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ADBSTRACT

The location times of thirty measurement points for a spacer
craf. in a circular, planar earth orbit are varied to minimize a
cost function, the sum of the squared components of position uncere
tainty, at a preedetermined target. In addition, the optimum sched-
ule of horizon references for the star-elevation measurement to be
used at each point is determined with respect to the same cost funce
tione A steepest~descent computer program was written to perform
the optimization in each casee It is shown that the measurement
times collect into four clusters from a nominal schedule in which
they are equally spacede A cost reduction greater than 807 is re-
alized. The horizon~selection procedure defines certain arcas along
the trajectory where one or the other horizon is preferred. When
carried out simultaneously with a time optimization, this procedure
results in only & slight improvement over the case where a single
horison is used for each measuremente
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CHAPTER 1

INTRODUZ (ION

The optimization of a celestial messurement schedule for &
matnned spece mission has become a subject of great {mportance in
the last few yearase Walter Fe. Denham and Jason L« Speyear of Raytheon

Company considered this problem in & recent report (Reference 5).

They sought to minimiza the position estimation uh‘(_:truinty at the
terminal point of a froe-fall mission by comparing various sequences
of atar and star~horizon measurements. A steepestedescent numerical
procedure was used to obtain the optimizatione The authors'! results
showed a 107 {mprovement over a schedule earlier proposed by Richard
{1« Battin, of the MIT Instrumentation Labe In this and similar
studies, the locetions in time for the variocus measurements were held
fixed and spaced at nearly squal intervalss The purpose of this the-
sis is to investigate che behavior of such a nominal time schedule
as the measurement tim2s are chenged to decrease terminal position
uncertainty. The model used is a planar, circular earth orbit vhere
the target point appears in the first revolution. Only one type of
measurerant is considered, the star-2levation angle, and use of both
horizons {s investigetede In addition, the time optimizatica probe
len ig coupled with a horizon~selection procedure, to compere with

the single-horizon modae



It {s expacted that thare are certain preferrad measurement
positions along the circular pathe If the times of the measure-
ments are free to change, they should eventually cluster about these
points in order to effect & reduction in position uncertainty. A
similar hypothesis can be stated for the horizon selection. It is
probable that there are cortain areas along the planar trajectory
wvhere it would be more beneficial to use one horizon inastead of the
othere The stespest-deacent procedure will be used to determine

the optimum achedules in both cases.



CHAPTER 2

STATRMENT OF THE PROBLEM

The odbjective of changing the mesasurement times is to decresse
%ae position uncertainty at the targete The expression for the coe

variance matrix of estimation errors ie developed in Appendix B.

N
1 T .1
-1 T °} c.h C
E. = A = (CLEC,) + Z ek’  Selic “ak (2-1)
2
kel e~
Where:

Eg = estimaiion error covarience matrix at terget
L, « initial estimation error covariance matrix
C < state transitjon matrix (Appendix C)

£ -~ measurcment vegtor (Appendix A)

0-2 e variance of measurement error

Certain assumptions are made in stating the problam which simplify
the elements of the zlove equation, making it essier to manipulatee.
As stated iz Chapter 1, a planar, circular earth orbit is
assumgd for the spacecraft. The ineplane nevigational problem can
te considered alone sincu, as is shown by Stern (Ref. 8) and others,
the in-end outeofeplare error propagations are uncoupledes The ine

hereat simplicity of the circular o-hit is especially obvious in the

reduction of Stern®s formula for the tranzition matrix (Appendix C)



to & less complicated forme As explained in Appendix C, the local
varticel co-ordinate system was chogsen to coincide with Stern's
equations.

It vas decided to select a target point in the first orbit &
that the resultant time changes would be more clearly definede The
entire trajectory is included in a central angle of 290°, and the
zeroe-angle reference {s arbitrary.

The star-elevation measurement {8 & reasonable seclection since
it has been found to be suparior in the vicinity of a planet (Chap. 8,
Refe 1)¢ Also. " hae charactsristic vector of the measurement, devele
oped in Appendix A, ¢ ns the same simple form at all points in the
trajactory, when exprassed in local~vertical co-ordinates.

As implied in cquation (2~1), the varienca of the measurement
error is essumed constant for all measursngntse This secems reasonable
enough, since the type of measurament is the same aach time and it {s
alvays taken at the scme altitude. In order to provide ample space
ing for an sdequate eumple of measurement points, th. altitude chosen
for the problem is 11,000 miless From this altitude, an optical ine
strument cen be expected to be about a mile in error in discerning
the horizen. Considering an error of about <8 miles, the angular

veriation, 83 shown in Figure 21, is given in equation (2-2).

~ o8
sin 88 ] b =
é 103 /(15)2- (4)2
§B = .58 mr (202)
Expressed in arc~secondg, this value {8 about 3.5 X 10°3 saconds.

Hence, the variance used in the problem, assuming the mean of measure-




ment errors is sero, is 12 X 10°8 gec?.

15000

4000

Figure 2.1

The quentities for the initial estimatien errors are chosen to be

five miles and ten miles ner second in position and vuloeity in each

co~ordirate directirn. These errors are ascumed unco:'related so that
the i{nitial estimation error covariance matrix is diagonale.

