PROGRAMS FOR MACHINE COMPUTATION
OF
ROTOR BLADE DOWNWASH

by
Nancy Ghareeb

REPORT UNDER
U.S. Navy
Bureau of Naval Weapons
Contract N0w 62-0100-d
Technical Report 107-1

August, 1964

PROGRAMS FOR MACHINE COMPUTATION

OF

ROTOR BLADE DOWNWASH

By

Nancy Ghareeb

REPORT UNDER

U.S. Navy

Bureau of Naval Weapons

Contract NOw 62-0100-d

ARCHIVE COPY
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program IA - Computation of Downwash due to Trailing Wake</td>
<td>1</td>
</tr>
<tr>
<td>Program IB - Computation of Downwash due to Shed Wake</td>
<td>13</td>
</tr>
<tr>
<td>Program II - Original Straight Line Approximation to Wake</td>
<td>18</td>
</tr>
<tr>
<td>Program III - Rotor Load Analysis</td>
<td>24</td>
</tr>
<tr>
<td>Appendix A - Program for V_1 - Trailing Wake</td>
<td>32</td>
</tr>
<tr>
<td>Appendix B - Typical Results from Program of Appendix A</td>
<td>39</td>
</tr>
<tr>
<td>Appendix C - Program for V_2 - Shed Wake</td>
<td>49</td>
</tr>
<tr>
<td>Appendix D - Typical Results from Program of Appendix C</td>
<td>54</td>
</tr>
<tr>
<td>Appendix E - Program II with Typical Results</td>
<td>62</td>
</tr>
<tr>
<td>Appendix F - Program III with Typical Results</td>
<td>71</td>
</tr>
</tbody>
</table>
This program computes the downwash at the rotor blade using Equation 15 of Ref. 1. In this program the symbol, V_1, is used for w_1 of Ref. 1 and x for γ. The chord variation, x, of Ref. 1 is here assumed to be zero. The computational techniques involved in the solution of this equation by numerical methods are chiefly those of integration and harmonic analysis. It was decided to perform the numerical integration by Simpson's rule (an approximation of the curve by a series of second degree parabolas) since this method seemed most appropriate to the nature of the function. Expressed symbolically, this means that given a function, $y = f(x)$, then

$$\int_{a}^{b} y \, dx = \frac{\Delta x}{3} \left[y_o + y_n + 4 \sum_{i=1}^{n-1} y_i + 2 \sum_{j=2}^{n-2} y_j \right]$$

where $y_o = f(a)$ and $y_n = f(b)$, i = odd integer, j = even integer

For ease in programming, a separate subroutine was written to perform the harmonic analysis. This was done as follows:

Let $g(x)$ represent the function to be analyzed, then $g(x) = a_o + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)$ where the a_k and b_k are defined in the following relations:

$$a_o = \frac{1}{2\pi} \int_{Q}^{Q+2\pi} g(x) \, dx$$

$$a_k = \frac{1}{\pi} \int_{Q}^{Q+2\pi} g(x) \cos kx \, dx$$

$$b_k = \frac{1}{\pi} \int_{Q}^{Q+2\pi} g(x) \sin kx \, dx \quad (k \neq 0)$$

This analysis is, of course, applicable only for a range of 2π ($Q \rightarrow Q + 2\pi$). The integration again was performed using Simpson's rule.

The programs are written in Fortran II and should be operable at any IBM 709 or 7090 installation with one exception. The Massachusetts Institute of Technology Computation Center at which these programs were developed assigns logical tape numbers to physical tapes as follows:

<table>
<thead>
<tr>
<th>Physical</th>
<th>Logical</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
</tr>
<tr>
<td>A2</td>
<td>4</td>
</tr>
<tr>
<td>A3</td>
<td>2</td>
</tr>
<tr>
<td>A4</td>
<td>8</td>
</tr>
<tr>
<td>B1</td>
<td>5</td>
</tr>
<tr>
<td>B2</td>
<td>6</td>
</tr>
<tr>
<td>B3</td>
<td>7</td>
</tr>
<tr>
<td>B4</td>
<td>3</td>
</tr>
</tbody>
</table>

Interval sizes of 7.5° for ψ and 7.5° and 2.5° for ϕ used with an m of 3 and QT of $-\gamma$ have produced results of sufficient accuracy for the present purposes.

CAUTION: Care must be taken in selecting interval sizes so that an odd number of points is to be used in each integration.

The Function $V_1(\psi, x)$ - Trailing Wake

$$V_1 = \int_{\psi + \gamma}^{2\pi m + \psi + \gamma} K_1(\phi) \frac{[\ell (d + \cos \phi - x \cos (\psi - \phi)) - \mu \sin \phi]}{[\ell^2 + x^2 + \gamma^2 - 2x \ell \cos (\psi - \phi) + 2d(\ell \cos \phi - x \cos \psi)]^{3/2}} d\phi$$
where \(K_1 = K_c \cos n \phi + K_s \sin n \phi \)
\[
d = \mu \left[(2\pi m + \psi + \gamma) - \phi \right]
\]
\[
z = \lambda \left[(2\pi m + \psi + \gamma) - \phi \right] (1.0 + a \cos \phi) - b_o (\ell - x)
\]

This program computes the value of the function for \(K_c = K_s = 1 \) for each \(\ell - x \) pair used at from one to four values of \(\gamma \) for a given number of values of \(\psi \). A value of zero is assumed to be among the \(\gamma \)'s read into the computer for each \(\ell - x \) pair, so that if only one value of \(\gamma \) is to be used that \(\gamma \) must be zero. The integration for the \(\gamma = 0 \) case only is split into two sections and integration performed between limits of \(\psi + \gamma \rightarrow 2\pi m + \psi + \gamma + QT \)
\(2\pi m + \psi + \gamma + QT \rightarrow 2\pi m + \psi + \gamma \). The results of the latter integration are termed \(ZAPS1 (z_a(\psi)) \) for the cos component and \(ZBPS1 (z_b(\psi)) \) for the sin component.

The results of integration for the first section and the results of integration for any other \(\gamma \)'s are termed \(YIPS1 (i = 1, 2, 3, 4, 5, 6, 7, 8) \). The odd integers are assigned to the cos components and the even integers to the sin components. The \(i \)'s will correspond to the \(\gamma \)'s in the order in which the \(\gamma \)'s were read into the computer, i.e., \(Y1PS1 \) and \(Y2PS1 \) will be assigned to the results for the first \(\gamma \) read into the computer.

Next the \(YIPS1 \) terms are summed at each \(\psi \). The sum for the cos components is called \(\text{CHI} (\chi) \) and the sum for the sin components is called \(\text{SIGMA} (\sigma) \). Harmonic analysis is then performed on each of the four functions, \(\chi \), \(\sigma \), \(z_a(\psi) \), and \(z_b(\psi) \).

The time required to obtain results from the IBM 7090 computer for one \(\ell - x \) combination with 3 \(\gamma \)'s, \(m = 3 \) and interval sizes of 7.5°, 7.5° and 2.5° is approximately two minutes.

Subroutines required with this program will be described in the following pages.

The listing of the program in Fortran II together with the subroutines is given in Appendix A.

Typical results are listed in Appendix B.
Physical Explanation of Symbols

\(\psi \) \sim \text{rotor azimuth measured from blade downwind position} \\
\(\gamma \) \sim \text{blade spacing (cf. \(\delta \))} \\
\(m \) \sim \text{number of wake spirals} \\
\(V_1(\psi, x) \approx w_1(\psi, x) \) \\
\(\lambda \) \sim \text{rotor span parameter} \\
\(\phi \) \sim \text{azimuth of wake measured from downwind position} \\
\(x \) \sim \text{rotor span parameter (\(\gamma \) of Ref. 1)} \\
\(n \) \sim \text{harmonic of rotor speed} \\
\(\mu \) \sim \text{advance ratio} \\
\(\lambda \) \sim \frac{\lambda_o}{\lambda_1} \\
\(a \) \sim \frac{\lambda_o}{\lambda_1} \\
\(z \) \ - \text{vertical distance travelled by rotor hub} \\
\(d \) \ - \text{horizontal distance travelled by rotor hub} \\
\(b_o \) \ - \text{coning angle}
Input Format

<table>
<thead>
<tr>
<th>Card No.</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>KL</td>
<td>NP</td>
<td>I1</td>
<td>MM</td>
<td>NN</td>
<td>QT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>E13.8</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>BO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EMU</td>
<td>AMBDA</td>
<td>EM</td>
<td>DEPSI</td>
<td>DELPHI</td>
<td>DELTA</td>
<td>K</td>
<td>IJ</td>
</tr>
<tr>
<td></td>
<td>E8.3</td>
<td>E8.3</td>
<td>E8.3</td>
<td>E13.8</td>
<td>E13.8</td>
<td>E13.8</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>IK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E8.3</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ELK</td>
<td>IL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E8.3</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EN</td>
<td>IM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E8.3</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>IN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E8.3</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>GAMMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E13.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Explanation of Symbols

L number of harmonics to be computed in the Fourier analysis
KL +1 → print optional table No. 2, -1 → suppress this print out
NP interval at which table No. 2 is printed (i.e., +1 will cause printout of integral at every ψ used, +2 at every other ψ etc.)
II number of times card No. 2 is to be repeated
MM +1 → print optional table No. 1, -1 → suppress this print out
NN interval at which table No. 1 is printed (see NP)
QT determines limits of integration for γ = 0 case (i.e., QT = -π/2 will cause integration from ψ - γ to ψ + γ + 2πm - π/2 and from ψ - γ + 2πm - π/2 to ψ - γ + 2πm)
BO b₀
EMU μ
AMBDA λ
EM m
DEPSI interval size used for ψ
DELPHI interval size used for ψ [in γ = 0 case, in region ψ - γ → ψ - γ + 2πm + QT]
DELTA interval size used for ψ for γ = 0 case in region ψ - γ + 2πm + QT to ψ - γ + 2πm
K number of points of ψ to be used in harmonic analysis
IJ number of values of a to follow
A a
IK number of values of l to follow
ELK l
IL number of values of n to follow
EN n
IM number of values of x to follow
X x
IN number of values of γ to follow
GAMMA γ 6
Output Format

\[\begin{align*}
\text{MU} &= \quad \text{LAMBD}A \quad = \\
\text{M} &= \quad \text{N} \quad = \\
\text{L} &= \quad \text{A} \quad = \\
\text{X} &= \\
\text{DELTA PSI} &= \\
\text{DELTA PHI (1)} &= \\
\text{DELTA PHI (2)} &= \\
\text{CHI} &= \\
\text{A - ZERO} &= \\
\text{A - k} &= \quad \text{B - k} = \\
\downarrow & \quad \downarrow \\
\text{SIGMA} &= \\
\text{A - ZERO} &= \\
\text{A - k} &= \quad \text{B - k} = \\
\downarrow & \quad \downarrow \\
\text{ZAPSI} &= \\
\text{A - ZERO} &= \\
\text{A - k} &= \quad \text{B - k} = \\
\downarrow & \quad \downarrow \\
\text{ZBPSI} &= \\
\text{A - ZERO} &= \\
\text{A - k} &= \quad \text{B - k} = \\
\downarrow & \quad \downarrow \\
\text{[Optional Table No. 1]} &= \\
\text{CHI} & \quad \text{SIGMA} \quad \text{PSI} \quad \text{ZAPSI} \quad \text{ZBPSI} \\
\downarrow & \quad \downarrow \quad \downarrow \quad \downarrow & \\
\text{[Optional Table No. 2]} &= \\
\text{PSI} & \quad \text{Y1PSI} \quad \text{Y2PSI} \quad \text{Y3PSI} \quad \text{Y4PSI} \quad \text{etc} \\
\downarrow & \quad \downarrow \quad \downarrow \quad \downarrow & \\
\end{align*} \]
\[
\Delta \phi (1) \approx \Delta \phi
\quad [\text{see explanation of symbols (input)}]
\Delta \phi (2) \approx \Delta^2
\]

A - ZERO \approx \text{constant term resulting from Fourier analysis}

A - k \approx \text{coefficients of the } \cos k \psi \text{ terms resulting from the Fourier analysis}

B - k \approx \text{coefficients of the } \sin k \psi \text{ terms resulting from the Fourier analysis}
Subroutine Hornol (PSI, FPSI)

This subroutine performs the actual harmonic analysis as previously described. Information is transmitted to and from this subroutine by means of a common statement.

COMMON PSI, FPSI, I, L, K, DEPSI, AQUAY, BQUAY, A-ZERO

where

PSI - variable
FPSI - a function of PSI
I - an indicator to show type of function so that excess computation is avoided, i.e., +1 → an even function, +2 → an odd function, +3 → function is neither even nor odd. This is automatically set in (MAIN)
L - number of harmonics to be computed (maximum = 20)
K - number of values of PSI to be used, must be an odd integer > 3
DEPSI - interval size used for ψ
AQUAY - output - the coefficients a-k of the cos kψ terms
BQUAY - output - the coefficients b-k of the sin kψ terms
A-ZERO - output - the constant term

It is assumed that the table of ψ will describe a range of 2π if the function is neither even nor odd and otherwise a range of π.
Subroutine Prince \((L, \text{AQUAY}, \text{BQUAY}, \text{A ZERO})\)

This subroutine prints out the results of the harmonic analysis in the following form:

\[
\begin{align*}
\text{A-ZERO} &= \quad \text{(constant term)} \\
A - 1 &= \\
A - 2 &= \\
A - L &= \\
\downarrow \\
\text{(coefficients of } \cos k\psi \text{ terms)}
\end{align*}
\]

\[
\begin{align*}
B - 1 &= \\
B - 2 &= \\
B - L &= \\
\downarrow \\
\text{(coefficients of } \sin k\psi \text{ terms)}
\end{align*}
\]

An optional version also punches these results.
Subroutine TRIP (CHI, SIGMA, PSI, ZAPSI, ZBPSI, NN, K)

This subroutine prints optional table No. 1.

Subroutine PRICK (NP)

Information is transmitted to this subroutine via COMMON. It is used to print optional table No. 2. The subroutine must conform to the number of \(\gamma \)'s used in MAIN. If 3 \(\gamma \)'s are used PRICK must output PSI and YiPSI \((i = 1 \text{ to } 6)\). The present version is written for three \(\gamma \)'s, hence some modification will be necessary if a different number of \(\gamma \)'s is to be used.
Sample Data for Program IA

Card No. 1 \(10 \times 1 + 1 + 2 + 1 + 1 - .15707963 \times 1 + 1 \)
Card No. 1A \(+ .069 \times 0 \)
Card No. 2 \(+ .100 \times 0 + .500 \times -1 + .300 \times 1 + .13089969 \times 0 + .13089969 \times 0 + .43633233 \times -1 + 49 + 1 \)
Card No. 3 \(+ .500 \times 0 + 1 \)
Card No. 4 \(+ .100 \times 1 + 1 \)
Card No. 5 \(+ .300 \times 1 + 1 \)
Card No. 6 \(+ .550 \times 0 + 3 \)
Card No. 7 \(+ .0000 \ 0000 \times 0 + 0 \)
Card No. 8 \(+ .20943950 \times 1 \)
Card No. 9 \(+ .41887901 \times 1 \)
Card No. 10 \(+ .100 \times 0 + .200 \times -1 + .300 \times 1 + .13089969 \times 0 + .13089969 \times 0 + .43633233 \times -1 + 49 + 1 \)
Card No. 11 \(+ .000 \times 0 + 1 \)
Card No. 12 \(+ .100 \times 0 + 1 \)
Card No. 13 \(+ .000 \times 0 + 1 \)
Card No. 14 \(+ .975 \times 0 + 3 \)
Card No. 15 \(+ .0000 \ 0000 \times 0 + 0 \)
Card No. 16 \(+ .20943950 \times 1 \)
Card No. 17 \(+ .41887901 \times 1 \)

Note that the data block (cards No. 3→9) following card No. 2 must be repeated (cards No. 11→17) even though some of the parameters are unchanged.
This program computes the downwash at the rotor blade using Equation 21 of Ref. 1 with the symbol, V_2, substituted for w_2 and x for γ as before.

\[
V_2 = \int_{\psi + \gamma}^{\psi + \gamma + 2\pi m} K_2(\phi) \left[\frac{x \sin (\psi - \phi) + d \sin \phi}{z^2 + (x \sin (\psi - \phi) + d \sin \phi)^2} \right] d\phi
\]

\[
\left[\sqrt{l^2 + x^2 + z^2 + d^2 - 2xz \cos (\psi - \phi) + 2d(l \cos \phi - x \cos \psi)} - \frac{d \cos \phi - x \cos (\psi - \phi)}{\sqrt{x^2 + z^2 + d^2 - 2xd \cos \psi}} \right] d\phi
\]

\[
d = \mu \left[(2\pi m + \psi + \gamma) - \phi \right]
\]
\[
z = \lambda \left[(2\pi m + \psi + \gamma) - \phi \right]
\]
\[
K_2(\phi) = K_c \cos n\phi + K_s \sin n\phi \quad (K_c \text{ and } K_s \text{ are set to } 1.0)
\]

This program evaluates the integral in two steps. For the first step (from $\psi + \gamma \rightarrow 2\pi m + \psi + \gamma + QT$) integration is performed by Simpson's rule using K_2 as defined above. The results of this integration are labelled $S1PSI$ for the cos component and $S2PSI$ for the sin component. For the second step $\cos n\phi$ and $\sin n\phi$ are expanded to

\[
\sin n(\psi - \phi) \sin n\psi + \cos n(\psi - \phi) \cos n\psi
\]
\[
\cos n(\psi - \phi) \sin n\psi - \sin n(\psi - \phi) \cos n\psi \quad \text{respectively.}
\]

The integration is then carried out from $(\psi + \gamma + 2\pi m + QT)$ to $(\psi + \gamma + 2\pi m)$ using $K_2 = K_c \sin n(\psi - \phi) \sin n\psi + (-K_s) \sin n(\psi - \phi) \cos n\psi$. The coefficient of K_c is called $S4PSI$ and the coefficient of $(-K_s)$ is called $S3PSI$. The value of the function at the upper limit is approximated by setting $\phi = \phi - 1/2 \Delta \phi$. This gives a very good approximation when the interval size used in this region is on the order of 2.5°. Harmonic analysis is then performed on all four of these functions ($S1PSI$, $S2PSI$, $S3PSI$, $S4PSI$). This program does not consider those terms involving $\cos n(\psi - \phi)$.

The time required for one case on the IBM 7090 computer (one x, one l, one γ) is approximately .5 minutes for a 7.5° interval size and $m = 3$.

13
Subroutines HARNAL and PRINCE are used with this program. The program used for V_2 is listed in Appendix C with typical results in Appendix D.

Input Format

Card No. 1
L NP KL IL QT
12 12 12 12 E13.8

Card No. 2
EMU AMBDA EM DEPSI DELPHI DELTA K IJ
E8.3 E8.3 E8.3 E13.8 E13.8 E13.8 13 12

Card No. 3
EN IK
E8.3 12

Card No. 4
GAMMA IL
E13.8 12

Card No. 5
ELK IM
E8.3 12

Card No. 6
X
E8.3
Explanation of Symbols

L number of harmonics to be calculated
NP interval of printing (+1 → print integral for every ψ used, +2 for every other ψ, etc)
KL -1 → print table of SiPSI, +1 → suppress this table
II number of cards No. 2 to follow
QT determines limits of integration (QT = -π will cause integration from
ψ + γ to ψ + γ + 2πm - π/2 and from ψ + γ + 2πm - π/2 to 2πm + ψ + γ)

EMU µ
AMBDA λ
EM m
DEPSI interval size to be used for ψ
DELPHI interval size to be used for φ in region ψ + γ → 2πm + ψ + γ
DELTA interval size to be used for φ in region 2πm + ψ + γ + QT → 2πm + ψ + γ
K number of values of ψ to be used in the harmonic analysis
IJ number of values of n to follow
EN n
IK number of values of γ to follow

GAMMA γ
IL number of values of k to follow
ELK l
IM number of values of x to follow
X x
Output Format

\[
\begin{align*}
\text{MU} &= \text{LAMBDA} = M = N = \text{Gamma} = L = X = \\
(\text{optional table}) \quad \psi_1 & \quad \psi_1 & \quad \psi_1 & \quad \psi_1 & \quad \psi_1 \\
\downarrow & \quad \downarrow & \quad \downarrow & \quad \downarrow & \quad \downarrow \\
S1\psi_1 \\
A - \text{Zero} &= \quad A - k = \quad B - k = \quad \downarrow & \quad \downarrow \\
S2\psi_1 \\
A - \text{Zero} &= \quad A - k = \quad B - k = \quad \downarrow & \quad \downarrow \\
S3\psi_1 \\
A - \text{Zero} &= \quad A - k = \quad B - k = \quad \downarrow & \quad \downarrow \\
S4\psi_1 \\
A - \text{Zero} &= \quad A - k = \quad B - k = \quad \downarrow & \quad \downarrow \\
\end{align*}
\]
Sample Data for Part I, B

Card No. 1 \[10 + 1 - 1 + 1 - .15707963 \times 10^1 \]

Card No. 2 \[+ .100 \times 10^0 + .500 \times 10^{-1} + 300 \times 10^1 + .13089969 \times 10^0 + .13089969 \times 10^0 + .43633233 \times 10^{-1} + 49 \times 10^1 \]

Card No. 3 \[+ .300 \times 10^1 + 2 \]

Card No. 4 \[+ .0000 \times 10^0 + 0 + 1 \]

Card No. 5 \[+ .100 \times 10^1 + 1 \]

Card No. 6 \[+ .800 \times 10^0 \]

Card No. 7 \[+ .20943950 \times 10^1 + 1 \]

Card No. 8 \[+ .100 \times 10^1 + 1 \]

Card No. 9 \[+ .800 \times 10^0 \]
PROGRAM II. ORIGINAL STRAIGHT LINE APPROXIMATION TO WAKE

This program attempts to define the trailing wake, "w", by means of the very much simplified expressions given below (see Ref. 1):

\[
w = \frac{\Gamma}{4\pi R} \cdot \frac{2(y - \eta)\cos \delta}{Z^2 + (y - \eta)^2 \cos^2 \delta}
\]

except for \(\delta = 0 \) \quad (1)

where \(y = d\cos^2 \frac{\delta}{2} - d \sin \phi \) \quad (1a)

\(d = \mu \left| S + \psi - \phi \right| \) \quad (1b)

\(Z = \lambda \left| S + \psi - \phi \right| \cdot a_0 (l - \eta) \) \quad (1c)

\(u \sin \psi = l \sin (\phi - \psi) \) \quad (1d)

\(\tan (\phi - \psi - \delta) = \frac{-\mu \cos \phi}{l + \mu \sin \phi} \) \quad (1e)

Values for \(\phi \) were found by combining equations (1b) and (1d) to give an expression of the form \(f(\phi) = 0 \). An initial guess was made for \(\phi \) and that guess improved by a Newton-Raphson iteration where the improved \(\phi \) equalled the original \(\phi \) minus \(f(\phi)/f'(\phi) \). \(f'(\phi) \) represents the derivative of \(f(\phi) \) with respect to \(\phi \).

