Censored Sampling with Replacement Suppose now that failed

items are replaced at failure. In this case the bias of the usual

exponential estimate for 0 is even greater than in the non-replacement

case.

Let X denote the time of the ith failure when failed items
i

are replaced. Then under the exponential assumption, the ML, MVU
A nX*

estimate of 9 based on the first r failure times is 0 = -= .
rn r

Then Barlow and Proschan (1964) prove

Theorem 2.5 if the underlying failure distribution F is IFR

with mean 0 , then

n •rn nEX rig•~n • 4•r r , •jr n.

2.5 Inverse Binomial Sampling Nadler (1960) has considered

the following type of sampling. An item having life distribution F

with mean 0 is put on test until it fails or reaches age t , whichever

occurs first. At this time the item is replaced by a fresh item.

This procedure is repeated sequentially until r actual failures are

observed. The number N of items that have to be tested until the
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r actual failures are obtained is a random variable. Nadler (1960)

showed that when F(x) = 1-e-x/9 . an unbiased estimate of 9 is

r

G(t) =x+ (N-r)t}
ir2 +

where the X,...,Xr are the r life lengths not exceeding t

Following the proof in Barlow and Proschan (1964), we show

Theorem 2.4 If F is IFR (DFR) with mean 9, then E@r(t)••() .

Proof Let F be IFR, Zi denote test time elapsed

5t thbetween the i-l failure time and the i failure time, i=l,2,...,r,

th
where the 0 failure time is defined to be 0 . Then

r Z

Gr(t) = -r r
i-l

Next consider an alternative testing procedure differing in that

replacement occurs only upon failure. Let Z, = test time elapsed
i

st thbetween the i-l failure and the i failure under the alternate

testing procedure. Now since F is IFR, z is stochastically larger

than Z . It follows that
i

r r

Wr(t) :- •--r EZ 9.

i=l i=l

The inequality is reversed when F is DFR . II

Additional results are obtained in Barlow and Proschan (1964)

for other sampling procedures which illustrate the general thesis that

the use of exponential life test and estimation procedures when the

underlying distribution is IFR (DFR) yields estimates of mean life

which are biased high (low)
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3. Tests for i.creasing (Decreasing) Failure Rate

3.1 The Test It is apparent from Section 2, that we should be

cautious about the use of exponential life test procedures if we suspect

that the underlying failure distribution may be FR (DFR). Thus it is

appropriate now to consider tests for constant vs. increasing (decreasing)

failure rate. In this section we summarize results obtained in Proschan

and Pyke (1965).

Let •X < ... <Xn be an ordered. sample from the

distribution F I with density f , where f(t) = 0 for t < 0 , and

failure rate r(t) . We wish to choose between the following:

Null Hypothesis : r(t) = -A, an unknown positive constant.

Alternative Hypothesis, ý: r(t) is strictly increasing.

The (nonparametric) test statistic is computed as follows. Let

S= , X X -Xl . . D*n = X -Xn- n-1 ' the spacings, and D nD -*
l ' 2 2 1'"*-' n nX n h 1'

D2 = (n-l.D*. D = Dn the normalized spacings. Let
21 2n n

j 1 if D i Dj for i, j=l,2,. .. ,n

0 otherwise

The test statistic is

n

(3.1) Vn 1 i

i,j=l
i<j

We reject the null hypothesis at the a level of significance if

Vn > v , where v is determined so that PLvr, v n I 0] (X

Heuristically we may justify the test as follows. Under the null

hypothesis, D , D2 ,... ,Dn are independently distributed, each with
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density ?.e as shown in Epstein and Sobel (1955), so that the Di

are stochastically identical and therefore the V are equally likely

to be 0 or 1 . However, under the alternative hypothesis, each Vi Y

and consequently Vn , tends to be larger, so that rejection of the null

nn
hypothesis occurs for large values of V n *Since under the null.

