Solution of the Matrix Equation

\[\frac{d}{dt} X(t) = A(t)X(t) + X(t)B(t) + U(t) \]

Prepared under Electronic Systems Division Contract AF 19 (628)-500 by

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Lexington, Massachusetts
The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology, with the support of the U.S. Air Force under Contract AF 19(628)-500.
SOLUTION OF THE MATRIX EQUATION
\[
d\frac{d}{dt} X(t) = A(t) X(t) + X(t) B(t) + U(t)
\]

MICHAEL ATHANS*

DEPARTMENT OF ELECTRICAL ENGINEERING
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

*Consultant, M.I.T. Lincoln Laboratory

TECHNICAL NOTE 1965-26

29 JUNE 1965
ABSTRACT

The purpose of this note is to state the solution to the inhomogeneous matrix differential equation

$$\frac{d}{dt} X(t) = A(t) X(t) + X(t) B(t) + U(t).$$

Accepted for the Air Force
Stanley J. Wisniewski
Lt Colonel, USAF
Chief, Lincoln Laboratory Office
I. TERMINOLOGY

Suppose that we are given the time varying \(n \times n \) matrices \(A(t), B(t), U(t) \). We shall assume that

a. the elements of \(A(t) \) and \(B(t) \) are continuous functions of the time \(t \)

b. the elements of \(U(t) \) are piecewise continuous functions of \(t \).

We shall seek the solution of the matrix differential equation

\[
\frac{d}{dt} X(t) = A(t) X(t) + X(t) B(t) + U(t)
\]

subject to the initial condition

\[
X(t_0) = X_0
\]

where \(X(t) \) is an \(n \times n \) matrix.

II. THE HOMOGENEOUS CASE

Bellman in Reference [1] (page 175) considers the homogeneous equation

\[
\frac{d}{dt} X(t) = A(t) X(t) + X(t) B(t)
\]

subject to the initial condition

\[
X(t_0) = X_0
\]

His result is that the solution of (3) is given by the relation

\[
X(t) = \Phi(t; t_0) X_0 \Psi(t; t_0)
\]

where \(\Phi(t; t_0) \) is a nonsingular fundamental matrix which satisfies the differential equation

\[
\frac{d}{dt} \Phi(t; t_0) = A(t) \Phi(t; t_0)
\]
\[
\frac{d}{dt} \Phi(t; t_0) = A(t) \Phi(t; t_0); \quad \Phi(t_0; t_0) = I \tag{6}
\]

and where \(\Psi(t; t_0) \) is a nonsingular fundamental matrix which satisfies the differential equation

\[
\frac{d}{dt} \Psi(t; t_0) = \Psi(t; t_0) B(t); \quad \Psi(t_0; t_0) = I \tag{7}
\]

III. THE INHOMOGENEOUS CASE

We claim that the solution of the differential equation

\[
\frac{d}{dt} X(t) = A(t) X(t) + X(t) B(t) + U(t) \tag{8}
\]

with \(X(t_0) = X_0 \) is given by

\[
X(t) = \Phi(t; t_0) \left[X_0 + \int_{t_0}^{t} \Phi^{-1}(\tau; t_0) U(\tau) \Psi^{-1}(\tau; t_0) d\tau \right] \Psi(t; t_0) \tag{9}
\]

To see this, differentiate (9) with respect to \(t \) to obtain (we use dots to indicate differentiation) the relations

\[
\dot{X}(t) = \Phi(t; t_0) \left[X_0 + \int_{t_0}^{t} \Phi^{-1}(\tau; t_0) U(\tau) \Psi^{-1}(\tau; t_0) d\tau \right] \Psi(t; t_0)
\]

\[
+ \Phi(t; t_0) \Phi^{-1}(t; t_0) U(t) \Psi^{-1}(t; t_0) \Psi(t; t_0)
\]

\[
+ \Phi(t; t_0) \left[X_0 + \int_{t_0}^{t} \Phi^{-1}(\tau; t_0) U(\tau) \Psi^{-1}(\tau; t_0) d\tau \right] \dot{\Psi}(t; t_0)
\]

\[
= A(t) \Phi(t; t_0) \left[X_0 + \int_{t_0}^{t} \Phi^{-1}(\tau; t_0) U(\tau) \Psi^{-1}(\tau; t_0) d\tau \right] \Psi(t; t_0)
\]

\[
+ \Phi(t; t_0) \left[X_0 + \int_{t_0}^{t} \Phi^{-1}(\tau; t_0) U(\tau) \Psi^{-1}(\tau; t_0) d\tau \right] \Psi(t; t_0) B(t) + U(t)
\]

\[
X(t)
\]
and, so,

\[X(t) = A(t) X(t) + X(t) B(t) + U(t) \] \hspace{1cm} (11)

IV. TIME ININVARIANT CASE

If \(A \) and \(B \) are constant matrices, then

\[\Phi(t; t_0) = e^{A(t-t_0)} \] \hspace{1cm} (12)

\[\Psi(t; t_0) = e^{B(t-t_0)} \] \hspace{1cm} (13)

and, so, the solution reduces to

\[X(t) = e^{A(t-t_0)} \left[X_0 + \int_{t_0}^{t} e^{-A(\tau-t_0)} U(\tau) e^{-B(\tau-t_0)} d\tau \right] e^{B(t-t_0)} \] \hspace{1cm} (14)

REFERENCE

DISTRIBUTION LIST

Director's Office
C. R. Wieser

Division 2
F. C. Frick
S. H. Dodd
J. Karaku

Group 28
J. A. Arnow
J. F. Nolan
A. Armenti
C. R. Arnold
F. Belvin
R. N. Davis
P. L. Falb
L. A. Gardner, Jr.
H. K. Knudsen
O. A. Z. Leneman
J. B. Lewis
H. E. Meily
A. J. Morency
H. C. Peterson
F. C. Schweppe (50)
J. M. Winett
P. E. Wood

Group 41
E. Hoffstetter

Group 62
K. Jordan
I. Stiglitz

Group 64
P. Green
E. Kelly
R. Price
The purpose of this note is to state the solution to the inhomogeneous matrix differential equation \(\frac{d}{dt} X(t) = A(t) X(t) + X(t) B(t) + U(t) \).