When \(\delta = 0 \) Then \(w = \frac{\Gamma}{4\pi R} \cdot \frac{1 - \sin \delta}{(l - \eta) \cos \delta} \)

where \(\delta = \tan^{-1} \left(\frac{\mu \cos \psi}{l + \mu \sin \psi} \right) \)

since \(\phi = \psi, d = Z = 0, y = l \)

This program also performs harmonic analysis of the function as summed over the blades.

The function \(4\pi R\omega/\Gamma \) and its harmonic coefficients are also punched out in a format suitable for input to Program III.
This program was written in FORTRAN II. It requires approximately 0.5 minute on an IBM 7094 computer to handle a case of one \(L \), one \(\gamma \), one \(\mu \), and \(\lambda \) and \(4 \) at intervals of 15° in \(\psi \). The program was developed at the Massachusetts Institute of Technology Computation Center in Cambridge, Massachusetts.

This program requires two subroutines:

- **OUD1** - to compute \(d \) and \(\phi \)
- **HANEW** - to perform harmonic analysis

NOTE: INPUT AND OUTPUT are taken care of by

```
WRITE OUTPUT TAPE 2----------
READ INPUT TAPE 4 ----------
```

Therefore, it may be necessary to change an IOU table to correspond.

A list of the logical to physical tape correspondences may be found under Program IA.
EXPLANATION OF SYMBOLS

Γ = circulation
R = rotor radius
d = horizontal distance travelled by rotor hub
z = vertical distance travelled by rotor hub
η = rotor span parameter (equivalent to x in program 1)
μ = advance ratio
λ = inflow normal to rotor disc
ψ = rotor azimuth
l = rotor span parameter
α = coning angle
S = blade spacing
δ = angle between vortex line and a perpendicular to the blade
ϕ = wake azimuth
INPUT FORMAT

<table>
<thead>
<tr>
<th>Card No. 1</th>
<th>EMU</th>
<th>AMBDA</th>
<th>IJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2</td>
<td>E8.3</td>
<td>E8.3</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Card No. 2</th>
<th>EL</th>
<th>ETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>E8.3</td>
<td>E8.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Card No. 3</th>
<th>DEPSI</th>
<th>AO</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 13</td>
<td>E13.8</td>
<td>E8.3</td>
</tr>
<tr>
<td>13 13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPLANATION OF SYMBOLS

II = a counter to be set equal to the number of times Card No. 1 is to be repeated
IK = a counter to be set equal to the number of times Card No. 2 is to be repeated
NZ = the number of blades to be considered
NH = the number of harmonics to be considered when performing harmonic analysis
K = the number of values of ψ at which the function is to be computed, must be odd
DEPSI = the interval size to be used for ψ
AO = a_o
EMU = μ
AMBDA = λ
IJ = counter to be set equal to the number of times Card No. 3 is to be repeated
EL = λ
ETA = η
OUTPUT FORMAT

<table>
<thead>
<tr>
<th>BLADES</th>
<th>MU =</th>
<th>LAMBD =</th>
<th>L =</th>
<th>ETA =</th>
<th>DELTA PSI =</th>
</tr>
</thead>
</table>

PSI TOTAL WAKE CONTRIBUTIONS FROM INDIVIDUAL BLADES

HARMONIC ANALYSIS

A - zero =
A - i = B - i =

Here MU = μ, LAMBD = λ, L = L, ETA = η, PSI = Ψ, DELTA PSI = interval size used in Ψ.

CONTRIBUTIONS FROM INDIVIDUAL BLADES - These blades will be W \(\frac{4 \pi R}{\eta} \)

calculated at specific blade spacings or values of Σ in order of increasing Σ.

TOTAL WAKE - This column will be the sum of W \(\frac{4 \pi R}{\eta} \) over all blades at each Ψ.

A - zero \(\approx \) constant term resulting from harmonic analysis.
A - i \(\approx \) coefficients of the i\(^{th}\) cosine terms resulting from harmonic analysis.
B - i \(\approx \) coefficients of the i\(^{th}\) sine terms resulting from harmonic analysis.

There may also be an error message.

NO CONVERGENCE AT ZETA = . This message will be printed out if there is no convergence after repeating the iteration ten times.

In this case, the component of the trailing wake under consideration is set to zero.
PROGRAM III - ROTOR LOAD ANALYSIS

1. Description of Procedure

The nondimensionalized trailing wake, \(V_1 (\psi) \), is defined over a range of \(0 \rightarrow 2\pi \) in the azimuth angle \(\psi \). Values of \(\psi \) generally vary by 75° or 15°. For any given configuration, "m" values of \(\eta \) and "m + 1" values of \(\ell \), where \(\ell \) and \(\eta \) are rotor span parameters, are considered so that there are "m \(\times \) m" sets of \(V_1 (\psi) \). The members of these sets are designated as \(A_{ijk} (\psi) \) where "i" refers to a specific value of \(\eta \) and "k" refers to a specific value of \(\ell \). Harmonic analysis with respect to \(\psi \) is performed on each of these sets, so that there are also "m \(\times \) m" series of "2n + 1" harmonic coefficients \(P \) and \(Q \) such that \(A_{ijk} (\psi) \propto P_{ij} + \sum_{n=1}^{\infty} Q_{ij} \) \((P_{ij} \cos i \psi + Q_{ij} \sin i \psi) \). In the following write-up, \(i \) will always indicate a harmonic, \(\eta \) a specific value of \(\eta \), and \(k \) a specific value of \(\ell \).

A. To find the load coefficients, a system of "m" equations is set up:

\[
\lambda_{oi} = \frac{b}{2\pi} \sum_{t=1}^{m} \left[(\eta_t \theta_t - \lambda_{o_t}) \left(P_{o_{it}} - P_{o_{it} + 1} \right) \right] - \mu \tan \psi
\]

and the \(\lambda_{oi} \) are determined. These may then be compared with the "\(\lambda \)" or "\(\lambda' \)"'s used in calculating the \(P \)'s and \(Q \)'s. If desired an iterative process may be set up, replacing the "\(\lambda \)" with the \(\lambda_{oi} \), until reasonable agreement is obtained between \(\lambda \) and the range of \(\lambda_{oi} \).

\[
V_1 (\psi) = \int_{\psi + \delta}^{\psi + \delta + 2\pi M} \frac{1}{\sqrt{\left[1 + d \cos \phi - \eta \cos (\psi - \phi) + \mu \sin \phi \right] \left[1 + d \cos \phi - \eta \cos (\psi - \phi) + 2 \eta \cos (\psi - \phi) + 2d \cos (\psi - \phi) \right]}} d\phi
\]
A \(\lambda_{ic,i} \) and a \(\lambda_{is,i} \) may also be obtained.

\[
\lambda_{ic,i} = \frac{b}{2R} \sum_{t=1}^{m} (\gamma_{t} \theta_{t} - \lambda_{o,t}) (p_{it} - p_{i,t+1})
\]

\[
\lambda_{is,i} = \frac{b}{2R} \sum_{t=1}^{m} (\gamma_{t} \theta_{t} - \lambda_{o,t})(q_{i,t} - q_{i,t+1})
\]

B. The time history of downwash \(\lambda_{i}(\psi) \) is calculated in the following manner:

\[
\lambda_{i}(\psi) = \frac{b}{2R} \left[\sum_{t=1}^{m} (\gamma_{t} \theta_{t} - \lambda_{o,t}) (A_{it}(\psi) - A_{it+1}(\psi)) \right] - \mu \tan \psi
\]

An alternate method \(\lambda_{i}(\psi) = \lambda_{o,i} + \sum_{i=1}^{n} (\lambda_{ic,i} \cos i \psi + \lambda_{is,i} \sin i \psi) \)

was rejected, because it did not appear to give a very accurate reconstruction, unless some rather high harmonics were included.

C. The distributed airloads \(L_{n}(c,s) \) for \(n > 2 \) are calculated for each \(\eta_{i} \) as follows:

Let \(Y_{ic,i} = F_{i} \lambda_{ic,i} - G_{i} \lambda_{is,i} \) where \(i = 2, 3, 4, 5, 6, 7 \) and \(F \) and \(G \) are generally but not necessarily, constant over \(i \) and \(j \).

and \(Y_{is,i} = F_{i} \lambda_{is,i} + G_{i} \lambda_{ic,i} \)

Then \(L_{ic,i} = C \left\{ \eta_{i} Y_{ic,i} + \frac{b}{2} \left[Y_{i+1, s_{i}} - Y_{i-1, s_{i}} \right] \right\} L_{i}(c,s) \) for \(i = 3, 4, 5, 6 \)

\(L_{is,i} = C \left\{ \eta_{i} Y_{is,i} + \frac{b}{2} \left[Y_{i-1, c_{i}} - Y_{i+1, c_{i}} \right] \right\} \)

\(C \) is a conversion factor, depending upon the dimensions of the test model under consideration.
D. The load function $L_i(\psi)$ is computed in two parts:

1. $L_{i1}(\psi) = -C(\eta_i, \mu \sin \psi) \lambda_i(\psi)$

2. $L_{G_i}(\psi) = -C\left\{\theta_i(\eta_i^2 + \mu^2/2) - \eta_i \mu a_1 + \frac{1}{2} \mu b_1 \eta_i - \frac{7}{4} a_0 \eta_i \right\} \sin \psi + \frac{1}{2} b_1 (\eta_i^2 + \mu^2/4) \cos \psi - \frac{1}{2} b_1 \cos 2 \psi - \frac{1}{2} a_1 \sin 3 \psi - \frac{1}{4} b_1 \cos 3 \psi \right\}$

$L_i(\psi) = L_{i1}(\psi) \cdot L_{G_i}(\psi)$

C is again a conversion factor, and a_0, a_1, b_1 are geometric parameters (blade coning angle and first harmonic flapping).

$L_i(\psi)$ is also computed with the zero-th, first, and second harmonics eliminated. (The third harmonics in $L_{G_i}(\psi)$ are considered negligible.)

$\tilde{L}_i(\psi) = C\left\{\eta_i, \mu \sin \psi\right\} \lambda_i(\psi) - \frac{1}{2} \lambda_{1s_i} - \frac{1}{2} \lambda_{2s_i} \cos \psi - \frac{1}{2} \lambda_{2c_i} \sin \psi - \frac{1}{2} \lambda_{3s_i} \cos 2 \psi - \frac{1}{2} \lambda_{3c_i} \sin 2 \psi \right\}$

NOTE: If it is desired to do a case where the number of I's is not one greater than the number of η, then a different procedure must be used. Suppose Program II has been run for five values of η and two values of I.

$\lambda_{i0} = \rho |P_{i0}| - \mu \tan i$

$\lambda_{ic} = \rho |P_{ic}| - \mu \tan i$

$\lambda_{is} = \rho |Q_{is}|$ and $|i| = 1 \rightarrow 5$

$\lambda_i(\psi) = \rho |A_{i1}(\psi)| - A_{i2}(\psi) - \mu \tan i$
Where \(\rho \) is an appropriate conversion factor. A rough approximation would be
\[
\frac{b}{2R} \times \text{the average (} \gamma_{1i} - \lambda \text{)}.
\]

These "\(\lambda \)" must then be put into the appropriate card format for input data to Program III C. If a small computer is available it is easy to write a simple program to do this.
2. Description of Variables

\(V_1(\psi) = \) non-dimensionalized trailing wake for
\(\psi = \) azimuth angle for rotor
\(S = \) determined by blade spacing
\(M = \) number of wake spirals
\(I, \eta = \) rotor span parameters \((\eta \text{ is the same as } \chi \text{ in program I}) \)
\(d, z = \) horizontal and vertical distances travelled by rotor hub
\(\mu = \) advance ratio
\(\phi = \) azimuth angle for wake
\(m = \) number of values of \(\eta \) under consideration
\(n = \) number of harmonics taken in harmonic analysis of \(V_1(\psi) \)
\(i \text{ or } is = \) indicates an \(i \)th cosine or sine harmonic resulting from harmonic analysis
\(j = \) indicates a specific value of \(\eta = \eta_j \)
\(k = \) indicates a specific value of \(I = I_k \)

\(F = \) lift deficiency function - from data obtained from shed and harmonic trailing wakes.
\(G = \) lift phasing function - from data obtained from shed and harmonic trailing wakes.

3. Program Mechanics

This program is written in FORTRAN II. It requires approximately .3 minutes to handle a case involving five values of \(\eta \) on the IBM 7094. One subroutine "CROUT" is used to solve the system of simultaneous equations. A maximum of \(\eta, \theta, F \) or \(G \), a maximum of 50 values \(\psi \), and a maximum of 20 harmonics may be used. This program was developed with the aid of the facilities at the Massachusetts Institute of Technology Computation Center.
INPUT FORMAT

Card No. 1 DEPSI BOER TANMU EMU CF II M KP NH NGP I2P
 E13.8 E8.3 E8.3 E8.3 E8.3 I3 I3 I3 I3 I3 I3

Card No. 2 ETA (1) THETA (1) F(l) G(I)
 E8.3 E8.3 E8.3 E8.3

This card format must be repeated "m" times in succession.

Card No. 3

A. If I2P = 1
 1. A(I, J, K) 5E14.7
 2. B(I, J, K) 6E12.5

These cards are to be grouped by \(\eta \) then by \(\eta \) i.e., hold \(\eta \) constant; enter 1. and 2. for \(\eta \), followed by 1 and 2 for \(\eta \), etc., up to 1. and 2. for \(\eta \). Then consider \(\eta = \eta_2 \) and repeat the process.

B. If I2P = 2
 In this case the ordering will be the same, except that each subgroup of 1 and 2 will be augmented by 3 and 4
 1. A(I, J, K) 5E14.7
 2. B(I, J, K) 6E12.5
 3. C(K) 5E14.7
 4. D(K) 6E12.5

in this case 1 and 3 are added together as are 2 and 4.

Card No. 4 AZERO AONE BONE
 3E8.3
Explanation of Variables

DEPSI = interval size used for ν

BOER = $\frac{b}{2R}$

TANMU = $\tan \theta$

EMU = μ

CF = a conversion factor depending on the geometry of the model being considered

II = number of times Card No. 1 is to be repeated

M = number of values of η

KP = number of points of ψ

NH = number of harmonics (a th term + all cos coefficients + all sin coefficients)

NGP = number of card No. 4 to be input

I2P = +2 indicates C and D arrays are to be input, + 1 indicates only A and B are to be input

ETA(I) = η_i

THETA(I) = θ_i

F(I) = F_i

G(I) = G_i

A(I, J, K) = harmonic coefficients resulting from the harmonic analysis of $B(I, J, K)$

B(I, J, K) = "KP" values of the trailing wake function. (If the function has been separated into near and far wakes, this will be the far wake portion)

* C(K) = harmonic coefficients resulting from the harmonic analysis of $D(K)$

* D(K) = "KP" values of the near wake portion of the trailing wake to be added on to B

* These will be omitted if I2P = +1

AZERO = a_o

AONE = a_1 Blade flapping is defined as $a_o - a_1 \cos \psi - b_1 \sin \psi$.

BONE = b_1
LOAD COEFFICIENTS FOR ETA = \(\eta, \eta_2, \ldots, \eta_m \)

\[\eta = \eta_i \]

(These will follow sequentially so that the first sine harmonic will be assigned a number equal to that of the last cosine harmonic plus one)

LAMBDA (PSI) FOR ETA = \(\psi \)

ETA = \(\eta \), \(\psi \)

LOAD COEFFICIENTS = \(\lambda_0, \lambda_i, \lambda_i, \lambda_{is} \)

LAMBDA (PSI) = \(\lambda_i \)

\(L_{ci}, L_{is} \)

\(L(i) \) = \(L_{ci}(\psi) \)

\(L(G) \) = \(L_{ci}(\psi) \)

\(L(G + 1) \) = HARMONICS EXTRACTED - \(\tilde{L}_i(\psi) \)
APPENDIX A

Program for V_1 - Trailing Wake

DIMENSION Y(PS1(361),Y2PS1(361),Y3PS1(361),Y4PS1(361),Y5PS1(361)),
1 Y6PS1(361),Y7PS1(361),Y8PS1(361),Y9PS1(361),Y10PS1(361),ZPS1(361),PS1(361),
2 (X1361,J1361,ALPHAY20),ALPHAY12C
COMMON PS1,YPS1,ILK,PS1Y,PS1Y2,PS1Y3,PS1Y4,PS1Y5,PS1Y6,PS1Y7,PS1Y8,
1 PS1Y9,PS1Y10,PS1Z1,PS1Z2,PS1Z3,PS1Z4,PS1Z5,PS1Z6,PS1Z7,
2 PS1Z8,PS1Z9,PS1Z10,PS1Z11,PS1Z12,PS1Z13,PS1Z14,PS1Z15,PS1Z16,
3 PS1Z17,PS1Z18,PS1Z19,PS1Z20,PS1Z21,PS1Z22,PS1Z23,PS1Z24,
4 PS1Z25,PS1Z26,PS1Z27,PS1Z28,PS1Z29,PS1Z30,PS1Z31,PS1Z32,
5 PS1Z33,PS1Z34,PS1Z35,PS1Z36,PS1Z37,PS1Z38,PS1Z39,PS1Z40,
6 PS1Z41,PS1Z42,PS1Z43,PS1Z44,PS1Z45,PS1Z46,PS1Z47,PS1Z48,
7 PS1Z49,PS1Z50,PS1Z51,PS1Z52,PS1Z53,PS1Z54,PS1Z55,PS1Z56,
8 PS1Z57,PS1Z58,PS1Z59,PS1Z60,PS1Z61,PS1Z62,PS1Z63,PS1Z64,
9 PS1Z65,PS1Z66,PS1Z67,PS1Z68,PS1Z69,PS1Z70,PS1Z71,PS1Z72,
10 PS1Z73,PS1Z74,PS1Z75,PS1Z76,PS1Z77,PS1Z78,PS1Z79,PS1Z80,
11 PS1Z81,PS1Z82,PS1Z83,PS1Z84,PS1Z85,PS1Z86,PS1Z87,PS1Z88,
12 PS1Z89,PS1Z90,PS1Z91,PS1Z92,PS1Z93,PS1Z94,PS1Z95,PS1Z96,
13 PS1Z97,PS1Z98,PS1Z99,PS1Z100,PS1Z101,PS1Z102,PS1Z103,
14 PS1Z104,PS1Z105,PS1Z106,PS1Z107,PS1Z108,PS1Z109,PS1Z110,
15 PS1Z111,PS1Z112,PS1Z113,PS1Z114,PS1Z115,PS1Z116,PS1Z117,
16 PS1Z118,PS1Z119,PS1Z120,PS1Z121,PS1Z122,PS1Z123,PS1Z124,
17 PS1Z125,PS1Z126,PS1Z127,PS1Z128,PS1Z129,PS1Z130,PS1Z131,
18 PS1Z132,PS1Z133,PS1Z134,PS1Z135,PS1Z136,PS1Z137,PS1Z138,
19 PS1Z139,PS1Z140,PS1Z141,PS1Z142,PS1Z143,PS1Z144,PS1Z145,
20 PS1Z146,PS1Z147,PS1Z148,PS1Z149,PS1Z150,PS1Z151,PS1Z152,
21 PS1Z153,PS1Z154,PS1Z155,PS1Z156,PS1Z157,PS1Z158,PS1Z159,
22 PS1Z160,PS1Z161,PS1Z162,PS1Z163,PS1Z164,PS1Z165,PS1Z166,
23 PS1Z167,PS1Z168,PS1Z169,PS1Z170,PS1Z171,PS1Z172,PS1Z173,
24 PS1Z174,PS1Z175,PS1Z176,PS1Z177,PS1Z178,PS1Z179,PS1Z180,
25 PS1Z181,PS1Z182,PS1Z183,PS1Z184,PS1Z185,PS1Z186,PS1Z187,
26 PS1Z188,PS1Z189,PS1Z190,PS1Z191,PS1Z192,PS1Z193,PS1Z194,
27 PS1Z195,PS1Z196,PS1Z197,PS1Z198,PS1Z199,PS1Z200,PS1Z201,
28 PS1Z202,PS1Z203,PS1Z204,PS1Z205,PS1Z206,PS1Z207,PS1Z208,
29 PS1Z209,PS1Z210,PS1Z211,PS1Z212,PS1Z213,PS1Z214,PS1Z215,
30 PS1Z216,PS1Z217,PS1Z218,PS1Z219,PS1Z220,PS1Z221,PS1Z222,
31 PS1Z223,PS1Z224,PS1Z225,PS1Z226,PS1Z227,PS1Z228,PS1Z229,
32 PS1Z230,PS1Z231,PS1Z232,PS1Z233,PS1Z234,PS1Z235,PS1Z236,
33 PS1Z237,PS1Z238,PS1Z239,PS1Z240,PS1Z241,PS1Z242,PS1Z243,
34 PS1Z244,PS1Z245,PS1Z246,PS1Z247,PS1Z248,PS1Z249,PS1Z250,
35 PS1Z251,PS1Z252,PS1Z253,PS1Z254,PS1Z255,PS1Z256,PS1Z257,
36 PS1Z258,PS1Z259,PS1Z260,PS1Z261,PS1Z262,PS1Z263,PS1Z264,
35 IF (GAMMA = 0.0001) 37, 37, 36
36 ASSIGN 40 TO JK
GO TO 20
37 IF (PHI + 0.5*DELPHI - SPHI - QT) 36, 36, 19
40 ALPHA = ALPHA + 2.0*TAU*COSF(EN*PHI)
OMEGA = OMEGA + 2.0*TAU*SINF(EN*PHI)
PHI = PHI + DELPHI
ASSIGN 33 TO JK
GO TO 20
43 IF (PHI - SPHI) 30, 30, 45
45 GO TO (71, 69, 67, 65), M
50 PHI - PHI - DELPHI
51 BETA = BETA + TAU*COSF(EN*PHI)
ZETA = ZETA + TAU*SINF(EN*PHI)
PHI = PHI + DELTA
IF (PHI - SPHI) 52, 52, 63
52 ASSIGN 55 TO JK
GO TO 20
55 BETA = BETA + 4.0*TAU*COSF(EN*PHI)
ZETA = ZETA + 4.0*TAU*SINF(EN*PHI)
PHI = PHI + DELTA
IF (PHI + 0.5*DELTA - SPHI) 57, 57, 58
57 ASSIGN 59 TO JK
GO TO 20
58 ASSIGN 51 TO JK
GO TO 20
59 BETA = BETA + 2.0*TAU*COSF(EN*PHI)
ZETA = ZETA + 2.0*TAU*SINF(EN*PHI)
PHI = PHI + DELTA
ASSIGN 55 TO JK
GO TO 20
63 ZAPSI(J) = (DELTA*BETA)/3.0
ZAPSI(J) = (DELTA*ZETA)/3.0
GO TO 45
65 Y1PSI(J) = (DELPHI*ALPHA)/3.0
Y2PSI(J) = (DELPHI*OMEGA)/3.0
CHI(J) = CHI(J) + Y1PSI(J)
SIGMA(J) = SIGMA(J) + Y2PSI(J)
GO TO 73
67 Y3PSI(J) = (DELPHI*ALPHA)/3.0
Y4PSI(J) = (DELPHI*OMEGA)/3.0
CHI(J) = CHI(J) + Y3PSI(J)
SIGMA(J) = SIGMA(J) + Y4PSI(J)
GO TO 73
69 Y5PSI(J) = (DELPHI*ALPHA)/3.0
Y6PSI(J) = (DELPHI*OMEGA)/3.0
CHI(J) = CHI(J) + Y5PSI(J)
SIGMA(J) = SIGMA(J) + Y6PSI(J)
GO TO 73
71 Y7PSI(J) = (DELPHI*ALPHA)/3.0
Y8PSI(J) = (DELPHI*OMEGA)/3.0
CHI(J) = CHI(J) + Y7PSI(J)
SIGMA(J) = SIGMA(J) + Y8PSI(J)
73 PSI(J+1) = PSI(J) + DEPSI
74 CONTINUE
IN = IN - 1
IF(IN) 77,77,13