hypothesis, the distribution of V is known, we have available v
n 1xx

3.2 Distribution Under the Nuill Hypothesis Under H all

orderings of Di,..., Dn are equally likely. Thus we may use the results

obtained by Kendall (1938) and Mann (1945) for the number of orderings

of D1 ,... ,Dn with exactly k inversions of indices; an inversion of

indices i < j occurs when Di Ž Dj . Both Mann and Kendall provide

tables for p[Vn~k] , n j10 . For n> 10 , we may approximate

P[V • k] closely using the fact that Vn is asyptotically normal'2 ~n1) 2n (2n+5) (n-1)n
with mean •n = 2 and variance n2 72 Thus

v is available for given a.na

3.3 Unbiasedness of Test Following Proschan and Pyke (1965) it

is easy to show that the test statistic Vn is unbiased, i.e.,

P[Vnv H a for 0<a 1 , n=2,3,...

To prove unbiasedness, make the transformation X = -log 1 (X)

If ZI(Zi) ,i=l,...,n , are the unordered XI(Xi) , i = 1,...,n , then

-u -u
Lz' > u]=P[109 Z <-u] = P[F(z < e =e . Thus each Zi

ii i
is distributed according to the exponential distribution with unit mean.

Moreover since the ,...,Z are independent, so are the "" n

Next let Di = (n-i+l)(X' - X' ) i = 1,...,n , where XI = 0
ii i-l 0

Now note that X' is a convex increasing function of Xi which is 0
ii

for X = 0. It follows that D' :D'-1 implies D D for i < Ji,
r pJ s Di
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j=l,...,n Thus V i < J,i,J--l,...,n , where Vi 1

if DI'.> . Hence V > V' where V' V' so that
" " n i<j i o

P[V > v JI 1] a for o<a , n< 2,3,...,< b (199,p.73).

3.4 Asymptotic Distribution Under Alternative Hypothesis Proschan

and Pyke (1965) prove that the statistic V when suitably normalizedn

is asymptotically normally distributed for a wide class of alternatives.

Theorem 3.1 Let the distribution F be an absolutely continuous

IFR with failure rate function r . Let p exist and be continuous

a.e. on (0,1) , where p(u) = 1/r(F -(u)) , the reciprocal of the failure
-!

rate after it is transformed by means of F onto the unit interval.

Then n (vn- ,i) converges in law as n -* c to a normal random
2

variable with mean 0 and variance a where

(3.2) [L =jJ (,,)[p(u) + P(v)] dv du

( 22 + +

.1.vr v -, P~l r. I -vi8 4 LI I !JJ s - I I l ,(u)o(wlP2()(vl[(,.,+P(vl))~(PV)+o(w)}
OJ"- 0• oo• oVJ v -Jo--J oj J,

[p3u)pVd) + p('-', + p',,).-;V). du dw dv,

,j,,:- j p(u)p(-.,)[p(u) + p(v)j .tP(u) - B(v)]d-, du

f 1  (u)du , and.
u0

-l -2

t3(~)~(lwF~fP.*((1)--).CP(Y[)d fP()(l.f>[p(u)÷p(v)]-ý-. -2P V(1

du dv)



- 5 Anvmntotie Rel ative Efficiancv To comnare the V test

with other possible tests w-. use the criterion of asymptotic relative

efficiency (ARE). For some specified set of alternatives indexzed by

0 , the ABE of one sequence of tests based on a sequence of asymptotically

normal test statistics (T) against a second sequence of tests based

nnon the asymptotically normal test statistics (,rn] is defined as

(3.4) [(C'(Go)] (Go))([ý(%)]2201

2
whenever it exists. In (3.2), pýT(@) and T() denote the limiting

mean and variance respectively of (TnI , 4 denotes the derivative of

IT with respect to 0 and g0 denotes the null hypothesis. A similar

interpretation is understood relative to 'r

(a) Likelihood-ratio test for Weibull alternatives Suppose that

HO is as before, but H is specialized to the case in which the underlying

distribution is the Weibull with increasing failure rate:

