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THEORETICAL VERSUS EXPERIMENTAL RESULTS FOR AIR BLAST FROM ONE-POUND
SPHERICAL TNT AND PENTOLITE CHARGES AT SEA LEVEL CONDITIONS

Prepared by:
M. Lutzky

ABSTRACT: Numerical computations, using a one-dimensional hydrodynamic
code on an IBM 7090, have been made for the detonation of 1l-1b spheres

of pentolite and TNT at sea level. Positive durations, overpressure at

the main shock, and space-time paths of the main shock, second shock,

and contact surface are compared with experimental data. It is found

that the calculated peak pressures at the main shock are 10 per cent

too low, the experimental second shock path lies about 40 per cent above
the calculated one, and the experimental contact surface path is about a
factor of two greater in radius than the calculated one. Possible explana-
tions for these deviations are discussed.
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THEORETICAL VERSUS EXPERIMENTAL RESULTS FOR AIR BLAST FROM ONE-POUND
SPHERICAL TNT AND PENTOILITE CHARGES AT SEA LEVEL CONDITIONS

The numerical calculation, by means of computer codes, of the effects of
a chemical explosion in alr is an important tool for the investigation
of the efficient utilization of high explosives for blast damage. In
addition, much information can be gained about the behavior of the
explosives themselves, both during and after detonation, by comparing
the results of such computations with experiment. Calculations for

1-1b spheres of TNT and pentolite detonated in air at sea level are
reported, and compared with experimental results. An attempt is made

to connect the discrepancies found with possible deficiencies in the
model used to describe the detonation of a chemical explosive.

Support for this investigation has been provided by the Defense Atomic

Support Agency under Nuclear Weapons Effects Research Subtask 01.002
(NOL-428).

This report has been approved for open publication by the Department of
Defense, Office of Assistant Secretary of Defense (Public Affairs).
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INTRODUCTION

One of the most important methods available for the theoretical
prediction of blast effects in air is the solution of the hydrodynamic
equations by finite difference methods using an electronic computer.
The present investigation is concerned with the blast wave and other
phenomena arising from the detonation of small spherical charges at sea
level and their computation by numerical methods. In particular, we
present results for the detonation of 1l-1lb spheres of pentolite and TNT
at sea level and we compare these results with available experimental
data.
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THE NUMERICAL COMPUTAT IONS

The hydrodynamic code used in these computations utilizes the
Von Neumann-Richtmyer artificial-viscosity technique,’ and is fully
described elsewhere.? The basic idea is to solve a set of finite dif-
ference equations (which approximate the partial differential equations
of gas dynamics) by a step-by-step procedure advancing in time. The
physical situation is assumed to be spherically symmetric, so that all
quantities are functions only of the radius and the time; the origin of
coordinates is chosen to be at the center of the explosive. Hydrodynamic
variables are ascsigned values in a set of spatial zones covering the range
of interest at time t = O, and the flow evolves from these initial condi-
tions. The origin of time is taken at the instant the detonation wave
reaches the surface of the explosive, so that the solid explosive has
been completely converted to gaseous detonation products.

The equation of state used for the detonation products is the LSZK
equation,® and the initial conditions in the detonation products are
represented by a spherical Taylor wave.®** The equation of state for
the air 18 E = P/p(Y-1), where Y is a fit by straight line segments?® to
the tables of Hilsenrath and Klein,® and is taken to be a function of
internal energy, E, and density, p. The parameter v is not equal to the
ratio of specific heats, except in the low-energy domain.

Since the artificial-viscosity mechanism has the tendency to smooth
out shock fronts so that they extend over a small number of spatial zones,
it is necessary to define how values are to be read at a shock. The
position of the shock is located in the numerical results as the point
at which the artificial viscosity is a maXimum, and the pressure is

taken to be the pressure at the first maximum (in pressure) immediately
behind this point.
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THE EQUATION OF STATE FOR DETONATION PRODUCTS

We have chosen to describe the detonation products by the LSZK
(Landau, Stanyukovich, Zeldovich, and Kompaneets) equation of state,
which treats the products by drawing an analogy between the state of
the detonation products of a condensed explosive and the crystal lattice
of the solid state. Details concerning the derivation and significance
of the LSZK equation of state are given elsewhere,® and we present here
only a brief summary of the relevant equations and values for the various
constants. The (E, P, p) form of the LSZK equation may be written:

=E_p+ Y{- 1 }
P p BpY 41 -1y J° (1)

where P = pressure, p = density, E = internal energy/unit mss, o and Y
are dimensionless constants, and B is a constant with dimensions (ML~3)-Y
(I*T2). The three undetermined constants, g, ¥, and B, must be evaluated
by using experimental results. It is sufficient to know the detonation
velocity versus loading density relationship and the value of the heat

of detonation for the solid explosive, if, in addition, we postulate

that the detonation gases approach ideal gas behavior at small densities,
The procedure for evaluating the constants has been described elsewhere®
for TNT, and the results are:

= 2,9412

0.53562 (Eg)" Y

2.78,

where Q = 1018 calories/gram = heat of detonation, and the ideal gas
value for the ratio of specific heats of the products at low densities
was taken to be ¥4 = 1.34. Using these values, the spherical Taylor
Wave for TNT at a loading density of @, = 1.625 gm/cc was calculated

and used for the initial condition for the products at t = 0. Equation
(1), with the values of the constants given in (2), is then used for the
subsequent calculation of the state of the detonation products for t > 0.

Precisely the same procedure is applicable to pentolite, and has
been carried out to yield the following results:
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2.9412

1-vy
0.53927 (&)

2.64,

where Q = 1260 cal/gm was used for the heat of detonation, and the experi=-
mental curve for detonation velocity versus loading density was taken

from Cook.® The value of ¥
density of the solid explos

used was 1.34 as for TNT. The initial

ive was taken to be g = 1.67 gm/cc.
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COMPARISON WITH EXPERIMENTAL DATA FOR PENTOLITE

A comprehensive compilation and analysis of free-air blast dats
from pentolite detonations has been produced by Goodman,” the results
of which will be used in this report to provide comparisons with the
theoretical pentolite calculations. The quantities we shall consider for
pentolite are the overpressure-distance curve for the main shock, the
radius-time path of the main shock, and the positive duration as a func-
tion of distance. Goodman has reported these quantities as single curves,
which are obtained by averaging and smoothing the results of many dif-
ferent experimental determinations. Since neither ambient pressures nor
temperatures were usually reported, all measurements were arbitrarily
assumed to have been made at 14.7 psi and 300°K with ambient sound speed
1139.4 ft/sec. The charge density was assumed to be 1.65 gm/cc, which
é;/close to the value used in the theoretical calculation of g, = 1.67

cel

Figure 1 is a plot of shock overpressure (total pressure minus
ambient pressure) versus radial distance. The dashed curve represents the
smoothed numerical fit of Goodman to the experimental data, while the
80l id curve represents the calcwlated result. In the range 0.2 - 1.5 feet,
the behavior of the calculated curve is characterized by the phenomenon
of shock formation, consisting of a sharp rise in pressure at early times,
followed by an overshoot region in which the calculated curve lies 10-20
per cent above the experimental curve. The region is probably dominated
by purely computational effects which have little to do with the actual
physicel phenomena. Thus, in a real gas, the shock formation is govermed
by viscous and heat conduction effects; however, in numerical calculations
of this type the analogous quantity is an artificial viscosity which is
quadratic in the space gradient of the particle velocity, rather than
linear, as 1is a real viscosity. The artificial viscosity is constructed
to yield the correct entropy across a shock but does not reproduce the
proper shape or extent of the shock transition itself, nor does it
reproduce properly the physical phenomenon of shock formation. Further-
more, some difficulty arises at the interface between the gas products
and the air, due to the fact that the zones on either side of the inter-
face have widely different masses.® It would therefore seem unwise to
ascribe too much physical significance to the early stages of the
calculation.

At approximately 1.5 feet the calculated curve crosses the experi-
mental one; and from then on the two curves remain parallel, the calculated
values lying about 10 per cent below the experimental values. The reason
for this discrepancy is not yet clear. Various possible explanations
will be discussed in a subsequent section of this report.