77 L = 3

79 CALL HARNAL (PSI,CHI)
 WRITE OUTPUT TAPE 2,80

80 FORMAT (1HO///4H CHI////
 CALL PRINCE(L,AQUAY,BQUAY,AZERO)
 CALL HARNAL (PSI,SIGMA)
 WRITE OUTPUT TAPE 2,82

82 FORMAT (1HO///6H SIGMA////
 CALL PRINCE(L,AQUAY,BQUAY,AZERO)
 CALL HARNAL (PSI,ZAPSI)
 WRITE OUTPUT TAPE 2,84

84 FORMAT (1HO///6H ZAPSI////
 CALL PRINCE(L,AQUAY,BQUAY,AZERO)
 CALL HARNAL (PSI,ZBPSI)
 WRITE OUTPUT TAPE 2,85

85 FORMAT (1HO///6H ZBPSI////
 CALL PRINCE(L,AQUAY,BQUAY,AZERO)
 IF (MM) 88,88,87

87 CALL TRIP (CHI,SIGMA,PSI,ZAPSI,ZBPSI,NN,K)

88 IF (KL) 90,90,89

89 CALL PRICK (NP)

90 IM = IM - 1
 IF (IM) 92,92,9

92 IL = IL - 1
 IF (IL) 94,94,8

94 IK = IK - 1
 IF (IK) 96,96,7

96 IJ = IJ - 1
 IF (IJ) 98,98,5

98 II = II - 1
 IF (II) 101,101,3

99 WRITE OUTPUT TAPE 2,100,PSI(,),PHI

100 FORMAT (3SH ISINGULARITY OCCURS AT PSI OF E16.8,8H ,PHI = E16.8)
 GO TO 90

101 CALL EXIT

END(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
SUBROUTINE HARNAL (PSI, FPSI)
DIMENSION PSI(361), FPSI(361), AQUAY(20), BQUAY(20)
COMMON PSI, FPSI, I, L, K, DEPSI, AQUAY, BQUAY, AZERO
KN*K-3
R=1.0
GO TO (5,35,5), I
5 GRAL = FPSI(1) + FPSI(K) + 4.0*FPSI(K-1)
 DO 12 M=2,KN,2
12 GRAL = GRAL + 4.0*FPSI(M) + 2.0*FPSI(M+1)
 AZERO = (DEPSI*GRAL)/9.4247778
 Q=0.0
 DO 25 J=1,L
 Q=Q + 1.0
 GRAND = FPSI(1)*COSF(Q*PSI(1)) + FPSI(K)*COSF(Q*PSI(K))
 1 + 4.0*FPSI(K-1)*COSF(Q*PSI(K-1))
 DO 20 M=2,KN,2
20 GRAND = GRAND + 4.0*COSF(Q*PSI(M))*FPSI(M)
 1 + 2.0*FPSI(M+1)*COSF(Q*PSI(M+1))
 AQUAY(J) = ((2.0*DEPSI)/9.4247778)*GRAND
 IF (I-3) 25,32,22
22 AQUAY(J) = AQUAY(J)/2.0
25 CONTINUE
 IF (I-3) 34,34,34
34 AZERO = AZERO/2.0
 R = 0.5
35 P = 0.0
 DO 43 J = 1, L
 P = P + 1.0
 TGRAL = FPSI(1)*SINF(P*PSI(1)) + FPSI(K)*SINF(P*PSI(K))
 1 + 4.0*FPSI(K-1)*SINF(P*PSI(K-1))
 DO 42 K = 2, KN, 2
42 TGRAL = TGRAL + 4.0*FPSI(M)*SINF(P*PSI(M))
 1 + 2.0*FPSI(M+1)*SINF(P*PSI(M+1))
 BQUAY(J) = ((2.0*DEPSI)/9.4247778)*TGRAL*R
43 CONTINUE
49 RETURN
 ENC(1,0)

35
SUBROUTINE PRICK(NP)
DIMENSION Y1PSI(361),Y2PSI(361),Y3PSI(361),Y4PSI(361),Y5PSI(361),
1 Y6PSI(361),Y7PSI(361),Y8PSI(361),PSI(361),AQUAY(20),BQUAY(20)
COMMON PSI,Y1PSI,Y2PSI,Y3PSI,Y4PSI,Y5PSI,Y6PSI,Y7PSI,Y8PSI,
1 Y4PSI,Y5PSI,Y6PSI,Y7PSI,Y8PSI
WRITE OUTPUT TAPE 2,3
1 FORMAT(102H1PSI Y1PSI Y2PSI Y3PSI)
15 FORMAT(102H1PSI Y4PSI Y5PSI Y6PSI)
WRITE OUTPUT TAPE 2,6,PSI(J),Y1PSI(J),Y2PSI(J),Y3PSI(J),
1 Y4PSI(J),Y5PSI(J),Y6PSI(J),
6 FORMAT (E13.5,5E16.5)
9 CONTINUE
RETURN
END
SUBROUTINE TRIP(CHI, SIGMA, PSI, ZAPSI, BPSI, NN, K)
DIMENSION CHI(361), SIGMA(361), PSI(361), ZAPSI(361), BPSI(361)
WRITE OUTPUT TAPE 2,1
1 FORMAT (78H1CHI SIGMA PSI
1 ZAPSI ZBPSI//)
DO 9 J = 1,K,NN
 WRITE OUTPUT TAPE 2,5,CHI(J),SIGMA(J),PSI(J),ZAPSI(J),BPSI(J)
5 FORMAT (E13.5,E18.5)
9 CONTINUE
RETURN
END(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
SUBROUTINE PRINCFL(AQUAY,BQUAY,AZERC)
DIMENSION AQUAY(20),BQUAY(20)
WRITE OUTPUT TAPE 2,5,AZERC
FORMAT(1H0/10HCA-ZERO = E18.8)
CO 9 J = 1,L
WRITE OUTPUT TAPE 2,7,J,AQUAY(J),J,BQUAY(J)
FORMAT (3HQA-12,3H = E18.8,10H B-12,3H = E18.8)
CONTINUE
RETURN
END(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

38

APPENDIX B

Typical Results from Program of Appendix A

\[\mu = 0.100 \quad \lambda = 0.0500 \quad k = 3.000 \quad n = 3.000 \quad l = 1.000 \quad a = 0.500 \quad x = 0.550 \]

\[\Delta \psi_1 = 0.13000 \quad \Delta \psi_{1(1)} = 0.13000 \quad \Delta \psi_{1(2)} = 0.04363 \]

\[\chi_1 \]

\[
\begin{array}{c|c|c}
A-ZENC & 0.2818441E+01 \\
A & \begin{array}{l}
C \cdot 23537176-00 \\
-0.4422728E+01 \\
-0.21407055E+01 \\
-0.32869507E-00 \\
C \cdot 79406596-01 \\
C \cdot 77531750E-01 \\
-0.2372786E-00 \\
C \cdot 31351981E-00 \\
-0.33793276E-00 \\
C \cdot 32846637E-00 \\
A-1 & 0.4901446E-00 \\
A & \begin{array}{l}
-0.44811134E-00 \\
0.8173908E-00 \\
-0.18497241E-00 \\
0.33456618E-00 \\
-0.4501490E-00 \\
A-2 & 0.322408E+01 \\
A & \begin{array}{l}
-0.26339015E+01 \\
0.34310731E+01 \\
-0.16649285E+01 \\
A-4 & 0.4901446E+00 \\
\end{array}
\end{array}
\end{array}
\]

\[\Sigma \]

\[
\begin{array}{c|c|c}
A-ZENG & 0.2818441E+01 \\
A & \begin{array}{l}
C \cdot 23537176-00 \\
-0.4422728E+01 \\
-0.21407055E+01 \\
-0.32869507E-00 \\
C \cdot 79406596-01 \\
C \cdot 77531750E-01 \\
-0.2372786E-00 \\
C \cdot 31351981E-00 \\
-0.33793276E-00 \\
C \cdot 32846637E-00 \\
A-10 & 0.324808*E+00 \\
A-1 & 0.16649285E+00 \\
A & \begin{array}{l}
-0.26339015E+01 \\
0.34310731E+01 \\
-0.16649285E+01 \\
A-4 & 0.4901446E+00 \\
\end{array}
\end{array}
\end{array}
\]

39
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(-0.20650962 \cdot 10^{-0})</td>
</tr>
<tr>
<td>6</td>
<td>(-0.23854294 \cdot 10^{-0})</td>
</tr>
<tr>
<td>7</td>
<td>(0.38533878 \cdot 10^{-0})</td>
</tr>
<tr>
<td>8</td>
<td>(-0.41684166 \cdot 10^{-0})</td>
</tr>
<tr>
<td>9</td>
<td>(0.26763588 \cdot 10^{-0})</td>
</tr>
<tr>
<td>10</td>
<td>(-0.21372104 \cdot 10^{-0})</td>
</tr>
</tbody>
</table>

ZAPSI

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(-0.93950700 \cdot 10^{-0})</td>
</tr>
<tr>
<td>2</td>
<td>(-0.69089228 \cdot 10^{-0})</td>
</tr>
<tr>
<td>3</td>
<td>(0.61862555 \cdot 10^{-0})</td>
</tr>
<tr>
<td>4</td>
<td>(-0.21786670 \cdot 10^{-0})</td>
</tr>
<tr>
<td>5</td>
<td>(0.17025375 \cdot 10^{-0})</td>
</tr>
<tr>
<td>6</td>
<td>(0.42724407 \cdot 10^{-0})</td>
</tr>
<tr>
<td>7</td>
<td>(0.16942464 \cdot 10^{-0})</td>
</tr>
<tr>
<td>8</td>
<td>(-0.52219255 \cdot 10^{-0})</td>
</tr>
<tr>
<td>9</td>
<td>(-0.11450099 \cdot 10^{-0})</td>
</tr>
<tr>
<td>10</td>
<td>(-0.22661996 \cdot 10^{-0})</td>
</tr>
</tbody>
</table>

ZBPSI

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(-0.27789452 \cdot 10^{-0})</td>
</tr>
<tr>
<td>A-1</td>
<td>-0.57612904E-02</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
</tr>
<tr>
<td>A-2</td>
<td>0.24882170E-00</td>
</tr>
<tr>
<td>A-3</td>
<td>-0.15431759E-01</td>
</tr>
<tr>
<td>A-4</td>
<td>-0.57254104E-02</td>
</tr>
<tr>
<td>A-5</td>
<td>-0.27870707E-02</td>
</tr>
<tr>
<td>A-6</td>
<td>0.80190378E-04</td>
</tr>
<tr>
<td>A-7</td>
<td>-0.54488785E-04</td>
</tr>
<tr>
<td>A-8</td>
<td>0.58944438E-05</td>
</tr>
<tr>
<td>A-9</td>
<td>0.21461810E-06</td>
</tr>
<tr>
<td>A-10</td>
<td>0.35473040E-06</td>
</tr>
<tr>
<td>CHI</td>
<td>SIGMA</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>-0.14443E</td>
<td>0.89760E</td>
</tr>
<tr>
<td>-0.11941E</td>
<td>0.18391E</td>
</tr>
<tr>
<td>-0.76018E</td>
<td>0.25004E</td>
</tr>
<tr>
<td>-0.12395E</td>
<td>0.27826E</td>
</tr>
<tr>
<td>-0.71141E</td>
<td>0.26691E</td>
</tr>
<tr>
<td>-0.16927E</td>
<td>0.22292E</td>
</tr>
<tr>
<td>0.27830E</td>
<td>0.14636E</td>
</tr>
<tr>
<td>0.43208E</td>
<td>0.48433E</td>
</tr>
<tr>
<td>0.54198E</td>
<td>-0.53830E</td>
</tr>
<tr>
<td>0.69328E</td>
<td>-0.13402E</td>
</tr>
<tr>
<td>0.84441E</td>
<td>-0.17467E</td>
</tr>
<tr>
<td>0.97849E</td>
<td>-0.17127E</td>
</tr>
<tr>
<td>0.1086E</td>
<td>-0.96056E</td>
</tr>
<tr>
<td>0.11421E</td>
<td>-0.65259E</td>
</tr>
<tr>
<td>0.11685E</td>
<td>0.16317E</td>
</tr>
<tr>
<td>0.10887E</td>
<td>0.14286E</td>
</tr>
<tr>
<td>0.98817E</td>
<td>0.42460E</td>
</tr>
<tr>
<td>0.85004E</td>
<td>0.48889E</td>
</tr>
<tr>
<td>0.7149OE</td>
<td>0.48414E</td>
</tr>
<tr>
<td>0.52338E</td>
<td>0.65447E</td>
</tr>
<tr>
<td>0.14907E</td>
<td>0.85724E</td>
</tr>
<tr>
<td>-0.38389E</td>
<td>0.10097E</td>
</tr>
<tr>
<td>-0.77273E</td>
<td>0.74171E</td>
</tr>
<tr>
<td>-0.5535E</td>
<td>0.37151E</td>
</tr>
<tr>
<td>-0.59942E</td>
<td>0.16763E</td>
</tr>
<tr>
<td>-0.46113E</td>
<td>-0.20345E</td>
</tr>
<tr>
<td>-0.61417E</td>
<td>-0.32291E</td>
</tr>
<tr>
<td>-0.35379E</td>
<td>-0.49287E</td>
</tr>
<tr>
<td>-0.14294E</td>
<td>-0.5573OE</td>
</tr>
<tr>
<td>0.48191E</td>
<td>-0.61685E</td>
</tr>
<tr>
<td>0.2151OE</td>
<td>-0.7092OE</td>
</tr>
<tr>
<td>0.4852OE</td>
<td>-0.58772E</td>
</tr>
<tr>
<td>0.6560E</td>
<td>-0.39759E</td>
</tr>
<tr>
<td>0.71178E</td>
<td>-0.18400E</td>
</tr>
<tr>
<td>0.75489E</td>
<td>-0.10466E</td>
</tr>
<tr>
<td>0.75093E</td>
<td>-0.24684E</td>
</tr>
<tr>
<td>0.7155OE</td>
<td>0.46546E</td>
</tr>
<tr>
<td>0.63113E</td>
<td>0.1063OE</td>
</tr>
<tr>
<td>0.52503E</td>
<td>0.11142E</td>
</tr>
<tr>
<td>0.4534E</td>
<td>0.81138E</td>
</tr>
<tr>
<td>0.2864E</td>
<td>0.27679E</td>
</tr>
<tr>
<td>0.16618E</td>
<td>-0.4361OE</td>
</tr>
<tr>
<td>0.59144E</td>
<td>-0.11775E</td>
</tr>
<tr>
<td>-0.26154E</td>
<td>-0.17743E</td>
</tr>
<tr>
<td>-0.85951E</td>
<td>0.20126E</td>
</tr>
<tr>
<td>-0.12398E</td>
<td>-0.17726E</td>
</tr>
<tr>
<td>-0.45424E</td>
<td>-0.11642E</td>
</tr>
<tr>
<td>-0.1524OE</td>
<td>-0.15184E</td>
</tr>
<tr>
<td>-0.14443E</td>
<td>0.89760E</td>
</tr>
</tbody>
</table>
\[\mu = 0.200 \quad \lambda = 0.0250 \quad \kappa = 3.000 \quad \eta = 0. \quad L = 0.500 \quad A = 0. \quad \delta = 0.030 \]

\[\Delta \psi_1 = 0.26180 \quad \Delta \phi_1 = 0.76180 \quad \Delta \phi_2 = 0.04363 \]

\[
\begin{array}{ll}
A-\text{ZERO} & = 0.248968500 \quad 01 \\
A-1 & = 0.7673818 \quad 01 \\
A-2 & = 0.9597169 \quad 01 \\
A-3 & = 0.9227449 \quad 01 \\
A-4 & = 0.7061440 \quad 01 \\
A-5 & = 0.3809358 \quad 01 \\
A-6 & = 0.3546547 \quad 00 \\
A-7 & = 0.2075118 \quad 01 \\
A-8 & = 0.3705075 \quad 01 \\
A-9 & = 0.4223138 \quad 01 \\
A-10 & = 0.3726328 \quad 01 \\
\end{array}
\]

\[
\begin{array}{ll}
\Sigma \text{ZERO} & = 0. \\
\Sigma-1 & = 0. \\
\Sigma-2 & = 0. \\
\Sigma-3 & = 0. \\
\Sigma-4 & = 0. \\
\end{array}
\]
A- 5	-0.00	B- 5	0.00
A- 6	0.00	B- 6	0.00
A- 7	0.00	B- 7	0.00
A- 8	0.00	B- 8	-0.00
A- 9	0.00	B- 9	-0.00
A-10	0.00	B-10	-0.00

ZAPS1

A-ZERC	-0.14611866E 01		
A- 1	-0.50505327E 00	B- 1	-0.56519654E 00
A- 2	-0.14080133E-00	B- 2	-0.58095719E-01
A- 3	-0.35664590E-01	B- 3	0.40008912E-02
A- 4	-0.73993352E-02	B- 4	0.54272138E-02
A- 5	-0.10136589E-02	B- 5	0.23007582E-02
A- 6	0.55484471E-04	B- 6	0.89713659E-03
A- 7	0.44217125E-03	B- 7	0.90215145E-03
A- 8	0.25120047E-02	B- 8	0.18273765E-02
A- 9	0.11903889E-01	B- 9	0.13314038E-02
A-10	0.46938109E-01	B-10	-0.19368302E-01

