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ARSTRACT

A new calculation of the cipacitr of h gh-temperature air (kT = I - 2OeV') Is

carried out. Line Pbo~md-bouwxI) transitions are incled and LS term splitting

of configurations is accotuted for In the ni = 2 and 3 levels. The priviary

puzrpose of the calculation is te remove the hydrogenic approximation to the

dominant photoelectric and line transitions. In place of the hydrogenfic approxi-
mation, Hartree-Fock-Slater matrix elements are used for the line'dransitions.

For the photoelectric transitions. a combination of the Bargess-Sao extension

of the Coulomb apprmtlmation, and a higb-energy aceleration-matrix-element

Born approximation is employed. Comparisons are carried out with experiment

and with preilous calculations. A review wWn discussion is presented of the

statistical mechanics of ionized gases, and some new results pertinent to the

calculation of occupation numbers are preaented.
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Seedon I

INTRODUCTION

The tLanspart of electromagetic energy through the atmosphere is governed by the

equation of radiative transfer (Refs. 1, 2, and 3)

- d , -V

where IV is the specific intensity of the radiation, ds the element of lezgth, and J

the source function. This equation is in general very difficult to solve, and an exten-

sive literature has accrued, principally in the field of astrophysics, dealing with its

solution for various model problems and in various degrees of approximation. The

principal physical parameter that enters any solution of this equation is the absorption

coefficient A V. and It is this absorption coefficient for air and its constituents that

constitutes the subject of the present report. We will restrict ourselves to atomic

absorptions by elementary interactions; molecular absorption and absorption arising

from collective modes of excitation involving long-range forces will not be considered.

The calculations discussed in this report are an outgrowth of work carried out at

Lockheed Missiles & Space Company and at General Atomic over a period of six or

seven years. The reports (Refs. 4 through 8) issued by both organizations during this

period, as well as the comprehensive report due to Harris Mayer (Ref. 9) provide an

adequate introduction to the problem. Therefore, we will not give a detailed discussion

of the basic theory but only the background and definitions needed for an understanding

of the calculations reported here.

Our principal aim has been to remove most of the hydrogenic approximations made in

as possible in the description of photoelectric edges and spectral lines. We have used



the best theoretical predictions available for the rather massive numbers of atomic

transitions considered and have tried to avoid unjustified physical assumptions as
far as posdile. Our formulation draws heavily on the work performed by our colleagues

at General Atomic. We have attempted to combine their previous experience with ours

to obtain what we hope are the best results for air absorption coefficients to date.

The absorpton coefficient p V can be written as

I V ) 'J.0%

S,il

in terms of the occuation numbers NSi (particles cm- 3 ) for the state I of the species

8, and the cross sections oSOj(P) for a transition from state I to j of the species

S. We have employed occupai numbers resulting from previous calculons (Refs.

6 and 10) which cover a temperature range from - I to 20 eV and a density range
from - normal density to - 10 - 5 normal density. The atomic transitions for ..hich

cross sections have been compAted are the photoelectric (bound-free) and line (bound-

bound) transitions. The free-free and Compton scattering contributions included in
our mean absorpton coefficients were obtained from our previous calculations (Refs.

4 aud 5).

If one assumes that con&lon* of local thermodynamic equilibrium prevail, the source

function in the transfer equation (Eq. 1. 1) becomes the well-known Plauck function

B(T) -1

phus a term that accounts for induced emission. There aiv then two limiting cases for

which aimnle anhakas tn the transfer esuation exist. If the optical death u- x of the

2



radiaftng sample of gas is smali(P x -c. 1), where x is the sampe dimewon

in the direction of radictr4 the radiant energy emitted by the sample it given in

terms of the PlIack mean abaorption coefficient:

- # J ;B V (T)dY

Pl' fnrda (1.3)is l1?T)dp

where p I - exp (hv/kT V . If the optical depth is lar. (p >> 1), one passes

to the diffusion limit, awd the emission of radiant energy vs overned by the Poonseland

mean absorption coefficient:

1 88(T)

Pased on the relevant atomic theory (which will be descrbed In succeeding chapters)

an IBM 7094 computer called PIC has been devised to compute the phooionilZaion

cross sections amd absorption coeffients. AMher program, MULTIPLET, his

been consructed to compute the atomic-llne contribution. The Input information

consiets of a lHt of the possible atomic states present in the gas and, for each of

these, its spectroscopic descrfption, energy, and occupation number. From this

input each prop~un computes and cos an aths of the parameters needed to

adequately define the absorption coefficient.

The need for the am in the case of lines arises from the difculites that would be
associated with atempting to store or print the detailed shaes of the very narrow
lines tft appe= at low. and even moderate, densities. The frequency interval

rt Uh J vwk Yt~ is"~t "asib £Uy "ot Wi a jwsyraiMiy iasmit 1 AMMie rai"U". aet

Ref. 8 for a dicwsion of this point.
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raqulred for ti tash woul be so stalthat th tbw a output would be prohibitively
i~suve. Instead of aftmpting to Udxdunt thin quantity of mumerical absorptio codt-

&iLent vies, the wneof the narrow line azI the entire rofiles of bradRn are
prited s an additaral pseu Umcntium. The vntahtdecieteeum

puamof thue narrow lion. may then be ot from hw the adl=. 'Thay cn be used
at & Um oftheco~ lon y ay sbro~neone wishes to Insert which compress es,

ar~rarly1nt~razor averages out part of t h frpe y dpnece. The two such
suutin that we have empked are those which compute the Planck ad Rosseiand

____Ums Alwo It~ Is*i nofedeintiscetncmrs te ,.abwfrpewl

sacs It to MUil convenient ohmc much edge-splitting detal In accounted for.

The atwelat. each of the Individual atomic processes may also fuiItatz Inter-
polatcm to gas temperatures and densities Intermnediate to thosie we have used.

By usag the MULTIPLET line code In conjunction with the PIC co*e total frequency-
dependent or mean absorption coefficients have bme computed. The results of this
combined pbtol a ndm Una I opacity program (1'HLOP) for the mean absorption
coefilents are presented in See. VI. Bte prceigto these results, we now
embark on a dul descripton of the var~ov sub-cocap~~n Inolved. I See. 1U,
a discussion Is presented of oar atomic state descriptions and lumpf convent~ous.
SectlinL1m gives a bief deseiptton of our pwevois ocq~nwbrSayand the

I '151111dl esarhwhich we haveonerae toward thue ultimate aim of improviing
thms numbers. The lie transition Uwyis pe ted In Bec. IV, and the phtlnzton

OmyIn Sa. V. The fkda results for the nmea opc~sob~e re in &*c. %%. In
ale -1 , fes are pmie ~~oprfigto the &waputr ;wrram we have
developed %dptew m r etsdmicr* f owr staitcal
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Setion 11
ATOMIC-STATE CONVENTIOM

At a given temperature and density the WAte of the gp as a whole - assumed to be

in thermodynamic equilibrium - is defined by the most probable number of stoms in

each state of excitation of every charge state of every species. preset. T1-,s proba-
bility of occupation of an atomic state, the oevupation wamber, Is obtained from a

sattical mechanical calculation of the classical grand canonical partion function

(Sec. I), Etilizing the energies of every atimic sUt assumed to be occupied. Thus

the initial information nece sry the set s all atomic state under consideration

and the energies of each re la/vo to the ground state of the neutral atom of the species.

With each charge state (or tate of ionization) there are associated a great many stes
of the rnmalrdng alectrnms. Some of these have been observeO experimentally and are

c nvenientiy tabulated by Moore (Ref. 11). However, the majority of states, especially

for the highly ionized atoms, have not been observed, and their energies must be

estimated.

A particular atomic state is characterized by a core configuration - Identified by the

label y - and an eiternal electron with principal quantum number n and angular

momentum quantum number I - The core which have been conskWered consist ofa

closed K-Ahell with the 2s and 2p ele-drons coupled in all possible ways. A com-
plete list of the atomic cores and their lelmls -y is fomd in Table;l-1.

For each care state the outer lectrons (n, 1) will be in one ofa a number of

possible states, each coupl in a varity of wayo to the core m leading to the

usual multiplet Mucture. Russell-Saunders L-8 coupling is assumed throughout

S



and tota1-angular-tr.womentum. spll n ccsistenrty bmored. Occupation numbers

have been evmluuted for stSt vth n-vlaleg up to SO, but the present calculation

reasdiris n to be leas than 17. as line mergln& (Sec WV)tens to smear states with

higher principal quantum number Into the cortinuum. When the external electron

tate Is equivalent to one of thouse in the core, the resulting state cannot be considered

as belonging to any one core. For cnventence mach states are assigned to the core

with the lowest ezltation for the ppriapriate configurfoion.

Staten with only partially Eled K-shells have not becn included, as the energiezi of

such states is suffciently large to ensure negligible occupation at the temperatures

being here considered. Similarly excluded are multiply excited states containing

more than one electron with principal quantum mumbhr greater than two. For such

states the energies and the theoretical techniqus for their treatment ae poorly

knom. As initial states their energies are so he as to result in small occupation.

However, the neglect of such states an find states In bound-boud trasitinzs rules

out consideration of the pbenomenon of auto-Ionization which may make a measurable

contribution to the photolonization cross section (Ref. 12). Further, atomic sum

rules will nt be strictly satisfied.

When known, the experimental ene-rgy values are used. Estimstes of the energies of

the remaining states were made by the Bacher-Goudsmt extrapolation of

Isoelectranic sequerves, or constant quantum defect methods s described in Ref. 4.

As Che occupation-nmber culcatatm depends only on the enerly of an atomic slte, it

is coavenlent tocombine states ofnearly equal energy andto epolt th wel-know sum

rules over Wigper coefficients in the evaluation of the optical transition pro' mllties.

The following conventions hve been adopted for this combinfng or summing of states:

(1) n = 3 Summed over total anglar momentum L for g1ven

multiplicity (2S + 1) when experimentally the L-

splitting of the levels is much less tMn the S-sittfn

or when the energies are poorly knwm (Lubelled: L - 9)

6



(i) n :t 4 Summed over all L-S terms (Labelled: 2S + I = 0,

L = 0)

(WII) 6 s n < 9 Summed over electron angular momentum I - 4
(lbelled: I = 4)

(v) n > 9 Summed over all values of the electron angular

momeatum (Labelled: I = 0)

Each atomic state is edby an Identlcation number (Ifn 1S L) and the
energy of the ste in eV relave to the ground state of tho neutral atom of the
species):

S 1 is a two-dfit designation of the species and charp state: 01, 02,

etc. for oxygen L ax , etc; and 11, 12, etc, for nitrog I,
nitrogen 11, etc.

0 -f is the two-ditt dulpan d the core, as sted in Tabte -1.
0 n (two digits) Is the prindpal quantum number of the excited electron

or otuermos51 populated shell

0 f Is the orbital mo of the ecited electron or outermost

POPA " ($=MOMcnve ntion sad Iv)
* (2 + 1)1 is the spn muliplicIty (summation convanion U)
* L is the toAl orbital angular momentumsummamin convention i and ii)

Tkble 1-i
PATOMC CORE CONPMW TION

II2 2 2 "3 (4 S) nfII 1 L) II I

I(2D) 22 )

22s
2& p ( P) 4

(2D)

(2p )
I p( 21

t _ _ _ _ _ _ _ _ _ _ _ _ _ _
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1Tbwe l- I (contm)

0-li, N-1 Is 2 2' 22 ( 3 p)uI 2+L) v I
(1D) 2
(1s) 3

2a 2p' (S) 4
(3 D) 5

(3p) 6

('D) 7

2e r) 80

('1) 91

-M, N-0 192 29 2 2p (2 p)n( 2S4'L) y=v

(2D)3
(2S4
( 2P) 8

o-i t-m ~ 2P (4S)n('L 6

~a~(2D) 7

(IP) 3

(15) 6

2p ( 2P) 2

0-Vlg N-V Is2( I)nf( 25 1 L) 1Y=



Section IIl

STATISTICAL MECHANICAL THEORY OF OCCUPATION NUMBERS*

BACKGROUND

A basic ssumpton In this rork Is that the 6asorptFn caeffflcen for radat n at fre-

quency v may be expressed as a sum of terms, each of which represents the absorp-

tion of radiation by particles in state I, and can be written as a product of two factors

the cross section for a transition from I to an appropriate final state j , and the

number of particles in state I. This assumption may be somewhat inaccurate at

higher densities because transitions to j may be suppressed by "exclusion princi-

pie" effects if most of the j tlates are already occupied and because collective

"plasma oscillations," which cannot be represented cerrectly in terms of Individual

atomic energy levels, may be involved in the absorption of radiation. It is assumed

that such effects are unimportant. Thus, in the notation used in this report,

i,j

The procedure used to calculate the cross sections ais described in other sec-

tions; here we shall summarize the metbods used to find the occupation numbers N4.

In general the calculation of occupation numbers for a partially Ionized gas with arbi-

trary conditions of temperature, pressure, density, composition, radiation flow. and

other factors (all of which may vary from one place to another) is a very difficult

probler, bat is regarded as being for the most part heyminI the resch of preat -dv

theoretical physics. It ir probably not unfair to say that the large amount of research

devoted to this subject .n the past few decades has succeeded only in developing some

*This section was written by LMSC consultant, Stephen Brush.
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simple roximate methods that may be of limited validity when the phyical condi-

tions are of certain especially simple types; but that even tbm a direct experimental

check of the theory Is rot usually possible. This sibuatim Q to improve In

the next few years, however, as various laboratoriev develop facilities for studying

high-temperature plasmas. In the meantime there Is an urgent need for further theo-

retical work; Indeed, even the interpretation of experimental results (such as the
lt-.rminatI, of the temperature of a plasma) detends heavily on theoretical Ideas.

For theoretical discussions it is convenient to dhtinguish between two basic types of

physical systems: equilibritum and nonequillbrium. (A third category, the non-

equilibrium steady state, is also useful In some cases but will not be needed here.)

The nonoqullibrium case Is the most general, since it includes in principle an infl-

nte number of values for a large number of physical variables, whereas the equillb-

rium cas requires that most of these variables have the value zero. The variables

we have In mind here are those that describe the change of properties from one place

to another in space, or the change of properties with time. Thus an eqilibrium sys-

tem can be characterized by a constant density, temperature, pressure, and cempo-
sitlon, whereas the description of a nonequllibrium system involves the space- and

ttme-derivatives of these quantities as well.

Despite the apparent artificiality of the equilibrium system in the context of most

realistic problems involving radiation flow, it has two distinct advantages: (1) therm

exists a well-established and fairly simple theoretteal technique for computing Its

properties; (2) t represents the best possible guess (in the sense of sttistical e93-

mation theory) as to the state of a physical system if only the temperature andexd4sity

are known and definite information about other physical variables is lacking; and,

moreover, it repreaets the final state which any system will eventsdlly reach If left

ta itself ma'thant amtornal disiurbance.

To illustrate the difference between equilibrium and nrium theory, consider

the case of absorptloo of radiation by air, with which this report is concerned. First

10



of all. we need to specify the initial state of the system beforc it receves any rndin-

tion,. In epuilibrium thsory we can do this (at least approximately) as soon as we

know the temperature and density, by assuming that the probaoillity of each possible

state is given by the ?axwell-Boltzmann distribution law. Calculatlonal difficulties

arise when we attempt to find the energy of each state, bit as long as the density Is

not too high we ca use tabulated apectroscopic data for the various individual atomic

species, making small corrections for the effects of interactions of different atoms

with each other. The Important point is that only one piece of information is rneded

for each state: Its energy. In the nonequllibrium theory there is no deftaite pre-

scription for specifying the Initial statU, unLess the temperature is so low that one can

assume that there are no free electrons or ionized atoms, and that all the atoms are

in their lowest electronic state. The temperature is not that low for the actual situa-

tions of interest in this report, so there is no such easy way cmc; and, unless we hap-

pen to have previously solved a problem involving the calculatlon of occupation

numbers in radiation-flow situations, we would probably , nd up by assuming an equilib-

rium distribution for the initial state.

Now Imagine that the radiation flow is "tur ed on" and a small number of photons of

specified frequencies are absorbed, causing transitiong from certain initial states to

other states. The system will now have a different set o occupation numbers because

of these transitions. In order to compute this new, state we need to kvno all the cross

sections for transitions between states. Presumably we aiready know the cross sec-

tions for transitions induced by photon absorption, since these are invohed in the

other part of the problem anyway; but in addition we will need to know all the cross

sections for. spontaneous radiative transitions, ionization by free elactrons, collision

cross sections, etc., since all kinds of complicated physical processes are going on

in the gas at the same time as it is ai-sorbing radiation. To treat the problem from

the exact non-equilibrium viewpoint, consequently, would require a huge amount of

input iniormation about the paysicai propediefoo 11 Mat O ZC -5. ., w ...

enormous amount of computation in order to follow the time-evolutom of Oe system

through various sets of occupation n rbers. in addition, te computatim might have

to take account of spatial variations.



At this point, to get any answer at all, one usually makes the additional assumption

that the process is "linear" - one ignore! the compounded effects of radiation changing

occupation numbers which in turn would change the absorption of the next batch of radi-

ation. and simply calculates the rate of absorption for very small amounts of radiation.

The absorption coefficient is In fact defined as the ratio of the amount absorbed to the

amount received, in the limit as both these quantities go to zero. To use such an

absorption coefflciea! in problems Involving a finite amount of radiation, one must

assume Mat the internal relaxation processes in the gas will drive it back to equilib-

rium faster than the absorbed radiation can push It away from equilibrium. The

calculation of occptionm mmi-.. n-ed then he d-. -MY --c f. -
sfty and temperature, and does not have to be repeated in order to take account of the

effect of the radiation already absorbed.

As soon as we agree to restrict ourselves to equilibrium occupation numbers. we can

effect a great simplificaUon in the problem; we need only calculate the probability of

each possible state of the system, without worrying about how one state follows

another In the course of time. No information about cross sections for transitions

between states is needed, but only the energies of the individual states. (It might be

objected that % a cannot calculate the energies unless we know the forces between the
p.-ticles. and if we knew the forces then we could also calculate the cross sections.

This io 4.-w in principle, but there is still an immense difference in practice between

equilibrium and nonequilibrium calculations.)

In the following subsection we shall outline briefly the slandard theory of statstimi

eqWalibrlum in ionized gases. In a subsequent subsection, we shall discuss the

method actually used to compute the occupation numbers used in our computer code

for absorption coefficients. Finally, we shall summarize recent theoretical work per-

formed under the contract to improve the method. The details of this %vrk are presented

in Appendix A. (Sees. A. I and A. 2); Sec. A. 3 contains a derivation of formulas for

average po'entitls and potential fluctuations in a plasma. This Is of considerable value
in netnal mmi 'e2tinnm nf tha f rLc.tL, nt ---m -A. A It a . A I

12



STATISTICAL EQUIUBRIUM IN IONIZED GAES

To illustrate the principles of the theory, we consider first the following simplified

model for an ionized gas. We have N atoms, each consisting of a nucleus of charge

Z, mass M, and any number of electrons from 0 to Z. In addition there are Ne

free electrons, where Ne is such that the system as a whole is electrically neutral.

Each atom has a set of energy levels E0 . E1 ... ; in general, the nature of the levels

would depend on the number of electrons in the atom, and, to a lesser extent, on the

number of free electrons and other atoms and ions in the gas. However, we shall

ignore such effects for the moment. Each energy level is characterized by a degener-

acy factor g, which represents the number of levels having the same energy: as far

as the statistical mechanical theory is concerned, we can group such levels together,

although in the calculation of cross sections they must be treated separately.

We wish to know the average number of atoms of various degrees of ionization:

N 0 .. NZ for atoms with 0 to Z electrons removed from the neutral atom: and also

the number of ions by which each of the varioue energy levels s occupied. The most

direct way to solve the problem Is to calculaAe find the distributlon f kinetic energy

among the atoms (even though we are not interested primarily in the kinetic energy)

and then deduce from this the distribution over the various energy levels. In the usual

terminology, we first derive the Maxwell distribution of velocities, and then general-

ize this to the Boltzmann distribution of energies. We refer to the standard texts on

statistical mechanics for the details of the derivation and merely summarize it here.

We shall also need the Gibbs grand canonical ensemble which gives the distribution of

particles of different kinds in a mixture, in the case when the number of particles is

not kept fixed.

We first make the postulate of wrmn a priori probability of all microscopic states of

the svatem. This meas. for exaMle, that if the system as a whole has a fixed total

kinetic energy K. then all possible ways oi dividing this energy among the atoms are

equally probable. The justification for this postulate is that we have no reason for

assuming that any one way of distrlbilng the energy is more probable than any other.
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This postulate is rather aMkward to apply as it stands, for It Implies that the kineic
energy of any one atom cannot be found until we know the energies of all the others.
In fact, however, it seems reasonable that If the number of atoms Is very large, the
energy of an individual atom will depend only on the average temperature )f the sys-
tem. as determined by its surroundings, and not on the precise values of the energies

of the other atoms in the system. To make use of this Idea of average temperature.
we Imagine that our system of N atoms is only a small part of a much larger system
of N' atoms; It can exchange energy with the other atoms so that its own total energy
is no longer stetly constant but will fluctuate around an average value. This hypo-

thetical construction is known as the canonical enserble in tatUisical mechAncs: in
a certain sense it is more realstic than the original model with fixed total energy.
since we do not usually know the precise value of the energy of an isolated system,
but rather the temperature of a system interacting with Its surroundings.

We need one further assumption in order to apply the postulate of equal a priori proba-
bility of microscopic states: we need to know what those stales actually are. If we

knew, for example, that each atom could have only certain values of kinetic energy,
namely ~r multples of some bsic energy-unit E0 - (k - 0, E0 , 2E0 ,..., Ell -

where E, is the fixed total energy of all N' atoms, then the problem would be well-
defined. For any given energy of the first atom, kI , the second could have energies

from 0 to El-k 1 , thethlrdcouldhaveenergies from 0 to E-kI-k 2 , andso
forth; the energy of the last atom would be completely determined by the others. By
combinatorial analysis we c-uld determine how many arrangements correspond to
giving energy k. to the j'th atom, and then take the limit as F goes to zero while
El goes to infinity but alwaya remains proportional to N' .* The result s that the

OAltbougI this derivation was first published by Boltzmann nearly a cer-ury ago, it is
not available in most modern textPoks, so we shall outline it briefly. Suppose that
the total energy El of N atoms has been divided into p units of magnitude E .
fl - 3, we can choose k and k2 , and k3 must be equal to El-kl-k2  If

-c El there is only one microstate since k2 and k3 must both e zero. If
.ra- 1/ R./n than " ean have i+ I nossiblevalues. from 0 to(J/p)E I

Rhe total 4n-Umr'of mlcrA-osttes Is therefore
P

j j = (p(p + 1)/2) + p +j=O
(cont'd)
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number of arrangements for given k (which we postulate to be the relative probabil-

ity of tha value of kj ) is proportional to exp I- k /(EI/N9)I . The ratio EI q

waich is the average ezargy per particle, might be called the temperature of the sys-
tem; and the result shows that any value of k has a finite probability, but values of

k that are very much bigger than E1/N' occur very rarely.

Assuming each of these microstates is equally probable, we find that the probability
that ki = [(p - j)/pj El is the number of microutates for that value of kI divided by
the total munber of microtates for all vaues of kI , namely 2(j + l)/pp + 3) + 21
Eliminating j by the relation j = p(l -k0)/E ,we find that the probabilty of
kI is

P3 , P(k) 2(1 - k/E 1) + 2/p
, pp + 3 + 2/p

A similar argument shows that for W = 4,
P40P (kl) = 3(1 - k/E l )|p + (plk*/.l ) + 31 + 2/p

(p4- IXp + 2)

We now convert thes expressions (and the corresponding ones for PS p etc.) into
a continuous distrilbution, tking dkI = E0 and letting p to to infinftl. The dis-
tribution function is then

Um jr .Np(kj) (N' - 1)(I - k1. )n-2

, :ki) p- dk E if kI  E I

=0 if kI>E 1

Recalling the definiton, e lID (+ y)I/Y we find that

ilk1) = l,. fN(k 1 ) = (NI,/) exp I- kjl(Elle)J

In the more realistic case where the states are equally distributed with respect to
momentum rather than energy, the result is

If,(kl) = 1(3N'/2)/J(3/2)1(3N'/2)J Ikl(E 1 - k) 3n/E~ n 2 1/
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The derivation mentioned in the previous paragraph involves an arbitrary assumpton

about %tat kinetic energies are allowed; and even though when we take the limit E0 -- 0

we p rmit a continuous range of energies, the reslt Is still Influenced by the fact that

the states of each particle were taken to be anlformly disthr with respect to

energy. This Is wrong, of course, for according to the laws of phyal-.s the states of

a free particle (not subject to any forces) are uniformly distributed with respes., to

monwatum. As it happens, both properties are equivalent in two dimensional space.

but in three dimensions we do not get the correct energy distribution uniess we give

~ U~tEfbI M*I.kIS fanr. ft he Wk. " &%~ .j.* %"t &bW%;"W&

(or better, simply sum directly over momentum sthtes). f this correction is inserted

into the comblmtoriai calculation mentioned above? we find that the probability is pro-

portimol to v eap -3k,/2(Z 1/W ) which is in fact nothing but the usual Maxwell
velocity distribution. The conventioml dUfinition of temperature is

kT = 1 = 2(E 0/W) /3, where k = Botzmmm contant.

The advantage of the canonical ensemble method is that we can treat the energy of

each of the N atoms in the system as a random variable iNdoP udi of the others,

as long as N is small compared to N' so that we do not have to worry about energy

distributions in which one atom has an energy of the same order of magnitude as E;.

We can now apply a standard theorem in probability theory which says that the proba-

bility that N random variables have smaly a certain set of values is the

prod t of the probabilities for eac* of these vale s isken separately, provided that

the random variables are p (i. e., uncorreat). Hence the relative proba-

bility of a microstate of N o a which the total kinetic energy is E would be

e (the so-callhd "Balfmana factor' for that microstate). To find the actual

numerical value Jabaooe probability) of this microstate, we have to normalize by

multiplying the Boltzmann factor fo each state by the number of states having that

energy. g( I) ]. and sum or WArte over all possible values of E; the probability

.1 ~ .. 'i ~ E Sa rAim ' aa'i 3.. a waat.....L P - -Z siv__

Z Z( E ) e-BE . The normaltzing denominator Z Is usjualy called the partition

function (German ZuntaAs e. sum-over-states).

&Sve footnote on pp. 14 anu Wa. 16



Up to now we have been dealing only with an ideal gas, so that E Is just the kinetic

energy of the N atoms, and g(E) is a product of N factors, the square roots of the

energies of each atom. The next step Is to generalize the above expression for the

probability of a microstate, and assert that it Is valid when E includes potential-

energy terms, corresponding to forces between the ntoms or external forces. The

justification for this generalization (Mich is given in detail in textbooks) is that when

two or more atoms collide, the total kinetic energy does not necessarily remain the

same, but the total energy (kinetic plus potential) Is conserved. Hence in statistical

%.Mty 01 7 _ OnyMit- tei4mI e"rvq nVA on
its kinetic energy separately; and In order to make the probability reduce to the cor-

rect limiting value when the system becomes an ideal gas (for example when we go to

very high temperature or very low density) we must choose the above form.

The grand canonical ensemble represents one further stage of generalization or

abstraction; like the canonical ensemble, it can be Justified as giving a realistic des-
cription of the physical situation even though it apper to be only an artificial model

Introduced to facilitate calculation. Let us return (in ainton) to the very large

cystem of N' atoms, having fixed energy and fixed volume. Inotesd of choosing N

atoms from this system, suppose tha instead we suddenly eaclose a volume V with
rigid walls and study the stattstcal properties of the sample of atoms that happen to

be trapped in this volume. We assume that the ratio of V to the vohme of the origi-

mn large system is v, and *ba this raUo also represents the probability that any

particular one of the N' atoms is found in the volume V. We ask, what is the proba-

bility that there will be exactly N atoms in V, in the limit when N' goes to Infinity.

v goes to zero, while the product N'V remains equal to a fixed constant? The

ansver in called the Poisson distribution in st"tWics or the grand canonical ensem-

ble in statistical mechanics; it is

p A -pN A e e-
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It should be N that the particles have been treated as indistinguishable - perm~ia-

tFons of the N particles are not counted as different microetates. If we had assumed

that the particles are didtivguilsbble, "-%-.n the probability that we observe N parti-

cles in the volume V could be found by cancelling out the factor N! in the denomina-

tor of the above expression and making an appropriate change In the normalization

factor A.

Just as the canonical ensemble represenks a system that does not have fied energy but

is In equilibrium with a "beat bath" iurudin/t at temperature T, so the grand canon-

ical ensemble represents a system (sometimes called an open system) that does not have

a fixed .mnber of particles but Is In equilibrium with a particle bath surrounding it.

characterized by a parameter p (#kT is usually called the chemical potential).

In many calculatios in statistical mechanics, the grand canonical ensemble is used

because it allows one to sum over the numbers of particles in different states lnde-
pendenfly without having to enforce the condition that the total number of particles Is

fixed. Oe simply sums cver all values of N, or equivalently over all possible val-

ues of the numbers of particles In each slate; If the result is needed for a particular

value of N, rather than for specified volume, the chemical potential p may be cho-

sen it such a way that the average value of N, viz. N, Is equal to the specified

value. It turns out-that when N is a large number of the order of wagnitude of 1022

(as for observable phy-ftal systems) the statistical disbriuoin is very Wwarply

peaked at the ave-age value, so that the probability that N differs by more tan . 1
of 1% from N is effectively zero.