9F(x) = J-e- , > 0 , 9 >1 , x O,

where ? assumed known. We may readily verify that the likelihood ratio
n

test is to reject H0  if Tw>c, with Tw = (1-MQn )log X
n n i=l ni ni

Also, we may calculate for the derivative of the limiting mean and for the

limiting variance of T w , ['w(1)=(&n ) + T - 1)2 + .2= G2(1), where

r = .577215..., so that (i (i) 'Fla = n+ rT" T
For V n using (5.2) and (3-3), after some calculation we findn

(4LW)] 2/a2T(l) 9(log 2)2

Thus the ARE of V with respect to Tw reduces to
n n

S 1.080•. As N 0 or c, ARE * 0. For
(in 4-.228) +169) w
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all "A> 0 , AE � .6571 ; equality is attained for In 7 = .4228.

(b) Likelihood-ratio test for Gamma alternatives Next assumw

that E1 is specialized to the case in which the underlying distribution

is the Geiam with increasing failure rate. The density is

x0 0-1 -Ax
f(X) x e ) > 1

The likelihood ratio test i1 to reject H, if

n
TG= log x>c

iQl

By calculation similar to that in (a), we obtain for the ARE of
V relative to TG

n n
ARE G - .22040 ,

independent of '.

in a similar fashion, Proschan and Pyke (1965) compute the ARE

of V relative to the likelihood ratio test against the Gamma when

the true distribution is the Weibull, and the ARE of V relative to the

likel4 hood ratio test against the Weibull when the true distribution

is the Gamma. For certain values of the parameters in each case, the

ARE is > 1 , implying that the Vn test is better.

Other nonparametric tests for IFR (DFR) are possible. For example,

the coefficient of variation under H0 is 1, and < 1 under H1

Moreover, as shown in a forthcoming paper by Marshall, Olkmn, and

Proschan, the sample coefficient of variation is stochastically smaller

under H than under H0. Thus an unbiased test of H vs. H
00 1

may be constructed using as test statistic the sample coefficient of

variation.
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4. Maximum Likelihood Estimation for Distributions with

Mbuotone Failure Rate

Suppose now we have established either from physical considerations

or from tests on observed data that the underlying failure distribution

is i1F or DFR. How do we estimate the density f distribution F

or failure rzte function r ?

Grenander (1956) derives the maximum likelihood estimator (M[E)

assuming F is FR . Iarshall and Proschan (1965) present an alternate

derivation of the MLE in the IFR case and also obtain a MLE for the DFR

case. They show that these estimators are consistent.

4.1 Derivation of MLE Let Y, 2<X2  ... K Xn be a sample

of n ordered observations from F , IFR . Using the fact that

Xr( z)dz

(4.1) TFx) = e

we may express the log likelihood L as

n n n X

Z r(z)dzZ42 log f(Xi) slog r Xi) - 03i=l i=li -O

Without further constraint, L can be made arbitrarily large by

taking f(Xn) correspondingly large. Consequently, we firbt consider

the class CM of IFR distributions with failure rate bounded by M

We shall first fi-d the unique distribution in 'JIM for whicb.
n

(4.2) is maximized. Then letting M- oo, we shall find
n

converges in distribution to an estimator F which we call the WEEn

for F in 'Y , the class of IFR distributions.
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.... cnander 95), L is maxdmized over by

a distrib.Lution with failure rate constant between observations.

(Heuristically, this is aprarent, since on the one hand the failure rate

cannot decrease between observations, and on the .other hand, any inacrease

in failure rate between a pair of observations can only result in

diminishing the possible values of the density at the remaining

observations.) Thus we may replace L by the function

n n-i

3) log r(Xi) - L -i)(Xi iXi)r(X±)
i=!l i~l

The maximization of (4. 3) subject to r(Xl) •... r(Xn) = M is

performed by Grenander (1956); it can also be performed as a direct

application of Brunk (1958), Corollary 2.1 and the discussion following

(see also van Beden (1956, 1957)). This yields for r (corresponding

to F in 7 ) the estimator

(4.4) rM(Xj) =min(min max [r'1 +...+ r!lJ-,M)
n i V V-U U V-i

where r = M andn

(4.5) rj = [(n-j)(X j+l-X -l for j=l,2,... ,n-1

The estimator r given in (4.4) differs in form from the one given

in Grenander (1956) but is equivalent to it.