Figure 2 is a radius-time plot of various aspects of interest in the
flow. The upper two curves depict the arrival times for the main shock;
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the solid curve represents the calculated arrival times, and the dashed
curve represents a smoothed, numerical fit to the experimental data.”
Also shown is the calculated radius-time plot for the contact surface
separating the detonation products from the shocked air. Each of the
successive relative minima in this curve represents a point at which an
internal shock in the detonation products passes into the air, at the
same time reflecting another shock inward toward the center. The first
of these subsidiary shocks will be considered in detail for TNT, in the
next section, as experimental data exist for the location of this shock
for this explosive.

The remaining curve is useful in calculating positive durations, and
represents the path of that point behind the main shock at which the pres-
sure is equal to the ambient air pressure (overpressure equals zero). A
slight dip is discernible in this curve at about 120 ;secs, and is due to
the fact that at this time the second shock*(the shock coming back through
the detonation gases) crosses the zero overpressure curve. It is clear
from this curve that the point of zero overpressure remains within the
explosion products until 800 psecs, at which time it emerges into the
compressed air behind the main shock. At this point a change in the
slope of the zero-overpressure curve occurs. This results in & discon-
tinuity in the slope of the positive duration versus time curve depicted
in Figure 3.

The solid curve of Figure 3 is the calculated one, and the dashed
curve is a smoothed numerical fit to Goodman's compiled pentolite data.
The cusp does not appear in the experimental curve, although the general
trend of the two curves appears to be the same. The absence of the cusp
in the experimental data might be explained by the sparsity of experi-
mental points in that particular region,**and/or by the fact that the
dashed curve 1s a smoothed numerical fit to experimental data which dis-
play a fair amount of scatter.

In any case, the agreement shown in Figure 3 is considered to be
falrly good in view of the fact that the positive duration depends on
the conditions in the whole field at successive times, and is therefore
subject to many sources of perturbation and error.

* This shock originates at the literface between the detonation gases and
the air. It moves inward into the detonation gases, is reflected from
the center, and then proceeds outward, emerging from the detonation
products at about 17950 microseconds.

**Recent pressure measurements, on a large hemispherical charge constructed

from 32-1b blocks of TNT, have been made in this region. The results
indicate that the cusp does exist for this multiton explosion. We are
indebted to Mr. John Keefer of the Ballistics Research Laboratories for
this unpublished information. In addition, Adushkin and Korotkovi® have

experimentally detected a cusp in the positive duration curve, although
they ascribe this effect to late shock formation.
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COMPARISON WITH EXPERIMENTAL DATA FOR TNT

A comprehensive analysis of experimental data for TNT, along the
lines of the Goodman report on pentolite, does not exist at present,
so that we content ourselves with data from particular TNT experiments.
We shall make use of experimental data from the work of Fisher®°1°® (first
and second shocks), Weibull}! (first shock), Potter and Jarvis'?® (first
and second shocks), and Rudlin*3*1* (first and second shocks, and con-
tact surface*). It should be noted that the loading densities were not
the same for all of these experiments. Fisher used g, = 1.51 gm/cc,
Rudlin used various densities ranging from g, = 1.0l gm/cc to g =
1.625 gm/cc, and the densities used by Potter and Jarvis were not available.
The loading density used for the theoretical calculation was py = 1.625
gm/cc. The calculated quantities for TNT which we shall compare with
experiment are the overpressure-distance curve for the main shock, and
the radius-time paths of the main shock, second shock, and contact surface.

Figure 4 presents a plot of the calculated overpressure-distance
curve for TNT as a solid curve. Individual points are plotted for the
experimental data. (Two types of data reduction were done by Fisher in
order to obtaln the peak pressures: pressures were obtained from velocity-
line data, and also from pressure-time records. Both types of measure-
ments are recorded in Figure 4.)

The general behavior is similar to that of the previous pentolite
curves; that is, beyond a certain point the calculated overpressure-
distance curve remains fairly consistently about 10 per cent below the
experimental wvalues.