The grand canonical ensemble is especially useful (ind may indeed be the only practi-

cal method) for problems involving eqilbrium among several kinds of particles, as

in an ionized gas. In this case one Introduces a chemical potential for each kind of

particle, and represents the probabilfty of a state with N1 particles of Species 1,

N2 of Species 2. and so forth, In the form

e'1 N 1 -p2 N2 "u3N3 - ' "..

p = (const.) ., -N 3 (E)e .-E
N IIN 2.!N3! ,..



The constant, which includm the normalizing factor Z from the canonical ensemble

ad the factor A from the grand canonical ensemble, is found by summing p over

allvalues of E,NI,N2 ... and setting the sum eqal to I; it is also known as the

grand partition function (usualy without the factor A):

N

ZN

E

for N particle. (with the corrsponing generalization for a mixture of several

species).

These two partition functions Z sad Q, which appeared originally simply as nor-

malling denominators for the probabilities of states in the ensembles, turn out to be

useful qaantitles themselves, because all thermodynamic properties of the system can

be expressed in terms of them. For example, if one differentiates Z with respeetto

(-S), the effect is to multiply each term in the sum by E, andthis isthesame as

finding the average energy for al states in the canonical ensemble:

-Eg(E) e-BE Id dZ d aZ
E E4)z d9I
E

The method sketched 2aove for deriv!4 IhM a"--- .......

saes may appear to be somewhat artificial, since it wras based on assuming a dis-

crete set of kindetic energy states for a free particle and then going to the limit of a
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continuous distribution. In the caste of classical mechanilcs, when kine energies are
not quantized. we could have appded the *Itllt of equa a priori probability directly
to a continuous distribution; this would involve calculating the surface ares of a 3N-
dimensional sphere, correspondin to the region in momentum space for which the
total kinetic energy of N partcles has a fixed value, and then picking out the part of
the surface that crepnsto a particular state (such as velocity of £'th particle

betee vI M I +dv I, and so forth). This procedure can be carried out as Indi-
cated, and In the limit N--,, It gives a result in agreement with the Maxwell
distribution.

However,, as soon as one wishes to consider systems In which chemical reactions or
Ionization processes can change the number of particles, he Pubs that this approach
brooks down; for example, there are infinitely many more possible micro-states for
two particles than for one If one assumes a cotmmdistriboution of kinetic ener-
gies. It in only by reverting to the description based on a discrete set of states that
sk reasonable formulation of the equilibrium problem con be found. It turns out that
one can derive an equation determining the equilibrium numbers of particles of vari-
ous species - the Saba eqution - provided tAt the energy tunit is t kept finite and
not allowed to go to zero. As one might suspect (with the benefit of hindsigh) E0 Is
closely related to Planck's constant; in fact, oiw gets the correct physical resul by
assuming that the size of the elementary cell in phase space is just that indicated by
qwntum theory. (This discovery, embodied in the Sackur-Tetrode equation for the
chemical constant, was one of the triumphsi of the old q=anum theory.) Thus we see
that the theory of ionization equilibrium Involves quantum theory and discrete energy
states in a very essential way.

The theoretical description of Ionization equilibrium for the ideal gas ixture men-
tioned at the beginning of this section Is then as follows: for each: Ionization process
of the type An + e- (where A. represents an ion with n electrons removed
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from the original neutral atom) the concentratlons of these ions in thermal eqilibrium

are determined by the equation

cn- I= W.%()(T) (Sa)tlon)ewee

where cn = Nn/O Ne), i.e., tMe ratio of the number of ions of Type A to the total
number of particles in the system, includgmn the n m r off ellecom N . The ratio
for electrons Ne/(N + Ne is denoted by Ce, P ls &e pressure, and K(ft (T) is an

eciflibrium constant (i.e., It Is Independent of pressure in the Idel-gs approximation)

defnned as K(n)) = (gn 1/gg)(2,r/m) 3/2 M/(kT/ exp %l/kT). The symbols In
this equation are gn = degeneracy factor for the ground state of An ; likewise for gn-;
degeneraey factor for eledros Is talwn as 2 (spin up or down); m = mass of electron;

= Plancks constant divided by 2r; l = nth ionization potM al of the stm, usually
taken to be equal to the difibrence In ground state energies of A. sad An. 1 . In the

form written hre It Is assumed that all the atoms and ions are In their ground states.

To see how the equation works, we consider i1w special cae of equilibrium between

neutral and singly Ionized atoms, assumng tha the temperature Is sufficiently low
that the concentration of more da singy ionized atoms is negligible. Then we can
define the degree of Ionization, a, to be the ratio of the number of singly ionixed

atoms to the total number of atoms. Wehave c = c1 = a/(1+0); o0 =
(1- a )/( 1 + a ) andafter substituting these ezpresstons nto the r*sha lon and
Iolving for a. we obtain the result a = 1/11 + PK() . Note that (1) the
degree of Ionization Is cone (complete ionization) at very low pressures, and decreases

to zero as the pressure becomes large; (2) the degree of Ionization is one at very higb
temperatures, and decreases to zero at very low temperatures, bt* because of the

small numerical value of the coefficient of exp (I/kT) in the formula for K(T),
the degree of ionization will be fairly limp even (Qr temp t-rcz--- ar e i com-
pared to the ionization energ. Because of this, the number of atoms in excited
states will still be fairly small since the excltation energies amre usually of the same

order of magnitude as the tozation energies.
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The Sft equation my be viewed as a special case of the "law of mass action" for

chemical reactions, which was established empirically (though without the above defini-

tion of K in terms of Planck's constant) before quantum theory. For example, Itpre-
dets that an increase in pressure will drive the equilibrium in the direction that leads
to a smaller number of particles. Another interpretation, which will be useful in the
following sections, is based on the expression for the canonical partition function,
Z = jg(E)e .which we now apply to a system containing a fixed number of atoms

that may have -. - OA o-aizion depending on the pressure and tempera-
ture. As we showed above, the average energy of the system can be found by differ-

entiating Ig Z with respect to (-B). It can also be shown that the Helmholtz free
energy Is F = -kT log Z which Is consistent with the usual thermodynamic rela-

tn F ; ( = - According to thermodynam-
ics, the Helmholtz free energy F is a minimum for equlibrium at constahwvolume

and temperature; by this Is meant that if the system happens to be in any atte that is
not the equillbrium state, It will tend to go Irreversibly toward the equilibrium state
and In so doing it will decrease its free energy. The statistical mechanical Interpre-

tatlon of this principle is the following: s we group together the possible micro-
states of a system into a small finite number of macrostates, each of which can be

characterized by a certain average energy and entropy; we then write the partition

function In the ferm Z = Z( 1) + Z( 2) + z 3 ) +... Z(m) ; Z ) 2 g( EI ) e-BE (we have
used an upper subscrlpt in order not to risk confusion with ZNI which means the
complete partition function for N particles). For the sake of concreteness, we may

ihink of each state as being defined by specifying the degree of ionization within cer-
tain small limits; thus Z ) would nclude all the mlcrostates for wjtj e ystm
is less than 1% ionized, Z(2) Includes those with ionization between 1% l u 2%, etc.
Suppose that at a certain temperature and volume, the largest term in the smn Is the
one for state i, namely Z ) , then we can write

, Z . Z(2) (m)]
Z = V'' + ZMi 'Zji

Since by hypothesis Z( i Is larger than any of the others, each term except the first

in the brackets will be less than 1; since there are m terms in the sum, the factor in
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brackets must be less than m. Hence lo Z = log Z(i) +log S, where S is less

than m. But since m is a small finite number (of the order of magnltude of a few

hundred or less) whereas the number of microstates is a very large number of order
of magnitude N! . we see that log ZM , * which by Stirling's approximation must be

of order N log N, will be extremely large compared to log S. Hence the value of

the free energy. F = -kT log Z, will be entirely determined by the corresponding

value for that state which has the largest value of Zt  . Although the free energy is

realty defined only for the equilibrium system as an average over all states, It is use-

fil to imogine that each state has Uts own free energy. dePed as Fi = -kT log Z(M

and that the tbermodynmlc properties of the system will be esseatially those of the

state for which Z(1) is largst, or eqmivaletly, Fi Is enmlest. In other words,

tke canonical ensemble coatale all states, including those that we would ordinarily

call non-eqalbrium states, but we can find the equlibrium properties by averaging
over all states becamse the mmrical value of any ther 1Mad c property is almost

completely determined by the state that correspods to oqilSbrium at the specified
S volume and temperature. Ti is the Justification for the standard procedure, in sta-

titical mechamics, of replaclng the sum over all states by its largest term; it Is

equivalent to selecting the state wth lowest free nergy.

In the particular cae of an oiszed pas, the degree of ionization is simply determined

by balancing the energy and entropy n te equatitn F = E - T8. When T is low,
the entropy term T$ is noliglble and one simply looks for fie wW 0A iuwmet ener-

which In geeral will be the system of neutral atoms, with all electrons Ir the groumd

state. Since the entropy of state I is proportional to the logarithm of the number
of microetate in that sitte |51 = k log gt Ei) if we asae as above that

F= -kTlog Z(i) a&d Z(' ) = g(E )e -Eij, then it folows thstateswithalarger

number of independent particles will have larger entropy since they have more possible

configuration. Hence as the temperature increse and the term IS becomes moreJ Important in the free energy, states with more particles (I. e.. Ionized states) will be

favored. At very high temperatures the importance of the energy of each state will be

negligible, and only the entropy will count; hence the system will become completely
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ionized in order to have the largest possible number of independent particles and the

largest number of possible microstates.

It is clear from the above argument that as soon as one knoows the free energy for each

possible state of the system as a functlon of temperature and volume, it is possible to

determine which will be the equilbritu state at a given temperaWre and volume by

looking for the lowest free energy. In the case of an ideal gas maur - in which each

electron is either bound in its lowest energy level, or free, and interactions between

particles are ignored - the process of minimizing the free energy lems to the Sahm

equation for loaftation equilibrium. In the more general case %en these assumptions
are not permitted, the free mergy method tiUH can be used to find the equilibrium

compositQm of de system.

EFFrCT OF PARTICLE INTERACTIONS ON IONIZATION EQLqUIBRIUM

The standard theory described in the previous section needs to be improved in two

important respcts before it can be used to calculate occupation numbers in a gas of

moderate de=Lcy. First, a consistent way must be found to calculate the populatioes

of excited electronic tates iu atoms; and second, the effects of particle interactions

must be taken into account. One might thh* that, in view of the technical difficulties

involved In treatirg particle interactions in systems of medium density, it would be

better to po*Irone the second correction and concentrate on the fMirt -me, in the hope

tbat it would -t least provide an approximation valid at low densities. Unfortunately

this does not seem to be possible, for (at least in the present state of the theory)

excited-state populations are closely linked to particle Ifteractions, and one cannot

get a reasonable result for the former qdantitles simply by ignoring the latter.

To IlMatrae the difficulty in Its simplest form, consider the electronic states of the

hydr%= atom_ Accordin to quantum mechanics, there are an infinite number of

energy eigenvalues, which P2W be divided Into two categories: a discrete (W infinlte)

set of bound states En , n = I to ao. and a continuous set of free-particte states

with energies E( p). where the momentum - can have any value. The bound stae
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energies are negative, and are proportload to 1/n 2 so that they pile up just below
zero; the unbound states have positive energies, and are roughly uniformly distributed
with respect to momentum except for small energies just above zero. The number of

2states corresponding to each bound energy level is 2n

If we applied the canonical ensemble method to calculate the number of atoms in
various states of ?xcitatin, we would nd that all atoms are ionized at any finite
temperature, because the continuous infinty of unbound states is (according to the
mathematical definition of orders of infinity) of a higher order than the discrete infin-
ity of bqund states. If we try to avoai this conclusion by arbitrarily excluding the
unbound states and ask for the relative probabilities of the bound levels, we find th
the probability that the atom is in its ground state is essentially zero at any finite
temperature, because there are an infinite number el excit +J states. Ano5r way of
stating thIs is to say that the partition fmtion sum is divergent: Z = 2 e 0+

8 ee O +32e v + .. = ;bece, the probabty that the

atom is inits growunlstate is p = L(2e-EO) = 0.

The ePlaration of this paradox is that the set of elgenvalues meUoned above Is rele-
vam only for a siide hydrogen atom in Infinite space, 3c that the possibiity of statis-
tical equilibrium with other particles or a heat both at some temperature Is excluded
in principle. As soon as one looks for energy elgenvaues in a sligliy dlferent
situation - where, for exampie, the aom is enclosed in a very large btt finite box -
be finds tha there Is only a discrete set of free-particle states, not a eontinum, and
only a finite number of bourd states. Of course when the box is very large compared
to va-mc dimensions, the allowed energies for free-particle states become very
densely distributed and almost cottnuous, and the lower energy levels are almost
exactly the s=me as those for the atom in infinite space. If this were not so, the
experimental verification if quantum mechanics by spectroscop would be much more
difficult than it ac wl is! Nevertheless there is a sniflcat difference between the
tao cases, finite and infdnte volume, and it is especiall, important fr- the i iber
ezcted states. These are just the states %9 to charge distributions
spread out over the entire vcline of the container; the existerxe of bound states with
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infinitesimal binding energy Is closely connected with the peculiar long-range charac-

ter of the Coulomb force law between charged particles. Any type of screening of this

force - as might be expected to occur, for example, In an ionized gas - is likely to

destroy this long-range character and thereby eliminate the loosely bound excited

states.

The central problem in calculating occupation numbers Is to find a reasonable and

practical way of Introducing the effects of particle interactions which will make the

partition functio, summed over bound states, converge to a finite quantity, hopefully

nat much larer than the value of the term corre s oni g to he gromd state.

Many different methods for calculating this partition-function cutoff or lowering of the

ionization potential have been proposed (Refs. 13 through 25). We discuss here only

two of them, which have been selected as being most suitable for the particular prob-

lcm studled under the contract:

" The Debye-HUckel correc'on

" The Ion-sphere model

The Debye-Hekel correction is based on an approximate evaluation of the effects of

electrostatic lnteractions of charged particles In a plasma or electrolyte solution; it

has bee extensively used In many other problems, and appears to be quite awarate

at low densities an high temperatures. As applied to this problem, it has the effect

of increasing the energy of interaction of an electron (charge-e) and a nucleus (charge

ie) by an amowunt EDH = ze 2 /D where the Debye length D is defined as

D (4re 2/MT) TZ (z2 + zi)nij1/2
•2 1

in an Ionized gas consisting of ni Ions of charge zie. Note that D will be large,

and E... saL whin the demalltv in low nd t tnn.wa&n*a bIn %&U .W .&2 .

the Debye-HUckel correction in more detail in the following subsection; we remark only

that it corresponds to taking account of the screening effect in an ionized medium
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which is caused by the tendency for electrons to cluster around ions and thus reduce

the effective force exerted by that Ion on another charged particle.

The ion-sphere model is the one actually used to obtain our occuation numbers. In
this calculation the volume of the ps Is divided into sub-volumes, called ion spheres.
Each ion sphere contains one ion and. on the average. sufficient free electrons to

render it neutral. A state J of the ion sphere is characterized by the number n of
bound electrons in the Ion sphere.

The probabiy iW. an Wo. vp.n ant 8..£. .. I m4,I

grandcanonlcale embleexpresslon pj = exp(-imj- Ej)/Q(p,P) where Q(p.O)

is the grand partitio fuction. Note that the eemble Is grand with respect to the

free electrons only, the nuber of ions being held fixed. Each ion sphere is treated
as If it were a separate thermodymic system which does not exert any forces on the

other ion spheres, but can exchange energy and free electrons with them. The energy

Ej is the sum of the bound-free tateraction energy and the eergy of the boun elec-

trons moving to the field of the weus. Thus Ej may be write = 0

where A is the bound-free Isteractoa energy per boum electron. The remainder of

te energy,, E, in asmused to be tUe same as tat of an isolat a Ion intM same
cstate, anIs otluble from sectr acope data. The values sed wire Aoe

ctned In Moore's table (Ref. 11). m eump e d by estimates of the missinvalues.

The value W n for A is (3/2)(I,92/a) where if is the averqe number of free
lectrous per ion sphere and a Is the radius of the ion sphere. The details of the

method of arriving at this estimate of A have been dcribed In Ref. 4; another

method for deriving it will be indicated in a following In Cmeral It may

be sad tOat the model assumes miform chlarge density a d is based on apprlal-
i msations va'lid at hig densities.

81noe the energy chane in fth O re model s ply proprtionail to ftw meber

these electrow in the grnd caoia ensemble Proailt f o ula. Thus, one can

write th1prob i in tformn Pj =IV(-pj pEj)/Q(tP) wherep
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This Is almost the same as the formula for the ideal pas, since the chemical potential

p is only a dummy variable which Is determined by the density, and calling It %

does not have any significance. The only effect of the energy correction Is to elimi-

nate all the bound states whoe bindi energy is less than X from the um over

states In Q. This actually requires an iterative procedure, since A cannot be com-

pletely dMermined mtil the Ion-sphere radius, and hence the density, is known; and

the density in turn is not known until one has started with a trial value of p and calcu-

lated the partition function by summing over states. Howrer, in practice the conver-

gence of the iteration is quite fast, so the method is practical.

INTERACTIONS AT lOW DENSITIES; JUSTIFICATION OF THE DEBYE-HIOCKEL
CORRECTION

In a gas at very low density, the ionization potential In that occurs In the Saba equa-

tion is essentIally the work that must be done on an electron to remove it to an infinite

distance from its bound orbit around a nucleus. In an ionized ga at moderate

density, however, the electron is not really beinLg removed to Infinity, but only to a

distance that Is farther from the nucleus than half the average distance between ions

in the gas; and its potential energy, when it is free, is not zero as in the previous

case, but finit, because it Is still being aftracted-by all the Ions In the pas, and

repelled by all the electrons. These forees do not balanee out to zero, even thouh

there may be an eqal amount of positive and negative charge, because the electron is

more often found near an ion than near another electron. Hence the work required to

remove the electron from the atom is reduced, and the Ionization potential is lowered.

The actual amout of lowering can be calculated in various ways, leading to different

resulwand as yet there is no estsblshed atperimental method that can definitely

determine which result is correct. The two mehods mentioned previously - Dete-

Iluckel correction am! ion-sphere roMl - are based on two different views of

the interaction of free electrons with ions. The first assumes that the distri-

bitlon of charge around any given chare is determined by the classical Bolftmm

distributlan: the positions of both Ions and electrons are raMnom, aside from the pref-

evntiz Weighun of contiguratons in wvtich positive clhares are by nea-

tive, and conversely. The second method Is based on t*e assumption that the lons are

fixed In a regular arrangement in apace, and that the electrons in the neighborhood of

each ion have a uniform distributon within a sphere, interacting with each other but
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not with other electrons or Ions. This model is more appropriate to a high-desisty
system. In which the net charge in each sphere averages to zero and fluctuations can
be ignored. The actual expression for the energy used in the ton-sphere model can
also be derived from quantum mechanics (Ref. 8).

The dtarting-point for the derivation of the Debye-HUckel correction may be taken to
be Poisson's equation for the electrostatic petential,

Ar neis the electron dewly,* andni a1 Is the deadily of lamw of charge z. I*it is
asumed that these densities are determined by the electrostatic potential energy C0
according to the classical Boltzmann distrbeoon, V1 r) = n 1(00) exp, (- :1 0AT)
and a simlar eqution for n ; n1(w) and ne(mo) are the Ion aod electron densities
at infinite distance from some charge considered fixed at the center; they maay also be
taken to be the average densities In the system when so charge is consldered fixed.

9 The coIlnation of Poisson's equion with the Boltzmami formula for the hare deasi-

ties is called the Poismo-Boltzmanm eqution. It should be emphasized that It Is not
an exact equaton, because It Is derived huom two principles that are valid tinder dif-
ferent coaditions. The Poisson eqution applies to a static distribution of cb&rgs,
vweras the Boltzmann dlutr-lb 'Joe represents the most probable dlstrtitm wbwn an
aver 4sge is taken over all mfim,*tates in thermal equilibrium at a temperature 'r *
Any one of ths microstate dltiils, IK it were frozen to zero temperature, would
satisfy Poisson's equation; but In reality there are rapid flcutosfrom one micro-
sate to another in the canoncal ensemble, and! the Poisson-Boltzmann equation leaves
out the effects of these futain. Nevertheless,, when treated In the piasaaxe
way employed by Debye and Mickel, It happens to give the correct limiting law for the

thermoyneLMAC properties at low densities aod high te DbeadHce
replaced ft terms on the right-haid side of the equation by the first two

offer miS elzsewbere in this sect&ki, density means number of particles In uit volume,
iW4 vi~ s in unit volume.
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term, which Is _rW of 0 , Is just the total net charge density, which is

assumed to be zero; hence the right-hand side of the equatiou Is just proportional to

0 in this approximation, and the differential equation can easily be solved. The solu-

tion which satisfies the correct boundary conditions for an Ion of charge ez I fixed at

the orign is 0 (ez, ) lowx (- r/D )/rJ where D Is the Debye length defined above.

Thus the effective potential acting on the other electrons and Ions looks like &Couzlomb

potential,, ez I/r. for small distances, but has a screening factor exp (- rID) which

makes It go rapidly to zero at large distances.

When the Debye-li~ckel. theory is used to calculate the energy and free energy for an

ionic system,, It Is foundl that there is a negative teirm proportional to (e 2 /D) for each

charged particle. This term can be Incorporated into the Saha equation, where it has

the effect of a lowering of the Ionization potential; likewise it can be used in the occu-

pation nmbnier formula, where it has the effect of raising the energy of each boud

state, and thin bringing It closer to the continwam of unb'ound states (Rt. 13 and 26

through 29). It should be noted, however, that the correction has no effect on the
reldveoccpatonnumbers of two low-lying bound stater, although it would eliminate

entirely some of the uper states by "pushing them into the contiuum!' of free states.

The effect of the Dfye-Mick~l correction can also be understood directly from the

viewpoint of free energy dizzuseed In the last section. When the Dotbye-li~ckel corn-

rection is introduced, It lower* the free energy of the more strongly-ionIzed staltes

and shifts the equilibrium in the direction of increased Ionization.

As mentioned above, the original derivation of the Debye-tikckei correcton from the

Poisson-Boltzmann equation may not be entirely reliable beczase the effects of fltictu-

allons have been Ignored; moreover, it appears that the exr/Ansion of the epnntals

and cosqetdropping of higher powers of 61kT would lead to serious errors at

low temperatures. Indeed, at any temperature the ratio of 0i to kT would be quite

large for small values of r.* and one could only hope that such values of r wouldnat

contribute very much to the Integrals or configoirations that must be performed in
order to compute thermodnaic properties.
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During the last 15 years there have been several aftempts toJI bu~ e Debye-Hflckel
theory on the baswis of statistical mchanical principles, and to estimate its accuracy
at higher densities ond lower temperatures (Btets. 30 throvgh 6S). In work performed

-under the predecessor to this contract, Slegert has studied this qestion for the pur-
pose of establishing a firm basis for the coomp-stion of occupation numbers in an
Ionized gas (Ref. 6). Hie considers the gas as a system of tows, neutral atoms, and
electrons; the quantum states of the ions and neutral atoms are considered as known,
either from experiment or from approimate theoretical cluain. Only thawe
excited states ane Included for which the mean radius of the charge distribution does

ecWa sWWv-m 11 re-111 -. fbt caf''-= =4, w be- lwlnmiL

ent of the choice of this value within reasonable limits. Electrons are couned as
free if they are not included In the Ios; this does adt of course Imply that the Interac-
tions between electrons, and between lons and electrons, arenelcd.Tefe
electrons are treated classically this requires that the thermal wavelength
A =h/( 2inkT) 1/2 to small compared with the me=n distance between electrons and
the mean distance between electros and lowi, aid thereby Impses a temperature-
dependent upiper limit on the density for which the cacltons are appticable.

The force between the charged particles are approximated by nmdfied Coulomb
potentials, (1 - e -r )/r, vihere a-1 Is a length parameter of order 10-8 cm.
Unlike the screened poteatial that results from solving the PoisaonSoltzmaan equa-
tion, this is a potential that behaves lMe a Coulomb potential at large distances, but
remains finite at the origin; It Is not derived from anything else, but Is taken as part,
of the definition of the model. The Introduction of the cut-off serves two purposes:
(1) the classical par~lon function for a system of charged particles with pure
Coulomb hiteracton Is ianInite, If charges of both sipns are present, since there Is a
possible 1 . 1 s ,--with -nfinite negative enrgy - poitive and negative charles
at the sam point - which maies the Dofactor Ininte. Yet IK thecluato

&There have been two principal lises of development. The first arts from the

for the~ pressure, while apparenfly divergent for Coulomb interactions,, can be
so as to eliminate Infinite terms and give the Debye-li~dce correction

as afirt apro Imton. The second apptesch Is based on N. N. Ift lov's
method for describing statistical equlibrium by means of an tafinie set of distribu-
tion functons, originally publshed In 1946 (Ref. 38).
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is carried through with a finite value of a, it is found that the free energy becomes

Ine of a at low densities, and a can be taken as small as one wishes.

(2) The calculation with this ce'-off indicates to what extent the actual deviations of the
Interparticle forces from the Coulomb law, such as short-range repulsive or attrac-
tive forces depending on atomic structure, affect the results. It turns out that short-

range forces can be ignored in the low-density ionized gas. The reason is that the

energy per particle due to long-range Coulomb forces is proportional to the square
rvw* If Ar na sLmapliw,, nf ,r miw r, vifLnUie -m m,,mhIfiw,,wm Al it Am1. . .'

- -- ----- W q i e uL ... Vl, "V"' WSA.,E W

e2 /l, and D Is inversely proportional to the density - Whereas the energy due to

short-range forces Is, at low densities, Just promrttonal to the density since it is
proptional to the number of collisions experienced by a particle. Hence the ratio of

the eneray of short-range forces to that of long-range forces is proportional to the

square reot of density, and must go to zero as the density goes to zero.

Siegert (Ref. 6) has shown that the results previously established for the free energy

of ionized systems can be directly applied to yield a formula for occupation numbers.

He has also examined the validity of the Debye-HUckel approximation by expressing
the canonical ensemble partition function in terms of collective coordinates, and

applying the central limit theorem of probability theory. The result is that the Debye-

H ckel correction is valid provided that the conditioni (6)'/3/(2r)5/3 I I(V/N)1/3/Di <w< I
is satisfied, where N is the number of charged particles in volume V. This Is a

more quantitative way of stating the condition that the geometric mean distance between

particles must be small compared with the Debye length D.

In Appendix A (Sec. A. 1), DeWitt has generalized Slegert's theory of occupation num-

bers by using the grand canonal ensmble. There are at least two reasons why this

generalzaon Is usef-. First. by using the grand canonical ensemble it is easy to
include quant~u% a=_aal ele deenrcy effects. Second. results for the

obtalaed using Ume grand pe u function.
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Since we will also need the quantum-mechanical expression for the electron distribu-

tion function when we discuss the basis for the ion-sphere model, it seems worthwhile

to review its derivation at this point.

Assume we have a grand canonical ensemble of systems of electrons, characterized by

a temperature T and a chemical potential p. Each electron may have one of an infi-

nite number of possible energies, which we call E0 ,E 1 , E2 , V... (this is a discrete,

nal a cmntinuous, set of ntnh.ers) No two eLetrense may h~s,i the ane ee ,-; but

aside from this "exclusion effect" there is no interaction between the electrons. The

number of electrons that have energy Ek will be called nk ; and by our hypothesis,

nk  0 or 1. The total energy of any particular microstate of n electrons is then

E = n0E 0 + + reI +...; n - no  n I + n2 +... . The probability of this microstate

is assumed to be given by the expression quoted for classical systems in the second

subsection, provided that none of the nk Is greater than I, but is otherwise zero:

p(n0 , nl,... ) = Ce"-pn ' E where C is a constant to be determined by summing

this expression over all values of all the nk , and setting the sum equal to I . As

usual, the chemical potential i is to be chosen so as to make the average value of

n come out equal to the desired value.

