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PREFACE

In conjunction with RAND's study of Defense Against Submarine-
Launched Ballistic Missiles for the Advanced Research Projects
Agency, background investigations of theoretical methods for calcu-
lating the performance of nondirectional passive sonobuoys are
being conducted. This particular investigation is directed toward
detecting broadband signals which might be generated by certain
types of submarines,

The author is an Associate Professor in the Department of
Engineering and Applied Science, Yale University, and is a consultant

to The RAND Corporation.



SUMMARY

This Memorandum deals with some of the problems arising in the
passive detection of submarines by single, nondirectional hydrophones.
The signal emitted by the submarine is assumed to be a broadband
noise whose charzcteristics are similar to those of the background
noise. Hence, detection is pcssible primarily because of the increase
in noise power caused by the presence of a target. The effects of the
motion of the submarine past the hydrophone and of the uncertainty in
the background noise level are analyzed. Although the observation
time for a slowly moving submarine is greater than that for a fast
submarine, it is found that if there 1s uncertainty about the back-
ground noise level, detectability is eczcucially independent of cbserva-
tion time. Hence, a faster and therefore noisier submarine is more
easily detected tlian a slower and quieter one. The major factor
limiting the detection range ie the noise uncertainty; but if the
background noise is stationary, the fact that the signal produced by
the moving target is a nonstationary noise can be used by the detector
to estimate the background noise, and therefore to increase the

detectability.
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1, INTRODUCTION

The sound emitted by a submarine is assumed to consist of a
number of line frequencies in the lower-frequency part of the signal
band and a broadband, stochastic type of signal over most of the
higher-frequency band. In this Memorandum, detection based on the
broadband component of signal is considered, For certain submarines
the amplit'de of the line components may be very low and their effect
on detectability is therefore small, Alsc, the line components and
broadband components are probably add.tive in their effect on
detectability, and '.he- :an, therefore, be considered sepurately,
Finally, by considering only the broadband spectrum, a scmewhat
pessimistic result is obtained which can be improved by processing
the iine cowponents in an optimum fashion,

This analysis is preliminary in nature and its purpose is to
provide rough order-of-magnitude estimates of detectability, It is
based, therefore, on a number of simplifying assumptions concerning
the nature of the target signal, background noise, and transmission
loss. Specifically, it is assumed that both the noise and the signal
measured at the target have a Gaussian amplitude distribution with
zero mean and known spectral shape (although not necessarily known
spectral level) and that they are stationary. For most of the
aralysis, the transmission loss is assumed to be inversely proportional
to the squarc of the distance between source and receiver; however,
other transmission-loss curves are briefly considered., Any effect of

the transmission medium on the spectral shape of the signal is ignored.




The target submarine is assumed to travel along a straight line at
constant velocity, and it . assumed that this velocity is slow
enjugh so that Doppler shifts are of negligible importance, at least
to the broadband detection system,

With these assumptions, the detection problem is the problem of

detecting a Gaussian signal in a Gaussian noise background. This

problem has been studied extensively, (Ref. 1, Chaps. 18-20, and Ref.

Chap. XI) and the pertinent results are presented in Appendix A.

2,




1. OPTIMUM DETECTOR FOR DETECTING A MOVING TARGET IN A NOISE
BACKGROUND HAVING KNOWN STATISTYCAL PROBERT]IES

The signal received by the sonobuoy is given by
x(t) = s(t) + n(t) (1)

where s{t) i3 the signal that would be observed if there were no
noise, and n(t) is the noise. In the present case, where a target
submarine is assumed to travel past the buoy, the signal is ampli-

tude modulated and is therefore in the form

s(t) = £(t) y(t) (2)

where y(t) is a stationary (i.e., unmodulated) stochastic signal and
f(t) is the deterministic dimensionless amplitude modulation resulting
from the change in transmission loss. For the geometrical situation

shown in Fig. 1, and if the signal power is inversely prcgcortional to

the square of the distance,

Soncbuoy

T

h

}a—vt _—| Target path

Fig.1—Target and sonobuoy geometry




£(t) = -—-—“—2——2 (3
h™ + {vt)
where k is a constant of proportionality, h is the minimum distance
from the target to the receiver, and v is the target velocity. The
time t = 0 is arbitrarily chosen as the time at which the target-buoy
distance is a minimum.
A nonstationary signal of the type given in Eq. (2) is most