Since the quantity tc be optimized is the position uncertainty,



only the f£irst two diagonal eclements of the 4 X 4 E, matrix are con-
siderede A convenient way ¢, write this cost function is given in

equation (2-3).
Cost = <¢r [Q E.:}

A mors sophisticated cost function for a manned mission might be a
weighted aversge of the target position and velocity errors, such
as that used by Denham and Speyere This would fmply & different Q
than that used abova. Another possible cost function is the detere
minant of the Eq matrix, dascribing the volume of the target error
ellipsoid.

Stated briefly, the problem is to {ind the time schedule, out
of all possible schedules of thirty measurements, that minimizes the
cost functica given in equation (2«3)e The nominal schedule hae
thirty measursment points, spaced at an intexvel of about 900 sece
onds in time, batween central angles of zerc and 290°. Similarly,
the horizon-selection problem seeks to find %ine sequence of horizon
references which minimizes cost. There is & choice between two
referaences at cach pointe The nominal schedule in this cese is the
use of the "zight” hoiison, cpposite to the direction of motion, at
each point. The method of solution in each cese is the ateepest~

descent numerical procedurze, which i{s the subject of the next chape

ter.




CHAPTER 3

APPLICATION OF STEEPESTeDESCENT

The stagpest~descent, or essient, method {8 one of a nunber
of numerical techniques developed over a century ago by Cauchy and
others of that era. The advent of the high~speed computer has
brought many such procedures back to life. Laergely responsible for
the revival of atespest~dascent are Kelley and Bryson who, working
indspendently, recegnized {ts superiority in cextain classes of probe
lemss It eliminatas much of the guesswork associated with other
methods by assuming a non-optimal, nominel solution, and proceeding
to the optimun by & series of linear, incremental changes: The nome
inal solution need only be a ressonable first guess and may or may
nol satisfy the boundery conditions.

An analogy, credited to Bryson, {llustrates the method quite
walle A hiker, elimbing a mountain in a dense fog, will climb where
the slope rises the sharpest to minimize his time of ascent. Because
of the fog, he muat relocate the direction of stespest rise at regu-
lar intervals, In equation form, the direction in which he climbds

from his staxting point iss

o 02|y

I -b-’i‘ £ 4 <3 i .‘1 1 l’l i (3=1)
lrz-xl Ml
y N N



vhere z is the function describing the hill. The horizontal diee
tance moved {n = cartain direction is directly proportional to the

slope in that directicon.

Ax ® "2""1 = K"‘l
(3=2)

Ay = yyo9 = Kay

The linearizing assumption is that the total vertical distance ¢limbed
equals the sum of the computed vertical distances for the x and y

directionse

Ag = leA X + '*y,_AY (3-3)

The climbx will decide before he starts how far he vwiil climb vere
tically before re-assessing the directions Hammce, O z 1 a knowm

quantitye.
~ 3 2 o
Az S K (2 ) + (2 ) (3~6)

The congtant K, which governs the horisontal distance, can then be

determinede

Ag

- (35)
(202 + (2%

K =

The climber predicts that his new altitude, wvhen he has arrived at
point 2, will be z; + & g+ The actual altitude will normally bs less
than this s.raight iine sextrapolation of slopes After determining
the new direction of steepest ascent, the climber repests the proe
cedure until finally, the actual change in altitude is much less

than he predicted, indicating he 18 spproaching the top of the moune




taine

Two di sadvantages of the steepest-ascent technique are brought
out in the saalogy. The proper step siza, {\ g, is important because
the climber may miss a better path {f he climbs too far in any direce
tione Unfortunately, a reasonable step size can only be selected by
8 trial and error process. Also, the climber may venture onto en
isolated peak and, because of the fog, think he has reached the top.
A fresh start with new initial conditions is the ¢aly wvay to effec-
tively reduce the probstility of converging on a local meximume

In References 3 and 4, Dryson has outlined the mathematical
approach to a series of genaral problems. His formulation of a probe
len without constraints will be considered here since it is somewhat
similar to the thesis problem.

A nominal spacecraft trajectory is postiulated, vhich is dee

scribed by the following set of ordinary differential equations.

- PP | = 1,2 (36)
‘a't"" §Ys Oy 9 &9 @ v o9 N

The known quantities fl’ arcz functions of the independent variable
t, the dependent variables Yy and the driving, oxr control, function,
b(t)e The cost, a function of the depe ient variables, is increased
(or decreased) by varying b(t). Variations about this nominal trae
Jectory are considered end it 18 assumed that they can be acturately

described by firstrorder differentials in the perturbation equation.

n
of
d Z 1 1
a-t-(gyi) - = BYJ Syj*ab Sb (3=7)

The partial derivatives in (3-7) are evalugsted slong the nominal trae
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Jactorye The dependent variables are functions of time so that (3«7)
implies a set cf n linear equations with variable coefficients. The
) y, terms represent a small variastion of the dependent variables
from their nominal time historye A set of equations adjoint to (3=7)
is defined in equation (3<8).