We now ask, what is the probability that there are nk electrons with energy Ek,

regardless of the number of electrons with other energies? This probability is found

simply by summing the above expression for p over all energies except Ek:

P(Ok Cl -pn-P(noEo6nlE 1+ ---

Ce

maximum number of electrons with a given energy is a small finite number can be
treated in a similar manner.
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where the prime on the upper sum mean that atl!.valtea of all n's e i nk are to

be summed over, whereas in the lower sum all values of all n's are included. It is

easily seen that the primed sum is also a factor in the unprlmed sum and thus cancels

out, so that we get

Since %k is permitted W have only the values 0 and 1, this reduces to
P(nD) = exp (-(Is+ ETPnk)/1+ezp [-(Iv+Ek)i. Theaverage valueof nk can

now be calculated: it is

Ok =nkP nk) = OP(O)+ -P() = / 0 1/+ exp u L+

The above derivation was based on the assumpion that no two electrons may have

exactly the sne energy. If instead ft is possible for as many is k electrons to have
the same energy, the same z--wnca still applies amithe resultfor k is simply multi-
plied by ik (for example, gk = 2 if the electrons can have spins up or down). In order
to uoe this general formula for Sk It is necessary to know what the allowed energies

Ek are, and then to evaluate the sum over all microstates in order to find the relation
between i and the dremity. It is usually necessary to approximate the sum by an ne-
gral for this prpose. It can be shown by solving the Schrdinger equstion tht the
number of staWe f a free electron without spin in a container with volume V, corrs-

pondlug to energies between Ek and E k+dE k ist (OW/h)m4501 dEk.- Thus we can
calculate -proximatly the average value of any quantity that depends on the energies
of the electrons, F(E), by using an i of the form

40

(4rv/b)mV1m- f f(E)EI/2 dE
j + ecxp(A + VE
0
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In particular, the total number of electrons in all states Is found by setting f( E) 1:

n =(4rA ) am 4 E 1/2 dE

f I (4+(v/) e (p+PE)

0

We can reg'W this as an equa.ion giving pA as a fuDmtion of n, e-en though there is

no simple solution of the equation except for the special case of zero temperature;

usll we bave to bnd p by numerical calculation or by expansion in power series.

For calculations with tht znttum-mechanical electron gas it is convenient to define

the set of functions

Ia(a) = {/r(m + I)} (dxz-
flI+ ex(z - 0)

0

These are stamdard functions that have been extensively studied and tabulated; howrever.

the notation and definitions vary somewhat with different authors.

We now return to DeWitt's theory of occupatic numbers which takes account of quan-

tun effects as wel as Interactions between charged particles.

To illustrate a few polts that will come up in the tre of a moalticomponent

ioniwd gas, we first look at the electron gas in a c backround of positive

charge. The background is needed to ensure electrical neJrItfy of the System bit

does not play any other role in the calculation. The grand partition function is

Q I exp (N- PE) .

N.E

We define the thernody mic potential 12 by the relation Q = e"O. It cm beshown

that L is equal to the product of pressure and -olume for the system, where the
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preawe is expressed as a fu ,ctton of the ca Mteal potential i. The average es~rgy

and average number d particles may be found by differentiating M with respect to 8

and p, respectively:

8 z. E EJj-exP(O-E
E exp (pN - OE)

g lP -. ~Nexp (g - fE)
"I00 Eex (pN - OE)

For the eleetrm gas with Inter-actom, we may write the therraud- y te potential as

. !3/2(0') ,

wherc

h3(/V) = 11 2 S).
27 3/( 2*,T)3/ /

The ftrs term represents the value for the ideal quantum gas without Interactions, and

the second term (as yet undetermined) represents the effect of interaclAotr. Similarly

,e may wrz*,s the chemical potentfr.! as the m m ot its ideal-gas --slue and a correction

ierm for ,aeractions, & = p " 6;t " We now ,,bastitute thin into the above expression

for N avA make a Tay~or expansion in powers of 6 1, dropping terms involving sec-

ond or ;jber.- re of 6p. R Is then found tht, when the interactions can be

t4eatW as a small perturbtion, the shift in chemical potential is

6p-t

(asica Coulomb-iiteracti n efects in the electromgas are functions of the dimen-

sionkas para _ter A -- /i = "ul/!e39/jV. In the gran partition ftnction
the correspomif anf ity is Ae becaae everywhere N appears it should be

replaod by We6 The Helmholtz free energy for the classical electron gas is
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OF Cgo - 1) [ ., (1og3A+9C )

+ (terms of hither order In A) (C - constant).

The Debye-Hw l correction appers as the term -N- In this expression. For this
3

case the correction to the thermodynamic potential is found to -

6p A A2 (log 3 A+ -9)

For the more realistic case of a multicomponent ionized gas the same analysis can be

carried through for the ion-ion and electron-electron Interzctions, but for the attrac-

tive ion-electron interactions one has to start out with some kind of short-range cut-

off, nr else include quantum effects, In order to exclude configurati-ns with ions

sitting on top of electrons. Which apl-each is chosen will depend on the extent of
theoretical progress n evaluatlng the quantum effects at the time the numerical calcu-

lation is actaHy urdertaken; It IS expected that a good qaantitative estimate of the

quantum-mechanical free energy for electron interactions will be obtained fairly soon.

The following treatment is general enough to permit the use of any exact or approxi-

mate expression for these interactions which may be available.

We consider a gas composed of Ni nuclei of charge Z and ZN i electrons. At low -

enough temperatures the gas will consist merely of N1 neutral atoms; at very high

temperatures It will be completely ionized. At intermediate temperatures every
ionic iqpecies Is possible; we characterize a state of the system by the number of free

electronb, n., and the number of ions of charge z. nz (z = 0 to Z). The quantum
numbers for the Internal energy states of an ion of chare z will be denoted collec-

tively as Jz: the number of such ions n state Jz will be cald nz.jz , and the
energy levels willbe& nod c(z,J, e ). These levels are functions of the
numbers of various kinds of charges because the energy levels of the Ion in a vac-w..

Itenoted by c0 (Z'z. ) wil be shifted upward due to screeningby otdor chzrges in
the plasma. If oae assumes that the least-bound electron on an ion of charge z

moves in a Coulomb field corresponing to a, ntral charge z + I (nucleus and core

oi i~ou d e~cis~~b~Imid w hCreenG accoriw to we Anoye-

Hil eltheoy. sothatheeffeclave potential -( z l)(e 2/r)exp(-r/D). thenthe



energylevelswll be: c (z , z'f lez) c0(Z. J)- (z + 1)2 /D + 6(Jzne, (n1)
where the vacuim levels will be hydrogenic, the second term is a constant energy shift

award for all levels, and the third term will be, In lowest qpp rdmation, the differ-

ene between the Dfee screened potential and the original Coulomb potential, aver-

aged over the char dlstribuflon of Jz" ft Is assumed be that tie energy of the

level Is mesured from the vacuum contimam limit. Acthmy, kiswver, the con-

timmm mit for electrons is effectively lowered by the amout - e "/D. Thus

botud levels above this lowered c limit find themselves no longer bosa.

The number of states to be conted as bound is determined by the condition tha

C(z. e, j) + 21 < .

As Slegart (Ref. 6) howed, the probabzilty of a stMate with ne free electrons and the

set {o Zj) of oeupatiom unbers for the ions 13

0 25~~ + 1 1=Ig

..-3,,3 ! Jn i '.

z .

2V z

where Ae h/( 2mekT )1/2, -h/ 2mkT )/2 sa = minof fie chary\ z.
e e7

The term Fin in the exponential is the Coulomb free onra dr o the Intvx i w of

free electrons and lors, which IJs t the Debye-Ilckl eorrcti Lf ,1,e denity .

sufficiently low,

2ei 17 nz

The last term In the Isl the effect of short-ra~ge frics, ii, .,wt ,frqir f!n
the second-vrlaOl-coefflc0ent zjprcmi4af)on.
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This result could be improved by treating the ions as extended structures ramvJher than

as points, perhaps by describing the bound elk.rons with some kind of form factor.

Also, it could inclikk the elcctroulstic free energy terms of order A 2 mentoned

above, (Refs. 32. 34. 37, and 401) which can be generalized to multiat sys-

tems although a cutoff is required for the ion-electron interactions. A consistent
quantum-mechanicai treatment of these interactions would have to Muclude both bound

and scattering states *f the electron, so that the separation of the total energy Into
distinct contribntions from free and boumi electrons which is implied by the above

formula may not be exactly correcet.

From this expression for p, we wish to fid the most proie state, subject to the

exdtion of elecUtcal neutrality, ne = I znz . This can be doe wlth a slight modl-

fication of the grand canonical ensemble method. or equivalently by the method of

L nmlpliers. We imrodue to multipliers, a I and a e and determine
the state for which the quantity L = log p + a i I n. + ae (ne -zz ) is stationary.

The reuat Is that the average oc-qastion nuwbers are

Th =e3 eVqJae il r • o ane;4e 1 1, Zj z z

(2s + )r 3 /h2V e intAz~ = 3x (a - We) - &anJ. e 'tc I zI

01 J 22u VY 32pM
2

The equation for 5,,jcnas turo terms not preserst in Siegertic ezprefision,

namely that containing A , iaiich takes into account the possible dewity depend-
ence of the energy levels. and the :erm Involving the secotd virll coefficient b.(O )

for interaction between neutral atoms (note that the Kronecker symbol 6z is I If

z = 0 and 0 otherwve). The equa timwre not ej.liclft expressions for the
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occupation mumbers, since the occupation numbers themselves appear in the exponents

on the rdLZ-hand sides, and also since the chemical potentials aI and ae have not

yet been determined as functions of density. This determination requires summaton

over 2all q ncibers for diflereft states of each ion: but the number of states

to be included in the .,=m will in turn depamd on the amoumt of lowering of the ioniza-

tiom potential and hence on the itica of the system. Just as in the ma-Wboge

model, an Iterative procedure is needed. One posult-t- scheme, which bw not yet

been tried out In practice, is to use the following expression ior the average ilk

charge 1

2Z _ J Z ...

Fznz~j
Z = Z

and express ae In terms of the cca-- p-l a*a in the absence of in i .

a 0 9 and the corrections for interactions:

ae = ZeO a " ez' ,

wbere

% o roe =log

eO ~ 2ff" 2cT ?/f2

One can guess a value for i, then compute ae and ae and substitute these values

into the eauion for a Jz to determine a new value of I, contnuing util conver-

gence Is attaned.

Quantum effects for the electrons can be itlluded in this scheme, using the grand

canonical ensemble; the thermodynmc potential is

012 log Q ie / A(z -)C PG Z1~z+~.
Z
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where f z is defined In terms of the partition function for an ion of charge 2:

e 'Pf e z e- zI

L

An eqzallcm Sor F. genersaing the one given above for the classical case, has 2150

been otie; ft c=~ be solved by a similar iterative procedure to get occupation num-
bers, vld at high densities, if il Inis known.

Another effect which should be included is the shift of bowxl-state energy levels due to
screening of the interaction between the nucleus and the orbital electron by other

chagetparticles in the system. The nmagitude of this effect can be e~tmused by the
fdowb a ~ u (Appendix A): assume that we have decided how many levels are
to, go ino the* calculallon of f z, either by takn the last one wider the lowered con-

timm, o pahwathe l&A distinct line before broadening merges the remaining
upper leivbl. Suippose fuird'e tWa we can calculate these levels by solving the

Schr~i r equation wMt t&he crteeed lDebye Woentlal, (z + I Xe 2/r) jr/D. Sp
pose further that the remMIN-W enervv levels may be written as an expansion in powers
of (qoD'Y/(z + 1ahw f.t) ohr radue for thecore charge z + Iis a0A(z + 1):

2 2 2

n -- r- ' Jz D2 ' 2,z,J z D3

whev t".,ex-eg-ffi-1--M - re wambers to be calculated from the multipole
.z e - r =Ii these energy levels are fed into the cal-

c4 f z conJM att e written as suchl an expansion:

2 2 2ea e a
_0 1- b -_+b 2. z
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The termas in the chinnical-potential shft depending on the energ levels can be esti-
mated, and we can concliude that at low densities for which so xc D * only the first

term of the energy shift should be tmuficiest to give an accurate result:

Of I 1z# p2 Iz+ 1)z nz+ znez(z + 1)2

anzz= e E z +ne

It appears tha this result could be of the sam order as the shift obtained from the
Debye-Hke~j free eangy. This effect will have to be Investigated before extensive

calculations with the electrostatic freenrgy corr ections are undertaken. A study
of this effect in hydrogen has been carried out from another direction (uder the
present contract). This has been reported in the open literature (Ref. 66) and, hence,
will not be discussied hsre.

ITERACTICE AT HIGH DENNYIES DECUSSION OF ION-SPHERE MODEL

According to the theory of lonlzatiomnpotential lowering by electron interactions -

which we may call "pressure ionization!' for brevity - electrostatic effects tend to
encourage ionization at low de-msITIes and high temperatures. Since these celrostatic

efhfet increase with density, it is conceivable that at some point they could outweigh
the usual effigt of pressure, which Is to suppress Ionization. Thus we might obme

that the degree of Ionization first decreases with pressure (as the Saba equation pre-

dicts), then reaches a minimum and starts to increase with pressure. This is indeed

what woul happen if the Debye-IfIckel correction were applicable in Its usikal form

at hi&h pressures, and owe would thus have "pressure tramlzation"' due to a purely

classical electrostatic effect, even if no account were taken of quantum effects or

shifta of electrefc energy levels (Refs. 26. 67, aid 68). Actually this canno happn

in general, for the Debye-Hkckel theory does not give an accurate estimate of the

classical electrostatic effects at higher densities. as can be seen from the fact that it
predicts that the total pressure of an Ionic mltifure at fixed will become

niegative at high densities. When the Debye-H~lckel theory io corrected by using the

resvlt&, of rehe 4,WUce! mechanical theories (Refs. 30 through 65), together with

a short-p mof an the Coaomb potential, the difficulty of negative preasure is

am-Wed. amd ft le *= tIbt ozeeg In rather special cases the predicud~ mnimum in
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the ionization vs. pressure curve occurs at a pressure so high that the theory is prob-

ably not valid (Ref. 69). Unfortunately most of the theoretical treatment of the classi-

cal ionized gas are fIased on power series e.asin startirg fromn the low-density

high-temperature limit, and ana* be expected to give reliable results at high densi-

ties and! low temperatures; moreover, It Is just in the tatter region that quantum effects

cant be ignored. We must therefore leave open the question of the behavior of the

hypotheical classical ionized ga at high densities. an! turn to another model which is

more realistic though harder to treat in a systematic theoretical way.

it sems to be fairly well established, by a combination of theoretical and experimental
studies, that all matter will be completely ionized at sufficiently high densities; and

that even at moderate densities and temperatures the effect of interactions of neighbor-
ing particles on an atom will be to' *%-n out the details of electronic structure thst are

responsible for the characteristic "chemical" differences between atoms with different

nuclear charges. For this reason, it is freqnnly u.eftul to trea the electrons in an

atom as if they formed an "ideal quatun gall in which ixteractions are ignored except

for the assumption that the density at each point In determined by the electrostatic

potential at thA point. ThIs Is the well-known Thawmas-Fermi modlel of the atom. It

is somewha similar to the Debye-H-Okel theory, in that it starts by assuing that the

electrostatic potential is determined by Poisson's eqaation,

V2 -41e l.n - ie)

where n e is the electron density, am!n is the number density of ions of charge 21.

But now, instead of assuming thet both ne and n, are related to 0 by the Boltzmanni

formula of classical statistical mechanfcs, we use the Boltzmanin formula only for the

loss, aed ivsert the appropriate uutum-mechanical exptwson for the electron density,

__Ie6I r I I
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where

t I/O 1/2
I J l+exp(t- ij)
0

The degeneracy parameter, a. Is determined by the equaion

ne(a) = 12(2,mkT)3/2/2b3(2F(-a )/JI-I

For the region of moderately high densities, with which we are concerned, a is

always positive and appreciably larger than 1. and we can use the approximation

2F( -a )/47r a e• a << 1. Essentdally this means we are assuming that the free elec-

tross are noegenerate, I. e., quantum effects are small for them. Close to the

nucleus, where eo > akT, there Is a region of degenerate bound electrons, the ion

core.

Following Stewart and Pystt (Ref. 8), we can write the Thomas-Fermi equation for

the ionized gas In the form

I d 2  = i [ z • - y) 1 i

xt2zO+lI F(-&) Wz

where y = eO/kT, x = r/D, and D is the Debye length; the symbol > means

tin average over ionic species mingthe density nl(-o), and z* (z 2/(z). The

total electrostatic potential 6 is tbh separated into two parts, the potential due to

a nucleus consildered fixed at the origin, and a perturbing potential produced by free

electrons and neilboring ions. The perturbing potteniial saUtisfies a similar
equation in which only the free-electron zii Ion deaslties appear (Ref. 8):

I WWI +I [F( -oa) -- zY
x dx z+
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where

go 1/2T t'2dt
V = ef/kT; F(y - &,y) I +exp(t+ ...

1y)'
Y

For large values of x, where y c I/z*, the eqatton for y re wes to the Poisson-

Boltzmann equation, which has the usual Debye-HMckei soluion y = -_ e-. In this
X

region the charge densities ol ions and electrons nearly cancel and most of the elec-

trons are free. For smaller values of x, if z* >> 1, there is a region where

h/z* << y << 1 , and the density of the ions and that of the bound electrons are small

compared with that of the free electrons, the latter being approximately constant and

ei* al to its y mptotic value ne(,o). In this region the equation for y is approxi-

rnabely (Ref. 8)

1 d2 1

which has the solution y = A + ,X2 where A and B are coautants. Forx 6(z* + 1)
even smaller values of x. most of the electrons are bound, and the solalons are

those of the usual Thomas-Fermi theory. If we Ignore this inner region mW construct

an approxdmate solution for the two outer regions, having the form

Cfor x > xl

y = I X2A + B +6 )for x < x

requiring that y and dy/dx be cortinuous at x w find that the constams must be

related by the eqwation (Ref. 8) -2(z* + I)B+1 = J3(z" + I)A+ 112/3 . Now define

4. WI
4

p 3
4xa Z
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it is then found that when the ratio 1 is small (low density, high temperature) the

relation between the constants reduces to A = - B ze 2 DIT and the electrostatic

potential Is the same as the Debye potential; when is large, A is also large, but

- B reduces to - B = 3ze2/2 ,.T which Is equivalent to the result of the ion-sphere

theory. Thus the Stewart-Pyatt theory provides a Justiflcaton for the ion-sphere

model by deriving it as an approxtimae solution of the Thomas-Fermi model, valid at

moderately high densities and low temperatures, and at the same time showing how

the same basic model can lead to the Debye-flUckel correction at low densities amd

high temperaures.

f
The Thomas-Fermi model itself is of course only an approximation which ir inaccu-

rate except at very high densities. In recent years there has been a large amount of
C

research on the quantum-mechanical electron gas (Refs. 70 through 76), as well as

some attempts to deduce the Thmmas-Fermi model as the first approximation in a

systematic power series expansion starting from the high-density limit (Refs. 77 and

78). Since it is expected that this re-search will eventually lead to reslts that will

be useful in calculating occupation numbers of ionized gases at high densities, we

shall summarize here what is now known about th free energy of a multicomponent

plasma. See Appendix A (Sec. A. 2) for the details. These remarks apply mainly to

the case of high temperatures, where the Debye-lilkel term with quantum-mechanical

"diffraction" corrections is the dominant Coulomb Interalion contribution, and is pro-
t

portional to the square root of the density. We shall discuss the next term r&-s-. thiss

which gives a contribution to the free energy proportional to p log p.
V

For simplicity we begin with a discussion of a one-.-omponent plasma, the electron

gm in a =enUus positive backgrund which is included only to ensure electrical

neutTalty. The state of such a plasma can be described in terms of three fundamen- j
tue levoh parameters:

4 = 4/(2mkT) 1/2= thermal DeBroghle wavelength
1 -1/2 t]

D = =xep) = Debye screening length
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The three possible ratios of these lengths givTe the dimensionless parameters which

are useful for writing down formulae for the tir-e energy. namely:

Classical plasma parameter, A : L/D = 2rl/2 e 3 3/2p/2

Quantum diffraction parameter, y = /D (2r)1/0he$p1/2m -1/2

Wigner-KikxWood expansion parameter, 17 ,/L - y/A - 2 4 e-3- 1/2m-

At hlih temperatures the three lengths may be ordered In the sequence L .. D

and hence the dimensionless parameters satisfy the relations A < - < I. q * 1.
This is the limit in which we wish to give a correct result for the free energy of the

multicomponent system. "High temperature" here means that kT is greater than

1 rydberg; when this is true, the thermal wavelength is greater than the distamne of

closest approach, and cansequently quantum-mechanical diffraction effects must have

some residual importance.

It is possible to evalute the free energy of a low-density classical electron gas

(t = 0) following Meeron, Friedman, and Abe (Refs. 32, 34. and 37). Also, b.

using the WigPer-Kirkwood expmion (Refs. 79 and 80) one may estimate first-order
quatumn corrections due to the umcertainty principle (I. e., "diffraction" effects but

not "stattstics" effects). For the Coulomb potential the Wigner-Kirkwood expansion

parameter is il as defined above. This parameter becomes large at high tempera-

tures, and cly the Wlgaer-Kirkwood expansion for the Coulomb potential can

only be valid in the low temperature limit ( < 1). This situation is to be contrasted

with the application of the Wlgner-Kirkwood expansion to ordinar, non-ideal gases

with short-range latermolecular forces (for example, a Lennard-Jones Interaction)

where the expansion parameter becomes small at high temperatures. The Wigner-

Kirkwood expansion for various force laws haz been discussed by DeWitt (Ref. 8 1):

the result for the electron-gas free energy at low temperaturer is $( F - F0 )/N
A A2 2+2 .2d

- -- (log A + constant) ... + A f( ) where [! 12 + 623 U 1260 63
F_ is the ideal-im free er-I-. IReealI that -z the Debve-HUckel term. I For

this result to be valid, the fundamental length parameters mvst be ordered as follows
- L< D and the dimensionless parameters as -y<A < I. n e I (kT - I r.dberg).
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One might ask whether this limit makes any sense, since for real electrons the effect

of Fermi statistics as well as diffraction must be considered at low temperatures. The

answer is that the effects of statistics are important, but it is more convenient to treat

them separately by a different method; for the purposes of the present discussion we

shall exclude them (somewhat artificially) by the device of giving the electrons a large

spin s. The gas remains nondegenerate, and has a nearly Maxwellian velocity dis-

tributtoni, as long as { = 2 « 1. The gas is partially degenerate when { ~ 1,

and very degenerate when C >> 1.

2The function f( 2 ) represents the sum of the entire Wigner-Kirkwood series, of

which only the first three terms have been calculated. Although it would be very dif-

ficult to calculate any further terms in this series, it is possible to obtain the asymp-

totic value of f(2) for large -, which is what we need for the high-temperature case

(Ref. 82):

2 ~1/2~1jlg
2 7 1 2  1An) logr

2

The high-temperature free energy is then

_ A( 13i1/2 ) A2

O(F - F0 )/N = - 1 /2 2 +... -1"2(log-+ constant) +...

for L < X << D, i.e., A < y < 1 and 17 > 1. It should be noted that the "constant"

in this equation has not yet been calculated.

The exchange corrections in the high-temperature limit have the form

S+ 1 fl25/2 yA + (constant)A2 +...1

The constant in this equation is different from the previous one but is likewise not yet
'known.
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We may now write the result for the free energy of the multicomponent plasma at high

temperatures, using the above-mentioned results. In a two-component plasma there

is an additional parameter, the electron-ion mass ratio m e/m. There will now be

three de Broglie wavelengths, corresponding to electron-electron, electron-ion, and

ion-ion interactions. In real plasma the ion mass is at least 1836 times the electron

mass. and this fact has an important effect on the logarithmic term in the free

energy. In the temperature region defined by 1 rydberg < kT < (m/me ) rydbergs,

the lengths of the two component system are arranged in the order X < L < X ee

X << D, where

mam.

In M.

e 1Xe = t/( 2jkT, IA (e mi

The result for the free energy is then

- )/N A 2 e e -o3ei 6 2 logP( - F12IN f log - 2zfef log-+ zf log0 2 e D i e i D i i DJ

where fe = pe/p' fi Pi/P' P = Pe + Pi ; zi = ionic charge. Diffraction and

exchange corrections have not been included here because we are looking mainly at

the logarithmic terms. Note that if the temperature is kT > (mi/me ) rydbergs,

the ion-ion interaction terms would become log (,ii/D). Also, if the electrons and

ions have equal and opposite charge and the same mass, the logarithms in this expres-

sion would all be equal, and the bracket term would be zero. This hypothesis is, of

course,untrue (except for ionized positronium!) and for real ionized gases the above

results depend strongly on the electron and ion masses.

It should be noted that the above result can be obtained by relatively simple calculations

because the temperature has been assumed to be so high that the gas is fully ionized;

furthermore, third-order perturbation theory is ,ufficiently accurate because the ther-

mal wavelength is greater than the distance of closest approach. When these condi-

tions are not fulfilled, the problem is vastly more difficult since the electron-ion

A interaction includes the possibility of bound states. For a hydrogen plasma, the above
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result is probably useful for temperatures above about 13 eV, and may give a good

estimate for the free energy for a system of known composition for temperatures down

to about 7 eV.

RESULTS

The particle densities used in the present calculation - as calculated by the ion-

sphere model - are included in Tables IIl-1 and 1I1-2.

Table III-1

FREE-ELECTRON CONCENTRATION, Pe

kT Air: pe (electrons cm -3

J=1 J=2 J =3 J=4 J=5 J=6

17 16 15 15 14 13
1 1.05 3.27 9.67 2.47 4.44 5.25

2 5.7519 2.7418 3.2817 4.2316 5.4415 7.24 14

5 3.3220 1.12 1.3318 1.6717 2.1716 2.8715

10 1.0221 3.2219 3.7818 4.7217 6.1116 8.0815

15 1.8821 5.8219 6.8218 8.5517 1.1117 1.4816

20 2.7921 8.7019 1.0319 1.3018 1.7017 2.2716
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Table 111-2

PARTICLE CONCENTRATIONS, N
V

-3
Nitrogen: N (nuclei cm

kT J
J J = 1 J=2 = 3 J = 4 J J 6

1817161514 13
1 5.2518 5.3617 5.3716 5.3815 5.38 5.38

20 18 17 16 15 142 2.3420 3.16 3.32 3.8516 3.90 3.97

20 18 1 6 15 14
5 2.56 5.5018 5.2417 5.6416 6.49 7.50

10 4.1120 8.8118 8.7117 9.7916 1.2316 1.6215

201 918 217 316 1
15 5.5320 1.27 1.39 1.7217 2.23 2.9615

20 19 18 116520 7.0720 1.79 2.0818 2.6217 3.4216 4.5515

Oxygen: Nv (nuclei cm - 3 )

* kT
J=1 J=2 J=3 J=4 J=5 J=6

18 116 15 1
1 5.38 5.3917 5.37 5.38 5.3814 5.3813

2 3.3220 3.7718 3.8517 4.6816 5.5815 5.5914

20 1 7 1 5 1
5 3.02 6.5718 6.4517 6.7616 7.9715 9.2514

10 4.7620 1.0419 1.0318 1.1217 1.2916 1.5815

20 19 18 1165
I 15 6.40 1.42 1.4418 1.6817 2.1416 2.8315

20 8.0120 1.8619 2.0418 2.5217 3.2716 4.3415

- i
V,3
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Section IV

LINE TRANSITIONS

The absorption coefficient A( E) contains contributions from all transitions, discrete

and continuous, which can absorb a photon of frequency e. For a line transition

from an atomic state i to a state j the contribution to the absorption coefficient is

expressible in terms of the oscillator strength (f-number) fij as

2 -16 -1Ni..[i(€) =(re)] = 1.0975 X 10 N f bi(c )  cm (4.1)

where Ni is the population of the initial (lower) state (in number of atoms cm - 3 ) and

b ( ) represents the shape of the line (i-~J ), normalized according to

00

fbi (e)dc = 1, (c in eV) (4.2)

The f-number is a convenient way of expressing the matrix element in a quantum mechani-

cal calculation of the radiative transition probability in the electric-dipole approximation.

The definition of the f-number for a transition from an atomic state i with energy E

to a state J, energy Ej, applicable in L-S coupling, is

f 87rm f ) Sil (4.3)
fj 3h2  G i
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The statistical weight of the lower state, Gi, is (2S + 1) (2L + 1) for a state

of total spin S and total orbital angular momentum L. In our units

f S.(E.E . (E. -E. inRy) (4.4)ij 3 i)G i

The "line strength" S is given by (Ref. 83)

iij
SSi = 5(M )S(L) ai (4.5)

The factors S(L) and S(M) are usually called relative line strengths and relative

multiplet strengths. They arise from the angular integration of the matrix element

subject to a specific coupling of the angular momenta. In the present calculation

J-splitting is consistently ignored so the strengths are summed over all the lines in

a multiplet (J is the total angular momentum, orbital plus spin). Since

$S(L) = 1

JJt

(Ref. 83, p. 443), we require only the factors S(M). These can be computed from the

theory of Ref. 83 and many are tabulated (Ref. 84). The expressions used for S( M) -

considering our summation-over-state conventions - are described in the first

subsection below and Table IV-1.

The factor a is the dipole integral (in atomic units)

= P(r)rP (r)dr (4.6)
ii) (41>-1) 5
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where P and P are r times the radial wave functions of the active electron, and

is the greater of the two orbital angular momentum values of the active electron

in states I and j. The integration over the coordinates of the passive electrons has

been ignored as this is generally close to unity. The dipole integrals employed are

Hartree-Fock- Slater (HFS) values kRef. 85) for transitions between two states each

with principal quantum number less than nine. Hydrogenic values are used for

transitions between states of higher excitation.