conveniently expressed in terms of time samples. Thus, the received

signal x{t) is represented by an n-dimensional vector

X' = [x(tl), x(tz), x(:n)] (4)

where the prime indicates matrix transposition, According to the sampling
theorem,* if the signal bandwidth is W cps, samples taken at time
intervals separated by %ﬁ seconds represent the signal completely ex-
cept near the ends of the observation interval, where samplirg intro-
duces a small error. For an observation interval of T seconds the
dimension, n, of the sample vector X is therefore approximately 2 TW.
The optimum detector is known to be a likelihood-ratio detector
which decides between the presence or ahsence of the target by computing
the likelihood ratio corresponding to the received signal and compar-
ing it with a preset threshold. The decision that a target is
present is made if the threshold is exceeded. The threshold is
normally adjusted to provide a specified false-alarm rate, and it

can therefore be regarded as a function o€ the false-alarm rate.

*
See Ref. 1, Section 4.2.




In the following discussion it is assumed that the background
noise level is precisely known. It is shown in Appendix A
that for small signal-to-noise ratio the likelit.ood-ratio receiver

is equivalent to a device that computes the test statistic

u=ix'gtrox (5)

where Q and P are covariance matrices of X corresponding to noise

only present and to signal only present respectively, 1.e.

9-@3>N (6)

and

B= <?.(. §>s N

The symbol <<.> reprea:nts the statistical average of the quantity
wvithin the bracke> conditional on the hypethesis indic ted by the
subscript. The stativcic U is compared to a thresheld Uo. For low
signal-to-noise ratir, it is shown in Appendix A that the figure of

merit of the optimum detection system 1is the quantity

d= \/%—tr[(l’ Q'I)Z] (8)

where tr( ) denotes the trace of the matrix.

In order to consider the effec: of the distance meodulatiom,
suppose for the moment that both the spectra of the signal y(t)

and of the noise background are flat ("white') over the frequemcy




band 0 £ € £ W and that they vanish for other frequencies. 1In
practice it is found that both sigaal and noise spectra fall

(3)

off at approximately the second power of frequency. However, it can
be shown that the results are aot materially affected by the exact
spectral shapes as long as they are approximately the same for signal
and noise, and as long as the modulation is very slow relative to

%; , as would be the case here. I1f white noise is assumed, the

individual samples are uncorrelated, and the covariance matrix Q of

the noise background is simply

Q=NL1 (9

2
where N is the average noise power (in units such as pbar ) and 1
is the n-dimcnsional unit matrix. Similarly, the covariance matrix
of the sample vector Y corresponding to the unmodulated stochastic

signal y(t) defined in Eq. (2) has the form

<.¥..¥.> =S (10)
S

where S is the average signal power prior to modulation. As a result

of the modulation, the covariance matrix P has the fomm

fz(tz)

(kx)) =e=s ~ - (11)
S @,

(e )




g

Hence, the figure of merit d of Eq, (8) becomes

o
]
Zin

), ey (12)

which, by substitution of Eq. (3), becomes

d =

ks
N

2 zz { (13)
(=1 h + (Vti)

The summation is most easily evaiuated by converting it to an

integral, which is permissible if vz(ti - ti_l)z/h2 << 1 as would

normaily be true here.

& 9

) — |
2

(=] h™ + (v ti) J
where At = ti - ti-l

Then
T/2 T/2
-~ L dt - dt
LG 2 a2 2 2]2
h™ + (v t) J h™ + (v t) J
-T/2 -T/2

i; by using the sampling theorem, The integration

is straightforward and yields

kS
N

=

> + tan | & (14)

It is clear that d is maximized by letting T —= ®; in this case




2 2
ks /wh [T _ ks [wh
dax ANV 2 1253hzn v (15)

However, 1f T is only 2h/v, which means that the observation time is

defined for the angle g in Fig. 1 to vary from -45° to +45°, then d
has reached 98 per cent of its maximum value, Thus T = 2h/v might
be used as a practical definition of the time that the target is within
sonar range,