n
dL Z Dt
—l - [

The pertial derivative in (3-8) is the negative transpose of the sime
filar quantity in equation (3~7). The reason for the adjoint equation
1s made clear in the following sequences

n

Z (L %{ (Syi) “ 5y1 dL!) Z 1,1 §b
{=] {w]
n n .
(L P_.f.l. y; = L }_Si Ye) (3-9)
Z Z i 373 S 3 J BY: 5 {

je]l el

The double summation term in (3-9) equels zero since only the indices
dfiiers The left hand s’.de of the equation is equivslent to the time

derivative cof Lg 5 yg°

n
&) 1,5y - Z L, (3+10)

i=] {=]

The expression which relates incremental changes in ths control varie
ables to the resulting changes i{n the dependent variables is obtained

by integrating equation (3-10) over the flight time.
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T T
. S df
) Ww| - > Ly S_b_{, § b(t)de (3-11)
- - i=1
%o %
- %
: J\
L (t) Z' by g
ol
T 1
n
%;; L‘ S Yy - /S, Lb(t) S b(e)de
:O to

The quantity L, (%), defined in (3-11), s the influence function as-
sociated with the control function, d(t)e. The definition of the ade
Joint variable L;, defined in equation (3=8), is justified by this
siople expression. L; is & known function of the nominal trajectory
and {ts boundary condition is a function of the cost, which is usually

determined at the terminal point of the flight.

A Cost
L (T) = S ¥y Cost Cost [y('r)] (3=12)

twT
The objective is to relate changes in cost to changes in the control
function by the use of the adjoint variable. By definition, the dif-
ferential cost change is &« sum of partial derivatives. Using equa=-

tion (3=12):
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S Cost

n o
. |5 dcost .
LSy on [xz-lx L‘sy’] v
teT

teT t=T

Substituting (J=13) into (3-11)s

1
n
Scost = | 1Ly(t) §b(t)ae o Z 8y, (3-14)
¢, tmt,

The adjoint variables Lys can be interpreted as the influencs funce
tions for the initial conditions of the dependent variables. The
§ Cost term in equation (3-14) is pre-sslected. For a given valuse
of § Cost, it 1s desirable to require the smallest possible chenges
in the driving function and initial conditions so that the linear
perturbation equation is valide Stated another way, the probdlen is
to minimize the effect of the second-order & b(t) and $y, terms for
a constant cost cheiagee The summation term in equation (3-14) can

be rewritten as a dot product to simplify the mathematicss

n
[Z L‘Sy‘] "L, Sy, (3-15)
fo)
t-to
vhera
rLlﬂ ryl-
L2 Y2
o | N
&Ln, Lyn.
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If the 1%h fnitiel condition is specified, ) Yy is s0ro and the ith
term doss not contribute to the dot product. The variational calcue

lus problem can then be stated as followss

T
minimiges J -[ le(t)lzdt + |5%|2
t
¢ (3-16)
subject tos g(:on: s A = constant

The positive constant o€ in (3=16) is chosen to make the dimensions
compatible in the J expression. The problem can be rewritten using

Lagrange multiplieras
J* w J+ T\ (§Cost = A) (3<17)

vhere J' is the quaentity to be minimized. Substituting from equa-
tions (3-14) and (3-15):
T

2
3 - [[T\ Ly(t) & b(e) + |§n(e)] 1 de

%

(3<18)
+NL,* 8z +o<|81d‘2 -Na

J* can be divided into three parts, a function of Sb(:). a function
of §y, and a constant.
T

J' = [ Fy [S b(t)] dt + l-"z(Sxo) + constant (3=19)

%

To minimize J'i
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OF

m = T\ Ly (t) +2§b(r) = 0O (3=20)
.3.:1.. Nz 2 0 (321
STE O mriten ’

The second derivatives in (3-20) and (3~21) are both positive and a
minimum for J* is assured. These equations szhow that the smallest
changes in the driving function and the initial conditions to result
in & given cost increment are changes proportional to their respece

tive influence coefficients.

N
Sb(t) = © 7 Ly(t) = K Ly(t) (322)
§1, = .,i'_f\zko M ;{%&o (323)

Tha sign of the constant K 18 chosen positive or negative for a de-
sired cost increase or decrease. Substituting equations (3-22) and

(3223) into (3=14) results in the cost expression as a function of Ko

Scost © « f T[Lb(t)] Ya o = l %'2 (3224)

%o

since § Cost {3 preeselected and Ly(t) and L, are known functious
daefined by aquations (3~11) &nd (3-15) the unknowm K is determined
by equation (3+25).

$ cost

I < : lz (3=23)

/ T[Lb(t)Izdt Wi l”

ol

%
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The influence coefficients, Lb(t) and Loo determine the nature of

the changes, and K def ~rmines the directiocn and magnitude.

b(E) gy = BlE)g p + K Ly(t) (3-26)

Loygy “ YooLp * ;"(z L (3+27)

As oentioned previously, oniy the unspecified initial conditions are
available for chenge.

The general procedure can be summarized as follows:

(1) A reasonable first estimate of b(t) is chosen, according
to the particular problem.

(11) The partial derivatives of the known functions £; with
respect to tha dependent variables and the control funce
tion are avaluzted slong the nominal trajectorye

(1i1) The adjoint varjables L; are determined from equation
(3«8), integrating backward over the nominal trajectory
with equation (3~12) as {nitiel conditions. The influ-
ence function L, (t) can then bs computed from equation
(3-11).