The maximization wb..ch yields (4.4) may be described as follows.

First, find the maximum cf (4.4) obtaining (4.5). If there is a

reversal, say ri > ri+,1,-hen set. r(Xi)= r(Xi+1 ) in (4.3) and repeat

the procedure. After at nost n steps of this kind, a monoton-

-14-



estimator is obtainect. The maximum derived with r(Xi) = r(Xi+l)

can be directly obtained by replacing ri and ri+ 1  by their harmonic
1 -i -i -1

mean, + r . Succeeding steps amount to further such
2 1 i+l

averaging which is extended just to the point necessary to eli.minate

all reversals. It can be seen that this is exactly what is called frr

in (4. 4) taking into account r(x) e M . (In this connection see also

Ayer, Brunk, Ewing, Reid, and Silverman (1955) and Brunk (1955).) The

resulting estimator r is of the form

= tn(r ' i+l' X x< +

I'*M I

nMi, ,m), x X

e r 0 n=
Where ill, 2  nk+l,nl , 0 n0 1 <...< n< n-1

and r ln+1 is the harmonic mean of rn+l,rni+2) .... >r l. The

ni are determined by the rule which determines the extent of the averaging.

The estimator for r corresponding to F in T is obtained by

letting M-' c in (4.4), and is given by

(4.6) r (X) minl max [v-u][(n-u)(Xu-X ) +X.. (n-v+l)(Xv-Xl)]-i
n i u+l u

i=l,2,...,n-i and rn(Xn) co. For the remaining values of x,

rn(x) is 0 for 0 x< X1 , co for x> Xo , and constant between

observations. The corresponding estimators Fn and en for F and f

are obtained from r using (4.1) and the relation f (x) = r(X Fx)
n n n n

4.2 Consistency In MarshaLl and Proschan (1965), the consistency

of the MEU of F , f , and r are proven. The xesultv may be summarized

as follows:
-15-



Theorem 4.1 If r is increasing, then for every tO ,

(4-7) r(t) i rinf r(tO) jlirm sup rn(to) < r(to)

with probability one.

Coroll 4.9- If r is increasing, then for all t, lim F(t)F(t)

with probability one.

Corollary 4_- If r is increasing and continuous on [a,b] , then

Wi) si sup Irn(t) - r(t) 0,
n-w a<t~

(ii) lim sup IF (t) - F(t) 0-o
n ,+ o -.< t < c o

(iii) lum sup Ifn(t) - f(t) I= 0,

each with probability one.

4.5 A•ditiL,-l :Results With respect to a certain metric rn(t)rn~

is closer to r(t) than is r (t) , where

I 0 for 0< t<X

r(t)= [(n-j)(X -X )-i for t < J=l,2,....,n-1
n (J+1 J X0 t< j+ , -l .9 . ., -

O for X t < o.

Note that r- (t) represents the '"uaveraged" estimate of the failure

rate, i. e . the estimate that does not take into account the requirement

that r(t) be increasing. Let Fn(t) be the usual empirical distribution.

Then the following inequality, a special case of the results of Brunk (1961),

is obtained directly in Marshall and Proschan (1965).

-16-



Theorem 4.4 With probability one,

f r(t) - r(t)] 2 dF (t) M) 2t)f r(t)-rn(t))2dFn(t)

In addition, Barlow and Proschan (1965) obtain the MLE's of r

f , and F for F DFR and show the consistency of these estimators.

Finally, they discuss maximum likelihood estimation in the case of discrete

IFR and DFR distributions.