The implementation of the physical device that forms the statis-
tic U given by Eq. (5) fellows directly by substituting Eqs. (9) and

(11) into Eq. (5). This gives the result

n
U= %Z fz(ti) xi2
2N
1=l

1/2 2

£2(t) [x(t)] dt (16)

zl::
(817

-T/2

where ‘he conversion of the sum to the integral follows in the eame
way as in Eq. (13). This result implies that the detector consists
of a square~law device followed by a cross correlator or filter
matched to the modulation envelope as shown in Fig. 2. It is clear
that the system canrot be constructed unless f(t) is known, which
means that h, v, and the time at which the target is closest o the
buoy be known a priori, i.e.,, before the target appears. Thix {s
obviously an unreasonable requirement, and we consider, therefore,

a simpler subeptimum scheme.




Yes

—

Square-law

device

WS/N?

No

Integrater

Uo

- _ _ _ _ ] Threshold
Matched filter

Fig.2—Likelihood ratio detector
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III, SIMPLE SUBOPTIMUM DETECTOR FOR DETECTING A MOVING
TARGET IN NOISE WITH KNOWN STATISTICS

The suboptimum detector considere. here consists simply of an
integrator which integrates the squared received signal for T seconds,

i.e., 1t puts out a test signal

T/2
P E_S_ 2 -
U 7 [x(:)] dt (17)
-T/2

An optimum value of T will be derived, and the relative magnitude of the
detection index d° produced by this system will be obtained.
As shown in Appendix A, for small signal-to-nol e ratio the

detection index d can be written in the approximate fom

- (18)

where Ch and M, are respectively the mean values of U under the
hypothesis that signal is present and that it is absent, and 9, is
the rns fluctuation of U for signal absent., For the suboptimua
system we define the detection index in the same way with the p's and
o correspondiag to U .

I1f signal is present, X(t) = £f(t) y(t) + n(t), and therefore

from Eq. (17)
T/2
U’ - E% [fz(t) yz(t) + 2£(t) y(t) n(t) + nz(t)J dt  (19)
N

-T/2
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The mean value u{ is obtained by averaging each term in the integrand
separately. The cross-product term vanishes becausc y(t) and n(t)
are independent. Then, using the fact that y(t) and n(t) are
stationary and that the signal and noise powers are S and N

respectively

WSz T{z - S
-T/2

The integration of fz(t) given by Eq. (13) is straightforward and

yields
2 .2
k— WS -1 S
Bl 2B gt W T @
N

I1f signal is absent, f(t) in Eq. (19) is zero, and therefore the first temn

in Bq. (21) vanishes; hence

L4

0’ - s
o WT N (22)

Also, it is easily shown that for Gaussian noise and sample size n = 2TW

= WT = (23)

2 . o
d--—;r-—q-%%‘l'rw %tan'-vl (24)
o
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This has been plotted in Fig. 3, together with the optimum detection
index given in Eq. (14). Figu.e 3 shows that the optimum value of
T is approximately 3 % . With this value of T the suboptimum detec-
tion index reaches about 90 per cent of the absclute optimum given by
Eq. (15). Figure 2 also shows that the index is not very sensitive to
relatively large changes of 1 away from the optimum value; thus for T
between 3/4 % and 15 % the index exceeds 60 per cent of the absolute
optimum,

This result indicates that if the receiver simply integrates
the squared received signal, the integration time should be optinized
relative to the most distant target that the system can reasonably
be expected to detect. Then for a target at a smaller range, T will
be too large to be _ptimum; but since the target is closer, it will
be more easily detectable so that the small loss in optimality of T

is of no consequence.
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IV, EFFECT OF PRACTICAL SIGNAL AND NOISE SPECTRA

In Sections II and III the spectra of signals and noise were
assumed to be white in order to simplify the analysis of the problem
of motion of the target submarine past the sonobuoy. Since the
analysis indicated that the effect of the distance modulation can be
approximated quite well in the detector simply by integrating the
received signal over an appropriate length of time, it seems reason-
able to make the further approximation that the signal received from
the target has constant power during the observation interval. This
approximation makes it possib'2 to treat both signal and noise as
stationary processes, so that other than white spectra can be easily
dealt with.