(iv) An arbitrary cost change is chosen, depending on the
nature of the probleme A value of S to 10% might be a
reasonable initiel value for § Cost if a aubstantial
overall cost change §a antigcipatede X is then detere
mined from equation (325).

(v) The new control fiiction is found from equation {3+26)

and the new initial conditions from (3-27)s Equations
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(3-6) are then integrated to obtain the new trajectory
and the process is repeatede

(vi) The ratio of the predicted cost change to the actual

cost changa will incresse as the optimum {s approachede.
When this ratio bacomes greater than about 5, the vslues
of § Cost and/or K should be decreased to reduce step
sizee In this way, the optimum can be apprcached as
closely as desired.

The essential part of this geaeral formulation is, of course,
relating control function changes to the resultant cost change. The
adjoint varisbles were necessary to obtain such an expression Decause
e divect relation between § Cost and § b(t) di  not exist. In the
thesis problem, the estimation error covarience wmatrices, L., are
aralogous to the f; in the general formulatioz. For the time selece
tion procedure, the times of the measurement points, G correspond
to the driving function b{t)e The ezchedule of measurement vectors,
8o is the driving function for horiien selection. The cost funce
tion, explained in Chapter 2, is the same for both cases. If it can
be expressed as an explicit functior of t, end, for the other case,
gx» the adjoint equations, defined in (3~8), will not be neededs Ine
stead, the influence functions for btoth cases would be defined by

the following equationas

N

N
§ Cost -Z %—C‘:—:-E St = Z L St (3228)

el kel
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N N
G Cost Z (-}S%E)T S & ° Z y;‘r & & (3-29)
kel kel

Equations (3~28) and (3~29) are both analogous to equations (2=14).
The initial conditione in the thesis problem are specified so that

the term corresponding to the rightmost term in (3~14) is zero.

Also, the summations are used since the driving functions, unlike
b(t), are not continuous functions. Using the cost function explained
in Chapter 2, and the E, expression daveloped in Appendix B, the ine
fluence coefficients for the two cases ere derived in Appendices D
and E.

Tine selection:

o1
& 2 T .l D (€D
e = ° =78 Cax EaQF Bd:k B (D-13)
Horigzen selection:s
.l
I = = L5 iy Cak' EaQEq(Cak) (5=17)
qa

For the time optimization problem, the N statestransition
matrices are evaluated from the nominal schedule using equation (Ce4).
Due to the symplectic properties of C, the inverse can be found ug-
ing the elements of C. Since C is & function of time, the determi-~
nation of {ts derivative is straightforward. These results are
given in equations (C~7) and (CeS). The estimation error covariance
natrix is then computed from equation (B-26). Using these quantities,

and the measurement vector determined in Appendix A, the time selec~

tion influence coefficient is obtained from equation (D~13). Sincs
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8 decrease in cost is desired, the time change at each point is ope
posite in sign from the corresponding influence coefficient. Ine
stead of specifying a specific cost change as in Brysonts formulae
tion, it is more convenjient to first specify a maximum time incre~
mente If the resultant cost changs is too small, the time increment
cen be incressed until a change greater then 5% is obtained. Of course,
as the optimum is approached, s smsller percentsge chenge is required.
The time changes are scaled according to the sise of their raspective
influence coefficients as in equation (3=22), so that the measurement
point having the greatest effect on cost is chunged the most. The
change follows the direction of steepeat descent in an Nedimensional
spaces The intricacias of this procedure are clarified by the flow
charts in the next chapter.

The horison=selection procedura i{s similar up to a point.
Since it is carried out simultancously with the tims-optimization
procedure, E‘ end cak must be reemevaluated sfter each iteratione There
is not as much control in this problem however, since there are only
two possible values for 5 g,  at each pointe The N individugl elements
cf equation (3«29, muat be cxomined to determina the incremental cost
changes. If a proposed horizon chenge resuits in a decrease in cost,
the change is made. If not, the original horizon is retained. With
80 little ;aontrol. it is possible tha’ the proposed change violates

tho assumption of lincarity utilized in the perturbation equation.

Thés problem is discunsaed in Chapter 5 The procedure for horison

selection is glso illustrated in Chapter 4.



CHAPTER &

COMPUTER SOLUTION

The specifics of the computer program used to implement the
theory developed in Chapters 2 and 3 and Appendices .\ thru E are
covered in Appendix Fo However, it will be useful to understand how
the problem esolution {s carried out: The flow charts in Figures 4.l-
5 will help in understending the methods used.

Figure 4«1 gives the flov chart for Block One (no horison
change)s Here the new measurement time schedule is computed using
the same messurement vector, either left or right horizon.

The input data nesded is covered in Appendix F. From equae

tion (A=14), the measurenent vectors can be computede

.

r -
(.2 2);

Z -ra

Z(RIGHT) = -3 (4+1)
0
0

— -

— -

g
2(zd o r 2)

E

g(LEFT) o (4=2)

© O nj-
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Using these vectors and the state transition matrix equation
(C=4) the target estimation error covariance matrix, equation (B=26)
can bs computed.

As shown in Appendix B, the symplectic property of the state
transition matrix allows one to simply compute ths matrix inverse
and matrix transpose inverse by rearranging the elements. Cquation
(Ce7) is computed in & simple subroutine.

