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ABSTRACT: Numerical computations, using a one-dimensional hydrodynamic 
code on an IBM 7090, have been made for the detonation of 1-lb spheres 
of pentolite and TNT at sea level. Positive durations, overpressure at 
the main shock, and space-time paths of the main shock, second shock, 
and contact surface are compared with experimental data. It is found 
that the calculated peak pressures at the main shock are 10 per cent 
too low, the experimental second shock path lies about kO  per cent above 
the calculated one, and the experimental contact surface path is about a 
factor of two greater in radius than the calculated one. Possible explana- 
tions for these deviations are discussed. 
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THEORETICAL VERSUS EXPERIMENTAL RESULTS FOR AIR BLAST FROM ONE-POUND 
SPHERICAL TNT AND PENTOLITE CHARGES AT SEA LEVEL CONDITIONS 

The numerical calculation, by means of computer codes, of the effects of 
a chemical explosion in air is an important tool for the investigation 
of the efficient utilization of high explosives for blast damage. In 
addition, much information can be gained about the behavior of the 
explosives themselves, both during and after detonation, by comparing 
the results of such computations with experiment. Calculations for 
1-lb spheres of TNT and pentolite detonated in air at sea level are 
reported, and compared with experimental results. An attempt is made 
to connect the discrepancies found with possible deficiencies in the 
model used to describe the detonation of a chemical explosive. 
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INTRODUCTION 

One of the most important methods available for the theoretical 
prediction of blast effects in air is the solution of the hydrodynamic 
equations by finite difference methods using an electronic computer. 
The present investigation is concerned with the blast wave and other 
phenomena arising from the detonation of small spherical charges at sea 
level and their computation by numerical methods. In particular, we 
present results for the detonation of 1-lb spheres of pentolite and TNT 
at sea level and we compare these results with available experimental 
data. 
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THE NUMERICAL COMPUTATIONS 

The hydrodynamic code used in these computations utilizes the 
Von Neumann-Richtmyer artificial-viscosity technique,1  and is fully 
described elsewhere.8    The basic idea is to solve a set of finite dif- 
ference equations   (which approximate the partial differential equations 
of gas dynamics) by a step-by-step procedure advancing in time.    The 
physical situation is assumed to be spherically symmetric, so that all 
quantities are functions only of the radius and the time;  the origin of 
coordinates  is chosen to be at the center of the explosive.     Hydrodynamic 
variables are assigned values  in a set of spatial zones covering the range 
of interest at time t = 0, and the flow evolves from these initial condi- 
tions.    The origin of time is taken at the instant the detonation wave 
reaches the surface of the explosive, so that the solid explosive has 
been completely converted to gaseous detonation products. 

The equation of state used for the detonation products is the LSZK 
equation,3 and the initial conditions in the detonation products are 
represented by a spherical Taylor wave.3**    The equation of state for 
the air is E = P/p(y-l), where Y is a fit by straight line segments3  to 
the tables  of Hilsenrath and Klein,5   and is taken to be a function of 
internal energy, E, and density,   p.    The parameter v is not equal to the 
ratio of specific heats, except  in the  low-energy domain. 

Since the artificial-viscosity mechanism has  the  tendency to smooth 
out shock fronts so that they extend over a small number of spatial zones, 
it is necessary to define how values are to be read at a shock.    The 
position of the shock is located in the numerical results as  the point 
at which the artificial viscosity is a maximum, and the pressure is 
taken to be the pressure at the first maximum (in pressure)  immediately 
behind this point. 
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THE EQUATION OF STATE FOR DETONATION PRODUCTS 

We have chosen to describe the detonation products by the ISZK 
(Landau, Stanyukovich, Zeldovlch, and Korapaneets) equation of state, 
which treats the products by drawing an analogy between the state of 
the detonation products of a condensed explosive and the crystal lattice 
of the solid state. Details concerning the derivation and significance 
of the LSZK equation of state are given elsewhere,* and we present here 
only a brief sunmary of the relevant equations and values for the various 
constants. The (E, P, p) form of the LSZK equation may be written: 

p - £ * »v {l - SP&7 }• W 

where P = pressure, p = density, E * internal energy/unit mass, a  and Y 
are dimensionless constants, and B is a constant with dimensions (ML"*)X"Y 