When it is desired to consider the detection of stationary
signals with complicated spectral properties, it is most convenient

(4)

to expand the received signal in a Fourier series

x(t) = 2; (ak cos w, t + bk sin wkt)
k=1

where w, = buw = %E with T the obgervation interval, The ak's and bv's

are Gaussian random variables with zero mean value; and for T very much

larger than the inverse tandwidth of the received signal, they are

approximately mutually independent, i.e., akbz = 0 for all k and ¢, and

akaf = E;E; = 0 for k # ¢g. Their mean-square value is given by(a)
2 2

. (26)
= 7 6(f)
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where G (f) is the power spectral density of x(t) and f = %;. if

x{t) consists of noise only
G (f) = N N (f) (27)

where No is the low-frequency spectral level of the noise which is

assumed to be finite. Thus

Lim N(f) =1 28
P (28)

If x(t) cousists of signal and noise, then because of the independence

of signal and noise

G(£) = s S(£) + N_ N(f) (29)

where So 1s the low-frequency spectral level at the receiver (again
assumed finite) and S(f) 1s the normalized spectral density of the

signal with
Lim

g0 S =1 (30)
The reasons for nermalizing the spectral densities are discussed in
Appendix B; they simplify the discussion of signal with unknown power
level.
The standard theory of detection reviewed in Appendix A can be
applied to the formulation in this section by considering the Fourier

coefficients a and b, as the elements of the sample vector X, 1.e.,

k
X= (al, bl’ az, b2 ceey an, bn] where n 1s large enough so that all
significant frequencies are included. Considering Eas. (27) and (29),

and because of the independence of the coefficients, the matrices P

and Q become




g:Noﬂ =

[S(£,)
5(£,)
s, S(f,)
T s(f,)
O
L
i(fl)
N(E,))
N N(£,)
2 N(fz)'
@]
FE

O
(31)
"s(fn)
)
(32)
CNCE)

Then the normalized test statistic considered in Appendix B (Eq. (B-3))

becomes

Nj»-

(33)

It is easily seen that u is essentially the output of a system of the

type shown in Fig,

4, where

!H (w)\z = ML

IN () 1

(34)

is identical to an optimum filter discussed by Zadeh and Ragazzini.( )

x (t)

H (w)

Squarer

by

v(t)

]

Fig.4-—Optimum detector

This can be shown by computing the output of the squarer which is given

integrator
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v(t) = H}: a ;H(mk)\ cos (wkt + ek) + vy |H(urk)] sin (‘"kt + ek)}Jz
where ek is the phase angle of H(mk). Equation (33) then results since
for large T the integrator output is Tvdc where Vie is the dc conponent
of v(t). H(y) must be stable and physically realizable, but this re-
quirement causes no difficulty in practice.

Expressions for the false-alamm protability and the probability
of true detection huve been derived in Appendix B for the case of unknown

but small signal power and are re, roduced here for convenience

1 u -—Ntr(m)
gul. (35)

: \/tr[(p_cl 1)2]

1 -1
u =7 Ntr(pq ) S
o 2 o .1l o -1,2
2 N_ ex[ (g2 ] (36)

N "[@frﬁj

1
1‘B=-2"% ®

X 2
where © (x) =5_"ﬁ.f e Eoat
0

For the matrices p and q defined in Eqs. (31) and (32)

. S(w ) «
tr (p g 1) =% “n - I S(w) dw (37)
n

and

e ] o E P o
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where passage to the integral is, as usual, permi_.sible if T is very
large compared to the reciprocal of the bandwidth,

Example broadband spectra for submarine targets and background
noise are shown in Fig. 5. The spectra obtained from actual measure-
ments may differ considerably from these, and their exact shape
depends on a number of factors in addition to target velocity and sea

(6)

state. However, Eqs. (35) to (38) indicate that small differences
in the shapes of signal and noise spectra have negligible effect on

either the false-alamm or detection probability. The normalized

spectra can therefore be approximated by

2
w1
S{w) = 5 37 (39)
w + wl
w2 ( 2 + 2>
Nw) = 0 7% (40)

2 2
w, {0” + wg)

Both signal and noise spectra fall off with the second power of

frequencies above a frequency w, or w, respectively, and the noise

2

spectrum levels off at a high frequency w, because of the presence

2
of locally generated white noise.