The matrix Q 18 covered in Appendix De Now, the cost computed
will be the following:

Cost = ¢tr [QE.:I (D=2)

The cost will be designated the old cost, oc, when the computation
uscs & mgasurament time schedule which i8 either the 1n1t£a1 one or
a result of a previous iteration.

Using the present target estimation ervor covariasace matrix
and squation (D-13) the influence coefficients ara computede The
logic used will change the measurement time schedule by an amount

depending on the influenca coefficient having the largest magnitude.

Nowy, if we define a scale factor, sf, as:

8¢ = |maximum influence coefficientl
naximum time incremeat

or

ot = G (423)
A%

then the new measurement time depends on the old measurenent time

end the value of the fnfluance coefficient at the old measurement
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timae Nows
new timg o g¢gld time o wm&
scale factor
or
EC
kg, = ¢ o A (4=4)
"n 10 .:

aad this procedure is applied to all the measuremrnt times. Obviously
the time with the influence coefficient having the largest magnitude
vili have the greatest change. Also the sign of the influence coef-
ficlent will determine which way the measuresent time will move.

After all the weasurement times heve been changed, a new tare
get estimation error coveriance matrix and e new cost, nc, can be
computed. The actusl cost change, acc, 18 clearly:

&ce = o¢ » nc (4=3)
and this number ahould be positive. A predicted cost change, pcc,
can be defined as:

30 30
=} =

and then it is compered to acce The percentage cost change is thent
pc = &CC (4e7)
oc

When pe is positive, it 1s then compared to some minimum de-
sired porcent change, mpc. If pc is less than mpe, then the maximum

time fncrement is multiplied by the ratio of mpe Lo pCe

When pc iz gero, the maximum time increment is cut in halZ.
Whea pc is negative, the new maximum time increment is changed by

an amount depending on how much negative it is. The logic is then
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if pc + mpc is zero, then:
Ay, = Am (4-8)
{if pc + mpc ie greater then zaro thent
Aty = At - Ll (4=9)
and {f pc + mpc is less than zero then:

At = Aty Eﬁ (4=10)

Having changed the maximum time incremant, it may be used to
repeat the measuremdnt time change procedure showm previously. The
same influence coefficients ere used since thay were calculated bee
fore any measurscment time change was made. The same procadure of
selecting a scale factor, and of then changing each messuremgnt
time is carried out. This procedure may continue until pc is equal
to or greater then mpce Any additionsl changes made will be added
to thosa previousiy medas Since the logic dces not return to the
neasurement time schedule used to compute the influence coefficiants,
the optimum may be miesed, much @8 the hill climber in Chapter 3
missed a better path Ly climbing too far in one diractione The inie
tiel time increment mey have forced the optimium over tte top of the
hill and any further change in this time increment will marely cause

chenges that will put the optimum further ovar the tope ‘Ths program

way then run into troublee Vhen this happens, the best procedure
to follow {& to return to the measurement time scheduie computed be-

fore the troubls was cucountezed end reduce either the maximum time



23

{incraement or the minimum desired percent changee
Therefore, the program control §{s either on the percent
change or the maximum time incremente Another possible progrem
control could be the ratio of pce to acce
The above procadures are shown better in Figures 4.2 and
4¢3+ Subroutine CHECX, Figure 4.2, changers only one time. This
routine {s used right after the influence coefficients are computed.
The result shows that the cost does decrease by changing the measuree
ment time, and that the influence coefficients are correct.
Subroutine LOGIC, Figure 4.3, computes the entire nevw messuree
went time schedule. Also this routine limits the new times to the
end conditions:
<

0SS

e, = ‘o (4=11)
n

vhere F, i3 the final angle of the orbdit.
This wvhole procedure can be repeatcd any number of times.
But as mentioned before, after several iterstions, it may be impose
sible to achieve a given mpce. Igcreasing the maximum time f{ncrement
mey place the optimum over the hill tope Then e new mpc must be
chosen and this can only be done in a heuristic menner. However,
the results after a st of iterations help ‘etermine what size steps
must be made to bring the measurement time schedule to an optimume.
Figure 4+4 shows the flow chart for the second blocke Here

& ney mgasurement tima schedule and a new messurement horison schedule

are computede The main difference lies in the fact that at each meas~
urement time tha messurement vector {s diffsrent, end the results of

the program are optiman measurement time and horison schedules.
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Except for using a different measurement vector at each time,
the measurement time schedule optimization is the ssme as in Block
One. Also since linearity is assumed superposition holds, and the
measurement time and horizon schedule optimization can be carried out
independently.

The measurement time schedu’e optimization is completed first
and them using equation (E-17) the horizon influence vectors are come
puted.

Using equations (E~20) the change in cost is computed. Only
1f this change in cost I8 negative, will the total cost be reduced
by changing the measuremeant vector.

To avoid going outsaide the lincar range by making the change
in cost too large, only one measurement rector will bs chenged at a
time. This will keep the change in cost small. Therefore, only
the measureaent time having the negative change in coat with the
largest magnitude will lave its measurement vector changed.