A detailed discussion of the f-number evaluation is in the first subsection; the treat-

ment of line broadening is described in the second subsection. A brief summary of

the computer program utilized in the evaluation of the line-transition contribution to

the absorption coefficient concludes Sec. IV.

f-NUMBER EVALUATION

The detailed expressions used in the evaluation of f-numbers - the angular factors

S(M), the statistical weights G, and the approximations to the radial integrals -

depend on the conventions noted in Sec. II regarding summation of the occupation

numbers over nearly-degenerate states. Thus, each type of transition is best treated

separately.

Consider an initial state (iynSL) and a final state (ily'n'f 'S'L) arranged so that

n, - n. (This notation was defined at the end of Sec. II). The total spin of the initial

(final) core is S12(S'12) and the total orbital angular momentum of the core is L1 2 (L' 1 2 ).

In the one-electron electric-dipole approximation made here, selection rules restrict

the possible transitions to final states satisfying the following conditions:

9 i' = I, since no change of species or degree of ionization is allowed

* S = S, for electric multipole transitions

* L' = L - 1, L, L + lonly, fordipoletransitions

9 The orbital angular momentum of the electron making the transition

must change by one unit

t

I
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For all allowed transitions considered, the expressions for the angular factors S (M),

the statistical weights G, and the radial integrals may be found among the following

cases. The values of Zk and gi are listed in Table IV-1.

Table IV-1

ANGULAR FACTORS

Statistical weights

g = (2L+ 1) (2S+1)

92 = (2S + 1) (2L 12 +1) (2f + 1)

g3 
= 2(2f +1)(2S 1 2 +1)(2L 1 2 +1)

2g4 = 2(n - 16) (2S 1 2 + 1) (2L 1 2 +1)

g5 = 2n2 (2S12 + i) (2L12 + 1)

Angular parameter

n (ns )-number of 2s-electrons in initial (final) state
s s

n (n' )-number of 2p-electrons in initial (final) state
p p

S2 (S)-total spin of 2s-electrons in initial (final) state

S2 (SI )- total spin of 2p-electrons in initial (final) state

L (LI)-total orbital angular momentum of 2s-electrons in initial (final) state

L2 (L2)-total orbital angular momentum of 2p-electrons in initial (final) state

F(q, S, L; S', L') = I (pqSL { I pq-(s'L')pSL) is the square of the fractional

parentage coefficient (Ref. 86).

U(... ) is the U-coefficient of Jahn as defined in Ref. 87.
zi n ( +1)Fn' S ' , I) 2 +1)(2S12+1) U 2 1  $2 S 1 S

s p p' 2' 2' 2'2 1 22SIS ISZ1  ns(n p +l)F(np, S L2 ;S2 ,L)(L2 1

Z = n (21+ 1)(2S+ i)U 2 (, SSS, St
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Table IV-1 (cont'd)

2n ' 2 ;S2  L(2L+ 1)(2S+1)U2(9,St SS St

Z3  p (p 2  , 2 ) ,$,S 1;2 S2:
F~ ,5 L 2 s 2' 12)

Z = 10n F(np, S', L', S L2)(2L+1)(2S+1)U 2( Q, S' S, S S ;  S
4 p p 2' 2' 2f 2 2 ' 1' 2'12)

xU 2(L, 1, L', 2;L' 1)

Z5 = ioz 3

z = 3n (2L+1)(2S+1)U 2 (.1 , S, 2' ' ;2)

Z7 = (2L'+1)(2S+1)

Z8 = 6(2L+ 1)(2S+ 1)U 2 (L, 1, L2, 1 ;L's 2)

Z9 = (2L+1)(2S+1)

2t
ZI0 =10 (2L+ 1)(2S+1)U 2(L, 1, L2 , 2;L, 1)

io 2 'ZI ns(np+1) (2L'+1) (2S +1) U 2(L2  f, 1, L'; Lf L2) F(npII, S2 p L2)
11 s p 2' 2p221 2' 2

2 S1 S2 ,1;l S22L ,0, )

Z12  n(n + 1)(2L'+ 1) (2L+1)(25+1) U2(. S' s s ;S
12 8P2 (2L 2 +1) 2' 1' 2' 12' 12)

F(nI , S2  L2 St, Lf)

Z1 =n (n, + 1)(2L + 1)(2S+ 1)U2(j., St' s s *si ISt)13 8P 21' 2' 12' 1 '

F (n, I L S2 2 L2

14 + 5 1)(2L +1)(2S+1)U2, S1., S 2 S 1 2 ;S 1 ,)S 2 .
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Table IV-1 (cont'd)

Z15 (30( 2L2 + 1)(2S+ 1)

Z16 105(2L 2 +1)(2S+1)

Z17= 2n (n + 1)(2L1 + 1)(2S 2 + 1)n 2 F(np, S2., L2 ' S2 L).

18 2n n 1)(2L' +1)(2S +1)F(n",S L StIL
Z18 2ns(n+ 212' S2 L2 , 2, L2).

U 2(i, St. I2 S 1 S ;Si St)(2f + 1)

Z19= [(n 2 _ 16)/n 2 ]Z 17

Z2 0  21(412 - 1)(2L1 2 +1)(2S 1 2
+ 1)

Z21 =2f 1(4' 2 - 1)(2L1 2
+ 1)(2S1 2

+ 1)

Z22 =n(2L+1)(2S+1)U 2 (1, St,2 S, S';S St

n 2. Initial state split into L-S components. Final states with n' - 9 are rejected

as such lines are quite weak. HFS values of a2 are used.

n' = 2 (2s--*2p) S(M) =z G =g

n' = 2 (2s--3p) Z 9g

(2p-*3s) Z3 1

(2p-3d) L' 9 Z = gl

L' =9 = Z 5

n'= 4-9 (2s--n'p) z 6 9l

(2p-*n's) - 22 9,

(2p-n'd) = 5 gl
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n = 3. Initial state split into L-S components unless L = 9, in which case the

occupation numbers are summed over L for the given S. Final states with

n' 9 are rejected. HFS values of o2 are used. If L * 9, G = gl; if

L 9, G= g,.

n' =3 T ' (2s-2p) L * 9, L' 9 S(M) =Z 1 1  G= g

L 9, L' 9 = 12 = 1

L 9, L' 9 = 13 = 2

L =9, L'= 9 14 = 2

y = y' (3s-3p) = 7 = g 1 or g2

(3d-3p) L =9 =10Z 7  = g 2

L 9 =Z8 = 1

(3p--3s) =Z 9= g 1 or g2

(3p-3d) L' =9 = 10Z 9  = g 1 or g 2

L' 9 =Z = 1 org 2

n'= 4-9 (3s-.n'p) =3Z 9= g 1 or g2

(3p--.ns) Z f gor g 2

9(3p-nfd) =10 Z 9  = 1l or g 2

(3d- 'p) L 9 = 15 = 2

L 9 =6Z9  = 1

(3d-n'f) L= 9 16 9 2

L 9 =21Z 9  =g 1

n = 4-8. Occupation numbers of initial states summed over all L-S components.

Final states with n' > 16 are rejected.
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-y y' require n =n', f = '(2s- 2p)

f< 4: 9(M) = Z18' G = g39 HFS a2 with outer (n, ) electron

2 = 4: S(M)= z19 , G = g4, HFS a2 with outer (ne =3) electron

7= v' n'<9: 2 , - 1: S(M) = Z20, G = g3 ' HFSa 2

' = 2 + 1: S(M) = Z2 1  G = g

f <3: HFS 2

I = 3: hydrogenic f-number

1 = ' 4: Sum of hydrogenic f-numbers over

2' =2 1 averaged over 1 = 4

to (n - 1) according to

(n-I)
2 1 (21 + 1) In2 + n

(n 16)

n'= 9-16, 2 4: Sum of hydrogenic f-numbers over

f= ' 4: Same average as for n' < 9

n - 9-16. Occupation numbers of initial states summed over all L-S components

and over all angular momentum states 2. Final states with n' > 16 are rejected.

y s y' require n = n', I = '(2s-2p)

(M) = z G17 = g5 , HFS a2 with outer (8f) electron

y = '" shell-averaged f-numbers from Ref. 88. Initial states n > 16 not

considered. The hydrogenic f-numbers are from the tables in

Ref. 89.
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LINE BROADENING

A comprehensive review of the theory of line broadening in a plasma has recently been

published (Ref. 90). Stewart and Pyatt (Ref. 8) discuss approximations to this theory

relevant to high-temperature opacity studies, and the present calculation follows their

treatment quite closely.

As a result of the interaction of the radiating atom with the plasma each line is assumed

to acquire a Lorentz shape

(L) ( W /r2
( (E - Ej +Ei) 2 +w .

with a width wj proportional to the electron density Pe . Following Stewart and Pyatt

(Ref. 8) only the upper state j Is assumed to be perturbed, and asymmetric corrections

to Eq. (4.7) due to overlapping lines and effects due to ion perturbers have been Ignored.

With these approximations an expression for the width is given by Baranger [Ref. 90,

Eq. (113)]

wj f f(v)dv P V v ) (1 [+ Ir Pkdr] g(j, k) (4.8)
3 e 2fk U+l) 73

in terms of an average over a Maxwellian distribution f(v) in electron velocity v of

the same radial matrix elements 2 as determine the line strengths [Eq. (4. 6)J multipliedjk k
by a bremastrahung Gaunt factor g(j, k) 2t 1. The Gaunt factor is usually close to

unity, so, following Stewart and Pyatt, we set g(j, k) - 1 and evaluate the sum over
, k by a sum rule (Refs. 91 and 92).

Z (21j+1) L~P~~rkr -J 2kZREs/L 7  +1-,ji. -'J* a.. _

Clk

00 2
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Z RES is the charge of the passive ion (one greater than the initial charge of the system)

and P . is the effective quantum number (Ref. 92) of the state j
3

/V.
= 1/ [E j E I (Ry) (4.10)

RES(

where E(J ) is the ionization energy of the active electron in the passive ion. The

Maxwell average of 1/v is (2m/7rkT)l/2. The result used for the width is

-22 cm ) / v. 5 r2 + 1 - 3(f+ 1() (.1w. = (0.637 x 1022 5v+ (eV) (4.11)3 RES

By averaging this expression over f. and replacing the effective quantum number v. by3 3
the principal quantum number n the result obtained corresponds to Eq. (31) cf Ref. 8.

The mechanism of line broadening in this approximation is inelastic scattering of a

free electron by the radiating atom - a real, energy-conserving transition. Thus, the

* summation over states k in Eq. (4.8) must be restricted to states energetically acces-

sible to the radiating atom in collisions with electrons of velocity v, before averaging

over velocity. The use of the sum rule ignores this restriction and so overestimates

the width. Setting the Gaunt factor to unity underestimates the width, so the two

approximations taken together should be better than either alone.

I Since the width increases as the fourth power of the principal quantum number the

assumption of broadening hi the upper state only should be valid except for same-shell

S transitions. However, following Stewart and Pyatt, the present calculation has used
Eq. (4. 11) for all transitions except those 2s-2p transitions for which Pj < 1 . Here

the s-state broadening is assumed to dominate so U = 0 in Eq. (4. 11).
6
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At the high temperatures considered, Doppler broadening may become a significant

line-broadening mechanism - particulary near line centers. To include this effect

properly in the line shape, the Lorentz profile bL( c ), Eq. (4.7), is folded with a

Doppler function (Ref. 90) and the resulting distribution is

(D) 2EW2 f/el(L(l2kT1/b (C) 0 ) ex 21 2 - E c(4.12)

for radiating atoms of mass M and lines centered at E This result may be expressed

in terms of the probability integral for complex argument and is tabulated in Ref. 93 where

useful series expansions are also given. For w > 56 or (c - c ) > 56, b(D)(c )
c

approaches very closely a Lorentz function.

For highly-excited states the line width of Eq. (4.1) will approach the energy interval.

between adjacent states of the isolated system. Such states appear as a quasi-continuum

and are said to be merged. A treatment of this problem according to the electron-impact

theory of Baranger has recently been published (Ref. 94) and the result is "

nM/ZRS = 0.4107 -e(0 2m3) VlreV (4.13)
Pe~c

n is the critical quantum number in the sense that electron states with principal

quantum number greater than nm are merged into the continuum. This result has been j
used in the present calculation, transitions from states below nm to states above are

included in the phototonization calculation, and the photoionization edge is lowered accord-

ingly. Thus nm serves as a cutoff for high n-values. For transitions between two

states both lying above nm , the contribution should be included among the free-free

transitions. However, this was not done In the present calculation. This contribution

was neglected as unwarranted in view of the low accuracy (hydrogenic approximation)

of the free-free cross sections employed. In order to include it, the free-free electron

concentration should be increased by the concentration of electrons in the bound states

having n > n.
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The values of nm calculated by Eq. (4.13) for the temperatures and densities of the

present work are listed in Table IV-2.* Equation (4. 13) is derived assuming n. 1.

so the small nm values in Table IV-2 are suspect. Further. so large an extrapolation

of our approximation to the photolonization cross section below its vacuum edge is

certainly less reliable than the HFS f-number calculations even though the resulting

lines are broadened into a quasi-contlnuum. Therefore, the present calculation

evaluates nm for Eq. (4.13) and chooses as the critical quantum number the larger

of the so-calculated n. and 7.

Table IV-2

LINE MERGING LIMITS EVALUATED FROM EQ. (4.13)

kT - Merg Limit(la)
(eV) =1 J=2 J=3 J = 4 J=5 J=6

1 6.3 7.4 8.8 10.7 13.7 18.6

2 3.7 5.8 7.8 10.5 14.0 18.7

5 3.1 5.0 6.8 9.2 12.3 16.4

10 2.8 4.6 6.2 8.3 11.1 14.9

15 2.6 4.3 5.9 7.9 10.5 14.0

20 1.8 3.0 4.0 5.4 7.3 10.0

(a) J is defined in the table of densities at the conclusion
of Sec. III.

COMPUTER CODE MULTIPLET

To provide a table of the frequencies, strengths, and widths of all the radiative bound-

bound atomic transitions relevant to a given temperature and density of oxygen or

nitrogen, and to provide a frequency-dependent absorption coefficient due to such

transitions over an arbitrary energy grid a computer program, MULTIPLET, has

been devised. The program is coded in the FORTRAN U (Version .1) language and

has been operated on an IBM-7094 computing system.

'In computing hese values of nm • ZRtS in Eq. (4. 13) was inadvertently set equal to 1.
Hence. "'ese entries are actually nm ,/ rather than nm. The effect of this
error on the final results should be small since the lower limit of nm - 7 was used
rather than nm itself when nm < 7. j
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The initial data upon which the calculation operates are cards which specify the state

of the gas at a given temperature and six values of the density. For each atomic state

as described in Sec. 11, there is one card containing the identification (iynISL), the

energy of the state (in eV relative to the ground state of the neutral atom of the species),

and six occupation numbers aj (J = 1 -6) provided by the statistical mechanical calcu-

lation described in Sec. I. The occupation numbers are normalized such that the sum

of a over all the cards in a set is unity for a given temperature, species, and for

each density J.

Bound-bound transitions can take place only between atomic states represented by such

cards. Thus, the number of states, both initial and final, to be considered for the gas

at the given temperature and densities Is determined by the number of cards in the data

deck. The data decks used in the present calculation contain all states with occupation

numbers ai t 10-8. In addition some cards with zero occupation have been included

to serve as possible final states, although the completeness of such states is not certain.

However, an attempt has been made to include all such relevant states.

The program, MULTIPLET, is conveniently broken down into three phases: in the first,

all the cards of the data deck are read and listed, all pairs of states are compared by

application of the appropriate selection rules, and for each allowed transition the line

frequen-ay and the angular factor (Table 4-1) are evaluated. In this procedure only those

initial states are considered one of whose occupation numbers is greater than an arbitrary

cutoff a - set equal to 10"3 in the present calculation. The resulting transitions are

arranged in order of increasing line frequency, and the frequency, angular factor, and

initial and final state data are written onto magnetic tape.

The second phase reads the transition data of Phase 1 from tape, one transition at a

time, evaluates the f-number and collision and Doppler widths as described above, and

writes this information on another tape - the line atlas. The line atlas contains data

completely describing each transition: the line freluency, f-number, radial integral

. 2of Eq. (4.6), the collision and Doppler widths, the energy and identification of both

the initial and final atomic states, and the occupation numbers of the initial states.
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The line atlas is listed by the program and serves as the source datum for any desired

frequency averages of the absorption coefficient.

The final phase of MULTIPLET is concerned with generating from the data in the line

atlas a frequency -dependent absorption coefficient j(€) over an arbitrary set of
energies N:

JAC JA (C) 1m- (4.14)

i<J

where g ) is defined n Eq. (4. 1). For each desired set of equally-spaced energies

the program is provided with adata card containlng (N., Wo, Aw), where N

(.s 2000) is the number of energies at which the absorption coefficient is to be tabulated

and eN W + (N - 1) Aw, (N = 1- ), specifies the energy set.N 0
The occurrence of very small line widths (- 10 eV) at low densities makes it

impractical to choose A w sufficiently small to adequately represent such narrow

lines. Thus, for calculatlonal purposes, lines are classed as broad lines (width

1 4w and narrow lines (w < ',w). ThelMe centers of broad lines are
shifted to the nearest energy cN and the line shape is included in the table of the

absorption coefficient. Narrow lines must be treated separately depending on the

type of frequency average desired. Two such averages are described in Sec. VI -
the Planck mean and the Rosseland mean opacity.

A complete FORTRAN listing of MULTIPLET is included in Appendix B.
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Section V
PHOTOIONIZATION TRANSITIONS

The contribution to the absorption coefficient of photoionization transitions from an
atomic state i is conveniently expressed in terms of the total photolonization cross
section at(C)(cm2) as

ii

Each atomic state will, in general, give rise to several different photoionization
transitions, corresponding to different states of the residual atom, and for each
there is a separate cross section a ~(C) and energy threshold cT. Thus

ij ij

Cr~)= ailc)

summed over all stte 3 for which c :

As described in Sec. II the general initial state (iynISL) treated in the present
calculation may be written

2sl 2 n ( 12L 2 ) nt (SL)

*with the K-shell los2 understood and the configuration

n n (
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specified by the core index y (Table 11- 1). A general photolonization transition from

such an initial state may be written

nnI 5n n~

2ss2p (kL,ni(L)-m2ss2Pn P' el 'L ""LV) (5.2)

where the final state consists of a free electron with energy c and orbital angular

momentum V" and a residual atom

n' n? n' tLt
28 8 pp cL) 1 ( 1

In the one-electron, electric-dipole approximation considered here the possible final

states are limited by selection rules:

(a) 8' S 8, for electric multipole transitions in LL couplinig
(b) L' =L- 1,L,L+ 1 only, for4 9ftransitions.
(c) I" = 1 :k 1 z 0 , where I insthe ntial orbital angular momentum of

0 0
the electron being ejected.

For the photoionization from a multiply-occupied initial state, a parentage expansion

(Ref. 95) will give rise in general to several possible states of the residual atom -
eahwith a different therg ofre follos c n coefficient of fractional parentage F p.

(a) Ejection of an outer (r. , f ) electron

28 2pP(12 L 2 ) .1 (SL) -28n 2p n P(S12L ) fh'(SL')

Here n'=n, nt =n c =S"=S Lc L L
85 p p 12' c2

1' 1 I k 1 0 0.
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(b) Ejection of a 2p outer electron: Decomposlr.g the initial state into parents;

2s ~ ~ a pPSP[ 2 fs, n.2pP (SL) p/ L~

p

every pair of values ( L for which

pp

is nonvanishing constitutes a possible final state of the residual atom with

n' s, n = n - I S Lc =L and 0or2
(c) Ejection of a 2s outer electron: Decomposing the initial state into parents,

2 n r Fp[2ns- ( PL)2s(SL)

the only possible states are
ns =2: S=0, L=0; Sp = 1 , Lp =L=0, Fp =2

or

ns = 1: S = 1 , L=0; Sp =0, Lp = L =0, Fp = 1,

in both of which

' n. - 1 Sc =Sp Lc = Lp ,
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(d) Ejection of a 2p inner electron. Decoupling one 2p electron from the rest

2 sn 2p ( 12) n.(SL) I F4I2sS 2 p p 1 (SPL)2p(1L ) (S I
p

Ff =p ( 1 1  p ( p ) 12 L12 ) j

the outer (n, ) electron must be coupled to ( so the recoupled

initial state may be written

n sn p-1 SS

F (L") [2s 2pP L )n SL" 2p(SL)

* where Fp = FIU 2 (fLpLi; LtL 1 2 )U 2 (1SS1; s'$ 12) and the U-functions

are the Jahn coefficients of Ref. 87. Experimentally the energies of states

with different values of (S"L",) usually vary much less than do the energies

of states with different PLp . Therefore the ( SL")-splitting of the

photodonization edges is ignored and the sum over (StL L") iL carried outsns pnp- 1 (SL)n withprbiltFI

directly, leaifti to final states Sp probbility Fp

So nI = ns , n' = np- 1, S = S, L = L ,1 = 0,2.
s ' p c p' c p

(e) Ejection of a 29 inner electron. Decomposing the initial state as in Case (d)

n2s 2 p /S12\ n rn-1 n pS
28 s 2p L 12) nf (SL) 2 Fp(S")[ 2 s 2 p kSPL12) nI(S"L)2s(SL)

pet

F (iS ) FI I _ 2 )
Fp(S) = F 2p 2; S"S12) 'p 2S + I'
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As in Case (d), the sum over 8"1 is carried out directly, leading to final

states 2s12p P ( I (L) withprobability F'. So ns = n 1,'=2) Sc  ap L L2 I
n, = S , L= L , and 11 =1
np p 12

Such a decomposition of the initial state into substates each with a different ionization

potential results in a splitting of the photolonization edges. For calculations of Planck

mean opacities at high temperatures (Sec. VI) this splitting should yield results only

slightly different from a calculation in which splitting is ignored. However, the split-

ting of the 2p-edges is typically a few electron volts in magnitude and so should affect

the present low-temperature Planck mean opacities. Rosseland mean opacities should

be more sensitive to splitting due to the filling in of regions in the frequency spectrum

where the absorption coefficient without splitting would have small values.

Once the initial atomic state i is decomposed into all possible final stater. of the

residual ion, the phototonization cross section 'ij is evaluated in the one-electron,

electric-dipole approximation. For a transition from an initial bound electronic
state ( n , ) to a final state of the free electron with energy e, the photoionization

cross section may be written (Ref. 4)

orj(C) = 167: 2w Fp[( PI( 1 ) (Rn-1)2 + f +. )(1 n/ ) , (5. 3)

for photon frequency w, in terms of the integrals R i over the radial wave

functions

R = fr 2dr R ,(r)rRn(r). (5.4)

0

This result has been derived assuming L-S coupling with the neglect of spin-orbit inter-

action, and the wave function of the final free electron state, R i,( r), is normalized on

the energy scale

Sr 2 dr Rc,I,(r)ReI,(r) = 61 - c). (5.5)

0
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I I
Thus the only unknown quantities in Eq. (5.3) are the radial matrix elements Rn •

4In most previous work (Refs. 4, 8, and 9) these matrix elements have been approxi-

mated by hydrogenic values.

For electrons with initial-state principal quantum number n 6 or orbital angular

momentum 1 _: 2 hydrogenic results have been used here. For smaller values of

these quantum numbers, some recently obtained, and significantly more accurate

expressions for the radial matrix elements are: used. For small values of the elec-

tron final energy, the approximation of Burgess and Seaton (Ref. 94) is used and is

discussed in the first of the subsequent subsections. An approximation valid for

high-energy electrons is described in the second, and the third presents some com-

parisons with more detailed Hartree-Fock calculations. The final subsection contains

a brief summary of the computer program utilized in the evaluation of the photoioniza-

tion contribution to the absorption coefficient.

THE LOW-ENERGY THEORY

Recently, Burgess and Seaton (Ref. 96) have presented an approximation to the

radial matrix elements in terms of the asymptotically correct wave functions. This

approximation derives from the observation of Bates and Damgaard (Ref. 92) that

the major contribution to the radial integral for bound-bound transitions usually

comes from values of r sufficiently large that the effective potential is a Coulomb

potential. Replacing the actual one-electron wave function by its asymptotic form -

a linear combination of the regular and irregular Coulomb wave functions for the

observed value of the energy, modified for small r to ensure convergence of the

radial integrals - Bates and Damgard evaluated the radial matrix elements R
i

and presented their results in tabular form.

Burgess and Seaton (Ref. 96) applied similar considerations to the evaluation of the

radial matrix elements eI for bound-free transitions. Whereas the asymptotic
behavior of the bound-tate wave function is determined by the physically-observed
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energy of the bound state, the large-radius behavior of the free-electron wave function,

at a given energy, is determined by a phase shift 6i ,( L', e). In the approximation

of asymptotically correct wave functions, Burgess and Seaton numerically evaluated

the radial matrix elements and parameterized the resulting photoionization cross sec-

tion [Eq. (5.3)] in the form

= Uf,°(C) o C1 1 1 (L') G(5(v)cos2 [q'(,',v;c)+ i
1 (L',e)l t(5.6)

where L' is the orbital angular momentum of the total system in the final state. The

quantities C 1 ,( L' ) are the results of the angular integrations and may be simply

expressed in terms of Racah coefficients as described in Ref. 96. G, y, and (p are

tabulated by Burgess and Seaton as functions of v for various combinations of I and

1 ', and c is the electron kinetic energy in rydbergs divided by Z2 . The basic

variable of the theory, v, is defined by

= z \/A - /2 (5.7)

where

1/AH  = 1 Ry cm- = 109,737.3 cm-1

1A = term value of the initial state (cm- )
1/VII = term limit obtained by removing the initial (n, f) electron and

leaving the residual ion in its final state (cm 1)

Z = charge of the residual ion

The dimensional constant of Eq. (5. 6) is griven in terms of the Bohr radius ao by

U 2(1 8.)559 x i0- 19 cm2

go 3 2 82559 '-jj (5.8)
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where (p) is a normalization correction to the asymptotic bound state wave function

and may be estimated from knowledge of the physical bound states of the system. For

example, the evaluation of C( v ) for the outer electron in the configuration

is 2~ 2p (c (cLcnf SL ) is obtained from consideration of the series obtained byI
varying n with everyth.ng else fixed. The observed energies, cntI , of the terms

in the resulting series, relative to the series ionization limit Ii = Cim Cn'I , are

writtem

C 2 (5.9)

in terms of their effective quantum number vn 1 , and the quantum defect, ntf t is

defined by

%I, = n' - vnt (5. 10)

Seaton (Ref. 97) has shown that the so-defined quantum defect jin s a continuous,

analytic function of the energy (for fixed i ) which may be written Further,

v2) must tend to an integer as P tends to any one of the integers 0,I,...,1 .

Then C(v) of Eq. (5.8) is given by

+(S) = 1+2- E - 1 (5.11)

evaluated at the observed physical energy e n of the state (ni) whose normalization

is required.

Thus, to estimate C(v ) the observed energy of at least one additional term of the

(nI) series of the initial state (n, I ) is required. For outer (n, i) electrons,

such states are included in the initial set of energies described in Sec. 2 - at least

upon relaxation of the condition that the outer coupling SL be fixed, For inner
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electrons, however, in the presence of an excited outer electron je. g., the 2p orbital

in the state 2s2 2p2 (3p)3s of NIl the excited state necessary to estimate t(v) is a

doubly-excited state [2s 2 2p( 2 P)3s 3p in the preceding example]. The energies of such

states are generally not known. The present calculation uses an approximation of

Seaton (Ref. 97) for such inner 2p-orbitals

(- v)('+ 2)
v(v + 1)

and chooses .= .0 for inner 2s-orbitals. Some comparisons with Hartree-Fock

solutions indicate this approximation is reasonable.

For the phase shift 6 ,( L' , c ) of the free-electron final state, Peaton (Ref. 97) has

shown that a low-energy approximation is given by extrapolating the quantum defect

. I( c), Eq. (5. 10), of the series containing the final state to small positive energies

according to

61 , V) = ,rp 1,() (5.12)

Moiseiwitsch (Ref. 98) has demonstrated that this result corresponds to an effective-

range expansion about the physical bound states.

For electrons with principal quantum number n > 3 the initial-state occupation

numbers are summed over the total orbital angular momentum of the atom, so the

decomposition into final L' values is ignored, the phase shift Is taken to be zero.and

CifI= 1>/( 2 +1) where f> is the greater of I and fI. Electrons with or.)ital

angular momentum f t 2 in the final state have small phase shifts at low energies,

so again the present calculation assumes the phase shift to vanish.

For photolonization of an outer electron to a final s or p state the zero energy

phase shift is obtained by Eq. (5. 12), extrapolating linearly from the physical bound
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states with high principal quantum numbers. However, in the photolonization of an

inner electron in the presence of ntn outer excited electron a difficulty occurs similar

to that encountered for such states In the normalization procedure. Again, the physi-
cal states required are doubly-excited states and are unknown, so the extrapolation of the

quantum defect is impossible. The present calculation sets the phase shift to zero for

such states. Generally, the most significant low-energy phase shift is for final

s-states, thus the 2p -- es photoionization cross section in the presence of an outer

excited electron is in question. However,, the 2p - d transition,, with small d-state

phase shift, usually dominates the 2p --cs , so this uncertainty is probably not too

great. A more serious difficulty is the neglect of the p-state phase shift in the

29 - cp transition in the presence of the excited outer electron. The uncertainty due

to this approximation can probably only be resolved by detailed electron scattering

calculations or Hartree-Fock calculations of the continuum state.