ZDPS1

| A-ZERC | -0.00 |

45
<p>| A-1 = -0. | B-1 = 0. |
| A-2 = 0. | B-2 = 0. |
| A-3 = 0. | B-3 = 0. |
| A-4 = 0. | B-4 = -0. |
| A-5 = 0. | B-5 = -0. |
| A-6 = -0. | B-6 = -0. |
| A-7 = -0. | B-7 = -0. |
| A-8 = -0. | B-8 = 0. |
| A-9 = -0. | B-9 = 0. |
| A-10 = 0. | B-10 = 0. |</p>
<table>
<thead>
<tr>
<th>CM1</th>
<th>SIGMA</th>
<th>PSI</th>
<th>ZAPSI</th>
<th>ZBPSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35169E 02</td>
<td>0.</td>
<td>0.</td>
<td>-0.21508E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>0.27842E 02</td>
<td>0.</td>
<td>0.26180E-00</td>
<td>-0.22650E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>-0.47245E 01</td>
<td>0.</td>
<td>0.52360E 00</td>
<td>-0.22878E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>-0.21978E 02</td>
<td>0.</td>
<td>0.78540E 00</td>
<td>-0.22422E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>-0.13122E 02</td>
<td>0.</td>
<td>0.10472E 01</td>
<td>-0.21506E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>-0.82261E 01</td>
<td>0.</td>
<td>0.13090E 01</td>
<td>-0.20307E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>-0.56000E 01</td>
<td>0.</td>
<td>0.15708E 01</td>
<td>-0.18949E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>-0.39901E 01</td>
<td>0.</td>
<td>0.18326E 01</td>
<td>-0.17515E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>-0.29033E 01</td>
<td>0.</td>
<td>0.20944E 01</td>
<td>-0.16060E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>-0.21134E 01</td>
<td>0.</td>
<td>0.23562E 01</td>
<td>-0.14624E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>-0.15026E 01</td>
<td>0.</td>
<td>0.26180E 01</td>
<td>-0.13233E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>-0.10037E 01</td>
<td>0.</td>
<td>0.28798E 01</td>
<td>-0.11910E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>-0.57500E 00</td>
<td>0.</td>
<td>0.31416E 01</td>
<td>-0.10677E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>-0.18872E-00</td>
<td>0.</td>
<td>0.34034E 01</td>
<td>-0.95622E 00</td>
<td>-0.</td>
</tr>
<tr>
<td>0.17512E-00</td>
<td>0.</td>
<td>0.36652E 01</td>
<td>-0.85945E 00</td>
<td>-0.</td>
</tr>
<tr>
<td>0.53181E 00</td>
<td>0.</td>
<td>0.39270E 01</td>
<td>-0.78287E 00</td>
<td>-0.</td>
</tr>
<tr>
<td>0.89274E 00</td>
<td>0.</td>
<td>0.41888E 01</td>
<td>-0.73343E 00</td>
<td>-0.</td>
</tr>
<tr>
<td>0.12629E 01</td>
<td>0.</td>
<td>0.44506E 01</td>
<td>-0.72136E 00</td>
<td>-0.</td>
</tr>
<tr>
<td>0.16290E 01</td>
<td>0.</td>
<td>0.47124E 01</td>
<td>-0.76070E 00</td>
<td>-0.</td>
</tr>
<tr>
<td>0.19150E 01</td>
<td>0.</td>
<td>0.49742E 01</td>
<td>-0.86827E 00</td>
<td>-0.</td>
</tr>
<tr>
<td>0.21824E 01</td>
<td>0.</td>
<td>0.52360E 01</td>
<td>-0.10581E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>0.95603E 00</td>
<td>0.</td>
<td>0.54978E 01</td>
<td>-0.13276E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>0.21277E 02</td>
<td>0.</td>
<td>0.57596E 01</td>
<td>-0.16415E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>0.33543E 02</td>
<td>0.</td>
<td>0.60214E 01</td>
<td>-0.19354E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>0.35169E 02</td>
<td>0.</td>
<td>0.62892E 01</td>
<td>-0.21508E 01</td>
<td>-0.</td>
</tr>
<tr>
<td>PSI</td>
<td>Y1PSI</td>
<td>Y2PSI</td>
<td>Y3PSI</td>
<td>Y4PSI</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>0.</td>
<td>0.52813E-01</td>
<td>0.</td>
<td>0.23796E-02</td>
<td>0.</td>
</tr>
<tr>
<td>0.26180E-00</td>
<td>0.80571E-01</td>
<td>0.</td>
<td>0.11823E-02</td>
<td>0.</td>
</tr>
<tr>
<td>0.52360E-00</td>
<td>0.41082E-01</td>
<td>0.</td>
<td>0.18973E-02</td>
<td>0.</td>
</tr>
<tr>
<td>0.78540E-00</td>
<td>-0.43200E-01</td>
<td>0.</td>
<td>-0.10399E-02</td>
<td>0.</td>
</tr>
<tr>
<td>0.10472E-01</td>
<td>-0.22420E-01</td>
<td>0.</td>
<td>-0.64288E-01</td>
<td>0.</td>
</tr>
<tr>
<td>0.13090E-01</td>
<td>0.12714E-01</td>
<td>0.</td>
<td>-0.44177E-01</td>
<td>0.</td>
</tr>
<tr>
<td>0.15708E-01</td>
<td>-0.77806E-00</td>
<td>0.</td>
<td>-0.32279E-01</td>
<td>0.</td>
</tr>
<tr>
<td>0.18326E-01</td>
<td>0.48537E-00</td>
<td>0.</td>
<td>0.24365E-01</td>
<td>0.</td>
</tr>
<tr>
<td>0.23944E-01</td>
<td>0.39126E-00</td>
<td>0.</td>
<td>0.19136E-01</td>
<td>0.</td>
</tr>
<tr>
<td>0.23562E-01</td>
<td>0.15021E-00</td>
<td>0.</td>
<td>0.13219E-01</td>
<td>0.</td>
</tr>
<tr>
<td>0.26180E-01</td>
<td>0.38865E-00</td>
<td>0.</td>
<td>0.12188E-01</td>
<td>0.</td>
</tr>
<tr>
<td>0.31416E-01</td>
<td>0.14438E-00</td>
<td>0.</td>
<td>0.77713E-00</td>
<td>0.</td>
</tr>
<tr>
<td>0.34034E-01</td>
<td>0.32312E-00</td>
<td>0.</td>
<td>-0.60753E-00</td>
<td>0.</td>
</tr>
<tr>
<td>0.36652E-01</td>
<td>0.32583E-00</td>
<td>0.</td>
<td>-0.46054E-00</td>
<td>0.</td>
</tr>
<tr>
<td>0.39270E-01</td>
<td>0.43222E-00</td>
<td>0.</td>
<td>-0.33321E-00</td>
<td>0.</td>
</tr>
<tr>
<td>0.41888E-01</td>
<td>0.55941E-00</td>
<td>0.</td>
<td>-0.23323E-00</td>
<td>0.</td>
</tr>
<tr>
<td>0.44506E-01</td>
<td>0.71805E-00</td>
<td>0.</td>
<td>-0.14136E-00</td>
<td>0.</td>
</tr>
<tr>
<td>0.47124E-01</td>
<td>0.92239E-00</td>
<td>0.</td>
<td>-0.11356E-00</td>
<td>0.</td>
</tr>
<tr>
<td>0.49742E-01</td>
<td>0.11908E-00</td>
<td>0.</td>
<td>-0.22414E-00</td>
<td>0.</td>
</tr>
<tr>
<td>0.52360E-01</td>
<td>0.15448E-01</td>
<td>0.</td>
<td>-0.76650E-00</td>
<td>0.</td>
</tr>
<tr>
<td>0.54978E-01</td>
<td>0.20115E-01</td>
<td>0.</td>
<td>-0.23770E-01</td>
<td>0.</td>
</tr>
<tr>
<td>0.57696E-01</td>
<td>0.26561E-01</td>
<td>0.</td>
<td>0.16661E-02</td>
<td>0.</td>
</tr>
<tr>
<td>0.60314E-01</td>
<td>0.36497E-01</td>
<td>0.</td>
<td>0.23979E-02</td>
<td>0.</td>
</tr>
<tr>
<td>0.62832E-01</td>
<td>0.52813E-01</td>
<td>0.</td>
<td>0.23796E-02</td>
<td>0.</td>
</tr>
</tbody>
</table>
APPENDIX C

Program for V₂ - Shed Wake

```
DIMENSION PSI(361), S1PSI(361), S2PSI(361), S3PSI(361), S4PSI(361), AQUAY(20), BQUAY(20)
COMMON PSI, S1PSI, L, K, DEPSI, AQUAY, BQUAY, AZERO
READ INPUT TAPE 4, 3, L, NP, KL, II, QT
FORMAT (I12, E13.8)
READ INPUT TAPE 4, 5, EMU, AMBDA, EM, DEPSI, DELPHI, DELTA, K, I, J
FORMAT (3F8.3, 3E13.8, 13, 12)
READ INPUT TAPE 4, 7, EN, IK
FORMAT (E8.3, 12)
READ INPUT TAPE 4, 9, GAMMA, IL
READ INPUT TAPE 4, 12, X
FORMAT (E8.3, I2)
READ INPUT TAPE 4, 13, ELK, IM
READ INPUT TAPE 4, 1, K
FORMAT (F8.3)
PSI(1) = 0.0
WRITE OUTPUT TAPE 2, 15, EMU, AMBDA, EM, EN, GAMMA, ELK, X
FORMAT (6H1MU - F6.3, 12M LAMBDA « F6.3, 7H M « F6.3, 7H N « F6.3/)
DO 53 J = 1, K
ALPHA = 0.0
ETA = 0.0
ETA = 0.0
SPHI = 6.2831852*EM*PSI(J) + GAMMA
EPHI = SPHI + QT
PHI = PSI(J) + GAMMA
ASSIGN 22 TO JJ
D = EMU*(SPHI - PHI)
I = AMBDA*(SPHI - PHI)
PI = 2**2*(X*SINF(PSI(J) - PHI) + D*SINF(PHI))**2
IF (PI) 90, 90, 70
RHO = X**2*Z**2*D**2-2.0*EM*X*SINF(PSI(J))
SIGMA = RHO*ELK**2-2.0*EM*ELK*X*SINF(PHI)*PI+2.0*EM*ELK*X*SINF(PHI)
THETA = (D*COSF(PHI) - X*COSF(PSI(J) - PHI))
TAU = ((X*SINF(PSI(J) - PHI) + D*SINF(PHI))/PI)*((ELK*THETA)/SQRTF(SIGMA))
GO TO JJ, (22, 25, 30, 35, 40, 45)
ASSIGN 25 TO JJ
IF (PHI - EPMI) 18, 23, 23
ASSIGN 35 TO JJ
GO TO 18
ASSIGN 25 TO JJ
IF (PHI - DELPHI) 18, 23, 23
ASSIGN 35 TO JJ
GO TO 18
ASSIGN 25 TO JJ
GO TO 18
ASSIGN 25 TO JJ
GO TO 18
```

49
35 ZETA = ZETA + TAU * SIN(EN * (PSI(J) - PHI)) * COS(EN * PSI(J))
 ETA = ETA + TAU * SIN(EN * (PSI(J) - PHI)) * SIN(EN * PSI(J))
 PHI = PHI + DELTA
 ASSIGN 40 TO JJ
 IF (PHI - SPII) 18, 50, 50
40 ZETA = ZETA + 4.0 * TAU * SIN(EN * (PSI(J) - PHI)) * COS(EN * PSI(J))
 ETA = ETA + 4.0 * TAU * SIN(EN * (PSI(J) - PHI)) * SIN(EN * PSI(J))
 PHI = PHI + DELTA
 IF (SPII - (PHI + 0.5 * DELTA)) 44, 44, 43
44 PHI = PHI - 0.5 * DELTA
 ASSIGN 35 TO JJ
 GO TO 10
45 ZETA = ZETA + 2.0 * TAU * SIN(EN * (PSI(J) - PHI)) * COS(EN * PSI(J))
 ETA = ETA + 2.0 * TAU * SIN(EN * (PSI(J) - PHI)) * SIN(EN * PSI(J))
 PHI = PHI + DELTA
 ASSIGN 40 TO JJ
 GO TO 10
50 S1PSI(J) = (DELPHI/3.0) * ALPHA
 S2PSI(J) = (DELPHI/3.0) * ETA
 S3PSI(J) = (DELTA/3.0) * ZETA
 S4PSI(J) = (DELTA/3.0) * ETA
 PSI(J+1) = PSI(J) + DEPSI
53 CONTINUE
 IF (KL) 55, 60, 60
55 WRITE OUTPUT TAPE 2, 56
56 FORMAT (220) S1PSI, S2PSI, S3PSI, S4PSI
 DO 59 J = 1, K, NP
 WRITE OUTPUT TAPE 2, 57, PSI(J), S1PSI(J), S2PSI(J), S3PSI(J), S4PSI(J)
 CONTINUE
57 FORMAT (36, 7E14.6, 4E18.6)
60 I = 3
 CALL HARNAL (PSI, S1PSI)
 WRITE OUTPUT TAPE 2, 61
61 FORMAT (1HO///6H0S1PSI///////)
 CALL PRINCE (L, AQUAY, BQUAY, AZERO)
 CALL HARNAL (PSI, S2PSI)
 WRITE OUTPUT TAPE 2, 63
63 FORMAT (1HO///6H0S2PSI///////)
 CALL PRINCE (L, AQUAY, BQUAY, AZERO)
 CALL HARNAL (PSI, S3PSI)
 WRITE OUTPUT TAPE 2, 65
65 FORMAT (1HO///6H0S3PSI///////)
 CALL PRINCE (L, AQUAY, BQUAY, AZERO)
 CALL HARNAL (PSI, S4PSI)
 WRITE OUTPUT TAPE 2, 67
67 FORMAT (1HO///6H0S4PSI///////)
 CALL PRINCE (L, AQUAY, BQUAY, AZERO)
80 IM = IM - 1
 IF (IM) 82, 82, 11
82 IL = IL - 1
 IF (IL) 84, 84, 10
84 IK = IK - 1
 IF (IK) 86, 86, 8
86 IJ = IJ - 1
 IF (IJ) 88,88,6
88 II = II - 1
 IC (II) 92,92,4
90 WRITE OUTPUT TAPE 2,91,PHI,PSI(J)
91 FORMAT(1H0/22H SINGULARITY AT PHI = E15.6,10H PSI(J) = E15.6)
 GO TO 80
92 CALL EXIT
 END(1,0,0,0,0,0,0,0,1,0,0,0,0,0,0)
SUBROUTINE PRINCE(L, AQUAY, BQUAY, AZERO)
DIMENSION AQUAY(20), BQUAY(20)
WRITE OUTPUT TAPE 2,5,AZERO
5 FORMAT(1HO///10HOA-ZERO = E18.8)
DO 9 J = 1,L
WRITE OUTPUT TAPE 2,7,J,AQUAY(J),J,BQUAY(J)
7 FORMAT(3HOA-I2,3ME18.8,10HB-I2,3HE18.8)
9 CONTINUE
RETURN
END(1,0,0,0,0,0,0,0,1,0,0,0,0,0)
SUBROUTINE HARNAL (PSI, FPSI)
DIMENSION PSI(361), FPSI(361), AQUAY(20), BQUAY(20)
COMMON PSI, FPSI, I, L, K, DEPSI, AQUAY, BQUAY, AZERO

KN=K-3
R=1.0
GO TO (5, 35, 51, 15)

5 GRAL = FPSI(1) + FPSI(K) + 4.0*FPSI(K-1)
DO 12 M=2, KN, 2

12 GRAL = GRAL + 4.0*FPSI(M) + 2.0*FPSI(M+1)
AZERO = (DEPSI*GRAL)/9.4247778
Q=0.0
DO 25 J=1, L
Q=Q + 1.0
GRAND = FPSI(1)*COS(Q*PSI(1)) + FPSI(K)*COS(Q*PSI(K))
1 + 4.0*FPSI(K-1)*COS(Q*PSI(K-1))
DO 20 M=2, KN, 2

20 GRAND=GRAND + 4.0*COS(Q*PSI(M))*FPSI(M)
1 + 2.0*FPSI(M+1)*COS(Q*PSI(M+1))
AQUAY(J) = ((2.0*DEPSI)/9.4247778)*GRAND
IF (I-3) 25, 22, 22

22 AQUAY(J)=AQUAY(J)/2.0
CONTINUE
IF (I-3) 49, 34, 34

34 AZERO = AZERO/2.0
R = 0.5
35 P = 0.0
DO 43 J=1, L
P = P + 1.0
TGRAL = FPSI(1)*SINF(P*PSI(1)) + FPSI(K)*SINF(P*PSI(K))
1 + 4.0*FPSI(K-1)*SINF(P*PSI(K-1))
DO 42 M=2, KN, 2

42 TGRAL = TGRAL + 4.0*FPSI(M)*SINF(P*PSI(M))
1 + 2.0*FPSI(M+1)*SINF(P*PSI(M+1))
BQUAY(J) = ((2.0*DEPSI)/9.4247778)*TGRAL*R
CONTINUE
43 CONTINUE
49 RETURN
END(1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0)
APPENDIX D

Typical Results from Program of Appendix C

\[\mu = 0.100 \quad \lambda = 0.050 \quad M = 3.000 \quad N = 3.000 \quad \Gamma = 0.0 \quad \Lambda = 1.000 \quad X = 0.0 \]

<table>
<thead>
<tr>
<th>PSI</th>
<th>SINPSI</th>
<th>SINPSI</th>
<th>SINPSI</th>
<th>SINPSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000E0</td>
<td>0.1051E5</td>
<td>-2.2609E8</td>
<td>0.3702E2</td>
<td>0.0000E0</td>
</tr>
<tr>
<td>0.1300E0</td>
<td>0.1656E5</td>
<td>-7.8938E8</td>
<td>0.3558E3</td>
<td>0.1391E2</td>
</tr>
<tr>
<td>0.2617E0</td>
<td>0.1379E4</td>
<td>-1.3781E10</td>
<td>0.2524E0</td>
<td>0.2524E0</td>
</tr>
<tr>
<td>0.3926E0</td>
<td>0.3459E5</td>
<td>-2.1248E10</td>
<td>0.1341E0</td>
<td>0.3238E1</td>
</tr>
<tr>
<td>0.5235E0</td>
<td>-8.2914E8</td>
<td>0.1752E7</td>
<td>0.3077E6</td>
<td>0.3452E4</td>
</tr>
<tr>
<td>0.6545E0</td>
<td>-1.8693E8</td>
<td>0.8642E7</td>
<td>0.1247E11</td>
<td>0.3125E7</td>
</tr>
<tr>
<td>0.7855E0</td>
<td>-1.8955E8</td>
<td>0.2184E6</td>
<td>0.2352E8</td>
<td>0.2352E8</td>
</tr>
<tr>
<td>0.9162E0</td>
<td>-1.8674E8</td>
<td>0.1131E11</td>
<td>0.3026E11</td>
<td>0.1253E8</td>
</tr>
<tr>
<td>1.0472E0</td>
<td>-1.9874E8</td>
<td>0.1807E11</td>
<td>0.1228E12</td>
<td>0.7679E8</td>
</tr>
<tr>
<td>1.1781E0</td>
<td>-2.1811E8</td>
<td>0.2157E11</td>
<td>0.2944E13</td>
<td>0.1219E12</td>
</tr>
<tr>
<td>1.3090E0</td>
<td>-0.3515E2</td>
<td>0.2196E8</td>
<td>0.2227E6</td>
<td>0.2227E6</td>
</tr>
<tr>
<td>1.4399E0</td>
<td>-0.4958E8</td>
<td>0.1972E8</td>
<td>0.1193E8</td>
<td>0.2882E7</td>
</tr>
<tr>
<td>1.5708E0</td>
<td>-0.9727E6</td>
<td>0.1619E9</td>
<td>0.1302E9</td>
<td>0.3095E8</td>
</tr>
<tr>
<td>1.7017E0</td>
<td>-0.1197E5</td>
<td>0.1173E4</td>
<td>0.1177E6</td>
<td>0.2842E5</td>
</tr>
<tr>
<td>1.8326E0</td>
<td>-0.1319E0</td>
<td>0.7148E2</td>
<td>0.2167E1</td>
<td>0.2167E1</td>
</tr>
<tr>
<td>1.9635E0</td>
<td>-0.1296E4</td>
<td>0.2926E4</td>
<td>0.2872E4</td>
<td>0.1117E8</td>
</tr>
<tr>
<td>2.0943E0</td>
<td>-0.1182E1</td>
<td>0.6741E9</td>
<td>0.3661E9</td>
<td>0.1653E9</td>
</tr>
<tr>
<td>2.2252E0</td>
<td>-0.1002E8</td>
<td>0.3413E6</td>
<td>0.2836E9</td>
<td>0.1175E9</td>
</tr>
<tr>
<td>2.3561E0</td>
<td>-0.7851E9</td>
<td>0.5392E1</td>
<td>0.2182E3</td>
<td>0.2182E3</td>
</tr>
<tr>
<td>2.4870E0</td>
<td>-0.5719E2</td>
<td>0.6603E8</td>
<td>0.1186E7</td>
<td>0.2872E7</td>
</tr>
<tr>
<td>2.6179E0</td>
<td>-0.3182E4</td>
<td>0.7123E1</td>
<td>0.2910E9</td>
<td>0.3138E9</td>
</tr>
<tr>
<td>2.7488E0</td>
<td>-0.1108E0</td>
<td>0.7023E7</td>
<td>0.1214E9</td>
<td>0.2932E9</td>
</tr>
<tr>
<td>2.8797E0</td>
<td>-0.6926E5</td>
<td>0.6454E8</td>
<td>0.2274E3</td>
<td>0.2274E3</td>
</tr>
<tr>
<td>3.0106E0</td>
<td>-0.2131E0</td>
<td>0.5444E10</td>
<td>0.3016E8</td>
<td>0.1294E3</td>
</tr>
<tr>
<td>3.1415E0</td>
<td>-0.3152E7</td>
<td>0.4431E7</td>
<td>0.3319E7</td>
<td>0.3871E4</td>
</tr>
<tr>
<td>3.2724E0</td>
<td>-0.3769E2</td>
<td>0.3258E8</td>
<td>0.3122E4</td>
<td>0.1293E7</td>
</tr>
<tr>
<td>3.4033E0</td>
<td>-0.4027E0</td>
<td>0.2133E8</td>
<td>0.2453E3</td>
<td>0.2453E3</td>
</tr>
<tr>
<td>3.5342E0</td>
<td>-0.4005E8</td>
<td>0.1160E8</td>
<td>0.1344E2</td>
<td>0.3244E3</td>
</tr>
<tr>
<td>3.6651E0</td>
<td>-0.3814E2</td>
<td>0.4251E11</td>
<td>0.5578E7</td>
<td>0.3582E9</td>
</tr>
<tr>
<td>3.7959E0</td>
<td>-0.3577E8</td>
<td>0.8149E11</td>
<td>0.1398E9</td>
<td>0.3376E9</td>
</tr>
<tr>
<td>3.9266E0</td>
<td>-0.3334E8</td>
<td>0.3827E10</td>
<td>0.2651E9</td>
<td>0.2651E9</td>
</tr>
<tr>
<td>4.0573E0</td>
<td>-0.3457E10</td>
<td>0.5359E6</td>
<td>0.1507E9</td>
<td>0.1453E6</td>
</tr>
<tr>
<td>4.1880E0</td>
<td>-0.3760E6</td>
<td>0.7018E4</td>
<td>0.3864E9</td>
<td>0.6938E5</td>
</tr>
<tr>
<td>4.3184E0</td>
<td>-0.4341E8</td>
<td>0.1152E7</td>
<td>0.3627E6</td>
<td>0.1502E5</td>
</tr>
<tr>
<td>4.4485E0</td>
<td>-0.5137E2</td>
<td>0.1923E7</td>
<td>0.2815E2</td>
<td>0.2815E2</td>
</tr>
<tr>
<td>4.5854E0</td>
<td>-0.5965E4</td>
<td>0.3226E7</td>
<td>0.1541E5</td>
<td>0.3721E5</td>
</tr>
<tr>
<td>4.7123E0</td>
<td>-0.6578E4</td>
<td>0.5353E7</td>
<td>0.8874E11</td>
<td>0.4065E11</td>
</tr>
<tr>
<td>4.8382E0</td>
<td>-0.6643E6</td>
<td>0.7556E6</td>
<td>0.1565E2</td>
<td>0.3779E5</td>
</tr>
<tr>
<td>4.9651E0</td>
<td>-0.5876E6</td>
<td>0.1716E3</td>
<td>0.2902E6</td>
<td>0.2902E6</td>
</tr>
<tr>
<td>5.1050E0</td>
<td>-0.4165E3</td>
<td>0.1243E7</td>
<td>0.3794E5</td>
<td>0.1571E6</td>
</tr>
<tr>
<td>5.2359E0</td>
<td>-0.1694E3</td>
<td>0.1376E11</td>
<td>0.4096E4</td>
<td>0.9192E3</td>
</tr>
<tr>
<td>5.3668E0</td>
<td>-0.1050E6</td>
<td>0.1160E4</td>
<td>0.3774E2</td>
<td>0.1559E2</td>
</tr>
<tr>
<td>5.5077E0</td>
<td>-0.3316E0</td>
<td>0.1174E5</td>
<td>0.2854E1</td>
<td>0.2854E1</td>
</tr>
<tr>
<td>5.6486E0</td>
<td>-0.4272E1</td>
<td>-0.8407E5</td>
<td>0.1535E6</td>
<td>0.3649E5</td>
</tr>
<tr>
<td>5.7895E0</td>
<td>-0.3319E2</td>
<td>0.4529E3</td>
<td>0.1100E6</td>
<td>0.3949E5</td>
</tr>
<tr>
<td>5.9304E0</td>
<td>-0.1010E7</td>
<td>0.1687E4</td>
<td>0.1489E3</td>
<td>0.3597E5</td>
</tr>
<tr>
<td>6.0213E0</td>
<td>-0.3317E4</td>
<td>0.1222E2</td>
<td>0.2709E8</td>
<td>0.2709E8</td>
</tr>
<tr>
<td>6.1522E0</td>
<td>-0.2638E7</td>
<td>0.7268E4</td>
<td>0.3612E9</td>
<td>0.1442E10</td>
</tr>
<tr>
<td>6.2831E0</td>
<td>-0.1051E4</td>
<td>0.2214E3</td>
<td>0.3702E1</td>
<td>0.1129E7</td>
</tr>
</tbody>
</table>