1
I

-17-



.Estimation of Reliabilty Growth

An important group of reliability problems cunsists of those in

which the reliability of an evolving system is to be estimated at

successive stages of its evolution. .-bst studies in the literature

have assumed a priori knowledge of the form of the function governing

reliability growth. (See for examle, Lloyd and Lipow (1962), Chapter

11, Wolman (1963), and Corcoran, Weingarten. and Zehna (1964).)

Unfortunately, in many cases the only a priori knowledge actually

available is that the reliability at successive stages of evolution is

monotonically increasing. In the present section we shall show how to

obtain a maximum likelihood estimator and establish conservative

confidence bounds for reliability assuming monotonicity in reliability

at successive stages. A more detailed treatment will appear in forth-

coming papers by Barlow., Proschan, and Scheuero

5.1 Maximum Likelihood Estimation of Reliability growth A system

is being improved at successive stages of develop.ment, corresponding,

say, to basic design changes. At stage i the failure distribrttion of

system life length is Fi ; no assumption is made as to the form of

F1,...,Fk or the relationship among them except that F (t) > F2(t)%...>Fk(t)

for all t t 0 . Independent life length observations Xil,..Xin

are obtained at stage i , i=l,2,...,k . Fr'm these we wish to estimate

F1FF F...,F I especially Fk
1'2'" kk

To obtain the MME of Fi(t) , 0 t < co, i-1,...,k , we use the

procedure developed by Brank (1955, 1958). If we fix t , the problem is

similar to the one discussed by Barlow and Szheuer (1964) and by Ayer,

-18-



Brunk, Ewing, Reid, and Silverman (1955). For i--,....,k obtain the

empirical distribution function Fin, (t) = mi (t)/ni , wh~ere m i(t) - number
J.

of observations among . ... ,nX not exceeding t . Then the

Brunk procedure yields for fixed t the MLE

F m (t)+...+m (t)(5.1) Fi(t) = ma rdn n ,k+
sli r<i r +...+ns

A

To prove that each F i(t) is monotonic increasing in t and so

qualifies as a distribution function, we simply note that each mi(t)^i

is monotonic increasing in t , im-plying by (5.1) that Fi(t) is also

increasing in t. Thus FW(t), 0 t < c , is the MLE of Fi(t),
i

i-l,.. . ,k .

5.2 Conservative Confidence Bounds on Final Reliability Ordinarily,

to obtain a confidence bound on a parameter, we use a statistic with

known distribution. Unfortunately, in the present case the relevant

distributions are unknown. However, we can still obtain a conservative

confidence bound using the following general theorem.

Theorem 5.1 Let (a) Y be an observation on a random variable

(in general vector valued) having distribution function G(yQ) , 9

a one dimensional parameter, (b) G(Y) be a one dimensional statistic
A

based on the observed vector Y , (c) p(G(Y)) be a 1-a upper confidence

bound on @ , where p(u) is a decreasing function, (d) X be an

observation on a random variable (in general vector valued) having

distribution function F(x_,@) , and (e) e(Y) be stochastically

G9(x_) . Then P[p(Q(X_)) > IF( 1 )] l 1-a ; 1.2. p(Q(x)) is a

conservative 1-a upper confidence bound on 9 , the parameter of the

distribution F

-19-



S.... ........ p c G st-r* incr- e azin t

u be the inverse of the function p . (In case of ambiguity, let u(x)

be the largest value satisfying p(u) = x). The

1-a = PIp(G(Y)) > 9 I G(.y9) = P • u(e)] ; the first inequality

follows from (c), the second holds since u is the inverse function

of p and p is decreasing. By (e)
P(G(Y) u(Q) I G(bO)] < P[G(2_) < u(9) I k(-M] = P A (01))> I F( 9)]

the last equality holds since u is the inverse of p and p is

decreasing. Combining the statements above we obtain

P p(g(X)) > 0 9 F(y•9)] _

If p is not continuous or strictly increasing, the same result may be

obtained by limiting arguments. 1

Other cases of interest are covered in

Corollary 5.2 (1) If p is an increasing function and o(X) is

stochastically larger than 9(Y), then the same conclusion follows.