(L3T"2). The three undetermined constants, a,  Y> and B, must be evaluated 
by using experimental results. It is sufficient to know the detonation 
velocity versus loading density relationship and the value of the heat 
of detonation for the solid explosive, if, in addition, we postulate 
that bhe detonation gases approach ideal gas behavior at small densities. 
The procedure for evaluating the constants has been described elsewhere* 
for TOT, and the results are: 

a = 2.9412 

I-0.53562 (Sfr)1^ (2) 

Y - 2.78, 

where Q ■ 1018 calories/gram ■ heat of detonation, and the ideal gas 
value for the ratio of specific heats of the products at low densities 
WEIS taken to be Yi s 1.3^« Using these values, the spherical Taylor 
Wave for TNT at a loading density of p^ ■ I.625 gm/cc was calculated 
and used for the initial condition for the products at t ■ 0. Equation 
(l), with the values of the constants given in (2), is then used for the 
subsequent calculation of the state of the detonation products for t > 0. 

Precisely the same procedure is applicable to pentolite, and has 
been carried out to yield the following results: 
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* = 2.9412 

Q xcra3/ 

Y s 2.64, 

where Q ° 1260 cal/gm was vised for the heat of detonation, and the experi- 
mental curve for detonation velocity versus  loading density was taken 
from Cook.9    The value of V<  used was 1.34 as for TNT.    The initial 
density of the solid explosive was taken to be  (^  =1.67 gm/cc. 
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COMPARISON WITH EXPERIMENTAL DATA FOR PENTOLITE 

A comprehensive compilation and analysis of free-air blast data 
from pentolite detonations has been produced by Goodman,7 the results 
of which will be used in this report to provide comparisons with the 
theoretical pentolite calculations. The quantities we shall consider for 
pentolite are the overpressure-distance curve for the main shock, the 
radius-time path of the main shock, and the positive duration as a func- 
tion of distance. Goodman has reported these quantities as single curves, 
which are obtained by averaging and smoothing the results of many dif- 
ferent experimental determinations. Since neither ambient pressures nor 
temperatures were usually reported, all measurements were arbitrarily 
assumed to have been made at 1^.7 psi and 300°K with ambient sound speed 
1139«1* ft/sec. The charge density was assumed to be I.65 gm/cc, which 
is close to the value used in the theoretical calculation of (^ » I.67 
gm/cc. 

Figure 1 is a plot of shock overpressure Ctotal pressure minus 
ambient pressure) versus radial distance. The dashed curve represents the 
smoothed numerical fit of Goodman to the experimental data, while the 
■ olid curve represents the calculated result. In the range 0.2 - 1.5 feet, 
the behavior of the calculated curve is characterized by the phenomenon 
of shock formation, consisting of a sharp rise in pressure at early times, 
followed by an overshoot region in which the calculated curve lies 10-30 
per cent above the experimental curve. The region is probably dominated 
by purely computational effects which have little to do with the actual 
physical phenomena. Thus, in a real gas, the shock formation is governed 
by viscous and heat conduction effects; however, in numerical calculation» 
of this type the analogous quantity is an artificial viscosity which is 
quadratic in the space gradient of the particle velocity, rather than 
linear, as is a real viscosity. The artificial viscosity is constructed 
to yield the correct entropy across a shock but does not reproduce the 
proper shape or extent of the shock transition itself, nor does it 
reproduce properly the physical phenomenon of shock formation. Further- 
more, some difficulty arises at the interface between the gas products 
and the air, due to the fact that the zones on either side of the inter- 
face have widely different masses.8 It would therefore seem unwise to 
ascribe too much physical significance to the early stages of the 
calculation. 

At approximately 1.5 feet the calculated curve crosses the experi- 
mental one; and from then on the two curves remain parallel, the calculated 
values lying about 10 per cent below the experimental values. The reason 
for this discrepancy is not yet clear. Various possible explanations 
will be discussed in a subsequent section of this report. 