The integrals of Eqs. (37) and (38), after substitution of
Eqs. \39) and (40), are in a standard form that is tabulated, for

example, in Ref. 7. The result is

o 2
._r_j. S o . T O B (0w, +w) (1)
2nJ_ N(w) T2 e e
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and

= 2 Tw, @

4
+
4w, (w1 wz)

]
e,
[

3

3 , 4 4
+
7 (0] (wy + w)

2
~
€
-

+ Awi W, wz + 2w, wg wg (wi + 2w§)
w; (wi + wi)z] (42)
Typical values for W, Wy and w, are
w, = 2m x 50
w, = 2m x 1000 (43)
wy = 2n x 20,000

Hence Wy > > w; > w,» and Eqs. (41) and (42) can be apyroximated by

T
tr (pg ') = j" _.(m). dw = —::-2- (% \f (44)
Twz wl 4
er oD’ - g [ [ a2 (G 2
o (o]

The false-zizrm and detection probabilities can now be evaluated by
substituting Eqs. (44) and (4:) .n Eq=. (35) and (36). It must be
noted, however, that the low-frequency spectral level So of the

signal refers to the level at the receiving sonobuoy, whereas the
level given in Fig. 5 is referenced to a distance of one yard from the

target.
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1f the transmission loss is inversely proportional to the

square of the distance, then by Eq. (3)

2
k S1

h2 + (vt)2

S =
(o]

where S1 is the low-frequency spectral level of the target relative
to one yard and h is the minimum range in yards. The assumption

that the target signal strength at the sonobuoy is constant during

the observation time implies that vt << h so that

S ~ S, — (46)

Thus the false-alam and detection probabilities become

1 1
1 1
1'5':5'5@(23) (48)
where
2 uo wo : 1
= — - - Tl "
Za No I‘wz wy 4 \DL (49)
2
S 2
1 1) [k !
2. = 2 ~=./ —_ = ==
£ a 4 TmZ N 2 ) (50)
(o] h UJO
and where
. 2 2
2 -t
5 () = 7= Fe” de
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The magnitude of T in the above expression has been considered
in Section II and was shown to depend on the range h, The detectable
range might be defined as the value of h that makes ZB = 0 subject
to a particular false-alarm rate. For fixed false-alam rate za
is a constant, ka; specifically for o = 10'5, ka = 3.03. Letting
T = 3h/v according to the results of Section 1I, we can solve Eq, (50)

for h , 1l.e.

max
2
\ S 2 w
o, -3 B (R
o T4 | -2 2 \ § 2 2.
v ° hmax Yo
or
N m2 2/3
hoo- |2 L (51)
_max 4k v N ‘2
k ! ou'o

For v = 20 knots, we find from Fig. 5 that S, = 27 db, Also,

1

assuming that the sea state is 1, No w -24 db. W s @y, and w, are given
in Eq. (43). Substituting all of these values into Eq. (51) with

ka = 3,03 results in hmax of about 600 mi, and T is on the order of

100 hr. These results are clearly unrealistic, and they indicate

that an important factor has been omitted from the analysis.
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V, EFFECT OF UNKNOWN NOISE LEVEL

The unreasonable result obtained in Section IV can be shown to
result from the assumption that the noise level is known precisely.
In order to see this, consider what actually happens in the detection
system. The detcctor is shown in Fig. 4, and if noise only is present
at the input, it is clear that u wiil be a somewhat random ramp
function as shown i:.. Fig., 6. 1If signal is also present, then the
slope of the ramp is slightly greater, as shown. Thus, at any time

T it is possible to establish a threshold which will usually reject

Signal and noise7

Noise only _—
Threshold

0 time T

Fiy, 6—Detector output versus time

the signal hypothesis when it is incorrect and accept it when it is
correct {the word "usually" is used in a statistical sense). It can
be seen from Fig. 6 that as long as the input power level with signal
plus noise is even very slightly greater than it is with noise alone,
the average slopes of the two ramns are different and they continue
to separate as the observation time is increased.