A low-energy expansion of the Burgess-Seaton cross section, Eq. (5.6), for integer v

and to first order in c agrees with a corresponding expansion of the exact hydrogenic

results. Thus the Burgess-Seaton theory is to be considered a valid approximation

when the electron kinetic energy is much less than Z rydbergs. Furthermore,

when sufficient information regarding the physical bound states is availablethe result

of Burgess and Seaton is probably more reliable than continuum Hartree-Fock calcu-

lations (Rfs. 99 and 100) as some effects due to exchange and polarization of the core

are reflected in the physical energies of the states with large principal quantum num-

ber used in the extrapolation for the phase shift.

Thus we conclude that tke Burgess-Seaton approximation is a reasonably valid and

useful approximation near the photoionization threshold, with the exception of the

aforementioned inner-shell transitions in the presence of an excited outer electron.

The simplicity of the resulting expression for the photoionization cross section ren-

ders it particularly suitable for evaluation of the large number of initial states present

in this calculation.

7
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THE HIGH-ENERGY THEORY

For energies of the final-state free electron much greater than zero the Burgess-

Seaton approximation is inapplicable. An approximation of frequent utility in high-

energy scattering calculations is the Born approximation. A straightforward

application of the Born approximation to calculation of the photolonization cross sec-

tion, however, leads to an incorrect result, as shown by Bethe and Salpeter (Ref. 91)

in an hydrogenic calculation. Similar behavior has been noted by Kabir and Salpeter

(Ref. 101) and by Dalgarno and Stewart (Ref. 102), who show that a Born approximation

to the acceleration form of the photolonization matrix element yields a result asymp-

totically correct at high electron energies.

The basic expression for a radiative transition - in the electric-dipole approximation -

between atomic states i > and If> is

4i. 2e2

-f- I fl-r> 2  (5.13)

from which Eq. (5.3) is obtained upon performing the angular integrations and the

average over the polarization directions of the incident radiation. As shown by Bethe

and Salpeter (Ref. 91), forms equivalent to Eq. (5. 13) are

4w 2 e lfl = 2 ,<f16 1r1>2 (5.14)

the dipole-velocity and dipole-acceleration forms, respectively; Z is the nuclear

charge, m the electron mass. It can be shown (Ref. 103) that a use of the accelera-

tion form of the matrix element in a high-energy Born approximation gains one iterate

of the Born series over the use of the dipole-velocity form. The second Born approxi-

mation to the velocity matrix element contains a term with the same high-energy
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behavior as the first-Born approximation - thus guaranteeing an incorrect high-energy
result when using the first Born approximation alone - whereas the first Born approxi-

mation to the acceleration matrix element gives the correct high-energy behavior.

Accordingly, the present calculation evaluates the photoionization cross section for

high electron energy by the dipole-acceleration Born approximation.

When the angular integrations and polarization averages are performed in Eq. (5. 14), -

a result analogous to Eq. (5. 3) is obtained

3-6 2 2i
16V Ye I +)~ 1 If +1 W0+) (.5

3m 2w3 c F + 2f + 1 )(5.15)

with

-- JR ((r) ,- R(r)r2 dr (5.16)
0

In the first Born approxim;%on the properly normalized free-electron wave function isb 1/2 --. -W

the plane wave - (k/2wr) exp (ik* r) -so

V/ J,, (kr)Rnl(r) dr (5.17)

in terms of the spherical Bessel functions jl ( kr), where k2 = electron kinetic

energy in rydbergs.

Through use of a generalization of the HFS code of Hermann and Skillman (Ref. 104),

wave functions have been generated for the many bound atomic states present in the

gas. The resulting numerical wave functions have been fitted by analytic functions of

the form
R ni (r C n 

i
SRn/(r) = Cnr' " n r  (5. 18)

n=1
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with integer values of 0n .From comparison of the numerical resultsthe following

conventions were adopted in order to reduce the number of orbitals required while

still retaining accuracy suitable to the present application: j
(a) For ground-state cores- 2s 2pnti/ , the orbital (n,I ) was calculated

for 3 : n - 8 and I = 0,1,2,3 only. For all values of (n, ) the
core orbitals are approximated by those calculated with (n = 3, ) unless

i = 3, when the core orbitals used arethose calculated with (n =4, I = 3).

(b) For excited cores with one or more 2s-olectrons excited to a 2p-orbit, the

orbital ( n,I ) is calculated for n = 3,4,5 and i = 0, 1, 3 and for

n = 3,4 for I = 2. For larger n the (n,f) orbital is approximated

by those calculated in the presence of the ground state core, The core

orbitals are subject to the same conventions as in Case (a).

In terms of the bound orbitals, Eq. (5. 18), Eq. (5. 15) for the cross section becomes

N 2_eI' Z'82F  Cn(_I ) ni n 2
= (1.712 x 10"180 F cN( ) cm2  (5.19)

where

C = (/21 + 1)

and

o
(aB) = e f ezJ 1 (z)7dz

0

1+1 2 +1a (5.20)
2 +1r(f + ) (+2) 12(1+8+1) -
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These are most easily evaluated using the recursion relations

I (a'p) = 61o 61 - a I 1(a,p) + (P + f - 1) l 1 (cxp - 1)

10 (a,p) = r()(1 +a 2 ) sin [ tan (1/a)]i 15.21)

4~ ~ ~~ ~~2 -~a0 I - if (oiLjA - (At j 1 ~(aO 5 1

IIo(a,0) = tan-1(1 / a )

As discussed by Chandrasekhar (Ref. 105) the three expressions [Eqs. (5. 13) and

(5. 14)] are equivalent for exact wave functions but for approximate wave functions

the fact that they weight different regions of configuration space differently leads to

different results. Thus the Burgess-Seaton approximation of wave functions correct

for large r starts from Eq. (5.13) and conforms to the familiar uncertainty-principle

arguments that low-energy scattering states preferentially sample the long-range parts

of the bound state. Similarly the high-energy scattering state weights more heavily the

short-range part (the high-momentum Fourier components) of the bound state, as does

the acceleration form of the matrix element. Variationally determined wave functions

are usually less reliable for small than for intermediate values of r, so the accuracy

at short distances of the HFS wave functions represents a source of uncertainty in

the present results.

THE APPROXIMATE PHOTOIONIZATION CROSS SECTION

The occurrence of the spherical Bessel function in Eq. (5. 17) represents an approxi-

mation to the more correct positive-energy regular Coulomb function valid if k >> Z -

a domain of validity opposite to that of the Burgess-Seaton approximation, as dis-

cussed at the end of the first subsection. For the present calculation an exponential

interpolation formula is utilized,

o(c) = BS(e) e a r + HE(E)[ 1 - e " r ]  (5.22)

O'E )[
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where OBS and OHE are the photoionization cross sections calculated according to

the Burgess-Seaton and high-energy approximations, respectively. The parameter i

was chosen to weight the two approximations equally at c = Z2 rydbergs.

Comparisons of the photoionization cross section obtained from Eq. (5. 22) with

Hartree-Fock calculations obtained with the computer program of Dalgarno, Henry,
and Stewart (Ref. 100) are presented in Figs. V-1 through V-4.. Included in the fig-
ures are results obtained by an hydrogenic approximation with Gaunt factors from

Karzas and Latter (Ref. 89) and with the unit Gaunt factors used by Stewartand Pyatt

(Ref. 8). It is seen that the hydrogenic approximation consistently underestimates she,

Hartree-Fock results and agreement improves for states of higher degree of ioniza-

tion. Thus the hydrogenic approximation is most suitable at high temperatures and

low densities. Comparing continuum Planck means obtained by Stewart and Pyatt with

those of the present calculation - Sec. VI, Table VI-2 - bears out this observation.

The fact that the hydrogenic approximation to the phototonization cross section

generally lies below that of Burgess and Seaton is consistent with the observation

that the hydrogenic approximation assumes that the final-state free electron moves

in a Coulomb field with the same effective charge as does the inital bouadstate

electron, whereas in the Burgess-Seaton approximation the free electron sees pri-

marily the charge of the residual ion. The effective charge of the bound state is

generally greater than the residual ionic charge, and this greater charge leads

to a shorter-wavelength free-electron wave function and the resulting greater

cancellation in the transition matrix element. Thus the replacement of the bound

charge by the residual charge (the replacement of the hydrogenic by the Burgess-

Seaton approximations) should decrease the cancellation and increase the magni-

tude of the cross section.

* To account for bound-bound transitions with upper level above the merging limit,

the photolonization cross section is extrapolated linearly to a value (Z2/n ) ryd-
b.rgs below the vacuum edge, where nm is defined in the discussion following

Eq. (4. 13) in Sec. IV.
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* Fig. V-1 Comparison of photoionization cross section obtained with Hartree-Fock
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THE COMPUTER CODE PIC

A computer program PIC has been devised to compute the approximate photoionization

cross section for each of the large number of atomic states present in the gas. The

program is coded in the FORTRAN II (Version III) language and has been operated on

an IBM-7094 computing system.

i The initial data upon which the code operates are identical to those used by the pro-

Sgram MULTIPLET, described in Sec. IV. For each atomic state one of whose occupa-

tion numbers is greater than an aibitrary cutoff ao - set equal to 10- for oxygen

and for nitrogen - all possible photoionization transitions are computed by the

approximations described in the preceding sections. For each transition the photo-

i ionization cross section is evaluated at a predetermined set of electron energies and

the results are written onto a tape - generating an atlas of photolonization transitions.

The final phase of PIC is concerned with generating from the data in the photoioniza-

tion atlas a frequency-dependent absorption coefficient ( c), Eq. (5.1), over an

arbitrary set of energies eN. For each desired set of equally-spaced energies the

program is provided with a data card containing (N , W, Aw), where N ( 52000)

is the number of energies at which the absorption coefficient is to be tabulated and

N = w + (N - 1)& , (N = 1, N ) specifies the energy set. For each transition

in the photoionization atlas the cross section is evaluated at the energies EN and the

continuous absorption coefficient [Eq. (5. 1)) is accumulated.

A complete FORTRAN listing of PIC is included in Appendix C.

I 8
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Section VI

OPACITY RESULTS

CALCULATIONS

For purposes of radiation-transport calculations certain frequency averages of the

radiation-absorption coefficient are of frequent utility. Two such mean opacities are

considered here. The hydrogenic free-free sabsoiption coefficients tabulated in Ref. 5

have been included in our results.

In emissivity studies the Planck mean opacity is a convenient result:

00

= 15 4 13 e-C/T p()dc (6.1)

Results obtained for Planck mean opacities in the present calculation are presented

in Table VI-1 for the temperatures and densities considered. The line contributions

alone are in substantial agreement with the results of the preliminary calculation of

Armstrong and Aroeste using the same f-numbers as used here (Ref. 106). As dis-

cussed in Ref. 106, the major discrepancy with the line Planck mean results of

Stewart and Pyatt (Ref. 8) appears to be due to our inclusion of same-shell transi-

tions. At the highest temperatures, however, where the Planck weighting function

lessens the importance of these same-shell transitions it is found that our line Planck

means fall consistently below those of Stewart and Pyatt. Part of this discrepancy is

probably due to the effect noted in Sec. V that, in the non-hydrogenic approximations

made here, part of the oscillator strength is squeezed out of the lines and into the

cGn..tuum - relandievre to ah.vA og approwniatlnn nwev -r, the major Rouree of

the discrepancy is most likely due to our neglect of line transitions into doubly

excited final states.
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*Table VI-1
PLANCK MEAN OPACITIES FOR NITROGEN AND OXYGEN

Nitrogen Mean Opacity Oxygen
Temperature Ion (cm" 1 ) Ion (cm

(eV) Density Density
(nuclei cm "3 ) Lines Continuum Total (nuclei cm "3 ) Lines Contivam Total

1 1 5.2518 1.70 3.48 2  1.74 5.38 5.20 1  2.04 2  5.40 1

2 5.3617 1.681 3.40 3  1.71-1 5.3917 4.072 1.82-3  4. M 2

3 5.37 16 1.512 2.84-4 1.54 2  5.3716 4.22 3  1.60j-4  4. 36 3

4 5.38 15 1.10 -3  1.71-5 1.12 .3  5.38 15 3.09- 4  1.13- 5  3.20-4
5 5.38 5.89 5  5.27.  5.94 5  5.38 1.37 5  3.53"  2.41.

60 5.38 13 3.90- 6  6.61-9 3.91"6  5.3813 5.41-7 5.51"9  5.47.7

2 1 2.3420 8.042 1.612 9.652 3.32:: 5.162 1.61 6.77L
2 3.1618 6.61 4,01 "1  7.01 3.7718 3.21 4.19 " 1 3.63
3 3.3217 6.06"  7.20 "3  6.13- 1 3.8517 2.67-1 6.97- 3  2.74- 1

4 3.616 6.75-2  1.92- 4  6.77- 2 4.6816 3.09 "2 1.31-4 3.10 . 2

5 3.90 6.18"  6.21 6.19 5.5915 3.57 -3 3.234 3.573

6 3.9714 5.41-4 1.43 7  5.41-4 5.59 14 3.204 9.718 3.20

5 1 2.5620 1.203 2.322 1.433 3.0220 1.053 2.012 1.253

2 5.5018 1.991 7.97 1  2.071 6.5718 1.631 6.73 1  1.901

-72 17 -23 5.2417 1.50 2.11- 1.52 6.45 1.61 1.9W 1.63

4 5.6516 1.28 1  4.75- 4  1.29" 1 6.7616 1.50 1  5.16-4 1.51 "I

15 -2 - 2 -6 1.67~-2
5 6.4915 8.99 1.09 2  7.9715 1.67 9.4 1.67 2

6 7.5014 7.02-4 1.64 7  7.02-4 9.2514 10 -3  1 -7 1.03

10 1 4.11w 9.142 2.872 12.012 4.762°  1.168  3.11 1.473

2 8.61 0. 8.15 1.07 1.0419 1.631 1.0? 1.741

3 6.7117 4.31"  1.72 -  4.481 1.0316 9.781 2.50 "  1.00

4 9.7916 1.16 2  3.404 1.19"2 1.11 5.08 2  5.81 -4 5.14 2

5 1.2316  2.2 4  5.36- 2.30-4 1.296 2.3 3 1.0 8  2.37 3

6 1.6215 4.09- 6.02 "s  4.17- 1.5815 6 .6 3
"5 1.s 7  6.55

15 1 5.53 20 6.0 2  2.422 8.472 S.4020 9.622 3. 32 1.3o3

2 1.2719 3.72 5.541 4.27 1.4219 1.071 9.611 1.171

3 1.3916 7.51 2  9.3t-3 8.45-2 1.44i 4.201 1.96 "2 4.40 "I

4 1.7217 1.34.3 1.60- 4  1.503  1.6817 9. -3 3.65-4 1.03-2

5 2.2316 2.42 5  2.68-6 2.69 .5 2.1416 i .67-4 . B.H4 1.9 -4

6 2.9615  4.39-7  4.32-6 4.82 -7  2.8315 3.41 6  80 8  350.6-

20 1 7.0720 3.42 2 1.872 5.292 8.0120  7.022 3.042 1.013

2 1.0 19  1.31 3.58-1 1.57 1.s. 19  5.45 ?.10"1 6.16

2 2.0868 2.12 2  5.72 3  2.69- 2  2.0418 1.21 1 1.23- 1. 33

4 2.6217 3.71- 4  9.7875  4.69-4 2. 5217 2. 1 3  2.11-4 2.37'3

: 16  .- .0 a 22- 2716 2. U "5  2.42- 4.225

4.55 1.23"7  2.82- 1.51 7  4.3415 6.9U7  5.44- j.62 " -
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In Table VI-2 are comparisons of our results for continuum Planck mean opacities -

photoelectric plus hydrogenic free-free - with the earlier hydrogenic results of

Armstrong (Ref. 5) which used the same initial atomic states and occupations thereof

as used here. Thus the present calculation differs from that of Armstrong primarily

in the use of nonhydrogenic matrix elements. It is seen that the present results lie

consistently above the earlier hydrogenic values. Included in Table VI-2 are the nitro-

gen continuum Planck means of Stewart and Pyatt (Ref. 8) interpolated to our densities.

(The 20-eV Stewart-Pyatt data are the result of a double interpolation in both density

and temperature and are thus somewhat less reliable.) The Stewart and Pyatt calcu-

lation is also an hydrogenic approximation with unit Gaunt factors. The occupation

numbers were obtained by a theoretical approximation different from ours.

The present calculation of the line Planck mean opacity numerically integrates the

accumulated line absorption coefficient due to broad lines and, for each narrow line,

accumulates the Planck integrand [Eq. (6. 1)) at the position of each narrow line. The

distinction between broad and narrow lines is discussed at the conclusion of Sec. IV.

A frequency-averaged absorption coefficient useful in radiation diffusion calculations

is the Rosseland mean free path

1 15 Go 'E4 exp (2c/T) de (6.2)
R- 47 4 T5

0 p(e) [exp (E/T)- 1)

where AR is the Rosseland mean opacity. Our results for the Rosseland mean

opacities are presented in Table VI-3, which includes for comparison the nitrogen

results of Stewart and Pyatt (Ref. 8). Compton scattering has been included in our

results (for the Rosseland, not the Planck mean) and K-shell effects are neglected.

The Rosseland mean opacity [Eq. (6. 2)] - being an inverse mean of the absorption
coefficient ( E) - is a non-additive function of th, ine, photninn zation, freg-f---

and scattering contributions to the absorption coefficient. Therefore, a modified

version of the final phase of MULTIPLET has been devised - the code RABS, a com-

plete FORTRAN listing of which is included in Appendix D.

88



$"

i

Table VI-2

CONTINUUM PLANCK MEAN OPACITIES FOR NITROGEN AND OXYGEN
COMPARISON WITH PREVIOUS RESULTS

Nitrogen Mean Opacity Oxygen Mean Opacity

Tempeature) cm)Teve)tr Present Present

Calculation Ref . 5 Ref. 8 Calculation Ref . 5

21 1.61 2 1.282 1.612 1.082

2 4.01 3.00 4.19 2.81"1

3 7.20-3  4.99- 3  6.97- 3  4.60 -3

4 1.92-4  1.05 4  1.31-4 8.11-5

5 6.21 2.98 3.23-6 1.82-

6 1.43- 7  7.08-8 9.71-8 5.82-8

5 1 2.322 1.702 1.12 2.012 1.522

2 7.971 3.87- 1  3.5 1  6.731 5.03- 1

3 2.11.2 8.58 . 3  8.4 .  1.98 7.61.
4-- -4 4 -4

4 4.75 1.694 1.9 4  5.16-  1.68
5 8.99 - 6 3.85-6 4.1-6 9.64-6 -6

6 1.64- 7  8.99-8 9.1"8 1.96"7  8.42-8

10 1 2.872 2.122 1.3 3.11 2.142

2 8.151 4.631 3.8-1 1.07 4.6-1

-2 -3 -3-23
3 1.72 9.13 9.0 2.50 2  9.77 -

4 3.40-4  1.794 1.9.4 5.81. 4  2.02-4

5 5.36-6 3.25-6 3.4-6  1.08 "5 3.78 -6

6 8.028 5.81- 6.0-  1.65 "  7.11-8

2 22215 1 2.422 2.11 1.2 3.332 2.282

2 5.541 3.841 3.2 1  9.61 1  4.68
3 9.38- 3  6.50-3 6.2-3  1.9 8.59

4 1.60 1.034 1.1-4 3.65-4 1.35-

-6 -6 -6 -6
5 2.68 1.79-6 1.9 5.98- 2.34.

-8-8 -8-8-
6 4.32 -8 3.16 3.4 8.89-  4.19-

20 1 1.872 1.612 1.22 3.042 2.152

* U UU . UV 0. U I * AU *). Q1 Oli *Ui .54

3 5.72"  3.48"  5.93 1.25-2 .96"

4 9.78-5  5.e6-"  1.1-4 2.11-4 9. W- 5

1.70 .  9.90-7 2.0-6 3.62 .4  1.60 -6

6 2.82 -8 1.75- 8 3.68 5.64-8 2.81-8
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Table VI-3

ROSSELAND MEAN OPACITIES FOR NITROGEN, OXYGEN, AND AIR

Nitrogen Mean 0 ity Oxygen LMSC AirTemperature (cm- TF Ion N:N LMSC~~(eV) Density .. .Density MenOpIly Density Ma pct

(nuclei cm - 3)  LMSC I Ref. 8 (nuclei cm- 3 ) jra-) (nuclei cm - 3) (cm-)

15.25 18 1.22- 3  5.381is 2.48 3  5.28 is

5.361 1.10 - 4  5.391 1.784 5.371

5.3716 9.13 - 6  5.37 16 1.47- 5  5.37 16

5.3815 5.40- 7  5.3815 9.36 "7  5.3815
5.38 14 1.56- 8  5.38 14 2.93- 8  5.38 14

5.38 13 2.06 1 0  5.38 13 3.74- 1 0  5.38 13

2.3420 8.681 3.3220 1.18 2 2.5520 9.781

3.161i 1.16 1  3.7718 2.27 - 1 3.2918 1.521

3.3217 1.07 3  3.8517 1.47 - 3  3.4317 1.24- 3

3.8616 1.97 5  4.6816 2.35 - 5  4.0316 2.09- 5

3.9015 5.58-7 5.5915 3.26 .7  4.2615 5.19 "7

3.9714 1.19- 8 5.5914 4.10"9  4.3114 1.06- 8

5 2.5620 2.812 1.52 3.0220 2.622 2.6620 3.352
5.5018 5.15 1  3.2 1  6.5718 4.10-1 5.7318 6.051
5.2417 6.35 - 3  6.3 . 3  6.4517 5.96- 3  5.5017 6.92 . 3

5.6516 1.06"4  1.0. 4  6.7616 9.61-5 5.8816 1.12 . 4

6.4915 1.67 - 6  1.8- 6 7.9715 1.45- 6  6.8015 1,76-6

7.5014 2.41-8 3.6 . 8 9.2514 1.99 . 8 7.8714 2.51.8

10 4.11 20 6.92 2 3.4 2 4.76 20 3.20 2 4.25 20 7.78 2

8.8118s 1.-1 7.3"1 1.0419 7.97-1 9. s18 1.09

8.71 17 1.04- 2  9.6 3  1.03 18 1.02 2  9.04 17 1.16- 2

9.79 16 1.27 - 4  1.2 4  1.11 17 1.69 - 4  1.01 17 1.47 4

1. 2316 1.67 - 6  1.5 - 6  1.2916 2.98-6 1.2516 2.15-6
1.62 15 2.95- 8  2.9 8  1.58 15 4.36-8 1.61 15 3.84- 8

15 5.5320 4.19 2 2.5 2 6.4020 7.73 2 5.72 20 5.50 2
1.2719 6.55 "1  6.3 "1  1.421 1.06 1.3019 8.46 1

1.3918 s5.48"3  5.8 3  1.4418 1.12 .2 1.4018 8.01-3
1.72 17 7.015 5.9 5  1.68 17 1.34 -4 1.71 17 1.04 - 4

2.2316 1.16-6 9.8 - 7 2.1416 1.85-6 2.2216 1.6 - 6

2.96 15 3.17-8  3.2- 8  2.8315 3.78-8 2.9415 3.88 8

20 7.0720 1.872 1.62 8.0120 5.422 7.2720 2.842

1.80 19 3.15- 1  5.(C 1  1.86 19 7.44 1  1.81 19 5.14 1

-3l 18-
2.62 088 5.674 6.1 2.05418 6. A 2.0 5.804

3.4216 1.11-6 1.2-6 3.2716 1.3-6 3.3916 1.594

4.5516 3 . 58-8 4.2- 4.3415 4.04-8 4.5115 4.358
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The program RABS is identical to Phase 3 of MULTIPLET with the modification that

prior to accumulating the broad-line contribution to the absorption coefficient the hydro-

genic free-free absorption coefficient from Ref. 5 is read from cards, the tabulated

photoionization coefficient from the code PIC (Sec. V) is read from tape. and the

Compton scattering cross section is calculated. The broad-line absorption coefficient

I is then accumulated on top of these continuum contributions.

SFor the purposes of the Rosseland-mean calculation the narrow lines are divided into

two classes - strong and weak. Strong lines are those whose strength at the line
l center is greater than the continuous absorption coefficient - evaluated at the line

center; the remaining narrow lines are classified as weak. In RABB the line wings of

Sthe strong rarrow lines are accumulated with the broad lines, so the final tape result-
ing from RABS contains the tabulated absorption coefficient due to all atomic contri-

butions except the weak narrow lines and the line centers of the strong narrow lines.

To finally evaluate the Rosseland mean opacity, a computer program ROSS is utilized
to read the tape provided by RABS and to properly accumulate the narrow-line contri-

bution to the local mean free path - averaged over the small frequency interval Aw
(defined at the end of Sec. IV). The local mean free path is tabulated by the code as a

function of energy and density; a numerical integration of Eq. (6.2) - with a variable

upper limit - is carried out, and the code tabulates the resulting partial Rosseland
means.

The mean free path frequency-averaged over the small interval Aw is calculated by
attributing a rectangular shape to the weak narrow lines and a Lorentz shape to the

strong narrow lines. The frequency interval AW is then subdivided into generally

unequal subintervals sufficient to adequately represent numerically the narrow lines

in the interval. Over these refined subintervals the narrow lines are accumulated

with the rest of the absorption coefficient and the local mean free path is obtained by
• t,,o-,tal 4n+em"atIn A ,-nmnl.afa I'RTRAN Hasting of ROSS is included in

Appendix D.
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COMPARISON WITH EXPERIMENT

An experimental observation of the emissivity of pure nitrogen at a temperature of

11, 000°K and a density 1. 16 x 10- 2 normal has recently been carried out by Boldt

(Ref. 107). The intensity measurements covered a wavelength interval of 4000 to

6000 A, and the effects due to strong narrow lines were omitted. A comparison of

the results of our calculation at Boldt's temperature and density with the experimental
0

results is shown in Fig. VI-1. Included are our line emissivities, averaged over 200-A

intervals and not corrected for self-absorption. It is seen that most of the emissivity

is due to photoionization transitions.

Allen* and associates at AVCO (Ref. 108) have recently measured the emissivity of

an air sample at a temperature of 10, 500"K and normal density over a wavelength

interval 0.5 to 1.3 u. (5000 to 13,000 .) The total emitted intensity is observed

over 50-A intervals from 0.5 to 0.6 A and over 300-. intervals from 0.8 to 1. 3 A.

The experimental results and our theoretical approximations thereto are presented

in Fig. VI-2.

Our nitrogen calculation was carried out in fair detail with an approximate correction

for self-absorption of the strong narrow lines by limiting their intensity to the theo-

retical maximum, the Planck function. The oxygen calculation was quite crude in

that multiplet splitting of the 3s and 3p states was ignored. Thus the 3s and 3p

transitions which dominate the region 0.7 to 1 p appeared at a single energy, whereas,

in fact, they should be spread over an 1800-A interval. In view of the crudeness of

the oxygen treatment and our uncertainty in matching the experimental conditions, our

results are in reasonable agreement with the experimental data.

CONCLUSIONS

As indicated in the introduction, the aim of the present study was to remove those

hydrogenic approximations most seriously in question in previous calculations and to

*Private communication.
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Fig. VX-2 Comparison of experimental data from Ref. 108 with the reisulte of the
present calculations.
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i study the effects thereof. To this end the bulk of the hydrogenic matrix elements have
; been replaced by physically more reasonable values, and computer programs have

Sbeen developed to treat the relevant physical processes in as much detail as practicable,

consistent with the uncertainties in the basic physical parameters. Some mean opaci-

ties useful in radiative transfer problems have been evaluated, and, by use of the com-

puter programs, more detailed results are easily obtainable.

{ It is felt that the major source of uncertainty in our results is likely to be our neglect
Sof line transitions to doubly-excited final atomic states. The effect of this neglect is

Sundoubtedly showing up in our line Planck mean results. Due to the overlap of such
final states with the continuum the states are subject to autoionization and thus should

be quite broad - affecting the Rosseland mean opacities. An adequate treatment of

such transitions would require a detailed theoretical study of the broadening problem.

The lack of experimental information regarding these same doubly-excited states

forces some rather arbitrary approximations in the Burgess-Seaton calculation of the
photoionization of inner electrons - as discussed in Sec. V. A noticeable improvement

would probably require more detailed and time-consuming Hartree-Fock calculations

similar to those of Dalgarno (Ref. 100).

At low photon energies and high temperatures the free-free absorption becomes a sig-

nificant contribution to the opacity. The hydrogenic values used in this work are

certainly subject to doubt and further studies of nonhydrogenic approximations are
undoubtedly warranted for the free-free contribution.