Figure 2 is a radius-time plot of various aspects of interest in the 
flow. The upper two curves depict the arrival times for the main shock; 
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the solid curve represents the calculated arrival times, and the dashed 
curve represents a smoothed, numerical fit to the experimental data.7 

Also shown is the calculated radius-time plot for the contact surface 
separating the detonation products from the shocked air. Each of the 
successive relative minima in this curve represents a point at which an 
internal shock in the detonation products passes into the air, at the 
same time reflecting another shock inward toward the center. The first 
of these subsidiary shocks will he considered in detail for TNT, in the 
next section, as experimental data exist for the location of this shock 
for this explosive. 

The remaining curve is useful in calculating positive durations, and 
represents the path of that point behind the main shock at which the pres- 
sure is equal to the ambient air pressure (overpressure equals zero). A 
slight dip is discernible in this curve at about 120 ^secs, and is due to 
the fact that at this time the second shock*(the shock coming back through 
the detonation gases) crosses the zero overpressure curve. It is clear 
from this curve that the point of zero overpressure remains within the 
explosion products until 8OO p,secs, at which time it emerges into the 
compressed air behind the main shock. At this point a change in the 
slope of the zero-overpressure curve occurs. This results in a discon- 
tinuity in the slope of the positive duration versus time curve depicted 
in Figure 3. 

The solid curve of Figure 3 is the calculated one, and the dashed 
curve is a smoothed numerical fit to Goodman's compiled pentolite data. 
The cusp does not appear in the experimental curve, although the general 
trend of the two curves appears to be the same. The absence of the cusp 
in the experimental data might be explained by the sparsity of experi- 
mental points in that particular region,**and/or by the fact that the 
dashed curve is a smoothed numerical fit to experimental data which dis- 
play a fair amount of scatter. 

In any case, the agreement shown in Figure 3 is considered to be 
fairly good in view of the fact that the positive duration depends on 
the conditions in the whole field at successive times, and is therefore 
subject to many sources of perturbation and error. 

* This shock originates at the interface between the detonation gases and 
the air. It moves inward into the detonation gases, is reflected from 
the center, and then proceeds outward, emerging from the detonation 
products at about 1750 microseconds. 

♦♦Recent pressure measurements, on a large hemispherical charge constructed 
from 32-lb blocks of TNT, have been made in this region. The results 
indicate that the cusp does exist for this multiton explosion. We are 
indebted to Mr. John Keefer of the Ballistics Research Laboratories for 
this unpublished information. In addition, Adushkin and Korotkov16 have 
experimentally detected a cusp in the positive duration curve, although 
they ascribe this effect to late shock formation. 
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COMPARISON WITH EXPERIMENTAL DATA FOR TNT 

A comprehensive analysis of experimental data for TNT, along the 
lines of the Goodman report on pentolite, does not exist at present, 
so that we content ourselves with data from particular TNT experiments. 
We shall make use of experimental data from the work of Fisher9*10 (first 
and second shocks), Weibull11 (first shock), Potter and Jarvis*3 (first 
and second shocks), and Rudlin13*x* (first and second shocks, and con- 
tact surface*). It should be noted that the loading densities were not 
the same for all of these experiments. Fisher used p^ "1.51 gm/cc, 
Rudlin used various densities ranging from q, =1.01 gm/cc to (±  * 
I.625 gm/cc, and the densities used by Potter and Jarvis were not available. 
The loading density used for the theoretical calculation was p^ ■ 1.625 
gm/cc. The calculated quantities for TNT which we shall compare with 
experiment are the overpressure-distance curve for the main shock, and 
the radius-time paths of the main shock, second shock, and contact surface. 

Figure k  presents a plot of the calculated overpressure-distance 
curve for TNT as a solid curve. Individual points are plotted for the 
experimental data.  (Two types of data reduction were done by Fisher in 
order to obtain the peak pressures: pressures were obtained from velocity- 
line data, and also from pressure-time records. Both types of measure- 
ments are recorded in Figure k.) 

The general behavior is similar to that of the previous pentolite 
curves; that is, beyond a certain point the calculated overpressure- 
distance curve remains fairly consistently about 10 per cent below the 
experimental values. 

Figure 5 is a radius-time plot for TNT, presenting as solid curves 
the calculated paths of the main shock, the second shock (after it has 
emerged from the detonation products) and the contact surface. The 
general trend of the experimental data for the main shock suggests a 
behavior similar to that of pentolite; that is, at early times the experi- 
mental points lie below the theoretical, crossing over eventually and 
remaining slightly above the calculated curve. 