After this particular measurement vector is changed, the new
target estimation error covariance matrix and & new cost are computed.
As before:

acc = oc ~ nc (4=5)
and the predicted change in cost is defined by equation (4~12):
pcc = « § Cost (4»12)

vhere:
1

§ Cost = - a..?i. G Con EqQEq Cox ) & & (E=16)

The ratio of pcec to acc shows how the change effacted tha coste
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The new cost can be compared to the old cost to see if change did
decrease the coste
Subroutine JUMP, Figure 4.5 shows the logic used in changing

the messurement vectore.
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TABLE &4el

SYMBOLS FOR FLOW CHARTS

ratio of actual cost change to old cost

actual cost change

cost change due to change in measurament vector
estimation error covariance matrix a% target
influence coefficient for measurement time change
largest value for l’.ci
final angle of the orbit

measurement vector change from r.ght to left horizon
measurement vector change from left te right horizon
horizon flag

= 0 usging left horizon

e ] using right horizon

maxirum desired percent cost change

mean angular motion

new cost

number of iterations

old coat

parcentage cost change

predicted coat change

ratio of predicted cost change to actual cost chenge
scale factor

new measurensnt time

old measurcment time



A, maximum time increment

JAR actual time increment

A

- influence vector = L,

Subscripts:

i, k neasurement times

I one particular msasurement time

N meaguremen” time having the a - (. with the largest

magnitude



CHAPTER 3

RESULTS AND CONCL“IONS

As mentioned in Chepter 2, the hyrothesis asscciated with
the time optinization problem is that, in a schedule of thirty
equally spaced measurement points, there are a cartain number of
preferred positionse Me¢nirements made at or near these positions
should result in a lower cost, the sum of the squares of terminal
position uncertainty, then measurements made at other points along
the trajectory. If che¢ times of the various points are allowed to
change to effect a ccsi. decrease, they should cluster about the pre-
ferred, or optimum, points. The method of steepest descent is pare
ticularly appliceble to this type of problem since the relative size
of the thirty influence ccefficients indicates the sensitivity of
their corresponding pointse The time changes are proportional and
of opposite sign from their respective coefficients, so that a rele-
tively lerga value for L, indicates that a substantial time change
should be merde in a specific directione If the optimum points are
welledefined, their position on the trajectory should not change ap~
preciably as the times of the messurements are changed. Therefore,
a plot of the influence coefficients as a function of the corresponde

ing central angles for each case should serve to locate them. These

35
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influence functions are plotted in Figures S5-1 and 5=2 for the cost

values listed in Table 5-1.

NOM INAL CHANGE = 25%  CIANGE = 50%
RIGHT «6405 x 10° 4686 x 10° 3221 x 10°
LEFT 1.1628 x 10° 8632 x 10° .$732 x 10°

COST VALUES = FT2

TABLE 5el

The "RIGHT” horison is that opposite to the direction of motion, as
defined $a Appendix Ae It is evident from Table 5~1 that, for a
single torizon reference, the right horizon is preferable. The ane
gular c¢ispersion of the measurement points correeponding to the asbove
cost ‘alues are more clearly shown in the polar plots, Figures 5-3
thre.gh 5~7« The general configurecions of the influence functions
in ’igures 5-1 and 5«2 remain the ssme, even after substantial changes
in coste The increase in awlitude indicates that the ﬁimu ara
driven harder toward the optimum as the optimum is spproached. The
avro#s in both figures indicate the dirsction of time change, and
rerve to dafine the circled stable pointse It appeare that four Clus-
ters should rigult, two at the end points and two in the middle. The
cluster locations predicted from Figuree 5-1 and 5-2 are given in

Table 5=2.
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lst 2nd 3rd 4th
RIGHT o° 58.5° 170° 290°
LBFT o° 70° 176° 290°

CLUSTER PREDICTIONS

TABLE 3=2

For a total cost chsnge greater than 50%, the dispersion of the
points 1s not sufficient to asccurately identify the sero~crossings
in an influeace function plote. Subsequent iterations were carried
out, periodically decreasing the maximum time increment and required
percent chmnge, until the clusters were clearly defined. The sngular
dispersion for & cost change of about 757 is shown in Pigures S-8
and 35~9. At this point, it is obvious that thexe will be only four
clusters. The influence coefficients at this stage tend to .rive a
number of the times beyond the end pointse As noted in Chapter 4,
the measurement positions sre constrained once they reach 0° and
290”7, and the lcrho end-point influence coefficients are ignored in
computing the predicted cost change for each iteratione.

Accurate identification of the position of the clusters was
not possible until after several itsrations requiring a .17 cost
decreases or lasse The size of the clusters cannot be predicted since,
in the early itaerations, the progrem drove the time locations quite
hard until a substantial cost decrease was realized. There were
several instances of points "jumping” from one cluster to anothere
It {s reasonable to assuse that a tighter tolerance on the maximum

time increment wouid result in different cluster sizes. The loose




tolerance was used to shorten the convergence time.

When the program had changed the times as much as possgidls,
the most likely cluster positions were chosen, and all points were
sssigned one of these four time valuase The cost function values
resulting from the selected solution show only a slight decrease from

the computer solution. The results are listed in Table S5-3.

COST COST

COMPUTER SELECTED % CHANGE
RIGHT .1108 x 107 .1108 x 10° 82477
LEFT 02162 x 107 <2161 x 10° 81447

FINAL COST VALUZS

TABLE 3«3

The finel angular positions and numbers of included points for the
clusters are given in Table 5-4, along with the positions predicted

from Figures 5-1 end 5~2.