In view of the accuracy of our input information and the amount of physical detail we

have taken into account we feel that our results should be the most accurate air opacity
results presentee. to date. However, we cannot place quantitative estimates on our

accuracy, as this project has of necessity had to be termhrusted before the requisite
analysis could be carried out. Detailed parameter studies and numerical estimates

of neglectea effects should be undertaken as well as further checking and testing of our

results.
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Appendix A

STATISTICAL MECHANICS OF PLASMAS*

A. 1 GENERALIZATION OF SIEGERT'S DERIVATION OF THE OCCUPATION
NUMBER FORMULA

It appears that the variational derivation given by Siegert of the formula for the occupa-

tion number, N, jz, [Ref. 4, Eq. (20)], can be improved somewhat. Furthermore, it

is worthwhile to consider the drivation of this and related formulas from a different

approach, namely use of the grand canonical partition function. There are at least

two reasons for looking at this alternative derivation. First in the framework of the

grand partition function it is easy to include electron-degeneracy effects due to the

operation of Fermi statisics. Secondly, results for the interaction free energy includ-

ing quantum effects for a dense plasma are usually obtained using the grand partition

function.

One-component Plasma Using the Grand Partition Function. To illustrate a few points

that will come up in the treatment of an ionized gas. we first look at the electron gas

in a smeared-out positive background. The grand partition function is

ZG(, ef o = Tr exp aN H + e 2

Recall that the thermodynamic potential 0 is identical to the pressure 0 =- PV, but

as a function of a and 0, not p and 6. The two parameters, a = chemical

*This appendix was written by H. E. DeWitt.
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potential and j = 1/kT, are normalized to the number of particles and the energy

respectively, as obtained from
i

S 8@12)= TrH exp (aN - PH)
8 Tr exp (aN - PH)

= - Tr Nexp (aN - H)N 8( Tr exp (aN -PH)

I is the interaction contribution to the grand potential. For the electron gas of any

Idegree of degeneracy we have

'1 (3fl= 3 3/ 2 (a)

where

= ( 2ir) 3(R/V) =a)
(2s + 1 )3/2( 2mkT )3/2 1/2(

C1 is the chemical potential of the unperturbed system (e2 = 0), i.e., the ideal

gas value. The 3 functions are

GO In mdz e ( l s sa  a
j(a ) = I' for e < 1.m (m+ 1) 1+exp(-a+z) sm+f

0 s=1

Since the chemical potential depends on 3flI , we write it as a = a 0 + 6a and now
must evaluate 6a from

IR N=-- 2 (a +.. 0

I A Taylor expansion gives

11 + 6 1/20 0 O I, -3/2V-0)  WOl( +
"___+__ + .,- / +... + '0' + a

N= 1P6 2 a 2

1
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Clearly when X, is very small, then ki becomes proportional to and higher-

order terms may be neglected. Thus the lowest-order result is

ca 1(a 0 ) 
3_1 /_2 (a 0 ) - -N

N 0

The second form of 6a in the above equation follows from

d [R l( -1/2(a)
dN(a) -- j-4 t - da = da .

Also note that to first order in 6a the following identity holds Oil,( a) = - FI( a0 )

where FI is the interaction free energy (0i in Siegert's work). Consequently one sees

that the quantity q*/0N which appears in the variational derivation of NJ, jz is the

first-order shift in the chemical potential away from the ideal-gas value a 0 .

In order to find Ua more accurately than the above first-order result one must solve

at least a quadratic equation. It is possible to do this without too much difficulty for

the non-degenerate electron gas. In the limit of no degeneracy all the 3 functions

reduce to the Boltzmann form, 3m(a) = e , and we have

a exp (a0 + 6 ) ae __ __ __ __ _

-= e

a 0

since e = , 1O = loge.

Classical Coulomb interaction effects in the electron gas are functions of the dimension-

less parameter

A -- e-=- 21r1/2e3 33/2p1/2 N"
'D 4 3r

4wA;

In the grand partition function the corresponding quantity is A e6a/2 because every-
Ca

where N appears it should be replaced with Ne
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I

The Helmholtz free energy is

OF(p, 0) = (a 1) +- A (log 3A + 2c -L
01 2 6)11l

II

to order A2 . This includes the Debye-Huckel term and the small A form of the

Abe S2 integral. The thermodynamic potential to the same order of accuracy is

0 0 6a + .Aexp (I M) + [log 3A exp(6)+2c-LI+Ia
-- 2 2 22 6 2

Note that 3I = -OF, only to O(A). To find 6a one must solve C,

I I6o + A 6a) +[log 3A +2c - + +28ef 6a 2 2orde [ ( 6e1 1s

or

*~~ 1=16+6 2  1A
2 t+ 60 + .1A(1 + 6~ + -(l 3A + 2c-

Solving for 6ar to order A2ie

A A2 (log3A2c )

The above calculation of 6cr was carried out to show how to calculate the chemical

potential from the thermodynamic potential obtained as the logarithm of the grand

partition function. Now recall from thermodynamics that the chemical potential is the

Gibbs' free energy per particle, i.e., G aE-TS+PV = N;p(our a is P&), and

that the chemical potential is obtained from the Helmholtz free energy as . = ON

In the case of the classical electron gas we have the result for the Helmholtz free

energy (it is easier to calculate than the grand potential in the absence of quantum

i##an4.'~& rn-4v, r wi+ *A Mffaviontion given

I A A 2 119\
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in agreement with the earlier result. One other important result should be noted

here. In the absence of degeneracy due to quantum statistics ( << 1 and hence

ao = log t is large and negative) we find, from the defining relation for the number

of particles in terms of the grand potential, the expression

(_6a 8FI im DQIe -  ---exp y-* /- = 1 + a-- = 1 +-
e e) P + e 6a t + N(a)

Variational Treatment of the Multicomponent Gas (Siegert's Method). We now con-

sider a gas composed of Ni nuclei of charge Z and ZNi electrons. At sufficiently

low temperature this gas will be Ni neutral atoms, and at sufficiently high tempera-

ture it will be completely ionized, i. e., Ni bare nuclei and ZN i free electrons. At

intermediate temperatures every ionic species is possible; there will be ne free

electrons and n ions of charge z (thus Z - z bound electrons on this ion). These

numbers, ne and nz , depend on temperature and density, but always must satisfy

the requirements

I n z Ni

z=O

Izn z = e (electrical neutrality)

z=1

Each ion of charge z may be in one of numerous internal-energy states with quantum

numbers which will be denoted collectively as Jz. Of the nz ions with charge z

the number in a state Jz will be denoted as nz, jz and thus we have

n zJz = nz
Jz
z

for z ranging from 0 to Z - 1 (ions of charge Z, bare nuclei, of course have no

internal states). The energy levels are denoted as C(z,J , ne , {n}). They are
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functions of the number of various kinds of charges because the energy levels of the All
by0

ion in a vacuum [denoted by C0( z, J )] will be shifted upward due to screening by
other charges in the plasma. If one assumes that the least-bound electron on an ion

; of charge z moves in Coulomb field of charge z + 1 (nucleus and core bound elec-

trons) but with this Coulomb field screened according to the Debye prescription, i. e.,
the effective potential is -( z + 1) (e"/r) exp (-r/AD), then the energy levels will be

c (z,Jz, ne,{nz}) = c0(Z,Jz ) + (z + 1)e2 /AD + le(Jz,ne,{nz}) where the vacuum

I levels will be hydrogenic, the second term is a constant energy shift upwards for all

levels, and the third term will be in lowest approximation

2-C(z + 1) (e /QkrA2>

zL

The assumption has been made here that the energy of the level is measured from the

vacuum continuum limit. Actually, however, the continuum limit for electrons is
effectively lowered by the amount -e2/AD Thus bound levels above this lowered-

cotnu*ii [this means I (Z'z9%pJ~nenz)I e2/ find themselves no longer
bound. The number of states to be counted as bound is determined by the condition that

The screened Debye potential is a model for uef( r), and not necessarily a good one.

According to basic ideas of statistical mechanics the probability of a given partition

of the total energy, i. e., ne free electrons and the set {nz, jz} of ions, is

2s+ )V 'e (2s + 1)V
_ _ z .n

'-3/2 3 17 ,-3/2 3

e"n e,17 nz J. I, j z
e5 ,J zJI. z

V
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where Xe = /(2mekT 1/2, ie = %/( 2mkT) 1/ 2 , b 20) is the second virial coef-

ficient, and n 0 tothe number of neutral particles. This expression is essentially

Siegert's Eq. (16), (Ref. 4). The first two factors are the translational partition

functions of electrons and ions [Siegert did not explicitly put in the translation partition

function of ions, i. e., (V/)Ni The same thermal wavelength K may be used

for each ion because of the smallness of the electron mass compared with ionic masses.

s e and ai are spins of electrons and ions. In the exponential, FI is the Coulombic

free energy due to interaction of free electrons and ions. In the low density limit, F I

is just the Debye result (ring integral sum for point charges)

2n e 2  1 V

OF A(ne+ z nz) -3F e -I 3 4w 3

= [4wre2 + Fz2z)]/

This result could be improved by treating the ions as extended structures (rather than

points) by describing the bound electrons with some kind of form factor. Also it

should include the multicomponent form of the Abe S2 -integral. The terms S2ee and

b2zz for electron-electron and ion-ion interaction respectively may be written down

immediately in their classical-limit form, but the term S2ez for electron-ion inter-

action has no classical limit and the correct quantum-mechanical treatment has not

yet been dependably evaluated even in the low-density limit. At this point it is not

clear how to combine the exact but unevaluated theory with the present elementary

approach. The reason is that S2ez includes both scattering states and bound states

of electrons on ion of charge z. Bound-state energies, however, are already treated

in the second term in the exponential. The third term is the free energy due to inter-

action among the neutral atoms (z = 0), and is approximated with the second virial

coefficient.

rm it.*d . . # . 117 rs4ah f r WtV 1% in a nbhabl partition uning the

method of Lagrange multipliers. Since we have two conditions to satisfy - fixed
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number of nuclei and charge neutrality - we introduce two as yet undetermined multi-

pliers, and calculate the partition for which the quantity

z

= logW + ai nz +aene " Znzn)

z=0

is stationary. We now assume that nz , j = n*, z + 5nz, J where the variation
6nzt jz must satisfy

6nZ Zz JMDI DUI.AD

zg

Z' J zz

CRe z n Z J = z

Z z z z

Siegert used only one multiplier, cI, but in his calculation took into account electri-

cal neutrality by replacing 6e with I zn z . The first variation of -. is

lo *+ log lo a lo
6ne  e) + ] g 3

Jz z z,J

-6 6~(n, J &6ni~ 0f02

-lz I z

+ail6nj + ae(6%n - >z~nzj) 0
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I

Assuming the coefficients of 6n e and 6nz, Jz to be zero gives

(2 2 z + 1 )V OPF I

log n* = za e ) + log 1 - -PC(zJ3 n In )

n* 2(-2V OKrne-13 n, Jz Ozz " 2(13 6Kroneclker

z z ki ~ e
z

(2s e+ 1)V OUI  n

logn* = c e +log (2 +)V* ,
0 e ( /2e/2)3 -  e ZJz& -e

The equation for n*Z,Jz contains two terms not present in Siegert's expression:

namely, the term containing Be/On which takes into account the density dependence8€8z

of the energy levels and the term involving the second virial coefficient for interac-

tion between neutral atoms. Note that the log V term can be written as

(2se + 1)V +oo 2r e + 1)7r3/2 ( 2mekT)3/2

log (,e1/2) 3 = logn (n*/V)K3

log n + loge =logn* - ce

where aeo = log re is the chemical potential in the absence of interaction. Thus,

the number of free electrons n* and the occupation numbers, nj, Jz , may be

written as

(2se + 1)7r3/2V Be= e ex an n

n(2 3 exp i _ e- 13E(Zz,ne,{nz})
__ __ _ eean Z ezX Jz38 zz ~Iz

- n* 8n - 2 b2(0)6K(z0)

z Z' J z1
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Our next problem is to determine the undetermined multipliers a1 and a We first

need the number of ions of charge z which is

( 29 z + 1 )73/2V [aF

n*= n*(s + exp (a- zae) -

- fz(ne,{nz1)- 3, V fOn

Jz

Jz

*1*

energy, fz' is probably in most cases a small finite number. Presumably a more

accurate theory must take into account the broadening of these bound states near the

lowered continuum. The topmost levels may be so broadened that they overlap and

thus not contribute as bound states. At the present time, we do not take into account

this effect.

Let us look at the occupation number formula, nj, jz, and ask how to recover

Siegert's result, Eq. (20), (Ref. 4). First note that Siegert does not have the factor

( 2s9 + 1),r/2V
Ni(2o + 1) - Ni(2s z + l)exp(-ai 0 )
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since he left the Ion translational partition function Out of hid W. Secondly, note that

his multiplicative factor involving the electron translational partition function may be

written as

( V) z ( /Iz = exp ( za e0

Thus the exact chemical potential, a. e in the present result is replaced by the ideal

gas chemical potential, a eO' in his result. Now note that the formula for n,* inay

be written as

e (Iae8O BFI One1

e Be

.a =a +~~ +0 ne eo Ine n' Jz In

Actually, Siegert does not lose the piece OFI/"'8e that occurs in the exa-:t "esult
for a e eihe, in his formula, the partial differentiation, with respect to n zmust be

!nterpreted as

I SIegert Z~~

whei, On e/Bnz = z since n e = I znz . In the present formulas the partial deriva-

tives have the usual meaning, L. e. , differentiation only with respect to the stated

variable. Thu-, in the end Slegert has the correct result for na, j except for the ion
trAO-4Iational pv '-tton fUnctiON".. The pr.e-se..nt ethod of using two un~determined multi-
pliers seems preferable becaude it is Adear how to do the treatment in the grand parti-

tion functinn, arnd it is not clear in Siegert's method where only one multiplier, a1 ,
Ic uted.

106



qJ4

Next we must have a procedure to evaluate ai and a The total number of rucleii e
Ns supposed to determine a from the equation

1(2)
N(= 2n e s0 + 1)exp [ f0 - b (8

Z=0 Xi

+ (2z + 1)exp Zze  -fzz z
z l

z=1 i

In terms of t0 and aeO the above equation may be written as

Z
1 = exp(a 1 - a1 0 )z (2s= + 1)exp [zce0 - -- F - Pfz

Be n (n*)b O]z 8 z  zeke
z z, Jz

We can calculate ai - al0 (al 0 is known since NI is a fixed number) as soon as we

have ae0; but a 0 depends on the number of free electrons which has yet to be
determined. a and hence aeO is determined from the electrical neutrality condi-

tion, n = zn* .= N Here .is the average ionic charge which must go to

zero at low temperature and to Z at high temperature. The equation for i to

Zn MRe Z

=z( 2s z+1 x ae f

zn* z nz  z 'n-e Z '

• (2s Z + 1) exp i-c, eO-..

z=O
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t

where

i 3 (EN /V)
= logC =log

eI (2s e + 1)ir 3/2( 2mkT) 3 2

Presumably this equation is solved for i by guessing values of 2, calculating the

right-hand side, and repeating until both sides of the equation match. Once a e and

ai are known we may return to the evaluation of the occupation number formula,

Z, JZ

Grand Partition Function Approach to the Multicomponent System. In the grand parti-

tion function one allows both the energy and the number of particles to vary in a fixed

volume V and at a temperature T. One calculates the average energy and the aver-

age number of particles (not the most probable number as in the variational approach).

The average number of particles is equated to the actual number in the system and

this condition gives an equation for the chemical potential for that type of particle.

In our multicomponent gas we have two conditions, fixed number of nuclei N, and

electrical neutrality; these conditions will be taken care of by introducing the chemi-

cal potentials a i and a e exactly as in the variational method. One calculates Ni

and f1 e - Izftz by differeatiating the grand partition function with respect to ai and

te respectively. Strictly speakingwe cannot get the occupation numbers, ft5 z, from

the grand partition function. However, it turns out that the result for fiz is immedi-
ately apparent from the result for Ri . Furthermore we have ample reason to believe

the canonical distribution of energy, and so can write immediately

= ft z --p F pe, fi z exp (Pf z - ac)

J

z

Our main problem is the determination of the chemical potentials, and to this end we

will derive formula for Ni and I that are the same as the expressions obtained in

the previous section by the variational method.
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The grand canonical partition function, assuming classical statistics for all particles,

is

Sexp[a Inz + -(ne zn )7
z lGwv 1 aite)'I3

whreth smmtinsovr ne " d nz, jz ar unetitdXnteed o eea

ZG~t3neta nnfl J z 3  3

an a mstbechn sota -N te ac lnubro nuliJadteeetia

e z
L

F n2
x exp n~I(e9n} 0-

I where the summations over ne an nz, z are unrestricted. In the end, however, a,
an a must be chosen so that N, is the actual number of nuclei and the electrical
neutrality condition is satisfied, Be - jz = 0. More generally, the summations in

the above expression represent the evaluation of the trace of exp [ai~nz + ae(ne"-

Jznz ) - PHI . The result for the thermodynamic potential is

3 3 /2(a.) _N#) + n 0 b~~
fllog Z D o +-i s+ 1) exp (a1  z 02+o,) VAG e % Ce e zzi eri z4

where

3 A( /V) A (/V)e e Ii
Ce 7i2 r i 3/2

(2s + 1)1

Recall that both 0 and fz are functions of the numbers of particles. This will be

expressed as a dependence on the chemical potentials. The prescription is I

(2s + 1)
n z exp (ai - z% - ofZ)

I )
103/2

ne 3 1 /2 'e)

"e

109



We are allowing for the possibility that the electrons are sufficiently dense that Fermi

statistics causes degeneracy.

The result for is

N = = e (2Sz + 1)exp(-zae -Of 1 - !Ln
z ( 8-z  nZ)

Zz

Similarly, differentiation with respect to a gives

fi e to s v f r a + f m h rI f r + Ni exp d eene yi0) (2 s za+  1)

Oy _ 8 d + I (-,znz) = 0

e e
From these two equations we can pick out the expressions for %z,%,e and Jzflz .

Our procedure now is roughly the same as in the previous section. The first step

is to solve for a e from the result for rie ; since electron degeneracy is allowed

forthis step is more complicated than in the previous section. r e is proportional
to the number of free electrons, and consequently the second step is to write down
an expression for I.- so that we can calculate the number of free electrons,

sle = I 'I " Finally, on knowing ae we can return to the expression for NI and
solve for a i I

The expression for ni (read from the result for fe - 7zi-) is

e - e 1 e + O e z n e

S-We e e e
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zI

i I
or

aZ)[1 1 e-91/2(c' C( [1 + 11 z On

This expression defines a e in terms of Ce, but Ce is not known until I is deter-

mined. Recall that

,l Jll/2(ae) = eae -~ 3' + .... I

a2
ee

Letus solvefor e at least to order Ce

e = g e + +
2 32a og r I

eoeg Ie+ e 3/-2+...+** , ntti'Jee e "232

e ~ ~ ~ ~ ~ ~ j loeeI1+0 7-

aeO

In the limit of no degeneracy (so that the re term of aeO is negligible compared

with log C this expression for a is identical to that derived in the previouse e
section.

For the second step of our calcuiati-al procedure we need I which is

Z 800U) Of~
z~l z(2sz + 1)exp (-ze - f I+ f z

z (2s + 1) exp (.za O8f) 11 - ar +
z=O z e on anzz (

"< ~111 o
fI



This is the central result of the grand partition function method. As in the result for

z in the previous section it may be regarded as an equation for z of the form

2 = f[a ()], and coupled with the equation defining ae in terms of 2 it may be! e
solved for any degree of electron degeneracy. It was not clear how to include electron

degeneracy in the variational result for 2. The next question is: are the two expres-

sions for i identical? In the grand partition function result 12I appears linearly

while in the variational result F, appears in the exponential. In fact, the two results

are the same since it was shown previously that

r8PF(a1)1 + Mfl(a)
exp [.I= 1+ On(a)

Finally the third step is to evaluate at from the expression for N which may be

written as

1 -exp(ciiia 0 ) 1 (2 sz + 1) exp (-z - fe - z z  2 Vb 2

z=O

Once a e and ai are evaluated the number of ions of charge z and the occupation

numbers of various states may be found from

z= NI exp (oI -i 0 )(2sz + 1) exp(z e - + - f

Az = n z exp fz- 8c(z'J z'Ie fiz}) '

In order to compare these results with the variational results note also that

R og e" O = - z  -_ _ J•

z nz z -IeP J z anz
z z
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Thus, the grand partition function approach reproduces in every respect the results ofjthe variational approach. Also it gives a prescription for inclusion of the effects of

4electron degeneracy at high density.

Crude Estimation of the Chemical Potential Shifts. Consider again the occupation

number formula for a non-degenerate gas as obtained from the variational method

IZ J = (2s + 1) exp " - eza0  (z,Jn ,n z}n
z-IzN Z z'et

O(PFI B8PFI) - 3z 11z"z e

Ontz- z -We  z z1=0ne

In the low-density limit is the Debye result:

(1: r-2 1 17 2(yzn~n)
I z e) z e)]

and the resulting shift in the chemical potentials 's found to be

8(PFI ) 81(F I ) 2

8n 8ne  =,(z 2+

The question now is, how does the shift due to the dependence of the energy levels on

charged-particle density compare with the above results? Assume that we have decided

how many levels are to go into the calculation of fz either by taking the last one

under the lowered continuum or perhaps the last distinct line before broadening

merges the remaining upper levels. Suppose further that we can calculate these

levels by solving the Schroedinger equation with the screened Debye potential,

(z + 1)( e/r) e-/ . Suppose further that the resulting energy levels may be
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k
written as an expansion in powers of (ao/"D )/(z + 1) since the Bohr radius for the

core charge z + 1 is ao/( z + 1)

2 2 e2a0 e2af(ZJ n on } (z+1) Ry + (z + 1) -a a 0
z z })2 D lz 2 2z, J 3

Ti ZXD z 17

where the coefficients anz' jz are numbers to be calculated from the multipole

matrix elements, r/an> Presumably if these energy levels are fed into the cal-

culation of fz then f% could also be written as such an expansion

2 2 22  ea0 e a -
0~ e2 0l 0~

Sf() + (z + 1) - b - + b 2  -. .

Then the terms in the chemical potential shifts depending on the energy levels would be

z1Of z e_ 2(z + 1)z2nz [1 2b a. 2 bz .

onz z+T + +On2a " 2
n I e l n [1 () (2+1) aoD)

+ zn z+e 1 z' + 1) - 2bl( ,  + ( a) -

If the presumed expansion of fz exists, then we can conclude that at low density, for

which a0 << AD , then only the first term of the energy shift should be sufficient, and

the above result would be

Pe2  (z + 1)z2nz + zneZ(Z+1)/2
2 ,%D YZ 2nn + n

It appears that this result could be of the same order as the shift obtained from the

Debye free energy. Certainly the effect should be investigated before much effort is

put into using approximations to the Abe S-term to improve the Coulomb free energy.
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A. 2 EQUATION OF STATE OF A MULTICOMPONENT PLASM. AT HIGH
TEMPERATURE

The purpose of this section is to set forth what is known at present about .he free

energy of a multicomponent plasma at high temperature and low density. In this limit

the Debye-HUckel term with quantum-mechanical diffraction corrections is the domi-

nant Coulomb interaction contribution, namely O(p1/2). The next term beyond the

Debye-HUckel free energy is O( p log p), and is the main concern here.

For simplicity, we begin with a discussion of a one-component plasma - the electron

gas in a smeared-out positive background to maintain electrical neutrality. In such a

plasma there are three fundamental lengths which suffice to describe the system:

Distance of closest approach- Pc e

Thermal deBroglie wavelength - K = i1 /2m) 1/2
i/2

Debye screening length - XD = (4wre 2p )-/y"i-
" The three possible ratios of these lengths give the dimensionless parameters which

are useful for writing down formulas for the free energy:

1 1/2 3 3/2 1/2

Classical plasma parameter - A = e P 2p)D 4 lwp 3 I

Quantum diffraction parameter - v =
-D (2w1 1/2 In

-- - 2" - -1/2e-2p-1/2m'1/2Wigner-Kirkwood expansion parameter - = 2 - A
fc A

At high temperature the three lengths are ordered as Ic < X << ID and hence the

dimensionless parameters satisfy A < y < 1, q > I. This is the limit in which

we wish to give a correct result for the muiticomponent free energy. High tempera-

ture here means kT > Ry ; when this is true then the thermal wavelength is greater

than the distance of closest approach, and consequently quantum-mechanical diffrac-

tion effects must have some residual importance.
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With the work of Meeron and Abe it is now possible to evaluate the free energy of a

low-density classical electron gas. The word classical means ii = 0. Also with the

help of the Wigner-Kirkwood expansion one may evaluate small quantum corrections

to the classical free energy due to the uncertainty principle. For the Coulomb poten-

tial the Wigner-Kirkwood expansion parameter is 17 as defined above. This parameter

becomes large at high temperature, and consequently the WK expansion for the

Coulomb potential can only be valid in the low-temperature limit (when q < 1). This

situation contrasts with the WK expansion applied to ordinary non-ideal gases with

say a Lennard-Junes interaction where the WK expansion* parameter becomes small

at high temperature. The result for the electron-gas free energy in the low-

temperature regime is

O(F - F0 ) A 2

N 2 (log A  + l). + Af(i2  (A. 1)

22 4 6
r 12 60 63

For this result to be valid as written the fundamental lengths are ordered as

begc <AD and the dimensionless parameters as y < A < 1, 7 < 1 (kT < 1 ryd-

berg). One may ask whether this limit makes any sense because for real electrons

Fermi statistics must be considered at low temperatures. We will avoid for the time

being any modification due to quantum statistics by the device of giving the electrons

a spin s which may be large. The gas remains non-degenerate, i. e., with a nearly
3Maxwellian velocity distribution as long as = pX/(2s + 1) << 1. The gas is par-

tially degenerate when t - 1 and very degenerate when t >> 1.

The function f( 72) in Eq. (A. 1) represents the sum of the entire WK series of

which only the first three terms have been calculated (and it is unlikely that anymore

will ever be evaluated because of the extreme complexity). Obviously this series

expansion is only useful when ?I is small, but in the interesting high-temperature

limit we observed that i? becomes large. Consequently instead of the WK series

*The WK expansion for various potentials has been discussed by the author:
J. Math. Phys. 3, 1003 (1962).
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we must have the asymptotic form of the function f(t 2) valid when 17 >> 1. In fact

this asymptotic result must be

All -.., V1/2 1 (A. 2)

f( ) -2....?112

ji This asymptotic form used in Eq. (A. 1) gives the high-temperature free energy as

(F- F0 ) A 3 1/2 YA 2

N - 7 i 2  7... -'j(logv+D 2 )... (A. 3)

valid when f c < K<< 'D , i.e., A< y <1 and q > 1. The asymptotic form of

f( 2) as given by Eq. (A. 2) has been arrived at in a round-about fashion, though it

is hoped that it will soon be possible to verify it by direct calculation. The diffrac-

tion corrections contained in the parentheses multiplying the classical Debye term

in Eq. (A. 3) were calculated in an article* by the author, however it was not made

clear that the result was valid only when - > A, i.e., when il > 1. The log y

term in Eq. (A. 3) is the main point of interest.

Simple perturbation theory is helpful in understanding both Eqs. (A. 1) and (A. 3). In

first order the direct interaction is

1st - p2f 4rr2 dr (- cc- 2(Pe2)L 2

0

where L is the length of a side of the container. Thus first-order perturbation

theory gives a quadratic divergence, but the term is multiplied by (pe + ziPi )

which must equal zero for electrical neutrality. The second-order term has a linear

divergence

00

2nd = fe 4rr2 dr ( e cc p 2(e2) 2 L

*J. Math. Phys. 3, 1216 (1962).
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This divergence is removed by summing the ring diagrams which has the effect of

introducing Debye screening, so that L in the above expression becomes A D' The

point is that the familiar Debye-HUckel free energy is really little more than a second-

order perturbation result. In third order we have a logarithmic divergence both for

long and short distances

002 L
3rd = f 4 2 dr ( Pe log ma

e 0 r e Ia in

By summing chains of Coulomb interactions one again introduces Debye screening

which has the effect of making Lmax into xD" The divergence at short distances in

the classical gas can be cut off only by summing perturbation theory for two-body

interactions to all orders. When this is done the lower cut off min becomes the

distance of closest approach fi = fle 2 . These two operations are described nicely by

Abe.* Thus one finds the term with log AD/fte 2 = - log A in Eq. (A. 1).

For the high-temperature limit of the electron gas with 1 * 0, 1. e., Pe2 < X, the

above discussion of simple perturbation theory becomes different in the third order

3rd p2 2 2  A
Pe2I(e, log " - log Y

and the nth-order term is

2 p(e 2 A n-1
nth p 4e 2dr

which is negligible compared with third order since we are specifying the high-tempera-

ture limit in which y > A. In a certain sense the quantum mechanical result given in

Eq. (A. 3) is simpler than the classical result in Eq. (A. 1) because the logarithm in

Eq. (A. 3) comes from only third-order perturbation theory while the logarithm in

Eq. (A. 1) requires perturbation theory to infinite order.

*Prog. Theo. Phys. 22, 213 (1959).
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It should be noted here that the constant D1 in Eq. (A. 1) is known, namely

A4" D = log 3 + 2c - 11/6, while in Eq. (A. 3) is not known yet.