54
S1PSI

<table>
<thead>
<tr>
<th>A-ZERO</th>
<th>B-1</th>
<th>B-2</th>
<th>B-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>.29183535E-00</td>
<td>.63340063E00</td>
<td>.27584056E00</td>
</tr>
</tbody>
</table>

S2PSI

<table>
<thead>
<tr>
<th>A-ZERO</th>
<th>B-1</th>
<th>B-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>.11047615E-01</td>
<td>.13577742E00</td>
</tr>
</tbody>
</table>

55
<table>
<thead>
<tr>
<th></th>
<th>A-5</th>
<th>B-5</th>
<th></th>
<th>A-5</th>
<th>B-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-.26919181E 00</td>
<td></td>
<td></td>
<td>.10419498E 00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.22367084E 00</td>
<td></td>
<td></td>
<td>.29961998E 01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.14919041E 00</td>
<td></td>
<td></td>
<td>.66204493E 02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.95658010E 01</td>
<td></td>
<td></td>
<td>.22677273E 02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.50439077E 01</td>
<td></td>
<td></td>
<td>.51788870E 02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.37174831E 01</td>
<td></td>
<td></td>
<td>.50278204E 02</td>
<td></td>
</tr>
</tbody>
</table>

S3PSI

<table>
<thead>
<tr>
<th></th>
<th>A-5</th>
<th>B-5</th>
<th></th>
<th>A-5</th>
<th>B-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-.14096730E 02</td>
<td></td>
<td></td>
<td>.94688194E 02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.17254469E 01</td>
<td></td>
<td></td>
<td>.24101576E 00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.96945646E 01</td>
<td></td>
<td></td>
<td>.31801561E 05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.35455516E 01</td>
<td></td>
<td></td>
<td>.24099350E 00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.96940739E 01</td>
<td></td>
<td></td>
<td>.92455038E 02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.17257415E 01</td>
<td></td>
<td></td>
<td>.15222281E 02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.14103765E 02</td>
<td></td>
<td></td>
<td>.22320531E 03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.17204632E 05</td>
<td></td>
<td></td>
<td>.21800398E 04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.36669273E 05</td>
<td></td>
<td></td>
<td>.29984447E 05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.11167592E 05</td>
<td></td>
<td></td>
<td>.50332809E 06</td>
<td></td>
</tr>
</tbody>
</table>

S4PSI
<table>
<thead>
<tr>
<th>A-ZERO</th>
<th>(1.5222061 \times 10^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>(-0.90223721 \times 10^{-2})</td>
</tr>
<tr>
<td>A-2</td>
<td>(-0.24097212 \times 10^{-2})</td>
</tr>
<tr>
<td>A-3</td>
<td>(0.31818117 \times 10^{-2})</td>
</tr>
<tr>
<td>A-4</td>
<td>(0.24099442 \times 10^{-2})</td>
</tr>
<tr>
<td>A-5</td>
<td>(0.92456488 \times 10^{-2})</td>
</tr>
<tr>
<td>A-6</td>
<td>(-0.15222091 \times 10^{-2})</td>
</tr>
<tr>
<td>A-7</td>
<td>(-0.22318876 \times 10^{-3})</td>
</tr>
<tr>
<td>A-8</td>
<td>(-0.18504833 \times 10^{-3})</td>
</tr>
<tr>
<td>A-9</td>
<td>(-0.29959611 \times 10^{-3})</td>
</tr>
<tr>
<td>A-10</td>
<td>(-0.43792856 \times 10^{-4})</td>
</tr>
<tr>
<td>B-1</td>
<td>(-0.17259163 \times 10^{-3})</td>
</tr>
<tr>
<td>B-2</td>
<td>(0.96937053 \times 10^{-3})</td>
</tr>
<tr>
<td>B-3</td>
<td>(0.35455525 \times 10^{-1})</td>
</tr>
<tr>
<td>B-4</td>
<td>(0.96941967 \times 10^{-1})</td>
</tr>
<tr>
<td>B-5</td>
<td>(-0.17256195 \times 10^{-1})</td>
</tr>
<tr>
<td>B-6</td>
<td>(-0.14090571 \times 10^{-1})</td>
</tr>
<tr>
<td>B-7</td>
<td>(0.2909941 \times 10^{-5})</td>
</tr>
<tr>
<td>B-8</td>
<td>(0.48826136 \times 10^{-5})</td>
</tr>
<tr>
<td>B-9</td>
<td>(0.14238887 \times 10^{-6})</td>
</tr>
<tr>
<td>B-10</td>
<td>(0.29802321 \times 10^{-7})</td>
</tr>
<tr>
<td>PSI</td>
<td>SIPS1</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>0.000000 E 0</td>
<td>-1.76251 E 01</td>
</tr>
<tr>
<td>0.130000 E 0</td>
<td>0.28277 E 00</td>
</tr>
<tr>
<td>0.261799 E 0</td>
<td>0.277802 E 01</td>
</tr>
<tr>
<td>0.392999 E 0</td>
<td>-3.62180 E 01</td>
</tr>
<tr>
<td>0.523599 E 0</td>
<td>3.33976 E 01</td>
</tr>
<tr>
<td>0.654498 E 0</td>
<td>2.26321 E 01</td>
</tr>
<tr>
<td>0.785398 E 0</td>
<td>0.85427 E 01</td>
</tr>
<tr>
<td>0.916298 E 0</td>
<td>-5.21477 E 01</td>
</tr>
<tr>
<td>1.047208 E 0</td>
<td>-1.62598 E 01</td>
</tr>
<tr>
<td>1.178108 E 0</td>
<td>-2.32530 E 01</td>
</tr>
<tr>
<td>1.309008 E 0</td>
<td>2.35300 E 00</td>
</tr>
<tr>
<td>1.439908 E 0</td>
<td>-2.39068 E 00</td>
</tr>
<tr>
<td>1.570808 E 0</td>
<td>1.84965 E 00</td>
</tr>
<tr>
<td>1.701708 E 0</td>
<td>1.05060 E 00</td>
</tr>
<tr>
<td>1.832608 E 0</td>
<td>-1.12093 E 00</td>
</tr>
<tr>
<td>1.963508 E 0</td>
<td>0.82276 E 00</td>
</tr>
<tr>
<td>2.094408 E 0</td>
<td>-1.59031 E 00</td>
</tr>
<tr>
<td>2.225298 E 0</td>
<td>2.07141 E 00</td>
</tr>
<tr>
<td>2.356198 E 0</td>
<td>-2.30094 E 00</td>
</tr>
<tr>
<td>2.487098 E 0</td>
<td>2.45052 E 00</td>
</tr>
<tr>
<td>2.617998 E 0</td>
<td>-2.57906 E 00</td>
</tr>
<tr>
<td>2.748898 E 0</td>
<td>-2.52257 E 00</td>
</tr>
<tr>
<td>2.879798 E 0</td>
<td>-2.15261 E 00</td>
</tr>
<tr>
<td>3.010708 E 0</td>
<td>0.15237 E 00</td>
</tr>
<tr>
<td>3.141708 E 0</td>
<td>0.76440 E 00</td>
</tr>
<tr>
<td>3.272708 E 0</td>
<td>-1.10700 E 00</td>
</tr>
<tr>
<td>3.403708 E 0</td>
<td>-1.00682 E 00</td>
</tr>
<tr>
<td>3.534708 E 0</td>
<td>0.18104 E 00</td>
</tr>
<tr>
<td>3.665808 E 0</td>
<td>-2.65371 E 00</td>
</tr>
<tr>
<td>3.796908 E 0</td>
<td>-2.96411 E 00</td>
</tr>
<tr>
<td>3.927998 E 0</td>
<td>-3.34736 E 00</td>
</tr>
<tr>
<td>4.058098 E 0</td>
<td>-3.46031 E 00</td>
</tr>
<tr>
<td>4.189098 E 0</td>
<td>-3.21697 E 00</td>
</tr>
<tr>
<td>4.319998 E 0</td>
<td>-2.34584 E 00</td>
</tr>
<tr>
<td>4.450998 E 0</td>
<td>-1.13111 E 00</td>
</tr>
<tr>
<td>4.581998 E 0</td>
<td>0.35901 E 00</td>
</tr>
<tr>
<td>4.712998 E 0</td>
<td>0.74444 E 00</td>
</tr>
<tr>
<td>4.843998 E 0</td>
<td>0.33597 E 00</td>
</tr>
<tr>
<td>4.974998 E 0</td>
<td>0.44710 E 00</td>
</tr>
<tr>
<td>5.105998 E 0</td>
<td>0.49122 E 00</td>
</tr>
<tr>
<td>5.236998 E 0</td>
<td>-8.01354 E 00</td>
</tr>
<tr>
<td>5.367998 E 0</td>
<td>3.13576 E 00</td>
</tr>
<tr>
<td>5.498798 E 0</td>
<td>0.91879 E 00</td>
</tr>
<tr>
<td>5.629698 E 0</td>
<td>-0.38737 E 00</td>
</tr>
<tr>
<td>5.760598 E 0</td>
<td>4.42957 E 00</td>
</tr>
<tr>
<td>5.891498 E 0</td>
<td>0.67870 E 00</td>
</tr>
<tr>
<td>6.021398 E 0</td>
<td>0.58926 E 00</td>
</tr>
<tr>
<td>6.152298 E 0</td>
<td>-0.31474 E 00</td>
</tr>
<tr>
<td>6.283198 E 0</td>
<td>-1.76254 E 00</td>
</tr>
</tbody>
</table>

58
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.42709232E-01</td>
<td>-0.21139412E 00</td>
<td>-0.37111007E 00</td>
<td>-0.11801338E 01</td>
<td>-0.21306370E 00</td>
<td>-0.49026115E-01</td>
<td>-0.87392528E-01</td>
<td>-0.57828449F-01</td>
<td>-0.17061530E-01</td>
<td>-0.23163780E-01</td>
<td>-0.32263728E-02</td>
</tr>
<tr>
<td>B-1</td>
<td>B-2</td>
<td>B-3</td>
<td>B-4</td>
<td>B-5</td>
<td>B-6</td>
<td>B-7</td>
<td>B-8</td>
<td>B-9</td>
<td>B-10</td>
<td></td>
</tr>
<tr>
<td>0.21096176E 00</td>
<td>-0.11780591E 01</td>
<td>-0.27526765E 01</td>
<td>-0.19521114E 01</td>
<td>0.80651021E 00</td>
<td>0.26319832E 00</td>
<td>0.18170567E 00</td>
<td>0.74928516E-02</td>
<td>0.97607718E-02</td>
<td>0.12639331E-01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.23103523E 00</td>
<td>-0.11731506E 00</td>
<td>-0.13110791E 01</td>
<td>-0.25415402E 01</td>
<td>-0.18638599E 01</td>
<td>-0.12839404E 00</td>
<td>-0.34214275E 00</td>
<td>-0.12022938E 01</td>
<td>-0.21291893E 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-</td>
<td></td>
<td>B-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-77360434E 00</td>
<td>5</td>
<td>31124090E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-22494183E 00</td>
<td>6</td>
<td>77201430E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-18027032E 00</td>
<td>7</td>
<td>54323212E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.56673586E-02</td>
<td>8</td>
<td>11827571E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-.53487776E-02</td>
<td>9</td>
<td>23232483E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-.98697685E-02</td>
<td>10</td>
<td>40925261E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S3PSI

<table>
<thead>
<tr>
<th>A-ZERO</th>
<th></th>
<th>B-</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-.52749978E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A-</th>
<th></th>
<th>B-</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-.61597183E-02</td>
<td>1</td>
<td>-.33950984E-01</td>
</tr>
<tr>
<td>2</td>
<td>.10176542E 00</td>
<td>2</td>
<td>-.10989538E 00</td>
</tr>
<tr>
<td>3</td>
<td>.24660170E 00</td>
<td>3</td>
<td>.22481971E-04</td>
</tr>
<tr>
<td>4</td>
<td>.10166075E 00</td>
<td>4</td>
<td>.10986031E 00</td>
</tr>
<tr>
<td>5</td>
<td>-.57524160E-02</td>
<td>5</td>
<td>-.33329481E-01</td>
</tr>
<tr>
<td>6</td>
<td>-.52747615E-02</td>
<td>6</td>
<td>.19136677E-02</td>
</tr>
<tr>
<td>7</td>
<td>-.40681027E-03</td>
<td>7</td>
<td>-.62015753E-03</td>
</tr>
<tr>
<td>8</td>
<td>.99350462E-04</td>
<td>8</td>
<td>-.33505829E-04</td>
</tr>
<tr>
<td>9</td>
<td>-.79803994E-06</td>
<td>9</td>
<td>.22507117E-04</td>
</tr>
<tr>
<td>10</td>
<td>-.53294932E-05</td>
<td>10</td>
<td>-.15441845E-05</td>
</tr>
</tbody>
</table>

S4PSI
<table>
<thead>
<tr>
<th>A-ZERO =</th>
<th>0.19134452E-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1 =</td>
<td>0.32710506E-01</td>
</tr>
<tr>
<td>B-1 =</td>
<td>-0.53463580E-02</td>
</tr>
<tr>
<td>A-2 =</td>
<td>0.10982835E 00</td>
</tr>
<tr>
<td>B-2 =</td>
<td>0.10156655E 00</td>
</tr>
<tr>
<td>A-3 =</td>
<td>0.22478504E-04</td>
</tr>
<tr>
<td>B-3 =</td>
<td>0.24660312E 00</td>
</tr>
<tr>
<td>A-4 =</td>
<td>-0.10986342E 00</td>
</tr>
<tr>
<td>B-4 =</td>
<td>0.10167123E 00</td>
</tr>
<tr>
<td>A-5 =</td>
<td>-0.33331998E-01</td>
</tr>
<tr>
<td>B-5 =</td>
<td>-0.57536605E-02</td>
</tr>
<tr>
<td>A-6 =</td>
<td>-0.19132220E-02</td>
</tr>
<tr>
<td>B-6 =</td>
<td>-0.52752415E-02</td>
</tr>
<tr>
<td>A-7 =</td>
<td>0.62032366E-03</td>
</tr>
<tr>
<td>B-7 =</td>
<td>-0.40656083E-03</td>
</tr>
<tr>
<td>A-8 =</td>
<td>0.33542513E-04</td>
</tr>
<tr>
<td>B-8 =</td>
<td>0.99517556E-04</td>
</tr>
<tr>
<td>A-9 =</td>
<td>-0.22433904E-04</td>
</tr>
<tr>
<td>B-9 =</td>
<td>-0.62098517E-06</td>
</tr>
<tr>
<td>A-10 =</td>
<td>0.15768843E-05</td>
</tr>
<tr>
<td>B-10 =</td>
<td>-0.51412109E-05</td>
</tr>
</tbody>
</table>
APPENDIX E

Program II with Typical Results

```
DIMENSION PSI(50), ANG(50), ZETA(6), TW(50), T(6,50), CO(50), SI(50), 1A(20), 0(20)

COMMON CL, EMU, AMBDA, ETA

1 FORMAT(3I2, 2I13, E13.0, E8.3)
   ZN = NZ
   CON = 6.2831852/ZN
   ZETA(1) = 0.0
   DO 10 I = 2, NZ
   10 CON = 6.2831852/ZN
   ZETA(I) = ZETA(I-1) + CON
   PSI(I) = 0.0
   DO 3 J = 1, NZ
   3 PSI(J+1) = PSI(J) * DEPSI

2 READ INPUT TAPE 4, 5, EMU, AMBDA, ETA

3 FORMAT(2E6.3, 12)

4 READ INPUT TAPE 4, 5, EMU, AMBDA, ETA

5 WRITE OUTPUT TAPE 2, 61, ZETA(I)

6 FORMAT(25H0, CONVERGENCE AT ETA = F10.7)
   GO TO 22
   CALL OUDKL(IS(I), PSI(J), PZA, KER, PHI)

7 PZA = PSI(J) + ZETA(I)
   IF(I-1) 13, 13, 16

8 THNU = EMU * CO(J)
   THDE = EMU * SI(J)
   IF(ABS(SIN(THDE) - 0.00001) 20, 14, 14

9 DELTA = ABS(TAN(SIN(THNU/THDE)))
   IF(THDE) 15, 115, 115

10 DELTA = 3.1415926 - DELTA
   IF(THNU) 116, 117, 117

11 DELTA = - DELTA
   IF(THDE) 118, 119, 119

12 T(I,J) = (1.0 - SIN(DELTA)) / (EL - ETA) * COSF(DELTA)
   GO TO 22

13 CALL OUDKL(IS(I), PSI(J), PZA, KER, PHI)
   PZA = PZA - PHI
   IF(KER) 17, 60, 17

14 WRITE OUTPUT TAPE 2, 61, ZETA(I)
   GO TO 20

15 D = EMU * PZA
   Z = (AMRDA * PZA - BLE)**2
   ERM = (EL - 2 - D * SI(J))**2
   IF(ERM) 20, 21, 21

16 T(I,J) = 0.0
   GO TO 22

17 ERM = SQRF(ERM)
   YE = D * SI(J) + ERM
   THNU = EMU * COSF(PHI)
   THDE = EL + ENU * SINF(PHI)
   IF(ABS(SIN(THDE) - 0.00001) 20, 70, 70

20 WRITE OUTPUT TAPE 2, 61, ZETA(I)
   GO TO 20

21 D = EMU * PZA
   Z = (AMRDA * PZA - BLE)**2
   ERM = (EL - 2 - D * SI(J))**2
   IF(ERM) 20, 21, 21
```

62
70 PSD=ABSF(ATANF(THNU/THDE))
 IF(THDE) 71,72,72
71 PSD=3.1415926-PSD
72 IF(THNU) 73,74,74
73 PSD=-PSD
74 DELTA=PHI-PSI(J)-PSD
 UTT=YE*COSF(DELTA)
 T(I,J)=2.0*UTT/(Z+UTT**2)
22 TW(J)=T(I,J)+TW(J)
25 CONTINUE
30 WRITE OUTPUT TAPE 2,33,ANG(J),TW(J),(T(I,J),I=1,NZ)
33 FORMAT(1H F8.1,F13.5,F15.5,F12.5)
 CALL HANEW(PSI,TW,K,NH,DEPSI,AZERO,A,B)
 WRITE OUTPUT TAPE 2,44,AZERO,(N,A(N),N,B(N),N=1,NH)
44 FORMAT(18H1HARMONIC ANALYSIS/1HO/9HOA-ZERO =E12.5/(3HOA-12,1H=E
 112.5,5X,3H B-12,1H= E12.5))
 PUNCH 101,AZERO,(A(J),J=1,NH),(B(I),I=1,NH)
 PUNCH 100,(TW(J),J=1,K)
100 FORMAT(6E12.5)
101 FORMAT(5E14.7)
 IJ = IJ - 1
 IF(IJ) 53,53,6
53 IK = IK - 1
 IF(IK) 54,54,4
54 II = II - 1
 IF(II) 56,56,1
56 CALL EXIT
END(1,0,0,0,0,0,0,0,1,0,0,0,0,0)
SUBROUTINE OUD1(SI, PSI, PZA, KER, PHI)
COMMON EL, FMU
NC = 1
KER = 1
C1 = EMU * SI
PHI = PSI
2 FFOD = C1 * (PHI - PZA) + EL * SINF(PHI - PSI)
EFPOD = C1 + EL * COSF(PHI - PSI)
AD = EFOD / EFPOD
IF (ABS(AD(141,516))< 0.00001) 10, 10, 4
4 NC = NC + 1
IF (NC - 10) 8, 8, 6
6 KER = 2
GO TO 10
9 PHI = PHI - AD
GO TO 2
10 RETURN
END(1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)
SUBROUTINE HANEWtPS(I,T,K,NU,DEPSI,AZERO,A,R)
DIMENSION PSI(50),T(50),A(20),B(20),W(50)
Q = DEPSI/9.4247778
AZERO = T(1)+T(K)+4.0*T(2)
DO 2 II = 1,NH
A(II) = 0.0
2 B(II) = 0.0
W(1) = 1.0
W(K) = 1.0
W(2) = 4.0
KKK = K - 1
DO 4 JJ = 3,KKK,2
W(JJ) = 2.0
W(JJ+1) = 4.0
AZERO = AZERO + 2.0*T(JJ) + 4.0*T(JJ+1)
4 CONTINUE
AZERO = 0.5*Q*AZERO
DO 8 II = 1,NH
FLL = II
DO 10 NB = 1,K
A(II) = A(II) + W(NB)*T(NB)*COS(FLL*PSI(NB))
10 B(II) = B(II) + W(NB)*T(NB)*SINF(FLL*PSI(NB))
A(II) = Q*A(II)
B(II) = Q*B(II)
8 CONTINUE
RETURN
END(1,0,0,0,0,0,0,0,0,1,0,0,0,0,0)
<table>
<thead>
<tr>
<th>PSI</th>
<th>TOTAL WAKE</th>
<th>CONTRIBUTIONS FROM INDIVIDUAL BLADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>26.93724</td>
<td>16.39608 5.94507 2.96902 2.02708</td>
</tr>
<tr>
<td>15.0</td>
<td>28.52674</td>
<td>16.66103 6.08984 3.37927 2.39660</td>
</tr>
<tr>
<td>30.0</td>
<td>31.75955</td>
<td>17.09723 7.15731 4.24545 3.29956</td>
</tr>
<tr>
<td>45.0</td>
<td>37.94855</td>
<td>17.67494 9.07674 9.06833 5.22854</td>
</tr>
<tr>
<td>60.0</td>
<td>51.02715</td>
<td>18.36719 12.79333 9.89772 9.96832</td>
</tr>
<tr>
<td>75.0</td>
<td>45.90268</td>
<td>19.15115 21.52012 15.14319 -9.91178</td>
</tr>
<tr>
<td>90.0</td>
<td>24.79162</td>
<td>20.00000 27.70366 -15.42452 -7.52752</td>
</tr>
<tr>
<td>105.0</td>
<td>-22.80051</td>
<td>20.88647 -29.71257 -8.97872 -4.99569</td>
</tr>
<tr>
<td>120.0</td>
<td>-9.02990</td>
<td>21.77725 -16.90221 -6.17026 -3.73468</td>
</tr>
<tr>
<td>135.0</td>
<td>2.99334</td>
<td>22.63091 -11.81830 -4.80810 -3.01116</td>
</tr>
<tr>
<td>150.0</td>
<td>7.34065</td>
<td>23.39580 -9.41482 -4.06156 -2.57856</td>
</tr>
<tr>
<td>165.0</td>
<td>9.85217</td>
<td>24.00812 -8.18925 -3.69970 -2.33700</td>
</tr>
<tr>
<td>180.0</td>
<td>11.10864</td>
<td>24.39608 -7.57625 -3.46602 -2.24696</td>
</tr>
<tr>
<td>195.0</td>
<td>11.22926</td>
<td>24.48546 -7.46246 -3.47990 -2.31385</td>
</tr>
<tr>
<td>210.0</td>
<td>10.05849</td>
<td>24.21600 -7.82017 -3.71366 -2.62368</td>
</tr>
<tr>
<td>225.0</td>
<td>6.81985</td>
<td>23.56381 -8.80556 -4.25384 -3.68455</td>
</tr>
</tbody>
</table>

NO CONVERGENCE AT ZETA = 4.7123889
240.0 6.36870 22.56473 -10.91124 -5.28480 0.