RIGHT LEFT
Included Angle Pred. Included Angle Pred.
Points Points
st 2 0° 0° 3 o° 0°
2nd 11 69.3° 58.5° 11 75.4°  70°
3rd 7 208.1°  17¢° 10 197.2° 176°
4th 10 290° 290° 6 290° 290°

FINAL CLUSTER POSITIONS

TABLE 5~4

The angular position of the clustors is more clearly shown in Figures
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510 end 5=11. The influence function plots provide a fair predice
tion of the number and position of the clusters even before any cost
reduction is obtained.

The selected cluster positions can be Justified only {f the
infiuence coefficients for these points approach zero, i{ndicating
that there are no further chaages to be madee The influence coeffi-
cients for the end points are still quite large but, as noted, they
tend to drive the times beyond the constraints. The sign of the co-
efficients is positive at 0° and negative at 290°, so that the times
are being driven in the proper direction. The values of the coeffie
cients for the middle two clusters are compared with the values for

points close to the cluster position in Table 5=S.

ON OFF ANGULAR
CLUSTER CLUSTER DIFFERENCE
RIGHT 2nd + 4440 - 680 2.5°
3rd - 6036 + 6923 3.4°
LEFT 2nd =21.32 ~1735 3.9°
3rd + 5459 - 22.0 446°

INFLUENCE COEFFICIENTS ~ FT2/SEC
TABLE S5-8

It is evident that the optimum positions have been closely approxie
mated.

The cost reductions in esch case will be more neaningful {f

compared in terms of position uncertainty in the radial and tangene

tial directions. As noted in Chapter 2, the initial estimation error
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vas chosen to be about five miles in each direction. The correspond-
ing values sfter making thirty measurements for the nominal and optie-

mum solutions are compared in Table 5«6,

NOM INAL OPTIMUM % IMPROVEMENT
RIGHT RADIAL 2.53 1.33 47.+5%
TANGENTIAL 4.08 1.49 63¢5%
LEFT RADIAL 2.98 1.50 49.6%
TANGENTIAL S5¢74 234 39.2%

POSITION UNCERTAINTY « MILES

TABLE 5-6

Changing the times of the measurement points results in a significent
cost reduction in both cases and the xight horiszon reference gives
the best results.

The purpose of the herisone~selection procedure was to inves-
tigate the possibility of a cost reduction by providing a choice of
twvo references at sach mecasurement pointe Using the measurement vec-
tors defined in Appendix A for the right and left horizons, the 6&
vectors were defined i{n equations (E-18) end (E~19). The time opti-
mization problem described in the firast psrt of this chapter was car-
ried out first. Since it was evident after the first run that the
right horizon reference would result in a lower cost value, a reason-
sbl¢ .minal scheduie for the horizon selection was to use this hori-
zon &t each pointe The idea was to switch to the left horizon where
the steepest descent procedure predicted a decrease. Since the
switching problem was paired with a timing achedule optimization, it

vas aaticipatec that the horizon schedule would not stebilize untii
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the optimum time schedule was approached. Ststed another way, the
portious of the trajectory which preferred one horizon over another
were expected to be a function of the central angle onlye

As explained in Appendix E, the horizon selection differed
from the time optimization in that there was no coatrol over the step
size. The messurement vector could not be driven in a direction to
effect a cost decrease since the two values cf 65 were pree-determined.
If the cost change predicted from a proposed horizon chenge was nega-
tive, the switch was made. If not, the original horizon was retained.
The problem does not have the continuous nature of the time optimiza-
tion and the lack of step size control caused trouble. Early results
using the schene descrioed avove did not provide accurate predictions
of cost changes When the program changed the horizon at all points
where a cost decrease was predicted, the resultant cost value was
greater than beforee The influence vectors were correct, so it
seemed best to change only one horizon at a time before re-evaluating
the vectors. The problem persisted, however, and at that point the
step size vas investigated. It was found that the right and left
horizon vectors were separated by an angle of 149° at 11,000 miles

as shown {n Figure 5-12.
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LEFT \\&&, 11,000
\ mile
\ orbit

RIGHT

LEFT \\\
Y% 100 mile ordbit
AN (not to scale)
\
N\
\
\
N
—pn
RIGHT

FIGURE 5-12
COMPARISON OF é;g_VECTOR AT DIFFERENT ALTITUDES

If the altitude was reduced to its lowest practical limit, 100
miles, :he angle is reduced to 12°; but, since the 83 vectors are
inverecly proportional to the altitude, it was felt that the step
size would 3till be too large. The alternative solution was to re~
define the "left" horizon vector, using the negative ot the g (LEFT)
defined in Appendix E. The physical meaning of this chenge is that
the star~c¢levation engle would be m2asured in a counter-clockwise,
rather than clockvuise, directian. An examination of Figure 1 ia
Appendix A shows that this is true. The time optimization procedure
is not affected by this change since, in the expressions for Ej s L
and & Cost (Equstions (D-10), (D-13), (D=1)), the measurement vee-

tors appear in the form 53?- Therefore only the aquare of the sle~
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ments is critical and changing the sign of the measurement vector
does not wesken the comparison with the straight time~optimization
problem. As shown in Figure 5-13, the step size was consideradbly de-
creased. The step size could be reduced more, if necessary, by in-

creasing the altitude.