This discussion is valid if one can assume that the noise power
is exactly known. Suppose, however, that there is gsome uncertainty

about the noise power level. Then, in order to achieve a specified
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false-alarm probability, the threshold would have to be set at a
high enough level s¢ that the maximum expected noise level would
yiela the specified false-alarm rate. If then the noise level is
actually less than the maximum value, u would usually be helow
the threshold for both signal present and absent unless the signal
power exceeds the uncertainty in the noise power.

In view of this discussion, one can, for a given observation

time T, define a minimax range hm as the range that causes 2
to vanish, with No taking or its smallest value, for a ZG taking
on the value correspo-ling to the specified false-alarmm probability
with the largest value of No.

Quantitatively, suppose that the noise level is somewhere

between N + AN and N - AN ., Then if the value of Z of Eq. (49)
o ) ) ) o

is fixed at K

[0 4
2uo mi 1
K = : = | — |-+ J/Tw (52)
o (No + ANO)V’IwZ wi 4 2

The veolue of Z to be used in Eq. (50, is th:on
o

1l = No + ANo 1
Za = (Ka + Z‘/TwZ) N - | & ,/Twz
o o
(53)
N + aN Tw 2 aN
- k|22 V2 >
o No - ANO 4 No - ANO

and hm is obtained from
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N + AN 3h w 2 AN 3h k2 w2 S
K o o\, 1 m 2 o o1 m 2 1 1 -
o No - ANO 4 kv No - ANO 4 kv z (N - AN)
ul o
(54)

A set of curves of hm versus ANO/No is given in Fig. 7 for various sea
states, and for a tarvget velocicty of 20 knots. The example spectra
of Fig. 5 have been used in this cc-putation. Values of W, W) and
w, are those given in Eq, (43). For these values, and for ANOINO > 01,
the first tem in Eq. (54) is negligible, and a very good approximate

solution for hm is

(55)

The optimum time of observation is given by T = -;E, which for a 20-
knot target velocity is T = ,15 hm hr if hm is expressed in n mi., Thus
the optimum time can be read from Fig. 7. According to Eq. (55) dif-
ferent target velocities affect the range only through the signal
spectral level S

According to Fig. 5, S, for a 5-knnt target is

1° 1
about 10 db below the value for a 20-knot target. Henre, hm is .316

as large for a 5-knot target as for the 2C-knot target, ~nd the optimum
value of T becomes .6hm hours.

[+ \ = - -
By setting Ao + ANO Nmax and No ANO Nmin’ Eq. (55) can be

put into the fom

ol P

ol
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Although this expression is equivalent to Eq. {55), it is more con-

venient when Nmax/N is large. It has heen used for the curves

min
shown in Fig, 8, which are also based on the example spectra of

Fig. 5 and on the values of W s Wy, and g, from Eq. (43).

2
It should be noted that if the approximate expression Eq. (55)
holds, then hm is independent of T since T enters Eq. (54) through
the square-root factors that have been cancelled out, Thus, although
it is desirable that the adjustment of T be approximately correct in
order to optimize the detection index as discussed in Section III,
the fact that different tsrget velocities require different values of
T woulid not have to be considered in the design of the detection
system, T could be determined by measurerents of the sea state (or
noise background) if the expected uncertainty in the noise measure-
ment is known,
In practice, it appears that accu.dcies of = 1 db are about the
best that can be expected.* These accuracies correspond to ANO/No = ,1,
and therefore, according to Fig, 7, for sea state 0 the minimax
detection range for a 20-knot submarine is about 25 mi, with more
normal sea states yielding ranges of about 8 mi or less.
The probability of detection as a function of range depeads on
the probability distributic~ of the actual noise level within its

permissible range. The only case considered in this section is that

this distribution is uniform, i.,2,, 1if the actual noise level is Nl

*
Private communication with J, Kingsbury, Navy Underwater Sound

Laboratories, New London, Connecticut,
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1 ‘
p (N)AN, = , N - N <N