NO CONVERGENCE AT ZETA = 4.7123889

NO CONVERGENCE AT ZETA = 4.7123889
300.0 38.60082 17.72678 10.64250 10.23955 0.
315.0 35.21124 16.97518 7.17173 5.05356 6.01077
330.0 28.38611 16.51800 5.84963 3.37712 2.64136
345.0 26.71420 16.33622 5.43521 2.92165 2.02112
360.0 26.93724 16.39608 5.94507 2.96902 2.02708

NO CONVERGENCE AT ZETA = 4.7123889
Harmonic Analysis

\[A - \text{ZERO} = 0.18087E \ 02 \]

<table>
<thead>
<tr>
<th>(A)</th>
<th>(A)</th>
<th>(B)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5947E 02</td>
<td>.15947E 02</td>
<td>9.1212E 00</td>
<td>.91212E 00</td>
</tr>
<tr>
<td>2.9015E 01</td>
<td>.29015E 01</td>
<td>6.2804E 01</td>
<td>.62804E 01</td>
</tr>
<tr>
<td>-1.1550E 02</td>
<td>-.11550E 02</td>
<td>-1.1793E 01</td>
<td>-.11793E 01</td>
</tr>
<tr>
<td>-3.5911E 01</td>
<td>-.35911E 01</td>
<td>-7.3613E 01</td>
<td>-.73613E 01</td>
</tr>
<tr>
<td>4.4264E 01</td>
<td>.44264E 01</td>
<td>1.6926E 01</td>
<td>.16926E 01</td>
</tr>
<tr>
<td>1.9471E 01</td>
<td>.19471E 01</td>
<td>7.4949E 01</td>
<td>.74949E 01</td>
</tr>
<tr>
<td>-1.8754E 01</td>
<td>-.18754E 01</td>
<td>-1.9209E 01</td>
<td>-.19209E 01</td>
</tr>
<tr>
<td>2.8111E 00</td>
<td>.28111E 00</td>
<td>-5.6557E 01</td>
<td>-.56557E 01</td>
</tr>
<tr>
<td>3.4981E 01</td>
<td>.34981E 01</td>
<td>2.4231E 01</td>
<td>.24231E 01</td>
</tr>
<tr>
<td>-1.2456E 01</td>
<td>-.12456E 01</td>
<td>3.4025E 01</td>
<td>.34025E 01</td>
</tr>
<tr>
<td>Zeta Value</td>
<td>Angle</td>
<td>Value 1</td>
<td>Value 2</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>3.1415926</td>
<td>300.0</td>
<td>7.77835</td>
<td>-2.95908</td>
</tr>
<tr>
<td>3.1415926</td>
<td>315.0</td>
<td>-13.50982</td>
<td>-2.72228</td>
</tr>
<tr>
<td>4.7123889</td>
<td>330.0</td>
<td>20.00500</td>
<td>-2.62685</td>
</tr>
<tr>
<td>4.7123889</td>
<td>345.0</td>
<td>20.80732</td>
<td>-2.63173</td>
</tr>
<tr>
<td>4.7123889</td>
<td>360.0</td>
<td>23.23921</td>
<td>-2.70813</td>
</tr>
</tbody>
</table>
Harmonic Analysis

A-ZERO = -.73798E 01

<table>
<thead>
<tr>
<th>A</th>
<th>Value</th>
<th>B</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>.97773E 01</td>
<td>B-1</td>
<td>-.91342E 01</td>
</tr>
<tr>
<td>A-2</td>
<td>.73915E 01</td>
<td>B-2</td>
<td>-.48276E 01</td>
</tr>
<tr>
<td>A-3</td>
<td>.10012E 02</td>
<td>B-3</td>
<td>.40065E 00</td>
</tr>
<tr>
<td>A-4</td>
<td>.76078E 01</td>
<td>B-4</td>
<td>.36063E 00</td>
</tr>
<tr>
<td>A-5</td>
<td>.30506E 01</td>
<td>B-5</td>
<td>.16712E 01</td>
</tr>
<tr>
<td>A-6</td>
<td>.47120E 00</td>
<td>B-6</td>
<td>.13112E 01</td>
</tr>
<tr>
<td>A-7</td>
<td>-.38262E 01</td>
<td>B-7</td>
<td>.13126E 01</td>
</tr>
<tr>
<td>A-8</td>
<td>-.63643E 01</td>
<td>B-8</td>
<td>.59635E 00</td>
</tr>
<tr>
<td>A-9</td>
<td>-.53324E 01</td>
<td>B-9</td>
<td>-.40836E 00</td>
</tr>
<tr>
<td>A-10</td>
<td>-.30983E 01</td>
<td>B-10</td>
<td>-.61389E 00</td>
</tr>
</tbody>
</table>
APPENDIX F

Program III with Typical Results

```
DIMENSION ETA(10), THETA(10), F(I), G(I), PSI(I), ANG(I), SI(I), CO(I), CT(I), ST(I), C(TT(I)), D(I), A(I,10,21), B(I,10,2), Q(O,20,71), Z(20), TIMES(I,10), ELAM(I,71), PL(I,50,10), GC(I,10), GS(I,10), 3FLC(8), EL5(H)

READ INPUT TAPE 4,2,DEPSI,BOER,IANMU,EMU,CF,II,M,KP,NH,NGP;12P
2 FORMAT(13,8,4F8.3,6I3)
N2= NH/2
ROH = 1.0/BOER
DEMU = 0.5*EMU
12EMV=0.5*EMU*EMU
READ INPUT TAPE 4,4,ETA(I),THETA(I),F(I),G(I),I=1,M
4 FORMAT(4E8.3)
PSI(I)=0.0
DO 6 J = 1,KP
ANG(J)=57.2*81*PSI(J)
CO(J) = COSF(PSI(J))
SI(J) = SINF(PSI(J))
CT(J) = COSF(2.0*PSI(J))
ST(J) = SINF(2.0*PSI(J))
CTT(J)=COSF(3.0*PSI(J))
PSI(J)=PSI(J) + DEPSI
6 STT(J)=SINF(3.0*PSI(J))
DO 7 J= 1,M
7 TIMES(J)= ETA(J)*THETA(J)
DO 20 I = 1,M
DO 13 J = 1,KP
READ INPUT TAPE 4,8,(A(I,J,K),K=1,NH)
READ INPUT TAPE 4,9,(B(I,J,K),K=1,KP)
8 FORMAT(5E14.7)
GO TO (13,10),12P
10 READ INPUT TAPE 4,8,(C(L),L=1,NH)
READ INPUT TAPE 4,9,(D(L),L=1,KP)
DO 11 K = 1,NH
11 A(I,J,K) = A(I,J,K) + C(K)
DO 12 L = 1,KP
12 B(I,J,L) = B(I,J,L) + D(L)
13 CONTINUE
Q(I,MN)=ROB*IANMU
DO 18 N = 1,M
DO 15 K = 1,NH
A(I,N,K) = A(I,N,K) - V(I,N+1,K)
DO 16 L = 1,KP
16 B(I,N,L)= B(I,N,L)-B(I,N+1,L)
Q(I,M)=A(I,N,1)
18 IF(N) 18,17,18
17 Q(I,N)=Q(I,N)+ROB
18 Q(I,MN)=Q(I,MN)+A(I,N,1)*TIMES(N)
20 CONTINUE
CALL CRNUT(JJ,M,Q,Z)
1F(JJ) 24,24,22
WRITE OUTPUT TAPE 2,23
22 FORMAT(36HNO SOLUTION --DIAGONAL ELEMENT = ZER0,1)
GO TO 64
```

WRITE OUTPUT TAPE 2, 25, (ETA(I), I = 1, M)
FORMAT(28HLOAD COEFFICIENTS FOR ETA = F6.3, 1H, 1//)
WRITE OUTPUT TAPE 2, 26, ID, (Z(I), I = 1, M)
FORMAT(13HOMAKMAGNC NO., 12, 9F13.5)
DO 28 K = 1, M
28 TIMES(K) = HGCR*(TIMES(K) - Z(K))
DO 35 J = 2, MN
 ID = J - 1
 ELAM(I, J) = 0.0
 DO 30 K = 1, M
 ELAM(I, J) = ELAM(I, J) + TIMES(K)*A(I, K, J)
 35 WRITE OUTPUT TAPE 2, 26, ID, (ELAM(N, J), N = 1, M)
DO 41 I = 1, M
41 CONTINUE
WRITE OUTPUT TAPE 2, 42, ETA(I)
FORMAT(22HLOAD ETA(PS1) FOR ETA = F6.3//)
DO 41 J = 1, KP
 PL(I, J) = TANMU
 DO 43 K = 1, M
 PL(I, J) = PL(I, J) + TIMES(K)*R(I, K, J)
 44 WRITE OUTPUT TAPE 2, 44, ANG(J), PL(I, J)
45 CONTINUE
WRITE OUTPUT TAPE 2, 45
DO 50 J = 1, M
 NZ = J - 1
 GC(I) = F(J)*ELAM(J, NZ) - G(J)*ELAM(J, NNN)
51 CONTINUE
WRITE OUTPUT TAPE 2, 56, ETA(I)
FORMAT(3ER.3)
DO 63 I = 1, M
56 WRITE OUTPUT TAPE 2, 56, ETA(I)
63 CONTINUE
WRITE OUTPUT TAPE 2, 56, ETA(I)
FORMAT(6HITAL ETA = F6.3/4HOPS1, 11X, 4HL(I), 12X, 4HL(G), 10X, 9HL(I) + L(G), 15X, 26HL(G + I)-HARMONICS EXTRACTED//)
C = ETA(I)*2
C1 = ETA(I)*(C+E2M)-ETA(I)*EMU*AZERO
C2 = 2.0*EMU*ETA(I)*ETA(I)-AZERO*(C+1.5+F2M)
C3 = BONE*(C+1.5+E2M)-EMU*AZERO*ETA(I)
C4 = EMU*AZERO*ETA(I)-AZERO*E2M
C5 = EMU*AZERO*ETA(I)-THETA(I)*L7
C6 = 0.5*EMU*AZERO
C7 = -0.5*EMU*BONE
B1 = ETA(I)*Z(I)+DMU*ELAM(1, N21)
B2 = ETA(I)*ELAM(I, 2)+DMU*ELAM(I, N22)
B3 = ETA(I)+ELAM(1, N21)+DMU*Z(I)-DMU*ELAM(I, 3)
B4 = ETA(I)+ELAM(1, 3)-DMU*(ELAM(1, N21)+ELAM(1, N22))
B5 = ETA(I)+ELAM(I, N22)+DMU*(ELAM(I, 2)-ELAM(1, 4))
DO 63 J = 1, KP
 R = CF*(ETA(I)*EMU*SI(J))
 ELEYE = -K*PL(I, J)
 ELG = CF*(C1*C2*SI(J) + C3*CO(J) + C4*ST(J) + C5*CT(J) + C6*ST(J) + C7*CT(J))
 SUML = ELG + ELEYE
 HEL = ELEYE + CF*(B1 + B2*CO(J) + B3*SI(J) + B4*CT(J) + B5*ST(J))
WRITE OUTPUT TAPE 2, 58, ANG(J), ELEYE, ELG, SUML, HEL
58 FORMAT(1H F7.2, 4E16.6)
63 CONTINUE
64 NGP = NGP - 1
IF(NGP) 66, 66, 52
66 II = II - 1
IF(II) 68, 68, 1
68 CALL EXIT
END(1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
SUBROUTINE GROUT(JJ,M,A,Z)
DIMENSION A(20,21),Z(20)
JJ=-2
MN=M+1
DO 27 I = 1,M
NN = 1
DO 25 J = 1,MN
SUMA = 0.0