11,000 mile RIGHT
orbit

LEFT ™ §133

REDEFINED § g VECTOR

FIGURE 5~13

As a further precaution, only one horizon change was made before
re~evaluating the influence vectors. The Sg vectors replacing

those in Appendix E are ziven in equations (5-1) and (5-2).
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3(:2 C rE

& g, (LEFT TO RIGHT) 0 (51)

S g (RIGHT TO LEFT) = 0 (5-2)

The procedure described in Chapters 3 end 4 was cerried out,
with more encouraging resultse. The predicted incremental cost changes
are plotted in Figure 5~14 as a function of the central angle. Since
the nominal schedule uges the right horizon at all points, the areas
of negative cost predict a favorable change to the left horizon. It
is evident that the points preferring one horizon or the other are
not scattered randomly over the trajectory but lie together in cer~
tain well defined areas.

Since the time and horizon gelecticn procedures are indepen~
dent, the shape of Figure 514 should not be affected by changing
measurenent times. The angular limits corresponding to either hori-
zon reference can bs predicted from the figures These predictions

are listed in Table 5-7.
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RIGHT HORILZON LEFT HORIZON
16° to 109° 0° to 16°
212° to 290° 109° to 212°

AREA PREDICTIONS

TABLE 5-7

A similar line of reasoning applies to the time-optimization
clusters. Changing the horizon from right to left should not affect
the number of clusters although their positions may be 8)ightly ale
tered. The predictions for the cluster positions are given in Table

5~8 along with the predicted horizon obtained from Table 5-7.

ANGLE HOR LZON
1ot o° LEFT
2nd 72° RIGHT
3rd 202° LEFT
4th 290° RIGHT

CLUSTER PREDICTIONS

TABLE 58

As expected, the effect of two optimication procedures is
to provide for more rapid convergence. The horizon changes made
along with the respective central angles are listed in order of
their occurrence in Table 5-9. For each {teration, the proposed
horizon change which results in the greatest cost decrecase is the

only change made. The numbers associated with the points are the

identification numberes in the program. After several iterations,
these numbers lose their meaning since the points may pass esch

other on the way tc the optimum.
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POINT NO. CHANGE ANGLE AT CHANGE
19 RIGHT TO LEFT 165.5°
18 " 157.0°
17 " 148.5°
20 " 174.0°
16 " 1460.0°
21 " 182.4°
15 " 135.6°

1 " 8.2°
14 " 122.2°
22 " 190.8°
13 " 112.1°
13 LEFT TO RIGHT 112.0°

2 RIGHT TO LEFT 17.2°
22 LEFT TO RIGHT 24049°
21 LEFT TO RIGHT 252.9°

HORIZON CHANGES

TABLE 5-9

The predictions in Table 5~7 were quite accurate for several
iterationr At one point however, while seeking an overall cost
reduction of 5% or greater, the progran made changes which were ob=
viously outside the linenr range. A number of the angles were
changed by 30° or more. A cost reduction was realized frou these
new values but the lerge changes, in effect, altered the nature of
the problems If such violations of linearity were not allowed the
new values would be arrived at from a different nominal schedulee.
This "new" noninal schedule would probably reeult in different zeroe-
crossings in Figure 5-14 and hei.ce different predictions in Table
5«7. This line of reecsoning seecks to explain the apparent discrepan~
cies in the lest two entries of Table 5-9.

As the clusters become more cleerly riefined. the horizon

selection stabilizes since there is no further movement across the
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boundaries. The result of the time optimization is given in Table

$=10.
INCLUDED ANGLE HORIZON
POINTS
1st 2 0° LEFT
2nd 1 67° RIGHT
3xd 6 2099 LEFT
4th 11 290? RIGHT

FINAL CLUSTERS
TABLE 5-10

The table shows that the horizcn selection procedure does not chenge

appreciably the strength and position of the clusters. Comparing
Tebles 5-8 and 5~10 ghows the accuracy of the predictionse The dise
persion of the points, at different stages in the optimisetion, is
shoun in the polar plots, Figures 5~15 through 518 The rominal
positions are the same as shown in Figure 5-3. Note that the ime
provement in overall percent change is % over tha “RIGHT" case

in Table 5-3, which has the sane ini:ial conditions. The sizes

of the time-~selection influence coefficients for points at end neer
the cluster positions are compared in Table 5-11, in order to justify

the final position of the clusters.

ON OFF ANGULAR
CLUSTER CLUSTER DIFFERENCE

1st 15.8 33,0 03°

2nd 92.8 872.9 ,02°

INFLUENCE COEFFICIENTS - nzlssc

TABLE 5-11




The radial and tangential components of the final position uncere
tainty are listed in Table 5-12: In these more feniliar units, the

{mprovement over the previous time optimization is more obviouse

NOM INAL OPTIMUM % DMPROVEMENT
RADIAL 2,53 1,06 58.2%
TANGENTIAL 4,08 1.6 6lis 3%

POSITION UNCERTAINTY « MILES

TABLE 5-12
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