ZANO < No + ANO

1
(56)

p (N,) = 0 otherwise

The computation for the detection probability is simplified by the
fact that for a given value of N, (1-8) decreases very rapidly for
small changes in h near the nominal value. I1f T is one hour and w,
is 2n x 20,000 rad/sec, Tw2 = 4,5 x 108 rad. For this value of nwz
it can be shown by direct computation of (1-B) according to Eq. (48)
that 1f (1-g) = ¥ for h = ho’ (1-8) 1 for h = ,999 ho and (1-8) oy O

for h = 1,001 ho. Hence, if we use the notation p(D/Nl) instead of

(1-8) to indicate that the detection probability is conditional on N

1’
we have approximately
p (D/Nl) = 1l -uflh-nh (Nl)] (57)
where u [ ] is the unit step function and where, by an argument
similar to that leading to Eq. (55)
i U A - (58)
k w N + AN - N,
o o o

The joint probability p (D, Nl) obtained by multiplying Eqs. (56)

and (57) may now be integrated over N, to obtain the desired marginal

1
probability density P (D). The integration is straigh.forward ard
yields

P(D) = 1 for
2 . .2 < (59)
1

wy, S, k
1 "1
P (D) = 2 2 for
20 h°AN 28N
o o

Kl:f
Ei’_.

X‘I'J'
5|H




This expression is plotted in Fig, 9. It is see: that the probability
of detection is unity for ranges less than the minimax value and that
it drops off rather rapidly for larger ranges.

The detection range h, is commonly defined as the value of the

d
range for which the detection probability p(D) = ¥, It is clear from
Eq. (59) that this is given by

w S

1 1
h, ﬁhm kwo v, (60)

This range can easily be read from Figs. 7 and 8 by a change in the
ordinate scale,

It might be noted that a change in the false-alarm rate has
esgsentially no effect whatever on the minimax or detection ranges,
or on the detection probability, A change in the false-alarm rate
results in a change in Kh, but the term in Eq. (54) cuntaining Kd
was neglected in obtaining Eq. (55), and in all subsequent equations,
Hence, the results of Figs. 7, 8, and 5 do not depend on the false-
alarm probability,

The results of this section cre easily extended to transmission-
loss curves other than the simple 6 db per distance doubled curve
considered thus far., Suppose that Eq. (46) is replaced by the more

general equation
h
S, = 5, 8() (61)

Then, 1{f in Eq. (54) the tem involving Kd is again ignored, Eq. (55)