In addition to Eq. (A. 3) there are also exchange corrections in the high-temperature

' limit:

1/2 _2 11/22
1 1 Y 2 loz A A 2 ... 1/= log2 A +D(.A

2s+ 1 2 5/2 3 2s+ 1 2 2 5/? - 3 '"

o First-, second-, and third-order exchange interactions are described above. The

Y constant D3 has not yet been evaluated.

i We may now write down the result for the free energy of the multicomponent plaema

for high temperature using the previous considerations. In a two-component plasma

A there is an additional parameter, namely the electron-to4on mass ratio, me/mi
There will now be three de Broglie wavelengths to be considered, namely for electron-

electron interaction, electron-ion interaction, and Ion-ion interaction. In a real
plasma the ion mass is 2000 times the electron mass or more, and this fact has an
in.eresting effect on the logarithmic term in the free energy. In the temperature

region defined by 1 rydberg < kT < (mi/me) rydberg, the lengths of the two-compo-

nent system are ordered as

"ei = 1(//2Mel)1/2

< 'c < lee g'Xei <<  'DI
Aei = me mi/( me + mi)

Consequently the cutoffs of the logarithmic divergencies for the electron-electron and

the electron-ion interactions are D' I e and AD,*,, respectively, while the cut-

offs for the ion-ion interaction are like the Abe result in Eq. (A. 1), namely XD , f .

Thus the result for the free energy is

fl(F -FO) A 2 Xt Xe
1 A A2 10 _e 2ei ee - e logllo (A.4)

i *19 lA
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where p = Pe + P i f f e = P e' f = pi/p. Here zi is the charge number of the

ion. In Eq. (A. 4) diffraction and exchange corrections were not written, because we

are looking mainly at the logarithm terms. Note that if the temperature is

kT > (mi/Me) Ry then the ion-ion interaction term would become log Xii/XD.

Also if the electrons and ions have equal and opposite charge and the same mass, the

logarithms in Eq. (A. 4) would all be equal and the bracket would be multiplied by 0.

(This statement applies to ionized positronium!) For real ionized gases, however,

the above result depends very much on the electron and ion masses.

This result, Eq. (A. 4), is obtainable from simple arguments because the gas at high

enough temperature is fully ionized, and further third-order perturbation theory

suffices because the thermal wavelength is greater than the distance of closest

approach. When these conditions are not fulfilled then the problem is vastly more

difficult since the electron-ion interaction includen the possibility of bound states.

Thus Eq. (A. 4) is probably useful for a hydrogen plasma above say 13 eV. The use-

fulness of the result is further somewhat limited by the fact that the constant terms

D and D for the exchange contribution are not yet known. Nevertheless, Eq. (A. 4)2 3
as written (and with the known constant D 1 ) probably gives a good estimate of the

free energy down to say about 7 eV.

It is easy to use Eq. (A. 4) to obtain a result for the average potential around a par-

ticular charge a according to the method described in the next section. The result is

80 _ Xee 3 "ei 6f21 PPU, z e  +- o 2 log +Z z log
a 8a ' D ie Dai '

where

A= 3 P Pe +Pi
4vrp

r 2(p + 2 "-1/2A 4wple e

AD = I41e 2(Oe+ z0ot)I
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i A. 3 AVERAGE POTENTIAL AND POTENTIAL FLUCTUATIONS OF A PARTICLE
4 IN A PLASMA

SIn this section a standard procedure in statistical mechanics is used to derive expres-

S sions for the average potential of a particle in an equilibrium plasma and for the root-

mean-square fluctuations around the average potential. The method requires only one

and two differentiations of the free energy, i. e., the logarithm of the partition func-

tion,of the plasma. Thus the results depend entirely on ancuracy of the evaluation of

the free energy. Explicit results for the average potential and the fluctuations have

been obtained for the one-component plasma, i. e., the electron gas, by Bohm and

Pines. The end result in this section is a more satisfactory derivation of the Bohm

and Pines expression for the potential expression extended to the multicomponent

plasma. Since the Debye-HUlckel plasma free energy is equivalent to the Bohm-Pines

random phase approximation, we know that the resulting expressions for average

potential and potential fluctuations are valid in the low-density and high-temperature

limit.

Let us first consider the derivation of the total potential energy of a plasma, U, and

the fluctuation, U - U 2 . Our system is a box of volume V containing Ne elec-

trons of charge Zee and Ni ions of charge z ie all at temperature 0 = 1A/T.

Electrical neutrality requires z eN + ziNi  0. The partition function Is

Z * exp{-P[F 0 + FI(g)]} = Tr exp (- (H 0 + gU)]

1 1 e2z

jo J, a as

where g is a dummy dimensionless number which is set equal to 1 at the end, and

F1 is the interaction free energy. H0 is the sum of particle kinetic energies and F0
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is the resulting free energy which gives the ideal gas laws. Differentiation with

respect to g gives

8_g Tr3U e-H
- 2 og -PH H 2

8 (OF) _ Tr( e -  + TrU e- H 2
2Tr e TrePH (/3U)2 (1U)21

The Debye-HUckel plasma free energy with e2 replaced by ge 2 is P3F I (g) =

- 1/3 NAg3/2 where

NN =Ne +Ni p =-e ' V

1 1/2 3 3/2 1/2(z2

$D = 4 e2 (e + l

<z2> ( + z,,P)

Differentiating this free-energy expression with respect to g gives

U = -- NA

(<u)2 - (TU) 2 = + 1 NA4

The plasma interaction parameter A may be rewritten as

21z2

A =e 2= 4re 4 2pD Z2>2

;;D

1 22



and consequently the potential energy and the fluctuation become

N _(z 2>

U"2" 1 4' 2 2~~z

U N4re4

where the fluctuation has been written in a form similar to the Bohm-Pines results.

The average energy of any single particle in the plasma and its fluctuation is obtained

in a similar manner. If the potential energy is

2U =1 fZJZ1e

2r1

where the indices j and f run over every particle in the plasma, electrons and

protons, then statistical averages are obtained by differentiating with respect to the

charge number za of particle a. Thus, we find

* =  TrJe 0 H I T ., ~Z /
h Tr e~H ~ ~ --- )

ze2 2  ze 2  2
8Tr -p e" H r z

az2  Tr e - H Tr e - = (

Ii
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Similarly

O2z F a Oz ,a- ( Ua )( Ua)]
azaaza , I" c'/2UUa'(UU )

If the Debye-HUckel free energy is written as

FI = - 2w'l/2e3 3/2V-1/2(z 3)

Then the indicated differentiations are easily carried out to obtain

U-- (2I/2 e3 3/2V-1/2 )za j 2 1/2

za

or

z2 Pe2 2
Za Iea,

O -NA - -a ~zj '

This is an important result. It s: v that a particle of charge z e even with no

kinetic energy has a negative potential energy amounting to (za e)% D . For an elec-

tron (ze = - 1) this is the amount by which the continuum is effectively lowered,

i. e., bound electrons in an atom are effectively unbound when the binding energy is
less than e 2 /D. The particle a feels a potential defined by Ut = (zae)a

which is Ta = - zae/AD . Note that this is not a constant potential for each particle.

Both * and Ua depend on the charge z e because the potential and resultinga a a
potential energy are caused by a polarization of the plasma in the neighborhood of a.

Thus like charges are repelled and unlike charges attracted.

If we sum UC over all a we get twice the actual total potential energy of the plasma

because each interacting pair of particles is counted twice. Thus, U 2U. Our

expressions for U and U satisfy this requirement.
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4 Similarly the fluctuation in U is

(j3 )-(3U = ac 2 z27 1/ z 2-/ ~ '~cx22 2 2, 1/2e33/ V -1/2 -

The first term of this result is of order NO and hence interesting; the second term
. is of order 1/N and hence negligible. For completeness, however, one should note

Sthat the correlation between U and U~ (cx and cx' being different particles) is

* 2FI ~22 z2 2

iZ

~2 UU-~2U ~~cx~cI N cxt = A Zx"cttcx , - cx -x -Bz., z, -- A2
L i

NAA[ + +- ]

- ~)2+ 2 2 #Ui-~Uxci

-i 2N. 8[(u) N <z 2)2

whica scrrtic the corelation between th flcuto in U at( and a'bigdifrn pris is

*~~~ ~ 2 2 2 2 ~x~x)4U 2

2-~~~~~~1 2.7aFIza5 , zaza



If we ignore the term of order 1/N, the fluctuation in Ua may be written as

U-U a = 4e4Dp>%= 4r,,,D(e z,10 )  This expression is the correct

multicomponent generalization of the Bohm-Pines result for the fluctuation. It is valid

for high temperature and low density since it was derived from the Debye-Huckel result

for the free energy which in turn is valid when A << 1. It may be improved by includ-

ing in the free energy the next-order term which is the multicomponent form of the Abe

S2-integral. For point electrons and ions the classical form of S is divergent, and2 2
i: consequently a quantum-mechanical treatment is required. Although the correct quan-

tum form of S has yet to be evaluated exactly, it seems clear that at low density
22

(A << 1) that the limiting form is of the order A2 log A. For the one-component gas

for which the correct form of S2 is known (since it is classical) one may estimate

quite well the error in neglecting__S2 for small values of A. It seems that the

expressions for Ua and U2 - U2 should be correct to a few percent for A £ 0.3.
a a a

It should be noted that the fluctuation in U, becomes arbitrarily large in the limit of

high temperature since AD goes to ao as (kT)l/2. Physically this means that the

potential felt by any one particle in the plasma changes violently as other plasma par-

ticles pass by at high velocities. As we go to lower temperatures and higher densi-

ties two effects will begin to change the previous results for U and a- - 2
First, the electrons begin to be slightly degenerate because they obey Fermi statis-

tics. This means that low-energy electrons cannot so easily change their energy

state, and thus contribute less to the screening effect. The ions may always be

treated according to classical Boltzmann statistics because of their large mass.

Secondly, the electrons are no longer strictly points but are wave packets with exten-

sion of roughly the thermal deBroglie wavelength, X = fi/( 2mkT .1/2. The interac-

tion of the wave packets causes quantum-mechanical diffraction effects in the free

energy which are of the order of Ay where -y = XAD . As we will now show both

effects tend to reduce % and U2 - U2 from our previous results (the particle a

is now an electron). The Debye-HUckel free energy for a multiccmponent plasma

with lowest order corrections for Fermi statistics and wave mechanics is

N - 3/2 1OF 1 - ir3/ *1
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where

S (= R T(21/2

122 2

z2N +z2N 1 )
z N1

2 34/2 - B ON(c )/Ma ; N(a) = (2s + 1)f d 3p  1
e = j 1 / 2 (a) N() 'J(2wi)I +exp(-a +OP /2m)

e e , 12
142 2 2/ + 4 I
jzN + 2z zN Ni( me/mNN
.ee eie.. 2 / +zi. .. .

The quantity 0e is a measure of the extent to which degenerate electrons are frozen at the

bottom of the Fermi distribution and prevented from taking part in the screening. Thus

the effective electronic charge for screening changes from e to 0ee. At high temper-

ature Oe goes to 1 (the Maxwell-Boltzmann value), and as T -- 0 then 0e also goes

to 0. If we now carry out the differentiation of OFI with respect to the charge of one

electron, then the results for U. and U- U are

e e 1e 3/2

u U• = -- p 2 -lye ...

1 2

Thus electron degeneracy reduces the results by the factor Ge2 and wave-mechani-

cal diffraction by the multiplicative factor in the braces. Of these two effects diffrac-

tion is certainly the more important near the classical limit. To see this fact one
notes that generally y is greater than A. The statistics factor 02 is approxi-

noe ha eerly'e 3/2 eIsaroi
mately equal to 1 - C /2 where

(2ir4) p5  __Y

e (2s + 1)(2,mekT) 3 2  A

12Z7



Thus even though {e may be very small (hence very little degeneracy), the diffraction
correction may still be significant.

Consider now any solid material with, say, nuclear charge Z. If the material is com-

pressed then the outermost least-bound electrons are squeezed into the continuum.

In ordinary metals at room temperature this pressure ionization has already occurred

without compression, i. e., each metal atom has lost on the average one electron

which circulates freely through the metal. Since solid densities are assumed the

electron gas is very degenerate; this means that kT << cF where cF is the Fermi

energy. Furthermore since the ions are bound in a lattice at all stages of compres-

sion (unless the temperature is hot enough to melt the lattice), we have a one-compo-

nent plasma of electrons with nearly stationary ions forming the neutralizing positive

background,' The free energy of such an electron gas is known to be

F v-- 1-lg2 lg B +CV' logo +...J

Ideal First-order Gell-Mann and Brueckner
gas exchange correlation energy

where

4me2  lira 2 1/2
= - =IPF T-0 a

= - as T- 0
kT kT

( flt)3p

2(2wmkT)

K
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i Hence

k2 41
AN

since electronic charge is zj = 1. This expansion in 0 is valid at high density. In
-1 3 2 2terms of the usual parameter r8 = r0 /a 0 where p = (4w/3)r 0 and a0 = 11/me

the expansion is thought to be valid for r. < 1 (4' - 0. 7r). In ordinary metals r8

ranges from 2 to 5. Assuming that our material is compressed sufficiently that

ra < 1 for the free electrons, one sees that th3 first-order exchange energy is the

dominant contribution to the potential energy. In what follows we consider this to be

the case. The average potential felt by any one electron is easily found to be

aF aF_

UC, z Z
33% iF 1 - (p log 2)(p log (p + 12B- 1- log 2) (P +. .. = P =i0F

when V<<1.

U 14 me P_ F
a F r1E2 2w1 -t

Since

1//3

1/3 2 421/3=. 3{9w 1/  e2
- 3(3w2 ) e2 1/3

3 2 1/3

1- .48 e P e .

1Z9



This result is extremely similar to the result from the ion-sphere theory even to the

numerical coefficient. Presumably bound electrons will go into the continuum when

their binding energy is less than the magnitude of U. The last electron is bound with

an energy of - Z2 rydbergs. So presumably the material becomes completely pres-

sure ionized when U. = 2 Ry or 1.48e2(ZNi/V)1/3 = Z2 13.6 eV, (Ni/V) 1/3

Z5/30.55 x 10+ 8 cm - . Hence a nuclear spacing of Ii = (Ni/V)-1/3 = 1.82 x

10Z8Z 51  cm. In terms of r8 for electrons this means rs = 2. 03/Z 2 . Thus

hydrogen becomes a metal at a density of Ni/N = (0.55 x 10-8)3 = 0. 166 x 1024

(atoms cm-3).
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Appendix B

COMPUTER CODE MULTIPLET

A brief description of the code MULTIPLET and the usage thereof is contained in this

appendix. Input-output information is provided in Sec. B. 1. Section B. 2 lists the

FORTRAN parameters used by the code, their definitions, and their dimensions.

Section B. 3 provides a brief description of each subroutine of the code, and a list of

the complete source program constitutes Dec. B. 4.

B. 1 INPUT-OUTPUT

A. Data Cards are read in the following order (FORTRAN FORMAT in parentheses).

1. Card 1 - NTAG, (110): NTAG = 0, Generate LINE ATIJ.S and calculate
Planck mean.

NTAG = 1, Calculate Planck mean from previously

calculated LINE ATLAS on Tape Unit A5.

NTAG = 2, Rosseland calculation (see Appendix D.)

2. Card 2 - (Included only if NTAG =0).

NCASE, (110): Number of atomic dat, cards

ALPHA0, (E 10.8): Minimum occupation ao'

3. Card 3 -NCASE Atomic Data Cards-(Included only if NTAG m 0). One card

per atomic state:

4 (12)

q, (12)
n, (12) Identification of atomic state

8 IT (see eud of Sec. 2).

2S + 1, (I1)
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I

P, (I1): Temperature index

E, (El0. 8): Energy of the atomic ,state in eV relative

to the ground state of the neutral atom of

the species

ALPHA(J), (6E8.6): Occupation numbers of the state at the

six densities (J = 1, 6)

4. Card 4 - ABSMIN, (E20. 8): Factor for minimum line strength accumu-

lated in tabulated absorption coefficients

TEMP, (E20.8): Temperature (eV)

NENGY, (110): Number of different tables of the accumu-

lated absorption coefficient

5. Card 5 -DENS (1, J), Ion densities (particles/cm 3) at the

(6E12.6): 6 densities (J = 1, 6)

6. Card 6 - DENS (2, J), Electron densities (particles/cm ) at the

(6E12.6): 6 densities (J = 1, 6)

7. Cards 7-15 - PSI2, (8F5.4) Data for Voigt profile (listed in

PSI1, (17F4.1) Sec. B. 4)
PSI, (17F4.4)

(8 cards)

8. NENGY Energy spectrum cards - One card for each table of the accumulated

absorption coefficient

NOMEGA, (110): N - 2000

OMEGAD, (E20.8): w 0(see end of Sec. 4)

DOMEGA, (E20.8): Aw

B. The systems input tape is Tape 5; the systems output tape is Tape 6. Tapes 16

(=A6) and 25 (= B5) are used as scratch tapes for storage of intermediate

results.
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Tape 26 (=B6) contains tables of atomic data necessary for the LINE ATLAS

calculation (in three files).

First file. HFS radial integrals 2 in three tables:

ASLATE (28 x 36 x 2)

BSITE (28 x 7 x 36)

SLATE (24 x 36)

Second file. Hydrogenic f-numbers in two tables:

A (8 x 8 x 16)

B (8 X 8 x 16)

Third file.

* Shell-averaged hydrogenic f-ntumbers:
FSHELL 

(8, 8)

• Series-limit information for line broadening calculation:

SERUM (11 x 12 x 2)

Tape 15 (-,5) contains the final results of the calculation: the LINE ATLAS
and the table of the accumulated absorption coefficients for broad lines at

each of the six densities - NENGY tables, one for each card INw, co, AW I
read. The arrangement of these data on the tape follows.

First File. The LINE ATLAS

* First Record - LTOT: Total number of lines in LINE ATLAS.

NCASE: See Data Card 2

ALPIHO: See Data Card 2

IBETA: Temperature index

• For each of the LTOT lines there is one record (written by subroutine

* ATLAS).

DELTAE: AE - energy (in eV) of line center

Z: the angular factor QM) (see Sec. 4)
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FNO: The f-number

SYGSQ: a2 [see Eq. (4.6)]

GFACT: The statistical factor G of Sec. 4

-3WCOLL: Collision width per electron, [wj/pe(cm - )]

of Eq. (4. 11)

WDOPP: Doppler width 6/2 of Eq. (4.12)

IDlI: (100 1 + Y)
Identification

M21: [1000n + 1001 + 10 (2S + 1) + L]

(I y n S L) of the initial atomic state (see end

of Sec. 2)

4 EI: energy (in eV) of the initial atomic state

ID1F Identification of the final atomic state
if ID2F

ALPHA: Six occupation numbers of the initial atomic state

at the six densities being treated.

XMC9Q: Mass of the atom in eV

Second File.

4 * First Record - NENGY: The number of absorption coefficient tables

* NENGY tables of the absorption coefficient (each table consisting of

seven records):

Record 1 -NOMEGA (N -5 2000, w Aw) define the energy

OMEGAO spectrum (see end of Sec. 4).

DOMEGA

OMEGA (2000 words) the energies

C 0N W + (N- 1)w, (N =1, N)

Six records of 2000 words each (one for each density J) containing

ABS (N, J), the absorption coefficient (cm - ) at energy EN due to

broad lines (N = 1, 2000)
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C. The Output Listing

1. The atomic data cards (A-3) (if NTAG = 0), arranged in order of increasing

tenergy (written by MAIN PROGRAM)

2. The LINE ATLAS (if NTAG = 0)

Two lines printed per transition:

First line (see B) - AE, FNO, a2, WCOLL, WDOPP, ID (initial state),

Energy (initial state), ID (final state), Energy (final state)

Second line - the absorption coefficient (cm - ) at the line center (assuming~a Lorentz profile) for each unmerged line at each of the six densities for

which the occupation of the initial state is greater than a (written by

subroutine ATLAS)

3. The narrow line contribution to the Planck mean at the six densities

(written by subroutine ABS)

4. The line absorption coefficient (cm 1) due to broad lines for the six densities

at the energies N + (N - 1) Aw , (N = 1, N ) (written by subrouttueatth eerie N  0 w

TALLY)

5. The broad line contribution to the Planck mean opacity at the six densities

(written by subroutine MEAN)

Note items 3, 4, and 5 are repeated NENGY times, once for each portion

of the energy spectrum designated by a NENGY card.

B. 2 DEFINITIONS OF PARAMETERS IN COMMON STORAGE

Dimensions of dimensioned variables are given in parentheses.

A. MULTIPLET I

J1 0 for oxygen, 1 nitrogen

J2 charge state i

J3 ly Decomposed

J4 n initial state ID

J5

J6 28+ 1

J7 L
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-I.p

~J2P

J3P Decomposed

,P nfinal state ID

J5P I,

J6P 2S' + 1

J7P V

IBETA. . = temperature index

NCASE Number of initial states (: 1500)

ALPHAO a = minimum occupation treatedO0

ALPHA (1500 x 6) a(I, J) = occupation of state I at density J

E (1500) E(I) = energy of state I
,.. MI ( 1500 )

Ii(50 ID of atomic state I

ID2 (1500))
B (1500 x 3) Working storage

NREC Number of tape records on scratch tapes

LTOT Total number of line transitions

NTOT

NDIM NDIM = 1700

B. MULTIPLET 11 AND RI

ABSMIN Factor ,leZining minimum value of absorption coefficient to

be tallied (taken as 0. 0001)

TEMP kT in eV

NENGY Number of tables of the absorption coefficient

DENS (2 x 6): DENS(1, J) = number ions/cm3 at density J

DENS(2, J) = number electrons/cm3 at density J

NSLIM (6): NSLIM(J) = series limit nm(J) at density J
SLET A %P T -- e A

,,,,, MLt Lu NSOJ 4  )
0-22 -/

WFACT Width factor = 0.637 x 10 (kT)1/2

1
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£ LT OT Number of lines in LINE ATLAS

Kii
K2~

IGI Decomposed initial state ID
NI fl1

KSI(2S + 1)
AIL
NSI ns, number 2s-electrons)
NPI np, number 2p-electrons Inta tt

L121 (1,12)1 = orbital angular momentum of core

LF f fDecomposed final state ID

KSF ( 2Sf + 1)

LAF Lf
NSF n of = number 2s-electrons

NPF up number 2p-electrons
*L12F (1,12 )f = orbital angular momentum of core Final state

B12F (2812 + 1)f = core spin-multiplicity)fDELTAE Ae = fco = energy of line center in eV
Z Angular result

ALPHA (6): ot(J) - fractional occupation of state at dwuity J
FNO f - number of transition

SIGSQ72 = square of radial integral of transition

GFACT Statistical factor of transition

WCOLL Collision width per free electron for transition

WDOPP Doppler width for transition
VT Rnaerv nf initial atflmie, atatp 1eV1

XMCSQ Mass ofion in eV(Me 2 )
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DENMIN Smallest electron density > 0

C. MULTIPLETH1:

ASLATE (28 X 36 x 2)) Tables of Hartree-Fock-Slater

BSLATE (28 X 7 x 36) radial integrals a2 (see description

CSLATE (24 x 36) )of subroutine SEATER)

A (8 X 8 X 16): A(n, I + 1, n')

-hydrogenic f(n, f-"n', I + 1) n =1- 8

B (8 x 8 x 16): B(n, f + 1, n') 1 1-7

-hydrogenic f(n, f -n', f - 1))n' 1- 16

FSHELL (8 X 8): FSHELL (ni' - 8, n - 8) =shell-averaged hydrogenic

f number f(n-n') , n =9-16, n' = 9-16

SERLUM (11, 12, 2): SERUM (J, 'y, 1) =series limit (eV) of

configuration

J = 6K1 + K2 , 'Y= core label

SERUM (J, 'y, 2) =effective quantum number for

shell-averaged width evaluation

D. MULTIPLET MI

NOMEGA NW (:s 2000) =number energies in one absorption coefficient

table

fE GA Define the energy table OMEGA (in eV)
DOMEGA w

OMEGA (2000): The photon energies at which the absorption coefficient

is tabulated: OMEGA (N) w N-1 w

y (N =i, NW)
-1

ABS (2000 x 6): ABS (N, J) = absorption coefficient (cm )due

to broad lines at energy N, density J

AB (6): Working storage

PSI11 (17) 4

PSI 2 (8) Data for Voigt profile (Input Cards 6-15)

PSI(1x8 Listed in Sec. B. 4
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B. 3 THE MULTIPLET FORMULA SET

Note subroutines special to nitrogen and oxygen - or atoms isolectronic

thereto - are indicated by an asterisk.

A. MAIN PROGRAM (Utilizes COMMON and DIMENSION of MULTIPLET I.)

1. If NTAG = 0 - Reads and lists atomic data cards. Calls MULTIPLET I

(the subroutines LINE, ORDER, TWRITE) to determine

all allowed radiative transitions between the specified

atomic states and calculate the angular integrals thereof.

The resulting transition data are then written onto a scratch

tape in order of increasing photon energy, and program

proceeds to MULTIPLET II.

If NTAG = 1 -A previously generated LINE ATLAS is on Tape Unit A5.

ACalls MULTIPLET III.

2. Calls MULTIPLET II (the subroutines MSET, ATLAS) to calculate the

f-numbers for the transitions determined by MULTIPLET I and generate

the LINE ATLAS.

3. Calls MULTIPLET I (the subroutines ABS, FINIS) to evaluate from the

LINE ATLAS Lie broad line absorption coefficient and to calculate the

Planck mean opacity.

B. MULTIPLET I

1. ENSORT - Arranges data from atomic data cards in order of increasing

energy

2. LINE - For each pair of states specified by the atomic data cards, decom-

poses the ID's and calls COP to apply selection rules and calculate

angular factors if allowed transition. Resulting transitions arranged

in order of increasing photon energy by BSORT.

*2. 1 COP - Applies selection rules to a given pair of atomic states to determine

allowed transitions, calculates angular integral Z.
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*2.1. 10 - Determines number of electrons in the 2s-shell of a given atomic

state.

*2. 1.2 P - Determines number of electrons in the 2p-shell of a given atomic

state.

*2. 1.3 Q2 - Determines L = orbital angular momentum of the core for a
12

given atomic state.

*2.1.4 82 - Determines S2 = total spin of the 2p-shell for a given atomic

state.

*2.1.5 812 - Determines S12 = total spin of the core for a given atomic state.

*2. 1.6 FPC - Determines fractional parentage coefficient for decoupling a

2p-electron from a given atomic state.

2. 1. 7 U - Calculates Jahn coefficient.

2.1. 7. 1 W - Calculates Racah coefficient.

2.1.7.1.1 SF-SF(A, B) = B:/(A-1)!

2.2 BSORT - Arranges data in data array B in order of increasing energy.

3 ORDER - Arranges transitions in order of increasing photon energy.

3.1 UST - Writes ordered transitions onto Tape B5 (2000 transitions per

record).

3.2 ASORT - Arranges data in data array ALPHA in order of increasing energy.

4 TWRITE - Transfers ordered transitions from Tape B5 to Tape A6 -one

transition per record.

C. MULTIPLET U

1 MSET -Reads density cards, calculates merging limit [Eq. (4. 13)), and

calls TREAD to read Tape B6.

*1.1 TREAD - Reads tables of atomic data from Tape B6.
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*2 ATLAS - For each transition on Tape A6, the f-number, collision width,

and Doppler width are evaluated by subroutines FCALC and

WIDTH. The resulting LINE ATLAS is written onto Tape A5

and is listed.I *2. 1 FCALC - The f-number is evaluated for a given transition - accordingI to the prescriptions of Sec. 2.
i *2. 1. 1 SLATER - For a given transition the HFS values of the radial integral

are determined from tables ASLATE, BSLA.TE, MSATE,
as follows:

Species index x, = (0, 1), charge state x

Initial state [(182) ( 2 0X) (2pY) (ntz)1

Final state [(is2 ) (2 ,x') (2pYl) (,If z))

(a) (n,) I (n', I I) or (n, I (n',P I = 0

* } Arrange transition electron into fourth position:

core transition core transition
electron electron

Initial state Final state

'4 The core is now the same for the initial and final states

Core index C =12 4 + 6x, + x2 (1 C :s 36)

If ii 'i': a2 =ASATE (k, C, a)

k 7 71 + (fi-i1), a - (3 + 1- !)/2:1If 11 n: If necessary, interchange initial aid final
staes Suc Lt.a& L0-

g= BSATE ii1,i'1, C)
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if

(b) (n,t) = (n', 1) - 0: transition isa2s-2p

transition in the presence of a passive (n, f)

electron (n - 3)

a2 = CSATE (61 + n-2, 12x + 6x1 + x1 2
*2. 1. 2 FHYDRO - For a given transition determines the hydrogenic f-numbers

from Tables A, B.

*2.2 WIDTH - Calculates the Doppler and collision widths, the effective quan-

tum number v being determined with the use of Table SERUM.

D. MULTIPLET II:

1 ABS - For each table of the absorption coefficient (NENGY tables in all):

transitions are read from the LINE ATLAS one at a time. If the line

is a narrow line its contribution to the Planck mean is accumulated.

If the line is a broad line, its line center is shifted to the nearest mesh

point and the line intensity is evaluated over the photon energy spectrum

OMEGA - following each line tail until the resulting intensity is less

than ABSMIN times the previously accumulated intensity. Calls TALLY.

Lists narrow line contribution to the Planck mean.