A new feature of these curves, not available for the pentolite 
results, is the capability of comparing with experiment the space-time 
paths for the second shock and for the contact surface. Figure 5 shows 
that the experimental second shock path lies about 40 per cent above 
the calculated one, while the experimental contact surface path is about 
a factor of two greater in radius than the calculated one. These are 
serious deviations, of a much greater magnitude than the discrepancies 
in the behavior of the main shock, and their removal may require some 
fundamental changes in the calculation and in the model used. 

* Since Rudlin's measurements of the contact surface are unpublished, we 
mention here that they are photographic observations of the luminous 
front, made on high-speed Ektachrome color film. 
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DISCU3SION 

Several possibilities can be considered in an attempt to explain the 
various discrepancies noted between the experimental and theoretical 
results. One which is easily disposed of involves the difference between 
the loading densities used for the experiments and for the theoretical 
calculation. Various experimenters used densities ranging from (^  ■ 
1.51 - I.625 gm/cc for TNT, while the theoretical calculation used pj ■ 
I.625 gm/cc. A numerical calculation for q, «1.57 gm/cc showed essen- 
tially no difference with the Q, * I.625 gm/cc calculation. Furthermore, 
examination of the experimental points on Figures k and 5 fails to dis- 
close any dependence on initial density, so that it is probably safe to 
discount this particular explanation. 

It may also be argued that a change in the equation of state of the 
detonation products may relieve the situation somewhat. To test the 
effect of such a change, a calculation has been carried out in which 
the LfiZK equation of state has been replaced by an ideal gas equation 
of state, while the total energy of the explosive (in this case, a 1-lb 
sphere of pentolite) is kept constant. The results are presented in 
Figure 6, where the solid curve represents the ISZK calculation, and the 
dashed curve represents the ideal gas calculation. 

The ideal gas calculation results in a main shock which is essen- 
tially coincident with the L3ZK main shock, and a second shock whose path 
lies about 10 per cent above the path of the ISZK second shock. Because 
of the fact that the second shock leaves the detonation products earlier 
in the ideal gas calculation, the path of the contact surface for later 
times is shifted to the left. However, the maximum radius attained by 
the contact surface remains unchanged, as does its final asymptotic 
position. From this single numerical experiment we can thus draw the 
tentative conclusion that the main shock behavior and the maximum radius 
attained by the contact surface depend only on the initial energy of the 
explosion. The second shock position, however, does depend on the equa- 
tion of state chosen for the detonation products.  Nevertheless, although 
it does seem possible to affect the second shock behavior by manipulating 
the equation of state of the detonation products, it would probably require 
quite a radical revision to achieve the corrections necessary to match 
experimental results. Furthermore, as long as the total energy of the 
explosion remains the same, it is doubtful if the discrepancies in the 
main shock and contact surface can be removed by this procedure. Since 
there exists some disagreement on precise values for the heats of detona- 
tion of explosives, one might try to correct the main shock behavior by 
increasing the heat of detonation by a suitable amount in the theoretical 
calculation. This does result in a suitably adjusted main shock (at 
least in the region where the main shock pressures were initially too 
low) but shifts the position of the contact surface and second shock by 
approximately the same percentage as the main shock, which is hardly 
enough to account for the discrepancies. 

8 
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Perhaps a reasonable approach is to combine the last two ideas by 
adjusting the heat of detonation to give the correct main shock behavior, 
and to try to find a suitable equation of state for the detonation products 
which will remove the remaining discrepancies in the second shock and 
contact surface. On the other hand, the realization that the second shock 
behavior is affected strongly by the state of the detonation products 
leads one to remember that the theoretical calculation is a highly idealized 
one which omits consideration of many phenomena. In particular, the 
numerical calculation does not take into account possible reaction-zone 
effects, turbulence, jetting, incomplete combustion, mixing, afterburning, 
etc. It is quite conceivable that some or all of these effects are impor- 
tant and that a more accurate prediction can be obtained only when a more 
sophisticated model is postulated for the behavior of the expanding gases. 
More detailed experimental determination of the explosion phenomena may be 
required for the creation of a satisfactory theoretical model. 
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