IF(J-I) 25,25,9
9
IF (I-I) 19,19,12
12
DO 15 K = 1,NN
SUMA = SUMA+A(I,K)*A(K,J)
CONTINUE
17
A(I,J)=A(I,J)-SUMA
IF (I-I) 19,26,26
19
IF (A(I,1)) 23,21,23
21
JJ = 4
CO TO 35
23
A(I,J) = A(I,J)/A(I,1)
26
IF(I-I-NN) 25,25,24
24
NN = NN +1
25
CONTINUE
27
CONTINUE
IN = M
Z(IN) = A(M,MN)
28
IN = IN -1
IF(IN-I) 35,29,29
29
SUMB = 0.0
KK = IN + 1
DO 31 K = KK,M
SUMB = SUMB + Z(K)*A(IN,K)
31
CONTINUE
Z(IN) = A(IN,MN) - SUMB
GO TO 28
35
RETURN
END(1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0)
<table>
<thead>
<tr>
<th>Harmonic No.</th>
<th>Load Coefficients</th>
<th>Harmonic No.</th>
<th>Load Coefficients</th>
<th>Harmonic No.</th>
<th>Load Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.32747E+01</td>
<td>1</td>
<td>0.22731E+01</td>
<td>2</td>
<td>0.41460E+02</td>
</tr>
<tr>
<td></td>
<td>0.26967E+01</td>
<td></td>
<td>0.21895E+01</td>
<td></td>
<td>0.44885E+02</td>
</tr>
<tr>
<td></td>
<td>0.24287E+01</td>
<td></td>
<td>0.16365E+01</td>
<td></td>
<td>0.14413E+01</td>
</tr>
<tr>
<td></td>
<td>0.26822E+01</td>
<td></td>
<td>0.43768E+01</td>
<td></td>
<td>0.98755E+03</td>
</tr>
<tr>
<td></td>
<td>0.20601E+01</td>
<td></td>
<td>0.38956E+02</td>
<td></td>
<td>0.42504E+02</td>
</tr>
<tr>
<td></td>
<td>0.21749E+02</td>
<td></td>
<td>0.45973E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.13705E+01</td>
<td>4</td>
<td>0.88347E+02</td>
<td>5</td>
<td>0.25496E+02</td>
</tr>
<tr>
<td></td>
<td>0.92275E+02</td>
<td></td>
<td>0.24182E+02</td>
<td></td>
<td>0.65105E+03</td>
</tr>
<tr>
<td></td>
<td>0.26852E+02</td>
<td></td>
<td>0.13892E+02</td>
<td></td>
<td>0.26847E+02</td>
</tr>
<tr>
<td></td>
<td>0.10051E+02</td>
<td></td>
<td>0.14419E+02</td>
<td></td>
<td>0.39938E+02</td>
</tr>
<tr>
<td></td>
<td>0.32417E+02</td>
<td></td>
<td>0.39012E+02</td>
<td></td>
<td>0.2479E+03</td>
</tr>
<tr>
<td></td>
<td>0.32964E+02</td>
<td></td>
<td>0.49679E+03</td>
<td></td>
<td>0.43604E+03</td>
</tr>
<tr>
<td></td>
<td>0.14563E+03</td>
<td></td>
<td>0.38916E+05</td>
<td></td>
<td>0.39938E+02</td>
</tr>
<tr>
<td></td>
<td>0.17468E+02</td>
<td></td>
<td>0.1542E+02</td>
<td></td>
<td>0.14484E+02</td>
</tr>
<tr>
<td></td>
<td>0.29227E+02</td>
<td></td>
<td>0.11542E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.27915E+02</td>
<td>8</td>
<td>0.22464E+03</td>
<td>9</td>
<td>0.33202E+02</td>
</tr>
<tr>
<td></td>
<td>0.12095E+02</td>
<td></td>
<td>0.48575E+05</td>
<td></td>
<td>0.69679E+04</td>
</tr>
<tr>
<td></td>
<td>0.94535E+03</td>
<td></td>
<td>0.14419E+02</td>
<td></td>
<td>0.15142E+02</td>
</tr>
<tr>
<td></td>
<td>0.11379E+02</td>
<td></td>
<td>0.39938E+02</td>
<td></td>
<td>0.43604E+03</td>
</tr>
<tr>
<td></td>
<td>0.92176E+03</td>
<td></td>
<td>0.2479E+03</td>
<td></td>
<td>0.39938E+02</td>
</tr>
<tr>
<td></td>
<td>0.2479E+03</td>
<td></td>
<td>0.13892E+02</td>
<td></td>
<td>0.14484E+02</td>
</tr>
<tr>
<td></td>
<td>0.29227E+02</td>
<td></td>
<td>0.11542E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.16680E+02</td>
<td>12</td>
<td>0.12904E+03</td>
<td>13</td>
<td>0.94060E+03</td>
</tr>
<tr>
<td></td>
<td>0.18302E+03</td>
<td></td>
<td>0.22413E+02</td>
<td></td>
<td>0.21760E+02</td>
</tr>
<tr>
<td></td>
<td>0.66816E+03</td>
<td></td>
<td>0.20340E+02</td>
<td></td>
<td>0.13821E+03</td>
</tr>
<tr>
<td></td>
<td>0.10561E+02</td>
<td></td>
<td>0.29061E+02</td>
<td></td>
<td>0.13191E+02</td>
</tr>
<tr>
<td></td>
<td>0.26315E+03</td>
<td></td>
<td>0.29061E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.24553E+03</td>
<td>16</td>
<td>0.18430E+02</td>
<td>17</td>
<td>0.24553E+03</td>
</tr>
<tr>
<td></td>
<td>0.18430E+02</td>
<td></td>
<td>0.10530E+02</td>
<td></td>
<td>0.54496E+04</td>
</tr>
<tr>
<td></td>
<td>0.24553E+03</td>
<td></td>
<td>0.54496E+04</td>
<td></td>
<td>0.1177E+02</td>
</tr>
<tr>
<td></td>
<td>0.1177E+02</td>
<td></td>
<td>0.1177E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.12945E+02</td>
<td></td>
<td>0.12945E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.16059E+02</td>
<td></td>
<td>0.10987E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.10987E+02</td>
<td></td>
<td>0.10987E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.15741E+03</td>
<td>20</td>
<td>0.22886E+02</td>
<td>21</td>
<td>0.15741E+03</td>
</tr>
<tr>
<td></td>
<td>0.22886E+02</td>
<td></td>
<td>0.60196E+05</td>
<td></td>
<td>0.62770E+05</td>
</tr>
<tr>
<td></td>
<td>0.24689E+02</td>
<td></td>
<td>0.60196E+05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\begin{tabular}{|c|c|}
\hline
\textbf{LAMBDA(PSI) FOR FTA = .850} & \textbf{.327020E-01} \\
\hline
0. & .366983E-01 \\
7.50 & .377216E-01 \\
15.00 & .354524E-01 \\
22.50 & .374273E-01 \\
30.00 & .476039E-01 \\
37.50 & .494284E-01 \\
45.00 & .507238E-01 \\
52.50 & .519439E-01 \\
60.00 & .465539E-01 \\
67.50 & .409962E-01 \\
75.00 & .345834E-01 \\
82.50 & .280903E-01 \\
90.00 & .194914E-01 \\
97.50 & .211093E-01 \\
105.00 & .310384E-01 \\
112.50 & .693205E-02 \\
120.00 & .284771E-02 \\
127.50 & .923531E-03 \\
135.00 & .145817E-03 \\
142.50 & .207453E-02 \\
150.00 & .496284E-02 \\
157.50 & .727524E-02 \\
165.00 & .874531E-02 \\
172.50 & .960227E-02 \\
180.00 & .100543E-01 \\
187.50 & .101577E-01 \\
195.00 & .991727E-02 \\
202.50 & .945993E-02 \\
210.00 & .90367OE-02 \\
217.50 & .862390E-02 \\
225.00 & .754002E-02 \\
232.50 & .634039E-02 \\
240.00 & .500572E-02 \\
247.50 & .364776E-02 \\
255.00 & .233881E-01 \\
262.50 & .364823E-01 \\
270.00 & .342315E-01 \\
277.50 & .392416E-01 \\
285.00 & .489399E-01 \\
292.50 & .504342E-01 \\
300.00 & .496072E-01 \\
307.50 & .503201E-01 \\
315.00 & .512470E-01 \\
322.50 & .456528E-01 \\
330.00 & .405146E-01 \\
337.50 & .371671E-01 \\
345.00 & .327792E-01 \\
352.50 & .280903E-01 \\
360.00 & .233881E-01 \\
\hline
\end{tabular}
<table>
<thead>
<tr>
<th>Lambda (PSI)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.42515E-01</td>
</tr>
<tr>
<td>7.50</td>
<td>2.01354E-01</td>
</tr>
<tr>
<td>15.00</td>
<td>2.19033E-01</td>
</tr>
<tr>
<td>22.50</td>
<td>3.11313E-01</td>
</tr>
<tr>
<td>30.00</td>
<td>3.55046E-01</td>
</tr>
<tr>
<td>37.50</td>
<td>3.77450E-01</td>
</tr>
<tr>
<td>45.00</td>
<td>4.64060E-01</td>
</tr>
<tr>
<td>52.50</td>
<td>4.50177E-01</td>
</tr>
<tr>
<td>60.00</td>
<td>4.13996E-01</td>
</tr>
<tr>
<td>67.50</td>
<td>4.19334E-01</td>
</tr>
<tr>
<td>75.00</td>
<td>4.33234E-01</td>
</tr>
<tr>
<td>82.50</td>
<td>3.11745E-01</td>
</tr>
<tr>
<td>90.00</td>
<td>3.34640E-01</td>
</tr>
<tr>
<td>97.50</td>
<td>3.17486E-01</td>
</tr>
<tr>
<td>105.00</td>
<td>2.10999E-01</td>
</tr>
<tr>
<td>112.50</td>
<td>2.09885E-01</td>
</tr>
<tr>
<td>120.00</td>
<td>2.07185E-01</td>
</tr>
<tr>
<td>127.50</td>
<td>2.40902E-01</td>
</tr>
<tr>
<td>135.00</td>
<td>2.36190E-01</td>
</tr>
<tr>
<td>142.50</td>
<td>1.97211E-01</td>
</tr>
<tr>
<td>150.00</td>
<td>-9.40946E-02</td>
</tr>
<tr>
<td>157.50</td>
<td>-1.55745E-01</td>
</tr>
<tr>
<td>165.00</td>
<td>9.66265E-03</td>
</tr>
<tr>
<td>172.50</td>
<td>2.50352E-02</td>
</tr>
<tr>
<td>180.00</td>
<td>3.51995E-03</td>
</tr>
<tr>
<td>187.50</td>
<td>2.20759E-02</td>
</tr>
<tr>
<td>195.00</td>
<td>1.75990E-02</td>
</tr>
<tr>
<td>202.50</td>
<td>-3.91148E-02</td>
</tr>
<tr>
<td>210.00</td>
<td>-3.96602E-02</td>
</tr>
<tr>
<td>217.50</td>
<td>3.05269E-02</td>
</tr>
<tr>
<td>225.00</td>
<td>1.46388E-02</td>
</tr>
<tr>
<td>232.50</td>
<td>7.60257E-02</td>
</tr>
<tr>
<td>240.00</td>
<td>1.80651E-01</td>
</tr>
<tr>
<td>247.50</td>
<td>4.21307E-01</td>
</tr>
<tr>
<td>255.00</td>
<td>3.69715E-01</td>
</tr>
<tr>
<td>262.50</td>
<td>3.33526E-01</td>
</tr>
<tr>
<td>270.00</td>
<td>3.21327E-01</td>
</tr>
<tr>
<td>277.50</td>
<td>3.38911E-01</td>
</tr>
<tr>
<td>285.00</td>
<td>4.44184E-01</td>
</tr>
<tr>
<td>292.50</td>
<td>4.95430E-01</td>
</tr>
<tr>
<td>300.00</td>
<td>4.22217E-01</td>
</tr>
<tr>
<td>307.50</td>
<td>4.67704E-01</td>
</tr>
<tr>
<td>315.00</td>
<td>4.98476E-01</td>
</tr>
<tr>
<td>322.50</td>
<td>3.62136E-01</td>
</tr>
<tr>
<td>330.00</td>
<td>2.63378E-01</td>
</tr>
<tr>
<td>337.50</td>
<td>2.45093E-01</td>
</tr>
<tr>
<td>345.00</td>
<td>2.39612E-01</td>
</tr>
<tr>
<td>352.50</td>
<td>2.13221E-01</td>
</tr>
<tr>
<td>360.00</td>
<td>1.82515E-01</td>
</tr>
<tr>
<td>Lambda (PSI)</td>
<td>Value</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>0.0</td>
<td>1.45676E-01</td>
</tr>
<tr>
<td>7.50</td>
<td>1.84266E-01</td>
</tr>
<tr>
<td>15.00</td>
<td>2.33498E-01</td>
</tr>
<tr>
<td>22.50</td>
<td>2.30004E-01</td>
</tr>
<tr>
<td>30.00</td>
<td>2.07868E-01</td>
</tr>
<tr>
<td>37.50</td>
<td>1.87643E-01</td>
</tr>
<tr>
<td>45.00</td>
<td>1.55027E-01</td>
</tr>
<tr>
<td>52.50</td>
<td>2.32511E-01</td>
</tr>
<tr>
<td>60.00</td>
<td>4.78714E-01</td>
</tr>
<tr>
<td>67.50</td>
<td>4.23764E-01</td>
</tr>
<tr>
<td>75.00</td>
<td>3.42303E-01</td>
</tr>
<tr>
<td>82.50</td>
<td>3.34754E-01</td>
</tr>
<tr>
<td>90.00</td>
<td>3.20067E-01</td>
</tr>
<tr>
<td>97.50</td>
<td>2.41611E-01</td>
</tr>
<tr>
<td>105.00</td>
<td>2.76462E-01</td>
</tr>
<tr>
<td>112.50</td>
<td>3.04692E-01</td>
</tr>
<tr>
<td>120.00</td>
<td>2.73488E-01</td>
</tr>
<tr>
<td>127.50</td>
<td>1.64054E-01</td>
</tr>
<tr>
<td>135.00</td>
<td>1.17842E-01</td>
</tr>
<tr>
<td>142.50</td>
<td>1.77455E-01</td>
</tr>
<tr>
<td>150.00</td>
<td>2.20762E-01</td>
</tr>
<tr>
<td>157.50</td>
<td>2.61717E-01</td>
</tr>
<tr>
<td>165.00</td>
<td>2.47810E-01</td>
</tr>
<tr>
<td>172.50</td>
<td>2.46358E-01</td>
</tr>
<tr>
<td>180.00</td>
<td>2.51058E-01</td>
</tr>
<tr>
<td>187.50</td>
<td>2.46327E-01</td>
</tr>
<tr>
<td>195.00</td>
<td>3.10334E-01</td>
</tr>
<tr>
<td>202.50</td>
<td>3.11155E-01</td>
</tr>
<tr>
<td>210.00</td>
<td>2.86345E-01</td>
</tr>
<tr>
<td>217.50</td>
<td>2.77257E-01</td>
</tr>
<tr>
<td>225.00</td>
<td>2.80401E-01</td>
</tr>
<tr>
<td>232.50</td>
<td>2.90208E-01</td>
</tr>
<tr>
<td>240.00</td>
<td>2.85897E-01</td>
</tr>
<tr>
<td>247.50</td>
<td>2.56500E-01</td>
</tr>
<tr>
<td>255.00</td>
<td>2.51185E-01</td>
</tr>
<tr>
<td>262.50</td>
<td>2.59399E-01</td>
</tr>
<tr>
<td>270.00</td>
<td>3.06452E-01</td>
</tr>
<tr>
<td>277.50</td>
<td>3.49176E-01</td>
</tr>
<tr>
<td>285.00</td>
<td>3.62258E-01</td>
</tr>
<tr>
<td>292.50</td>
<td>3.71660E-01</td>
</tr>
<tr>
<td>300.00</td>
<td>3.86104E-01</td>
</tr>
<tr>
<td>307.50</td>
<td>2.99190E-01</td>
</tr>
<tr>
<td>315.00</td>
<td>2.30312E-01</td>
</tr>
<tr>
<td>322.50</td>
<td>2.47650E-01</td>
</tr>
<tr>
<td>330.00</td>
<td>2.62140E-01</td>
</tr>
<tr>
<td>337.50</td>
<td>2.70837E-01</td>
</tr>
<tr>
<td>345.00</td>
<td>2.81067E-01</td>
</tr>
<tr>
<td>352.50</td>
<td>2.11327E-01</td>
</tr>
<tr>
<td>360.00</td>
<td>1.45676E-01</td>
</tr>
<tr>
<td>η</td>
<td>$\lambda(\psi)$</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>0.00</td>
<td>0.379364E-02</td>
</tr>
<tr>
<td>7.50</td>
<td>0.357627E-02</td>
</tr>
<tr>
<td>15.00</td>
<td>0.320355E-01</td>
</tr>
<tr>
<td>22.50</td>
<td>0.220645E-01</td>
</tr>
<tr>
<td>30.00</td>
<td>0.238651E-01</td>
</tr>
<tr>
<td>37.50</td>
<td>0.225014E-01</td>
</tr>
<tr>
<td>45.00</td>
<td>0.195868E-01</td>
</tr>
<tr>
<td>52.50</td>
<td>0.180028E-01</td>
</tr>
<tr>
<td>60.00</td>
<td>0.203301E-01</td>
</tr>
<tr>
<td>67.50</td>
<td>0.196863E-01</td>
</tr>
<tr>
<td>75.00</td>
<td>0.182966E-01</td>
</tr>
<tr>
<td>82.50</td>
<td>0.183697E-01</td>
</tr>
<tr>
<td>90.00</td>
<td>0.212359E-01</td>
</tr>
<tr>
<td>97.50</td>
<td>0.202705E-01</td>
</tr>
<tr>
<td>105.00</td>
<td>0.201786E-01</td>
</tr>
<tr>
<td>112.50</td>
<td>0.187036E-01</td>
</tr>
<tr>
<td>120.00</td>
<td>0.136834E-01</td>
</tr>
<tr>
<td>127.50</td>
<td>0.449549E-02</td>
</tr>
<tr>
<td>135.00</td>
<td>0.155909E-01</td>
</tr>
<tr>
<td>142.50</td>
<td>0.231787E-01</td>
</tr>
<tr>
<td>150.00</td>
<td>0.250816E-01</td>
</tr>
<tr>
<td>157.50</td>
<td>0.258778E-01</td>
</tr>
<tr>
<td>165.00</td>
<td>0.273119E-01</td>
</tr>
<tr>
<td>172.50</td>
<td>0.267728E-01</td>
</tr>
<tr>
<td>180.00</td>
<td>0.251949E-01</td>
</tr>
<tr>
<td>187.50</td>
<td>0.250856E-01</td>
</tr>
<tr>
<td>195.00</td>
<td>0.234620E-01</td>
</tr>
<tr>
<td>202.50</td>
<td>0.217737E-01</td>
</tr>
<tr>
<td>210.00</td>
<td>0.216486E-01</td>
</tr>
<tr>
<td>217.50</td>
<td>0.201478E-01</td>
</tr>
<tr>
<td>225.00</td>
<td>0.206811E-01</td>
</tr>
<tr>
<td>232.50</td>
<td>0.218215E-01</td>
</tr>
<tr>
<td>240.00</td>
<td>0.210326E-01</td>
</tr>
<tr>
<td>247.50</td>
<td>0.226704E-01</td>
</tr>
<tr>
<td>255.00</td>
<td>0.231404E-01</td>
</tr>
<tr>
<td>262.50</td>
<td>0.239732E-01</td>
</tr>
<tr>
<td>270.00</td>
<td>0.247541E-01</td>
</tr>
<tr>
<td>277.50</td>
<td>0.250558E-01</td>
</tr>
<tr>
<td>285.00</td>
<td>0.251764E-01</td>
</tr>
<tr>
<td>292.50</td>
<td>0.250616E-01</td>
</tr>
<tr>
<td>300.00</td>
<td>0.243169E-01</td>
</tr>
<tr>
<td>307.50</td>
<td>0.241396E-01</td>
</tr>
<tr>
<td>315.00</td>
<td>0.240643E-01</td>
</tr>
<tr>
<td>322.50</td>
<td>0.249290E-01</td>
</tr>
<tr>
<td>330.00</td>
<td>0.272602E-01</td>
</tr>
<tr>
<td>337.50</td>
<td>0.280300E-01</td>
</tr>
<tr>
<td>345.00</td>
<td>0.139631E-01</td>
</tr>
<tr>
<td>352.50</td>
<td>0.782729E-02</td>
</tr>
<tr>
<td>360.00</td>
<td>0.379364E-02</td>
</tr>
<tr>
<td>ETA</td>
<td>L(II)</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>0.0</td>
<td>-126941E02</td>
</tr>
<tr>
<td>7.50</td>
<td>-136846E02</td>
</tr>
<tr>
<td>15.00</td>
<td>-136641E02</td>
</tr>
<tr>
<td>22.50</td>
<td>-161035E02</td>
</tr>
<tr>
<td>30.00</td>
<td>-205249E02</td>
</tr>
<tr>
<td>37.50</td>
<td>-229446E02</td>
</tr>
<tr>
<td>45.00</td>
<td>-232831E02</td>
</tr>
<tr>
<td>52.50</td>
<td>-234747E02</td>
</tr>
<tr>
<td>60.00</td>
<td>-221887E02</td>
</tr>
<tr>
<td>67.50</td>
<td>-197195E02</td>
</tr>
<tr>
<td>75.00</td>
<td>-154671E02</td>
</tr>
<tr>
<td>82.50</td>
<td>-176868E02</td>
</tr>
<tr>
<td>90.00</td>
<td>-136978E02</td>
</tr>
<tr>
<td>97.50</td>
<td>-122799E01</td>
</tr>
<tr>
<td>105.00</td>
<td>-772172E00</td>
</tr>
<tr>
<td>112.50</td>
<td>-252172E02</td>
</tr>
<tr>
<td>120.00</td>
<td>-378358E02</td>
</tr>
<tr>
<td>127.50</td>
<td>-444963E01</td>
</tr>
<tr>
<td>135.00</td>
<td>-501439E01</td>
</tr>
<tr>
<td>142.50</td>
<td>-542435E01</td>
</tr>
<tr>
<td>150.00</td>
<td>-576883E01</td>
</tr>
<tr>
<td>157.50</td>
<td>-598867E01</td>
</tr>
<tr>
<td>165.00</td>
<td>-615944E01</td>
</tr>
<tr>
<td>172.50</td>
<td>-626954E01</td>
</tr>
<tr>
<td>180.00</td>
<td>-623939E01</td>
</tr>
<tr>
<td>187.50</td>
<td>-634637E01</td>
</tr>
<tr>
<td>195.00</td>
<td>-632431E01</td>
</tr>
<tr>
<td>202.50</td>
<td>-626710E00</td>
</tr>
<tr>
<td>210.00</td>
<td>-617480E00</td>
</tr>
<tr>
<td>217.50</td>
<td>-604550E01</td>
</tr>
<tr>
<td>225.00</td>
<td>-587313E01</td>
</tr>
<tr>
<td>232.50</td>
<td>-566102E01</td>
</tr>
<tr>
<td>240.00</td>
<td>-530738E01</td>
</tr>
<tr>
<td>247.50</td>
<td>-478589E01</td>
</tr>
<tr>
<td>255.00</td>
<td>-489073E01</td>
</tr>
<tr>
<td>262.50</td>
<td>-212092E02</td>
</tr>
<tr>
<td>270.00</td>
<td>-304335E00</td>
</tr>
<tr>
<td>277.50</td>
<td>-112408E02</td>
</tr>
<tr>
<td>285.00</td>
<td>-117666E02</td>
</tr>
<tr>
<td>292.50</td>
<td>-143050E02</td>
</tr>
<tr>
<td>300.00</td>
<td>-161070E02</td>
</tr>
<tr>
<td>307.50</td>
<td>-177271E02</td>
</tr>
<tr>
<td>315.00</td>
<td>-186158E01</td>
</tr>
<tr>
<td>322.50</td>
<td>-174167E02</td>
</tr>
<tr>
<td>330.00</td>
<td>-156288E02</td>
</tr>
<tr>
<td>337.50</td>
<td>-145408E02</td>
</tr>
<tr>
<td>345.00</td>
<td>-145599E02</td>
</tr>
<tr>
<td>352.50</td>
<td>-142798E02</td>
</tr>
<tr>
<td>360.00</td>
<td>-126941E02</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>0.0</td>
<td>-4.57866</td>
</tr>
<tr>
<td>7.50</td>
<td>-1.09315E 02</td>
</tr>
<tr>
<td>15.00</td>
<td>-1.11654E 02</td>
</tr>
<tr>
<td>25.00</td>
<td>-1.11613E 02</td>
</tr>
<tr>
<td>30.00</td>
<td>-1.20890E 02</td>
</tr>
<tr>
<td>37.50</td>
<td>-1.57218E 02</td>
</tr>
<tr>
<td>45.00</td>
<td>-1.61324E 02</td>
</tr>
<tr>
<td>52.50</td>
<td>-1.17956E 02</td>
</tr>
<tr>
<td>60.00</td>
<td>-1.18070E 02</td>
</tr>
<tr>
<td>67.50</td>
<td>-1.16378E 02</td>
</tr>
<tr>
<td>75.00</td>
<td>-1.14540E 02</td>
</tr>
<tr>
<td>82.50</td>
<td>-1.32363E 02</td>
</tr>
<tr>
<td>90.00</td>
<td>-1.10028E 00</td>
</tr>
<tr>
<td>97.50</td>
<td>-1.19470E 02</td>
</tr>
<tr>
<td>105.00</td>
<td>-1.03245E 02</td>
</tr>
<tr>
<td>112.50</td>
<td>-1.11975E 02</td>
</tr>
<tr>
<td>120.00</td>
<td>-2.41159E 01</td>
</tr>
<tr>
<td>127.50</td>
<td>-2.66617E 00</td>
</tr>
<tr>
<td>135.00</td>
<td>-3.11307E 00</td>
</tr>
<tr>
<td>142.50</td>
<td>-4.81717E 00</td>
</tr>
<tr>
<td>150.00</td>
<td>-6.70072E 00</td>
</tr>
<tr>
<td>157.50</td>
<td>-1.56314E 01</td>
</tr>
<tr>
<td>165.00</td>
<td>-2.23059E 01</td>
</tr>
<tr>
<td>172.50</td>
<td>-2.60502E 01</td>
</tr>
<tr>
<td>180.00</td>
<td>-2.77504E 01</td>
</tr>
<tr>
<td>187.50</td>
<td>-2.81645E 01</td>
</tr>
<tr>
<td>195.00</td>
<td>-2.75661E 01</td>
</tr>
<tr>
<td>202.50</td>
<td>-2.60802E 01</td>
</tr>
<tr>
<td>210.00</td>
<td>-2.14728E 01</td>
</tr>
<tr>
<td>217.50</td>
<td>-2.23753E 01</td>
</tr>
<tr>
<td>225.00</td>
<td>-2.07764E 01</td>
</tr>
<tr>
<td>232.50</td>
<td>-1.17730E 01</td>
</tr>
<tr>
<td>240.00</td>
<td>-1.22888E 01</td>
</tr>
<tr>
<td>247.50</td>
<td>-4.53647E 00</td>
</tr>
<tr>
<td>255.00</td>
<td>-5.91209E 00</td>
</tr>
<tr>
<td>262.50</td>
<td>-7.88571E 00</td>
</tr>
<tr>
<td>270.00</td>
<td>-8.06259E 00</td>
</tr>
<tr>
<td>277.50</td>
<td>-7.58507E 00</td>
</tr>
<tr>
<td>285.00</td>
<td>-8.76333E 00</td>
</tr>
<tr>
<td>292.50</td>
<td>-1.10490E 00</td>
</tr>
<tr>
<td>300.00</td>
<td>-1.16054E 00</td>
</tr>
<tr>
<td>307.50</td>
<td>-1.16603E 00</td>
</tr>
<tr>
<td>315.00</td>
<td>-1.21231E 00</td>
</tr>
<tr>
<td>322.50</td>
<td>-1.26842E 00</td>
</tr>
<tr>
<td>330.00</td>
<td>-1.16415E 00</td>
</tr>
<tr>
<td>337.50</td>
<td>-1.06544E 00</td>
</tr>
<tr>
<td>345.00</td>
<td>-1.08407E 00</td>
</tr>
<tr>
<td>352.50</td>
<td>-1.04115E 00</td>
</tr>
<tr>
<td>360.00</td>
<td>-9.45086E 00</td>
</tr>
</tbody>
</table>