becomes




31

AJi|1qoqoid uoiyds4a(

- . -
e R e B B et R85 S08 08 SRR 198 §E N5 3 FRIVY ET 3 Yive
0100 05859 SR SE THAM SHARG IW b [P0 s5h0e SREEE TIT ridtriedaic i tas
B39 58 S2SHS SES0S aEBES SSEEAEE: s Fows $9 00
SESND SN GPPHA BS B } 2 5S84 S2028 BLSIE B1 Toifaicafisingons ek ES0 BESPE b2
1855 S 8 EEREY Out 190 18 viadrrvedereide EE325 344348 38858 40 1585 fauba Maa
rggwn Seaan 6eSve tene BRE S0 s LS KEESS S1S08 Bol il Sagnd Shain : e PREET & ) HEERE TR
SN SAE RS GBS SRT SJinpnpadeann Fressadls cREaD ost cllally dE8H
RS BUE S e iy et $irjitn Saliid &g 9840 80508 sDE1 EROSE AW 141
S0506 $EASE Soant SSSSE FRSEE Sie H poe o4 >
aSaw 24808 fas 08 s0u } i 15 FERAY (EEES puzs iouad RRLE YR bares seald dbEIH dadi
19835 [Shes Eedbe 31444 erhog dasai Ansas eungld (RIDC of B ERED FEEY (RN P5S
334 g P94 pERDS (RTES FRE08 SH it
enehe 5284 coSed 851
Jidt sifi. st AELR 03083 ER 480 Slaah Seoi
Hee! 9 8s sdutok: D80 ERATE 18380 1BHE S aw!
. i1 1 wazy canay katas kot il fouy
SREET Y] T
$4598 g’ pe
mweee c b4
1. - 23 2SR Y 19864 P8FRE TRH8Q § 01
i - L i de 3 IS8 cRods SEEEs Lasad SBE: &
HIB b 5448 BhSae ¢ o584 EERS BOUS1 VANSE 05
39658 1%
ey U SESE St B AR teafiiag .
15880 sased & b=y FEaE0 ases breds 8k
T i - ki s B oSt {00 G820 CA0RH S
18 584 O 14 8054 ¥ FREY FEUNE OS] fIET R pRaad S5g=0 pssn sunny 368 I
s
i e ot — H PR STITT EPEEE SE 563 sEESE sETBS s Suas 6o8ed s8ahd badss als o
W) q 1 B0 8 SREOT TITUE CIRDEFTRHD 3 iSBEE GEFSEEIRSE reges §9) 83
They o~N 13 8 80000 04009 25004 04300 PITNN AVODS RAER] ISRP RIHEY FHERR 84
411 5 $SU) BHSYS ESF ToTBF ¥BARY EoGey pased SaiaaILSY puTEs +
3 2L D! - s saailh boudd s8ie 08008 $0444 24901 SRS DRGET TRBEP PG IR U
saa s i BHE T SHBUA UBEHO TTEPS STIHY FAPPY TATTN CECSI TGRS BBGIN SR T
s8abs
338 : IST90 e30E] ISP RSAPY IRARRRS T3
sueh o~ e iohiissl lascoasat] I2asREE B
HE 4 L s SRR B R R B B .
b v %] dgusn dnsEs dylins twase i o
HHH 313
e i 19990 SODOE SISEE FTTRE RESSR IS 123
g - L5280 00080 PESEE PGS0 006 ¢ "4
an b Lha80 0aset 08908 $5060 0989 89 91
o= I I : Sivigriiefrierpiriaf e
Teey s 2SS9 PROET PEREE BESSE PIREP PROR PY 3
111 $SSSs SRESS sad et S0 iah eaehh i) e
W POE0 09854 8883 69999 00989 7 104
50 PSS $53S gSBuy E3RES Suues prans s sof
593 - = F089¢ sa0se FEUTA 93235 PegRy 39 PY 01 3s
B0 ISSSSE SERES CHSRS SV SIS saBat
Tob ) 65006 00004 10503 PUSS $8908 B T34
85 ds 1B S S S s SR e e setns b o
rerby i frrrefrrefo et et dioibeciitariifrrerioriiboris e
sefdieiand 884 |80 FR99e tevad beosefeioifor e : it
I0S50 SOSH0 ACSE GEBAS SRS SRAS S SRS + 19220080 Sap e 2SS
jsseeaodss geataddaln 82488 80u0) §584T Pesefevioborsefrrioterrahtts
)3 STIFTATT sELEn SHESD G20 20854 a3 20 04 BTV HISBT BT TSBYA 4PS 10
198 Sdds 988 deued sseae et hrerrre <
R IRt R s S SRR S 2 1980480000 $8005 88004 i
a8 2381 S8a96 068¢ jo4 seved jgSas susos guaas S - ¥ -]
Preedrne s 2222 2 b oy
sdace 865 ; 00681 08904 FRUS s 188
P28 4E853 So2 R Shaas S0228 Suses sast 1
smE A2 1 JS3 83 3384 sEee e 23 s38e
S S3228 a8y sESES FRnSs guESD 00! 2808 8980 13294 23004
: 3¢ S PEE $3383 $3 88 Triifreey S H
v perergrirr - - - S Pae + 44 fens
1284 set BE5 80001 $ES0S 5059 POSI0 STFST R EST P3PS 531 3 ]
-
1 19883 53800 szsay yéugs suses 2pese seve: 1as ses ey 12 281 g pese
1 Fo e 004 S e e e S R N I s -+
SSEP SESSE S22 SRS satus SaSed ba ¢ )¢ 3 [EReS §3: ros
Ios . + os H e ey - s
4 + ? g
+ i 3 i e saese & ey
! 2o 0 o 2 s sa: ®
333 e e R e + + -
vy - o CE s e ey 2 e - :,.4
88 84 ) ot
a jSEus sases s =5 53 I gssss s 