(2) If p is a decreasing function, p(9(Y)) is a 1-G lower

confidence bound on the r-arameter 0 of G , and 0(X) is stochastically

larger than @(_) , then p(9(X)) is a conservative 1-a lower confidence

bound on the parameter 0 of F

(3) If p is an increasing function, p(9(Y) is a 1-a lower

confid&nce bound on the parameter 9 of G , and Q(X) is stochastically

smaller than o(Y) , then p(G(X)) is a conservative 1-a lower confidence

bound on the parameter 9 of F .

The proof in each c,-se is similar to that of Theorem 3.1.

Re-'urning to the model described in Section 5.1., let us set up a

conservative confidence bound (a) on Tk(t0) , the reliability at the final

stage corresponding to fixed tO and (b) on the entire distribution

function Fk •
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(a) Let X' be a binomial random variable representing the number
k

of successes in n = Z ni independent trials, where the probability
i=-

of success on each individual trial is Fk(tO) . Then X' is
k

stochastically larger than X = Z [ni-mi(t )0 since X' is the sum of
i=l

n independent binomial random variables each of which is stochastcI•ally

larger than the n corresponding binomial random variables comprising

X . Thus using Corollary 5.2 (3) we may obtain a conservative 1-<x

lower confidence bound for F (t ) as follows:
kO0 X ,n i n-i

1. Find the value p(x) satisfying i()iqni = 1-a ,Pwhere
k i=O

q = l-p, x = 7 (ni-mi(t 0 ))
i-l

2. Then P[Fk(tO) > p(x)] > 1-a ; i.e., p(x) is a conservative

1--a lower confidence bound for Fk(to) , the reliability at the law. stage

of development.

(b) To obtain a conservative confidence bound on the entire

distribution function Fk , we first show

.Let X be independent observations from

Fi , i=l,...,k , with Fl(t) > ... •Fk(t) for all t , and F(t) be

the empirical distribution formed from all the observations Xil,..., ni

i=l,...,k . Let P , i=l,...,k , be independent observations
' in

from Fk(t) and F'(t) be the empirical distribution formed from

Xil, ini , i=il, k Then given any function u(t) ,
in 

^

P[F (t) ýý u (t), -o < t < oo] >P[F' (t) > u (t), -C < t < 00]

Proof First assume each Fi continuous, and strictly increasing.

Define X" = X', j=F. ; . .

Then the set of random variables X" , j=l,..,n ; i=l,..

has the same joint distribution as the set Xij, J=l,...,ni; i=l,...,k
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1&reovier, sic Fi I _ A. ni-, ,X% ' x , ...

.hus for each t , FF(t) F'(t) , where F"(t) is the empirical

distribution formed from X"j, J=l,...,ni , il,,..,k . The conclusion

of Lemma 5.3 follows from a generalization of the Lemma on page 73 of

Lebmann (1959).

If any Fi is not continuous or strictly inc-easing, the same

result may be obtained by limiting arguments. 1i

Now we may form a conservative 1-a upper confidence bound on

the entire distribution function Fk as follows. Let F(t) be the

empirical distribution formed from all n observations Xi, j~l,..,

From Birnbaum and Tingey (1951), we may find Ena satisfying

P[Hn(t) + EMýý H(t),- co< t <co] = 1-a , where H(t) is a distribution

function, and Hn(t) is the corresponding empirical distribution function

based on a sample of size n from H(t) The value cno is independent

of H(t) . Then we may claim P[F(t) + E F Fk(t), 0 ,, t < co] > -

That is, F(t) + E is a conservative 1-a upper confidence bound on

the entire distribution function Fk(t) . This is an immediate consequence

of Lemma 5.3.

In a similar manner we may obtain MLE's and conservative confidence

bounds in a variety of other reliability improvement models. A forthcoming

paper by Barlow, Proschan, and Scheuer will give details.
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