ETA = .850
<table>
<thead>
<tr>
<th>PSI</th>
<th>LI1</th>
<th>LIG</th>
<th>LI1+LIG</th>
<th>LI1+LIG-HARMONICS EXTRACTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-465412E 01</td>
<td>312757E 02</td>
<td>266216E 02</td>
<td>208117F 01</td>
</tr>
<tr>
<td>7.50</td>
<td>-531333E 01</td>
<td>326556E 02</td>
<td>273523E 02</td>
<td>192293F 01</td>
</tr>
<tr>
<td>15.00</td>
<td>-597633E 01</td>
<td>338943E 02</td>
<td>278986E 02</td>
<td>192808E 01</td>
</tr>
<tr>
<td>22.50</td>
<td>-674637E 01</td>
<td>350835E 02</td>
<td>260367E 02</td>
<td>-854377F 01</td>
</tr>
<tr>
<td>30.00</td>
<td>-750030E 02</td>
<td>355714E 02</td>
<td>252606E 02</td>
<td>-756615E 00</td>
</tr>
<tr>
<td>37.50</td>
<td>-825336E 02</td>
<td>358734E 02</td>
<td>244581E 02</td>
<td>-680170E 00</td>
</tr>
<tr>
<td>45.00</td>
<td>-110039E 02</td>
<td>359489E 02</td>
<td>218846E 02</td>
<td>-290309E 01</td>
</tr>
<tr>
<td>52.50</td>
<td>-135982E 02</td>
<td>356602E 02</td>
<td>220810E 02</td>
<td>-174465E 01</td>
</tr>
<tr>
<td>60.00</td>
<td>-129760E 02</td>
<td>351095E 02</td>
<td>221334E 02</td>
<td>-598790E 00</td>
</tr>
<tr>
<td>67.50</td>
<td>-133274E 02</td>
<td>347273E 02</td>
<td>209446E 02</td>
<td>-648337E 00</td>
</tr>
<tr>
<td>75.00</td>
<td>-138932E 02</td>
<td>332177E 02</td>
<td>193238E 02</td>
<td>-117219E 01</td>
</tr>
<tr>
<td>82.50</td>
<td>-123091E 02</td>
<td>320006E 02</td>
<td>196932E 02</td>
<td>-170613E 00</td>
</tr>
<tr>
<td>90.00</td>
<td>-108042E 02</td>
<td>306850E 02</td>
<td>198758E 02</td>
<td>-113846E 01</td>
</tr>
<tr>
<td>97.50</td>
<td>-102363E 02</td>
<td>293316E 02</td>
<td>190538E 02</td>
<td>-890518E 00</td>
</tr>
<tr>
<td>105.00</td>
<td>-67661E 01</td>
<td>279971E 02</td>
<td>212310E 02</td>
<td>-378811E 01</td>
</tr>
<tr>
<td>112.50</td>
<td>-66706E 01</td>
<td>267245E 02</td>
<td>200589E 02</td>
<td>-269866E 01</td>
</tr>
<tr>
<td>120.00</td>
<td>-65033E 01</td>
<td>255851E 02</td>
<td>190618E 02</td>
<td>-825478E 00</td>
</tr>
<tr>
<td>127.50</td>
<td>-74426E 01</td>
<td>245270E 02</td>
<td>170844E 02</td>
<td>-164289E 01</td>
</tr>
<tr>
<td>135.00</td>
<td>-71583E 01</td>
<td>236246E 02</td>
<td>164663E 02</td>
<td>-294324E 01</td>
</tr>
<tr>
<td>142.50</td>
<td>-59198E 01</td>
<td>228556E 02</td>
<td>169360E 02</td>
<td>-314917E 01</td>
</tr>
<tr>
<td>150.00</td>
<td>-271673E 01</td>
<td>227064E 02</td>
<td>249231E 02</td>
<td>.413418E 01</td>
</tr>
<tr>
<td>157.50</td>
<td>-43767E 01</td>
<td>216556E 02</td>
<td>260335E 02</td>
<td>.463790E 01</td>
</tr>
<tr>
<td>165.00</td>
<td>-263403E 00</td>
<td>211827E 02</td>
<td>209189E 02</td>
<td>-908185E 00</td>
</tr>
<tr>
<td>172.50</td>
<td>-65081E 00</td>
<td>207580E 02</td>
<td>200974E 02</td>
<td>-192160E 01</td>
</tr>
<tr>
<td>180.00</td>
<td>-99606E 00</td>
<td>203617E 02</td>
<td>202721E 02</td>
<td>-165453E 01</td>
</tr>
<tr>
<td>187.50</td>
<td>-54334E 00</td>
<td>199759E 02</td>
<td>194325E 02</td>
<td>-209532E 01</td>
</tr>
<tr>
<td>195.00</td>
<td>-415665E 00</td>
<td>195894E 02</td>
<td>191737E 02</td>
<td>-165115E 01</td>
</tr>
<tr>
<td>202.50</td>
<td>-895641E 00</td>
<td>191983E 02</td>
<td>200940E 02</td>
<td>.249994E 01</td>
</tr>
<tr>
<td>210.00</td>
<td>-876491E 00</td>
<td>188061E 02</td>
<td>196826E 02</td>
<td>.104919E 01</td>
</tr>
<tr>
<td>217.50</td>
<td>-652056E 00</td>
<td>184222E 02</td>
<td>177701E 02</td>
<td>.511132E 01</td>
</tr>
<tr>
<td>225.00</td>
<td>-302930E 00</td>
<td>180613E 02</td>
<td>177584E 02</td>
<td>.195900E 01</td>
</tr>
<tr>
<td>232.50</td>
<td>-152851E 00</td>
<td>177417E 02</td>
<td>162123E 02</td>
<td>.167288E 01</td>
</tr>
<tr>
<td>240.00</td>
<td>-354276E 00</td>
<td>174840E 02</td>
<td>139412E 02</td>
<td>.972672E 00</td>
</tr>
<tr>
<td>247.50</td>
<td>-804653E 00</td>
<td>173093E 02</td>
<td>921273E 01</td>
<td>-255333E 01</td>
</tr>
<tr>
<td>255.00</td>
<td>-69934E 00</td>
<td>172384E 02</td>
<td>102391E 02</td>
<td>-566117E 00</td>
</tr>
<tr>
<td>262.50</td>
<td>-825635E 00</td>
<td>172910E 02</td>
<td>110346E 02</td>
<td>888985E 00</td>
</tr>
<tr>
<td>270.00</td>
<td>-60082E 01</td>
<td>174845E 02</td>
<td>114757E 02</td>
<td>164946E 00</td>
</tr>
<tr>
<td>277.50</td>
<td>-635715E 00</td>
<td>178340E 02</td>
<td>114946E 02</td>
<td>160407E 00</td>
</tr>
<tr>
<td>285.00</td>
<td>-80916E 01</td>
<td>183511E 02</td>
<td>99194E 01</td>
<td>184072E 00</td>
</tr>
<tr>
<td>292.50</td>
<td>-873478E 01</td>
<td>190436E 02</td>
<td>103088E 02</td>
<td>-748235E 00</td>
</tr>
<tr>
<td>300.00</td>
<td>-828010E 01</td>
<td>199144E 02</td>
<td>116343E 02</td>
<td>-512315E 00</td>
</tr>
<tr>
<td>307.50</td>
<td>-945327E 01</td>
<td>209810E 02</td>
<td>115572E 02</td>
<td>-195031E 01</td>
</tr>
<tr>
<td>315.00</td>
<td>-103143E 02</td>
<td>221175E 02</td>
<td>118572E 02</td>
<td>-321982E 01</td>
</tr>
<tr>
<td>322.50</td>
<td>-773537E 01</td>
<td>238294E 02</td>
<td>151940E 02</td>
<td>-988328E 00</td>
</tr>
<tr>
<td>330.00</td>
<td>-582065E 01</td>
<td>250072E 02</td>
<td>191865E 02</td>
<td>-642700E 00</td>
</tr>
<tr>
<td>337.50</td>
<td>-56129E 01</td>
<td>265688E 02</td>
<td>209566E 02</td>
<td>677919E 00</td>
</tr>
<tr>
<td>345.00</td>
<td>-568839E 01</td>
<td>281694E 02</td>
<td>224810E 02</td>
<td>575573E 00</td>
</tr>
<tr>
<td>352.50</td>
<td>-524789E 01</td>
<td>291574E 02</td>
<td>245095E 02</td>
<td>116150E 01</td>
</tr>
<tr>
<td>360.00</td>
<td>-465412E 01</td>
<td>312757E 02</td>
<td>266216E 02</td>
<td>208117E 01</td>
</tr>
<tr>
<td>PSI</td>
<td>L(1)</td>
<td>L(2)</td>
<td>L(1)+L(2)</td>
<td>L(1)-HARMONICS EXTRACTED</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>0.00</td>
<td>-297178E-01</td>
<td>218688E-02</td>
<td>188970E-02</td>
<td>150739E-01</td>
</tr>
<tr>
<td>7.50</td>
<td>-392256E-01</td>
<td>233400E-02</td>
<td>194175E-02</td>
<td>.890471E-00</td>
</tr>
<tr>
<td>15.00</td>
<td>-517430E-01</td>
<td>247101E-02</td>
<td>195358E-02</td>
<td>.251247E-01</td>
</tr>
<tr>
<td>22.50</td>
<td>-597060E-01</td>
<td>259281E-02</td>
<td>206375E-02</td>
<td>.330529E-00</td>
</tr>
<tr>
<td>30.00</td>
<td>-649726E-01</td>
<td>259490E-02</td>
<td>220018E-02</td>
<td>.111288E-01</td>
</tr>
<tr>
<td>37.50</td>
<td>-660469E-01</td>
<td>277365E-02</td>
<td>231318E-02</td>
<td>.189153E-01</td>
</tr>
<tr>
<td>45.00</td>
<td>-590794E-01</td>
<td>282659E-02</td>
<td>243580E-02</td>
<td>.360677E-01</td>
</tr>
<tr>
<td>52.50</td>
<td>-599757E-01</td>
<td>285260E-02</td>
<td>225285E-02</td>
<td>.127976E-01</td>
</tr>
<tr>
<td>60.00</td>
<td>-125869E-02</td>
<td>285201E-02</td>
<td>159352E-02</td>
<td>.500050E-01</td>
</tr>
<tr>
<td>67.50</td>
<td>-1113070E-02</td>
<td>262647E-02</td>
<td>169577E-02</td>
<td>.342191E-01</td>
</tr>
<tr>
<td>75.00</td>
<td>-423133E-01</td>
<td>277885E-02</td>
<td>185572E-02</td>
<td>.127356E-01</td>
</tr>
<tr>
<td>82.50</td>
<td>-908583E-01</td>
<td>271291E-02</td>
<td>180437E-02</td>
<td>.107892E-01</td>
</tr>
<tr>
<td>90.00</td>
<td>-870593E-01</td>
<td>263296E-02</td>
<td>176239E-02</td>
<td>.746271E-00</td>
</tr>
<tr>
<td>97.50</td>
<td>-655777E-01</td>
<td>254349E-02</td>
<td>188717E-02</td>
<td>.126166E-01</td>
</tr>
<tr>
<td>105.00</td>
<td>-745572E-01</td>
<td>244876E-02</td>
<td>170319E-02</td>
<td>.148882E-00</td>
</tr>
<tr>
<td>112.50</td>
<td>-812993E-01</td>
<td>235251E-02</td>
<td>153952E-02</td>
<td>.814906E-00</td>
</tr>
<tr>
<td>120.00</td>
<td>-718971E-01</td>
<td>225770E-02</td>
<td>153473E-02</td>
<td>.217658E-00</td>
</tr>
<tr>
<td>127.50</td>
<td>-423174E-01</td>
<td>216636E-02</td>
<td>174319E-02</td>
<td>.236231E-01</td>
</tr>
<tr>
<td>135.00</td>
<td>-297061E-01</td>
<td>207958E-02</td>
<td>178257E-02</td>
<td>.323140E-00</td>
</tr>
<tr>
<td>142.50</td>
<td>-435456E-01</td>
<td>199759E-02</td>
<td>156212E-02</td>
<td>.145923E-00</td>
</tr>
<tr>
<td>150.00</td>
<td>-525414E-01</td>
<td>191992E-02</td>
<td>139450E-02</td>
<td>.194572E-00</td>
</tr>
<tr>
<td>157.50</td>
<td>-662039E-01</td>
<td>184562E-02</td>
<td>124361E-02</td>
<td>.897831E-00</td>
</tr>
<tr>
<td>165.00</td>
<td>-594147E-01</td>
<td>177336E-02</td>
<td>122341E-02</td>
<td>.444736E-00</td>
</tr>
<tr>
<td>172.50</td>
<td>-524337E-01</td>
<td>170764E-02</td>
<td>117820E-02</td>
<td>.612258E-00</td>
</tr>
<tr>
<td>180.00</td>
<td>-512159E-01</td>
<td>163200E-02</td>
<td>111984E-02</td>
<td>.640699E-00</td>
</tr>
<tr>
<td>187.50</td>
<td>-219669E-01</td>
<td>156127E-02</td>
<td>104155E-02</td>
<td>.803276E-00</td>
</tr>
<tr>
<td>195.00</td>
<td>-578463E-01</td>
<td>149036E-02</td>
<td>911892E-02</td>
<td>.142016E-01</td>
</tr>
<tr>
<td>202.50</td>
<td>-553786E-01</td>
<td>141997E-02</td>
<td>866145E-02</td>
<td>.115217E-01</td>
</tr>
<tr>
<td>210.00</td>
<td>-486784E-01</td>
<td>135108E-02</td>
<td>846295E-02</td>
<td>.422537E-00</td>
</tr>
<tr>
<td>217.50</td>
<td>-450831E-01</td>
<td>128506E-02</td>
<td>834226E-02</td>
<td>.218347E-00</td>
</tr>
<tr>
<td>225.00</td>
<td>-437192E-01</td>
<td>122349E-02</td>
<td>786300E-02</td>
<td>.250646E-00</td>
</tr>
<tr>
<td>232.50</td>
<td>-435463E-01</td>
<td>116090E-02</td>
<td>732267E-02</td>
<td>.359095E-00</td>
</tr>
<tr>
<td>240.00</td>
<td>-414860E-01</td>
<td>112054E-02</td>
<td>705674E-02</td>
<td>.639965E-00</td>
</tr>
<tr>
<td>247.50</td>
<td>-362116E-01</td>
<td>108245E-02</td>
<td>720338E-02</td>
<td>.120770E-01</td>
</tr>
<tr>
<td>255.00</td>
<td>-374431E-01</td>
<td>105531E-02</td>
<td>707880E-02</td>
<td>.136133E-01</td>
</tr>
<tr>
<td>262.50</td>
<td>-354280E-01</td>
<td>104044E-02</td>
<td>686162E-02</td>
<td>.125925E-01</td>
</tr>
<tr>
<td>270.00</td>
<td>-416774E-01</td>
<td>103904E-02</td>
<td>622266E-02</td>
<td>.560526E-00</td>
</tr>
<tr>
<td>277.50</td>
<td>-476911E-01</td>
<td>105217E-02</td>
<td>575257E-02</td>
<td>.150565E-00</td>
</tr>
<tr>
<td>285.00</td>
<td>-501085E-01</td>
<td>108075E-02</td>
<td>579659E-02</td>
<td>.599407E-00</td>
</tr>
<tr>
<td>292.50</td>
<td>-524636E-01</td>
<td>112558E-02</td>
<td>600889E-02</td>
<td>.919789E-00</td>
</tr>
<tr>
<td>300.00</td>
<td>-560277E-01</td>
<td>118179E-02</td>
<td>626916E-02</td>
<td>.143106E-01</td>
</tr>
<tr>
<td>307.50</td>
<td>-449840E-01</td>
<td>126581E-02</td>
<td>816872E-02</td>
<td>.460536E-00</td>
</tr>
<tr>
<td>315.00</td>
<td>-359095E-01</td>
<td>136127E-02</td>
<td>100212E-02</td>
<td>.328887E-00</td>
</tr>
<tr>
<td>322.50</td>
<td>-402690E-01</td>
<td>147260E-02</td>
<td>116921E-02</td>
<td>.182417E-00</td>
</tr>
<tr>
<td>330.00</td>
<td>-445630E-01</td>
<td>159842E-02</td>
<td>115728E-02</td>
<td>.625948E-00</td>
</tr>
<tr>
<td>337.50</td>
<td>-482029E-01</td>
<td>173634E-02</td>
<td>125431E-02</td>
<td>.398821E-00</td>
</tr>
<tr>
<td>345.00</td>
<td>-573910E-01</td>
<td>188316E-02</td>
<td>135925E-02</td>
<td>.123032E-01</td>
</tr>
<tr>
<td>352.50</td>
<td>-412350E-01</td>
<td>203411E-02</td>
<td>122254E-02</td>
<td>.848777E-01</td>
</tr>
<tr>
<td>360.00</td>
<td>-297178E-01</td>
<td>218688E-02</td>
<td>188970E-02</td>
<td>.150739E-01</td>
</tr>
<tr>
<td>PSI</td>
<td>L(II)</td>
<td>L(G)</td>
<td>L(II)+L(G)</td>
<td>L(G)+I-HARMONICS EXTRACTED</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>0.00</td>
<td>-386951E</td>
<td>00</td>
<td>.585480E</td>
<td>01</td>
</tr>
<tr>
<td>7.50</td>
<td>-396522E</td>
<td>00</td>
<td>.692331E</td>
<td>01</td>
</tr>
<tr>
<td>15.00</td>
<td>-143944E</td>
<td>01</td>
<td>.802889E</td>
<td>01</td>
</tr>
<tr>
<td>22.50</td>
<td>-282475E</td>
<td>01</td>
<td>.913314E</td>
<td>01</td>
</tr>
<tr>
<td>30.00</td>
<td>-324565E</td>
<td>01</td>
<td>101941E</td>
<td>02</td>
</tr>
<tr>
<td>37.50</td>
<td>-322660E</td>
<td>01</td>
<td>111787E</td>
<td>02</td>
</tr>
<tr>
<td>45.00</td>
<td>-293665E</td>
<td>01</td>
<td>127700E</td>
<td>02</td>
</tr>
<tr>
<td>52.50</td>
<td>-280749E</td>
<td>01</td>
<td>133305E</td>
<td>02</td>
</tr>
<tr>
<td>60.00</td>
<td>-327091E</td>
<td>01</td>
<td>137169E</td>
<td>02</td>
</tr>
<tr>
<td>67.50</td>
<td>-344777E</td>
<td>01</td>
<td>139277E</td>
<td>02</td>
</tr>
<tr>
<td>75.00</td>
<td>-306802E</td>
<td>01</td>
<td>149754E</td>
<td>02</td>
</tr>
<tr>
<td>82.50</td>
<td>-311716E</td>
<td>01</td>
<td>138505E</td>
<td>02</td>
</tr>
<tr>
<td>90.00</td>
<td>-361111E</td>
<td>01</td>
<td>136018E</td>
<td>02</td>
</tr>
<tr>
<td>97.50</td>
<td>-343419E</td>
<td>01</td>
<td>132293E</td>
<td>02</td>
</tr>
<tr>
<td>105.00</td>
<td>-33831E</td>
<td>01</td>
<td>127571E</td>
<td>02</td>
</tr>
<tr>
<td>112.50</td>
<td>-308280E</td>
<td>01</td>
<td>122032E</td>
<td>02</td>
</tr>
<tr>
<td>120.00</td>
<td>-220151E</td>
<td>01</td>
<td>115331E</td>
<td>02</td>
</tr>
<tr>
<td>127.50</td>
<td>-701063E</td>
<td>00</td>
<td>109097E</td>
<td>02</td>
</tr>
<tr>
<td>135.00</td>
<td>-233994E</td>
<td>01</td>
<td>101932E</td>
<td>02</td>
</tr>
<tr>
<td>142.50</td>
<td>-24436E</td>
<td>01</td>
<td>964231E</td>
<td>01</td>
</tr>
<tr>
<td>150.00</td>
<td>-341110E</td>
<td>01</td>
<td>864194E</td>
<td>01</td>
</tr>
<tr>
<td>157.50</td>
<td>-313294E</td>
<td>01</td>
<td>786901E</td>
<td>01</td>
</tr>
<tr>
<td>165.00</td>
<td>-326649E</td>
<td>01</td>
<td>706457E</td>
<td>01</td>
</tr>
<tr>
<td>172.50</td>
<td>-296846E</td>
<td>01</td>
<td>626280E</td>
<td>01</td>
</tr>
<tr>
<td>180.00</td>
<td>-256988E</td>
<td>01</td>
<td>547675E</td>
<td>01</td>
</tr>
<tr>
<td>187.50</td>
<td>-233608E</td>
<td>01</td>
<td>472062E</td>
<td>01</td>
</tr>
<tr>
<td>195.00</td>
<td>-198020E</td>
<td>01</td>
<td>409864E</td>
<td>01</td>
</tr>
<tr>
<td>202.50</td>
<td>-147211E</td>
<td>01</td>
<td>335481E</td>
<td>01</td>
</tr>
<tr>
<td>210.00</td>
<td>-127104E</td>
<td>01</td>
<td>276954E</td>
<td>01</td>
</tr>
<tr>
<td>217.50</td>
<td>-108271E</td>
<td>01</td>
<td>226113E</td>
<td>01</td>
</tr>
<tr>
<td>225.00</td>
<td>-104857E</td>
<td>01</td>
<td>183308E</td>
<td>01</td>
</tr>
<tr>
<td>232.50</td>
<td>-906720E</td>
<td>00</td>
<td>148524E</td>
<td>01</td>
</tr>
<tr>
<td>240.00</td>
<td>-888140E</td>
<td>00</td>
<td>121378E</td>
<td>01</td>
</tr>
<tr>
<td>247.50</td>
<td>-840687E</td>
<td>00</td>
<td>101245E</td>
<td>01</td>
</tr>
<tr>
<td>255.00</td>
<td>-827034E</td>
<td>00</td>
<td>784059E</td>
<td>00</td>
</tr>
<tr>
<td>262.50</td>
<td>-401641E</td>
<td>00</td>
<td>592200E</td>
<td>00</td>
</tr>
<tr>
<td>270.00</td>
<td>-866473E</td>
<td>00</td>
<td>762918E</td>
<td>00</td>
</tr>
<tr>
<td>277.50</td>
<td>-913311E</td>
<td>00</td>
<td>786033E</td>
<td>00</td>
</tr>
<tr>
<td>285.00</td>
<td>-981814E</td>
<td>00</td>
<td>865711E</td>
<td>00</td>
</tr>
<tr>
<td>292.50</td>
<td>-104831E</td>
<td>00</td>
<td>101073E</td>
<td>01</td>
</tr>
<tr>
<td>300.00</td>
<td>-115995E</td>
<td>00</td>
<td>123336E</td>
<td>01</td>
</tr>
<tr>
<td>307.50</td>
<td>-129747E</td>
<td>00</td>
<td>154789E</td>
<td>01</td>
</tr>
<tr>
<td>315.00</td>
<td>-151402E</td>
<td>01</td>
<td>196851E</td>
<td>01</td>
</tr>
<tr>
<td>322.50</td>
<td>-185369E</td>
<td>01</td>
<td>250679E</td>
<td>01</td>
</tr>
<tr>
<td>330.00</td>
<td>-213421E</td>
<td>01</td>
<td>316933E</td>
<td>01</td>
</tr>
<tr>
<td>337.50</td>
<td>-117355E</td>
<td>01</td>
<td>395563E</td>
<td>01</td>
</tr>
<tr>
<td>345.00</td>
<td>-127891E</td>
<td>01</td>
<td>485676E</td>
<td>01</td>
</tr>
<tr>
<td>352.50</td>
<td>-386351E</td>
<td>01</td>
<td>585474E</td>
<td>01</td>
</tr>
</tbody>
</table>