Figure 5 is a radius-time plot for TNT, presenting as solid curves
the calculated paths of the main shock, the second shock (after it has
emerged from the detonation products) and the contact surface. The
general trend of the experimental data for the main shock suggests a
behavior similar to that of pentolite; that is, at early times the experi-
mental points lie below the theoretical, crossing over eventually and
remaining slightly above the calculated curve.

A new feature of these curves, not available for the pentolite
results, is the capability of comparing with experiment the space-time
paths for the second shock and for the contact surface. Figure 5 shows
that the experimental second shock path lies about 40 per cent above
the calculated one, while the experimental contact surface path is about
a factor of two greater in radius than the calculated one. These are
serious deviations, of a much greater magnitude than the discrepancies
in the behavior of the main shock, and their removal may require some
fundamental changes in the calculation and in the model used.

* Since Rudlin's measurements of the contact surface are unpublished, we
mention here that they are photographic observations of the luminous
front, made on high-speed Ektachrome color film,

T
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DISCUSSION

Several possibilities can be considered in an attempt to explain the
various discrepancies noted between the experimental and theoretical
results. One which i8 easily disposed of involves the difference between
the loading densities used for the experiments and for the theoretical
calculation. Various experimenters used densities ranging from p, =
1.51 - 1.625 gm/cc for TNT, while the theoretical calculation used g, =
1.625 gm/cc. A numerical calculation for g, = 1.57 gm/cc showed essen-
tially no difference with the g, *= 1.625 gm/cc calculation. Furthermore,
examination of the experimental points on Figures 4 and 5 fails to dis-
close any dependence on initial density, so that it is probably safe to
discount this particular explanation.

It may also be argued that a change in the equation of state of the
detonation products mey relieve the situation somewhat. To test the
effect of such a change, a calculation has been carried out in which
the ISZK equation of state has been replaced by an ideal gas equation
of state, while the total energy of the explosive (in this case, a 1-1b
sphere of pentolite) is kept constant. The results are presented in
Figure 6, where the s80lid curve represents the LSZK calculation, and the
dashed curve represents the ideal gas calculation.

The ideal gas calculation results in & main shock which is essen-
tially coincident with the ISZK main shock, and a second shock whose path
lies about 10 per cent above the path of the LSZK second shock. Because
of the fact that the second shock leaves the detonation products earlier
in the ideal gas calculation, the path of the contact surface for later
times is shifted to the left. However, the maximum radius attained by
the contact surface remains unchanged, as does its final asymptotic
position. From this single numerical experiment we can thus draw the
tentative conclusion that the main shock behavior and the maximum radius
atteined by the contact surface depend only on the initial energy of the
explosion. The second shock position, however, does depend on the equa-
tion of state chosen for the detonation products. Nevertheless, although
it does seem possible to affect the second shock behavior by manipulating
the equation of state of the detonation products, it would probably require
quite a radical revision to achieve the corrections necessary to match
experimental results. Furthermore, as long as the total energy of the
explosion remains the same, it is doubtful if the discrepancies in the
main shock and contact surface can be removed by this procedure. Since
there exists some disagreement on precise values for the heats of detona-
tion of explosives, one might try to correct the main shock behavior by
increasing the heat of detonation by a suitable amount in the theoretical
calculation. This does result in a suitably adjusted main shock (at
least in the region where the main shock pressures were initially too
low) but shifts the position of the contact surface and second shock by
approximately the same percentage as the main shock, which is hardly
enough to account for the discrepencies.

8
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Perhaps a reasonable approach is to combine the last two ideas by
adjusting the heat of detonation to give the carrect main shock behavior,
and to try to find a suitable equation of state for the detonation products
which will remove the remaining discrepancies in the second shock and
contact surface. On the other hand, the realization that the second shock
behavior is affected strongly by the state of the detonation products
leads one to remember that the theoretical calculation is a highly idealized
one which omits consideration of many phenomena. In particular, the
numerical calculation does not take into account possible reaction-zone
effects, turbulence, jetting, incomplete combustion, mixing, afterburning,
etc. It is quite conceivable that some or all of these effects are impor-
tant and that a more accurate prediction can be obtained only when a more
sophisticated model is postulated for the behavior of the expanding gases.
More detailed experimental determination of the explosion phenomena may be
required for the creation of a satisfactory theoretical model.
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