1.1 VOGT - Determines Voigt line profile using Tables PS11, PS12, PSI, and

limiting series expansions. If WDoPP < 0. 2 WCOLL or

(c - ce) > 5 WDoPP the approximation is

b( =27r[( + 0. 7071WDOpp)2 + W2

11+9I 2
(C - cc - 0.7071WDoPP)2 + WC

1.2 TALLY- rbbU C06,994..cc tabie wsittn Onto Tape 1s and lated

2 FINIS - Transfers absorption coefficient tables from Tape B5 to second

file of Tape A5. Calls MEAN.
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2. 1 MEAN - Evaluates and lists the broad line contribution to the Planck

mean - by numerical integration of the tabulated absorption
* coefficient for each of the NENGY tables.

S B. 4 LIST OF SOURCE PROGRAM OF MIJLTIPLET
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Appendix C

COMPUTER CODE PIC

A brief description of the code PIC and the usage thereof is contained in this

appendix. Input-output information is provided in Sec. C. 1; Sec. C. 2 lists the

FORTRAN parameters used by the code, their definitions, and their dimensions.

Section C. 3 provides a brief description of each subroutine of the code, and a list

of the complete source program constitutes Sec. C. 4.

C. 1 INPUT-OUTPUT

A. Data cards are read in the following order (FORTRAN FORMAT in

parenthesis).

1. Card 1 - NRHO (I 10): Number of densities Np = 6 (usually)

ALPHAO (E 20.8): Minimum occupation c0

TEMP (E 20.8): Temperature kT in eV

2. Card 2 - DENS (6E 12.8): Ion densities (particles/cm 3 ) at the

6 densities (J = 1, 6)

3. Card 3 - EDENS (6E 12.8): Electron densities (particles/cm )

at the 6 densities (J = 1, 6)

4. Card 4 - NEN (I 10): Number of electron energies at which the

photoionization cross section is to be

evaluated (:5 50)

KHE (110): 1KHE = 1oxygen

KHE = 2 nitrogen
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3i

5. Energy Cards - DELEN The electron energies (in eV) at which
(12F 6.): the photoionization cross section is to*

be evaluated (NEN values)

6. Card 5 - NPI (I 10): NPI = 0, Generates PHOTOIONIZATION

ATLAS, continuous absorption coefficient,

and Planck mean

4 NPI * 0 is the number of cross sections

in the PHOTOIONIZATION ATLAS on Tape

Unit A5. Code evaluates continuous absorp-

tion coefficient and Planck mean from this
atlas.

NENGY (I 10): Number of different tables of the accumu-

lated absorption coefficient.

7. Card 6 - (Included only if NPI = 0)

NTOTAL (I 10): Number of atomic data cards.

8. NTOTAL Atomic Data Cards - (Included only if NPI = 0);

(same as for MULTIPLET, see Appendix B;

I1A3)

9. NENGY Energy Spectrum Cards - (same as for MULTIPLET, see Appen-

dix B; 11A8)

B. The systems input tape is Tape 5; the systems output tape is Tape 6. Tape 16

(=A6) is used as a scratch tape for storage of intermediate results.

Tape 25 (=B5) contains three files of tables necessary for the calculation of

the photoionizatiou cross sections.
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First file. Tables for Burgess-Seaton and hydrogenic evaluation:

NBS (12) Extended tables of

TNBS (1130 x 3) J atomic energy levels

CFPO1 (2 x6)
CFP02 (6 x 12)

CFP03 (12 x 20) Tables of fractional

CFP11 (2 x 6) parentage coefficients

CFP12 (6 x 12)
CFP13 (12 x 20)

JBS4 (4 x4)

ABS3 (4 x4)

BBS3 (4 x4)
CBS3 (4 x4)

ALBS3 (4 x4)
BEBS3 (4 x 4) Burgess-Seaton tables
GBS4 (12 x 6)
GABS5 (12 x 6)

GBS6 (8 x3)

GBS7 (11 x 4)
GB88 (11 x 5)

EMONK (11) Atomic species ionization
EIONE (11) 1 limits

KLK (10 X5)
EPKL (25) Hydrogenic tables

GAUNT (24 x 25) J

Second and third files. Tables of parameters for analytic fit [Eq. (5. 18)) to

HFS bound state wave functions.
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Second file: data for oxygen I

ZSC (4200) NL8C (620)

CSC (4200) KY (620)

KX (620) SPEC (8)

KTAB (620) NWFCTS I
DUA (620)

Third file. Same as second file, but data for nitrogen -

Tape 15 (=A5) contains the final results of the calculation: the PHOTO-

IONIZATION ATLAS and the tables of the accumulated absorption coefficients f

at each of the six densities - NENGY tables, one for each card [Nw, w0 ,

Aw read. The arrangement of these data on the tape follows.

S First file - PHOTOIONIZATION ATLAS

First record of first file:

NTOTAL DELEN
ALPHAO NRHO

TEMP NEN
For each of the NPI photoionization cross sections there is one

record (written by subroutine PTALLY): 4
KI K1=0 for oxygen, KII for nitrogen

K2 Charge state of atom

IGZERO 7

NZERO n

LZERO L Decomposed ID of atomic state

KSZERO 28+1 V

LAZERO L

IBETA = temperature index

EKZERO kO = wave number of atomic state (cm - 1)

ALPHA the six occupation numbers of the atomic
m~ta h e msa .d .4 e t ru t.4..

CORAB seven quantities completely specifying the

given photoionization transition
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OMEGAT wT= photoionization threshold (eV) of

the given transition

NEN values of the photoionization cross

PHSIG section - evaluated at the energies DE LEN.

The photoionization cross section is expressed
in units of 10 - 1 cm .

0 Second file - The second file is organized identically to the second file

of MULTIPLET Tape 15 (see Appendix B; 1IB)

C. The output listing:

1. The number of photolonizatlon transitions NPI (if NPI is initially zero).

2. The continuum absorption coefficient (cm for the six densities at the

energies c W + (N - 1)Aw, (N=1, N )

(Written by subroutine ABRITE.)

3. The Planck mean opacity at the six densities (written by subroutine=

PMEAN)

Note Items 2, 3, are repeated NENGY times, once for each portion

of the spectrum designated by one NENGY card.

C. 2 DEFINITIONS OF PARAMETERS IN COMMON STORAGE

Dimensions of dimensioned variables are given in parentheses.

A. PIC I andII

NOMEGA N (-5 2000) = Number energies in one absorption

coefficient table

OMEGAO W0

DOMEGA AW Define the energy table OMEGA (in eV)

NRHO N = Number of densities < 6 (usually set
P equal to 6)
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ALPHA a0  minimum occupation treated

K1 0 for oxygen, 1 for nitrogen

K2 charge state

IGZERO 70Decomposed ID of

NZERO n0  atordic state
LZERO to
KSZERO 2

LAZERO L
IBETA P= temperature indexI
EZERO E 0 =energy (eV) of given atomic state (relative to

neutra ground)
EKZERO k = wave number of given state (relative to given ground)

NS o umbr f 2 eecto0
NP np number of 2p electrons

L12 L1 2 = orbital angular momentum of core

1812 2812 + 1 =core spin-multiplicity

JBPEC ISPEC (K1 +K2) j SeisI'

JSPEC JSPEC (6 x Kl+K2)

ZRES Charge of residual ton = K2

ZNUCL Nuclear charge = (8- Ki)

NTOTAL Number of atomic data cards

NIC Number of different photoicalzatlon transitions from

given initial state (:5 10)
ZETANU r (i) = Burgess-Seaton normalization factor

OMEGAT wT = threshold photon energy (eV)I
XNUI Effective quantum number Y of Eq. (5.7)

XMUI Quantum defect p of Eq. (5. 10)
XEPI c =electron kintic energy (rydbergs)/(ZR~) 2
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IGC c= core label of core of residual ion

NI ni = principal quantum number of electron being ejected

LI = orbital angular momentum of electron being ejected

ISC (2S + 1) = spin-multiplicity of residual ion

LC Lc = orbital angular momentum of the residual ion

FPSQ F 2 = square of fractional parentage coefficient
P

NEN Number of photon energies at which cross section evaluated

NPI Number of photoionization cross sections in atlas

NENGY Number of tables of the absorption coefficient
DENS (6) DENS (J) =ion density (particles/cm 3 ) at density J

3EDENS (6) EDENS (J) = electron density (electrons/cm ) at density J

SLIM (6) SLIM (J) = series limit nm(J) at density J

PIEDGE (6) Lowering of photoionization edge at density J (eV)

ALPHA (6) a.J = fractional occupation of state at density J

PHSIG (50) PHSIG (N) = photoionization cross section at electron

energy EN

DELEN (50) DELEN (N) = electron energy EN (eV)

B. PIC I

TNBS (1130 x 3) Data defining atomic energy levels (extended

from Ref. 11)

TNBS (1, 1) = (1000 y + 100 1 + n) 1IID ofState I
TNBS (1,2) = (10L + (2S+ 1)) I

TNBS (1, 3) = I1 = wave number (cm- ) of State I

NBS (12) I = NBS(J)+1, NBS(J)+2,... NBS (J+1)for

Species J = JSPEC

CFPO1 (2x6) n a 0, 2;n = 1

CFP02 (6x12) ns =0, 2;n =2

CFP03 (12 Y 20) n =0, 2 ; np = 3 Tables of the square of the
CFP11 (2 x 6) ns = 1 ;n p 1 fractional parentage coefficient

CFP12 (6 x 12) n- = 1;n- =2
b p

CFP13 (12 x 20) n. = 1;np = 3
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4BS (4x4 3( 1 t+1 .

BBS3 (4x4) BBS3( + 1+1) =but
CBS3 (4)x 4) CBS3 (I + 1g, 1 + 1) = Cli ugs-eio al
ALBS3 (4 x4) ALBS3 (I + 1,1'+i+) =

BEBS3 (4 x4) BEB63 (I +1, It+ 1)= out

JBS4 (4 x 4) Locators for Burgess-Seaton Tablest IV, V
jBs4 (I + It t+ 1) =j i(t1)

J(09,1) 1 t J(1,0) =2,3J(1,2) 3 tJ(29 1) =4, J(293)

GB6(192) v0 (v) Burgess-Seaton Table VI^10 1 I 5(y - 0.4. >0
GBS6 (1,3) = X01(y)

GBS7 (11I x 4) GBS7 (1, 1) = Gov/r--

GBS (,2)= 10(v) Burgess-Seaton Table VUI
GBS7 (1,3) = y 0(v) rI 5(y -0. 8)> 0
GB87 (1,4) = X 10(V)J

GBS8 (11 x 5) GBS8 (1,1) = G1 v1--T

GESS(1,2 = G 2(i)Burgess-Seaton Table VII
GB8(,3= 12(Y) 1= 5(v -0. 8) >0

GBS8 (1,4) = X 120
GBS8 (105)= 12p

MIONK (11) EMONK (I) = k1 , the series limit (cm-i1) of Species I]
relative to the ground state of Species. I

EIONE (11) EIONE (I) = E1 ,9 the energy (eV) of the ground state
of Species I relative to the ground state of the4
neutral atom

CORE (7 x 10) CORE (1, 1C) Yc core ID of initial state when active
electron decoupled
CORE (2,1C) = n

CORE(3,1) =I active electron
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CORE (4,IC) = 2Sc + 1, spin multiplicity of residual

ion

CORE (5,IC) = Lc , orbital angular momentum of
residual ton
CORE (6,IC) = F2 fractional parentage coefficient

CORE (7,IC) = kL, ionization energy (cm1) of active

electron (IC = 1,2,..., NIC)

KLK (10 x 5) KIM(n,I + 1) =knt , locator for Gaunt factor for

initial (nI) state

EPKL (25) EPKL(m) = em, energies at which Gaunt factors

are tabulated

GAUNT (24 x 25) GAUNT (k. , m) = Gaunt factor at electron energy

Em for initial (n,I) state

SIGHE (50) SIGHE (N) = high-energy approximation to the photo-

ionization cross section at energy EN = DELEN(N)

IMA (620)

NLSC (620)

KX (620)

NSC

ZSC (4200) Tables for storage of parameters of HFS wave

CSC (4200) functions [Eq. (5. 18)]
NFUNCTKTABT (0(See description of subrouting SLAC)
KTAB (620)

NWFCTS
KCY (620) ..

C. PIC U

OMEGA (2000) the photon energies at which the absorption

f coefficient is tabulated
,,,,,(N,=WN=wo +(. = t I)

PISIG (2000) PISIG (N) = a(WN) the photoionization cross section

at the energies w N(N = 1, NW)
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PIABS (2000 x 6) PIABS (N,J) = absorption coefficient (cm - ) at energy

WN N' density J

CORAB (7) the quantities in array CORE for a specific transition

C. 3 THE PIC FORMULA SET

Note subroutines special to nitrogen and oxygen - or atoms isoelectric
thereto - are indicated by an asterisk.

A. Main Program
(Utilizes COMMON and DIMENSION of PlC-I)

1. If NPI = 0: PIC-I - Reads atomic data cards one at a time (NTOTAL

cards in all). For each atomic state the ID is decomposed and sub-

routine PLENUM is called determine all the possible photoionization

transitions. For each transition so determined the cross section is

evaluated (subroutines PICH, PIBS, PIHE, PIACC) and written into

the PHOTIONIZATION ATLAS by subroutine PTALLY.

If NPI * 0: A previously generated PHOTOIONIZATION ATLAS is

onTapeUnitA5. Calls PIC-Il.

PIC-II (the subroutines PIABS and PFINIS): Evaluates from the

PHOTOIONIZATION ATLAS the continuum absorption coefficient and

calculates the Planck mean opacity.

B. PIC-I

1. PISET - The initial cards are read, the line merging series limits are

evaluated and the tables from Tape Unit B5 are read.

*2. 0

*3. P
I Same as MULTIPLET I*4. Q2

*5. S12
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*6. PIENUM - Applies the considerations of Sec. 5 to determine all possible

photoionization transitions from a given initial atomic state. For each

transition determined the relevant data are stored in array CORE.

*6. 1 IGAMMA - For a given species label ISPEC and given values

n. (2S c + 1), and Lc the core labels yc of Table II(1) are deter-

mined. A value 9 for (2S c + 1) or L. results in that quantity being

ignored and the value of y chosen has the smallest numerical value

consistent with the remaining conditions * 9.

6.2 ESPEC - Searches TNBS for the energy of a specific state

(itnISL). If S(L) = 9, ignores S(L) and accepts state of lowest

energy satisfying remaining conditions on i, v, n, I , L (S). If no

acceptable state is found the subroutine returns with ESPEC = -0.0.

*6.3 FPC - Determines the fractional parentage coefficient

FPC(ns, np, Sp, L, S, L) of the decomposition

Sp p (SL) = I FPC(n ., np, Sp , Lp, S, L) sn s p n P-1 SL
SL L
p p

normed FPC = n p. For prohibited values of S, L , sub-

routine returns with FPC 0.0.

7. PICH - Evaluates hydrogenic photolonization cross section at electron

energies cN = DELEN(N),(N = 1,NEN)

107.57 A,
PHSIG(N) n3(WT + CN) 3 gn (EN) FPC in terms of Gaunt factor gri(EN)

7. 1 PGAUNT - Interpolates in table of Gaunt factors for g n( c) at
4 desired energv c

*8. PIES - Evaluates Burgess-Seaton approximation to the photoionization

cross section (Eq. (5. 6)]. Calls BSNORM to calculate normalization
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factor ( v); calls RACAH to evaluate Racah coefficient of Table I of

Burgess and Seaton; calls PHASE to evaluate zero energy phase shift.
Cross section evaluated in PHSIG(N) for energies c N = DELEN(N).

If IBETA = 9: cross section and relevant Burgess-Seaton parameters

listed.

8. 1 BSNORM - Evaluates normalization factor of Eq. (5.8) according
to Eq. (5. 11)9 using the energy values tabulated in TNBS.

8.1. 1 ZETA- Evaluates Eq. (5. 11) for a specific atomic state.

8. 1. 1. 1 QDE - Evaluates the quantum defect Eq. (5. 10)
for a specific atomic state.

8.2 RACAH -- Evaluates Racah coefficient of Burgess-Seaton Table I.

8.3 PHASE - Evaluates zero-energy phase shift according to Eq. (5. 12).

9. PIHE - Evaluates high-energy approximation to the photoicnization cross
section [ Eq. (5. 19)]. Calls SLAC to determine wave function of the
initial bound state; function subprogram BESS to evaluate I (a, ) of
Eq. (5.20). Cross section evaluated in SIGHE(N) for energies

EN = DELEN(N).

If IBETA = 9: Relevant bound-state parameters listed.

9. 1 SUC -(K2 , ns np, no, #0, n,, Ii ; NN, ZT, CI, NBASM) determines
parameters of bound-state wave function.

NBASJS
R n(K2,ns.n pn 0 "t0 ) = I C iVexp(-ar)

V=1

CI(V) = CV, ZT(v) = a, NN(v) = P (integer)

Define: IFUNCT = (10,000K2 + 1000n, + 100np + f 0 ) specifies the

given atomic state

NOLO = (10n + I i ) specifies the orbital desired in the

given atomic state.

KTAB(I) = IFUNCT of Ith tabulated state (determines I)
NLSC(J) = NOW of orbital J in state I (determines J, where

KX(I) -J - [KX(Z ) + 9)
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Then NBASIS IMA(J) A

C = CSC(L) 1
V = SC(L) KY(J) 5 L - [KY(J) + NBASISJ
(a ,3 v) = ZSC(L)

(a V0

(Integer p V in 6-low-order bits of a ).

9. 1. 1 SUBR 1, 2 - A FAP-coded subroutine to pack or unpack an

integer in the 6-low-order bits of a floating number

9.2 FACTO - Evaluate K! for integer K.

9.3 BESS - Evaluate Il (a, 3) of Eq. (5. 20) according to the recursion

relations Eq. (5. 21).

9.3.1 BESSO-Evaluate I,(a,0) of Eq. (5.20), .t 0,1,2,3,
according to

10(a,0) = t a 1  )

+ (a, 0) an - -I

72 J , + 3' t-(1D

10. PIACC - Evaluates a( N ) according to Eq. (5. 22) for EN = DELEN(N),

(N = 1, NEN). To avoid the possible divergence at low energies of the

high-energy approximation to the photoionization cross section. HE('N)

is set equal to OHE(6) for N < 6.

11. PTALLY - The contribution of a given photoionization transition is

written into the PHOTOIONIZATION ATLAS on Tape A5. If IBETA = 9,

the cross section and relevant parameters are listed.

I' Vt' TI

1. PIABS - For each table of the absorption coefficient (NENGY tables in I
all): the photoionization transitions are read from the PHOTOTONIZATION

ATLAS one at a time and the photoelectric absorption coefficient is
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accumulated for each density J at all photon energies greater than

[WT-PIEDGE(J)], the lowered photoelectric edge at density J. Calls

ABRITE.

1. 1 ABRITE - Absorption coefficient table written onto Tape A6 and

listed.

2. PFINIS - Transfers absorption coefficient tables from Tape A6 to the

second file of Tape A5. Calls PMEAN.

2. 1 PMEAN - Evaluates and lists the photoelectric contribution to the

Planck mean opacity - by numerical integration of the tabulated

absorption coefficient for each of the NENGY tables.

C. 4 LIST OF SOURCE PROGRAM OF PIC

I
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1

Appendix D

COMPUTER CODES RABS AND ROSS

To provide a calculation of Rosseland mean opacities the computer codes RABS and

ROSS have been developed. The code RABS is a modification of MULTIPLET

(Appendix B). Input-output information to RABS is provided in Sec. D. 1; a brief

description of those subroutines in RABS which differ from MULTIPLET is in

Sec. D. 2, a source program listing of these subroutines is provided in Sec. D. 3.

The Rosseland mean calculation is carried out by the code ROSS, using the tape pro-

vided by RABS. Input-output information for ROSS is provided in Sec. D. 4; Sec. D. 5

lists the FORTRAN parameters used by the code, their definitions, and their dimen-

sions. Section D. 6 provides a brief description of each subroutine of the code, and

a list of the complete source program constitutes Sec. D. 7.

D. 1 INPUT-OUTPUT OF THE CODE RABS

A. Data cards are read in the following order (FORTRAN FORMAT in

parentheses).

1. Cardl-NTAG,(I10): NTAG = 2

2. Card 2-ABSMIN(E20.8):

TEMP (E 20.8). (Card 3 of MULTIPLET,
NENGY (110) Appendix B, §1A4)

3. Card 3-DENS (1, J) (6E12.6): (Card 4 of MULTIPLET)
4. Card 4-DENS (2, J) (6E12.6): (Card 5 of MULTIPLET)

" i ,....A.. I - 1A Q DQTr I KW! A .

PS1I (17F4.1): (Cards 6 through 15 of

PSI (17F4.4) (8 cards): MULTIPLET)

6. Card 15 - AB (6E12. 6): The six photon energies at which the free-free

absorption coefficient is tabulated AB(N) = EN, (N = 1, 6)
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7. Cards 16-21 -CAB (6E12.6) (6 cards): the free-free absorption

coefficient at the six densities for each of the six values

of the photon energy:

CAB (J, N) = (FREE-FREE) at density J and energy

EN = AB(N) (N = 1,6).

8. NENGY - Energy spectrum cards:

(same as MULTIPLET, Appendix B, 11A8)

Must agree with those used in PIC to generate tape used on

Tape unit A6.

B. The systems input tape is Tape 5; the systems output tape is Tape 6. Tape 26

(B6) contains the tables of atomic data utilized by MULTIPLET (Appendix B,

I1 B)

Tape 15 (AS) is the LINE ATLAS generated by MULTIPLET (Appendix B, §iB)

Tape 16 (A) is the PHOTIONIZATION ATLAS and the tables of the accumulated

absorption coefficients generated by PIC (Appendix C, 1IB)

C. The output listing is Identical to t .ctt generated by MULTIPLET (Appendix B,§1C).

D. 2 THE RABS FORMULA SET

Common and Dimensions agree with MULTIPLET (Appendix B, §2).

A. MAIN PROGRAM

1. IfNTAG = 0, .: Calls EXIT

2. If NTAG = 2: Calls MSET, calls modified version of MULTIPLET M

(the subroutines RABS, FINIS)

B. ABS: A dummy routine to replace the ABS routine of MULTIPLET

C. RAB: A modification of the routine ABS of MULTIPLET (see Appendix B, I[ D 1)

The free-free absorption coefficient is read from cards. For each table

of the absorption coefficient (NENGY tables in all): the corresponding
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tabulated photionization absorption coefficient generated by code PIC

is read from the second file of the tape on Tape Unit A6. The free-free

absorption coefficient is interpolated to the energies OMEGA (N) and

added to the photoionization absorption coefficient. Transitions are then

read from the LINE ATLAS one at a time. If the line is a weak narrow
line it is ignored; if the line is a strong narrow line the line wings are

accumulated with the tabulated absorption coefficient. (The distinction 1

between strong and weak narrow lines is defined in Sec. 6). The broad
lines are accumulated as in MULTIPLET.

D. The following subroutines must be provided and are identical to the routines in

MULTIPLET. 4

1. MULTIPLET I

ENSORT

10

Q2

S2
~S12

FPC

W
SF

BSORT

ORDER

LIST
ASORT

TWRITE

2. MULTIPLET II

.. MSET

TREAD

ATLAS

269



FCALC

SLATER

FHYDRO

WIDTH

3. MULTIPLET MI

VOIGT

TALLY

FINIS

MEAN

D. 3 LIST OF SOURCE PROGRAM OF RABS
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* D. 4 INPUT-OUTPUT TO THE CODE ROSS

A. Data cards are read in the following order: (FORTRAN FORMAT in4parentheses)
1. Card 1 - NENGY, (110): Number of different tables of the accumulated

absorption coefficient. (must agree with PIC value)

K1, (I10): K1 = 0, oxygen; K1 = 1, nitrogen.

IBETA, (110): temperature index

TEMP, (E20.8): kT (in eV)

2. Card 2 - RHOi, (E12. 8): Ion densities (particles/cm ) at the 6 densities

(J = 1, 6).

3. Card 3 - RHOE, (6E12. 8): Electron densities (particles/cm 3 ) at the

6 densities (J = 1, 6).

B. Two versions of ROSS are currently used: one for the calculation of the

Rosseland mean opacity of the nitrogen-oxygen mixture in air and one for the

Rosseland calculation of pure nitrogen or oxygen.

1. Air calculation - the LINE ATLAS tapes for oxygen and nitrogen generated

by the code RABS are on Tape Units 15(A5) and 16(A6). An air LINE ATLAS

is generated from thes% and written onto Tape Unit 25 (B5).

2. Nitrogen (or oxygen) calculation - the LINE ATLAS tape generated by the

code RABS is on Tape Unit 25 (B5).

C. The Output Listing

1. The total mean free path (cm) averaged over frequency interval A w for

the six densities at the energies EN = w + (N-1)Aw, (N 1, N ).

(written by subroutine XMFP).

2 The partial Rosseland mean free path (cm) integrated from w to
00= +L (N-1A i mulated as a function of EN  for the six

r-N wo

densitiesI UNote Items 1 and 2 are repeated NENGY times, once for each portion

of the energy spectrum designated by one NENGY card in code PIC.
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D. 5 DEFINITIONS OF PARAMETERS IN COMMON STORAGE

Dimensions of dimensioned variables are given in parentheses.

NENGY Number of tables of the absorption coefficient

OMEGA (2000): photon energies at which the absorption coefficient is

tabulated. OMEGA (N) = w+ (N - 1)w, (N = 1, NW)

NOMEGA N : number of photon energies at which the absorption coefficient

is tabulated

OMEGA0 w : lowest photon energy at which the absorption coefficient is0
tabulated

DOMEGA Aw: interval In the photon energy table

ABS (2000 X 6): ABS (N, J) = total absorption coefficient (cm 1 ) at

energy cN = OMEGA (N), density J.

RHOI (6): RHOI(J) = number ions/cm 3 at density J,9 (J = 1, 6
RHOE (6): RHOE(J) - number electrons/cm 3 at density J, (J 1, 6)

LDIM Parameter defining dimension of array OMEGA (LDIM = 2000)

KDIM Parameter defining the maximum number of lines allowed in an

interval 3(Aw)

WC (6): Working storage

IBETA P: temperature index

TEMP kT in eV

Ki K1 = 0, oxygen; K1 = 1, nitrogen

D. 6 THE ROSS FORMULA SET

A. MAIN PROGRAM

1. The input data are read and the density values are listed.

2. If an air calculation calls AIR to generate from Tapes A5 and A6 an air

tape on Unit B5.
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Nth

3. Calls ACCUM(N) to read the N table of the accumulated absorption

coefficient from the second file of Tape B5.

4. Calls XMFP to evaluate the mean free path as a function of energy and

density. 4

5. Calls RMEAN to evaluate the Rosseland mean opacity, as a function of

energy and density, from the mean free path generated by XMFP.

Items 3, 4, and 5 are repeated NENGY times, once for each table of

the absorption coefficient; 4-

B. AIR r

The LINE ATLAS tapes for nitrogen and oxygen are mounted on Tape Units

A5 and A6. The line-transition data are read one line at a time from these -

two tapes and written in order of increasing energy onto an air tape on Tape V.

Unit B5. The nitrogen occupation numbers ALPHA are multiplied by

(0.78823) and the oxygen numbers by (0. 21177). The tables of the accumu-

lated absorption coefficients for nitrogen and oxygen are combined (nitrogen

values multiplied by 0. 78823, oxygen values multiplied by 0. 21177) and

written onto Tape B5. Tapes A5 and A6 are unloaded and Tape B5 is

rewound.

C. ACCUM(N)

The Nth table of the accumulated absorption coefficient is read from the

second file of Tape B5. Tape B5 is rewound.

D. XMFP

XMFP evaluates the radiative mean free path averaged over the frequency

interval 6w for each value of the photon energy and each value of the
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density. For each energy cN( N = 1,N ) the LINE ATLAS on Tape Unit B5

is searched for all narrow lines lying in the frequency interval (CN 1' EN+ 2 ).

Each line found is classified as strong or weak by comparison with the

accumulated absorption coefficient due to broad lines plus continuum contri-

butions - averaged over the frequency interval A w. Each weak line (line

center c , width w) is assumed to have a rectangular line shape, and the

interval Aw is subdivided at the frequencies c, = (Cc k w). Each strong
4c

a line is assumed to have a Lorentz line shape, and the interval Ac is sub-

divided at the frequencies E [.ck2n(m)1, (n = o,... such that
N< En < E1 -+l). When all narrow lines in the frequency interval (EN_ 1

CN+2) have been found the frequencies E (for weak and strong lines, i. e.ON+2e.

E+, En) which subdivide Aw constitute a set of energies adequate to rep-

resent all the narrow lines in Ac. The absorption coefficient in (EN' EN+l)

due to the narrow lines in (EN 1C CN+2) is then evaluated at each of the

frequencies E and accumulated with the absorption coefficient due to broad

lines and continuum contributions. The mean free path, averaged over Aw,

is then evaluated by numerical integration and is listed.

E. RMEAN

The Rosseland mean free path [Eq. (6.2)] is evaluated at each density J

and each energy EN = OMEGA(N)(N = 1, N ) by numerical integration of

the mean free path obtained by AMFP from w0 to EN. The resulting par-

tial Rosseland mean free paths are listed.

D. 7 LIST OF SOURCE PROGRAM OF ROSS
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