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Abstract 

A practical method for th« cnlculation of the spectral 

parameters of first-arriving signals in seismology has been the 

object of much theoretical work in recent years.  The difficulty 

has been in the fact that the first arrival usually behaves as 

an imperfectly trapped mode.  Mathematically, it arises from 

the contributions of branch line integrals and complex poles. 

Attempts to transform the solution into a generalization of the 

normal modes have be.^n a mathematical success only.  Because of 

the complexity of this solution, a different, less elegant 

approach is demanded. 

A practical technique is proposed.  By a change of variable, 

the twice transformed solution is separated into a oroduct of 
-iuR 

the form f(u).e   .  This can be integrated with respect to the 

phase variable u, using standard quadrature methods, with the 

real part of u changing most rapidly along the integration path. 

By making the frequency complex, it is possible to displace any 

singularities away from the vicinity of the contour.  This gives 

the spectrum of the signal as viewed through an exponentially 

decaying time window, making it possible to work with the first 

arrival by itself. 

| 

f 



Introduction 

The problem of an impulsive ooint source or line source 

in a layered elastic medium is central to the field of seismology. 

This is due as much to the fact that many earth problems can be 

modeled by a series of flat layers or spherical shells, as to the 

ease with which formal integral solutions can be written down. 

Basic methods are discussed by Ewing, Jardetzky, and Press [1957] , 

and algorithms for treating the complete n-layered point source 

proble are presented by Harkrid<?r [1964] . 

These solutions are useful only to the extent that they can 

be numerically evaluated.  For example, the response to a line 

source (two-dimensional problem) has the form 

f{x,z,t) = r7 f e   f cos{kx) fiu)^^2) dk do,      (1) 

and the response to a point source (three-dimensional problem) 

has the form 

f (r,z,t) = ,i f e *  f k Jn(kr) ZlZÜhll  dk du, (2) 

The inner integrals 

F(x/z,u) = 

and 

F(r,z,a,) = 

SB 

f cos(kx) J dk 

k J (kr) ? dk ,  n    A 

(3) 

(4) 

give the Fourier transform of the impulse response.  Since 

observed seismic signals may be readily transformed, evaluation 

of (3) or (4) may be considered an adequate numerical realization 
*f is any observable such as a displacement or stress component 

tn is usually 0 or 1, but may be larger for multipole sources. 
See Harkrider [1964). 
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of the theory. 

Evaluation of the integral has always proceeded by some kind 

of transformation of the problem.  Pekeris [1948] deformed the 

contour of integration in the complex k-plane in a way which 

separates the residue contributions due to real poles of the 

integrand (Pig. la and lb).  All singularities lie on the real 

k-axis if it is reauired that all radicals of the form y = 

•>         9 1/2 
[k^ - (u)/vn)'

:] '   be taken with Re(v)  0 on the sheet of integra- 

tion.  Branch points at k = w/a and k - w/ß- constrain the 
n n 

transformed contour C in Fig. lb.  All poles lie to the right 

of the branch points and to the left of the limiting point at 

k = w/v . , where v_;_ is the least velocity in any layer.  An mm        mm * *       * 

(i)-k diagram (Fig. 2) summarizes these relationships. 

This transformation separates tne solution into a sum of 

residue contributions and a branch line integral.  The former, 

having phase velocities less than any halfspace velocity, are the 

trapped modes.  Application of the stationary phase method gives 

the trapped modes as a function of time in a compact and physi- 

cally meaningful form:  the signal appears as a superposition of 

wave packets traveling with characteristic group velocities of 

the modes.  This formalism is the basis for all work in surface 

wave kinematics, and has proved to be a satisfactory way to bring 

wave theory into seismological practice. 

Description of the early-arriving signals from integrals (1) 

through (4) has proven more difficult.  These events consist of 

the various refracted body phases which travel at high phase 

velocities— i. e. the contribution from the brancn line integral. 

Physically, the refraction arrivals may involve the same types of 
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resonance which produce the trapped modes, but the progressive 

loss of energy into the halfspace gives the .50-called "leaking 

modes" instead.  Mathematically, these resonances in the refrac- 

tion arrival come about because complex poles lying on a Riemann 

sheet where Re(v ) <0 are sufficiently close to the branch line 

to affect the value of the branch line integral (Fig. lb). 

Gilbert [1964], having investigated in detail the behavior of 

pole loci on the lower sheets, has suggested that his complex 

w-k diagrams may  be useful in connection with frequency/wave- 

number analysis of data. 

Recent work has concentrated on expressing the branch line 

integral in the same formalism which applies to the trapped 

modes (Rosenbaom [19601, Phinney [1961], Rosenbaum [1965]). 

This involves complicated transformations of the contour onto 

the lower Riemann sheets in such a way that the complex poles 

are "picked up" as residue contributions.  Certain practical 

problems are involved in routinely calculating these leaking 

modes.  In the first place, one is still left with line integrals 

which must be evaluated numerically;  the fact that they repre- 

sent only non-oscillatory signals does not eliminate their im- 

portance in the refraction problem.  More bothersome is the pro- 

blem of deciding which complex poles contribute to the signal: 

relevant poles must satisfy an "accessibility" condition in the 

complex u(k) plane before a saddle point method may be applied. 

These problems, as well as the sheer magnitude of the mathema- 

tics, leave us, I think., with a method which can never be used 

routinely for problems in earth structure by other than a 

dedicated specialist. 

I 
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Direct Evaluation of the Integrals on a Computer; 

In this paper my object is to investigate the possibility 

of numerically evaluating integrals such as (1) - (4) on a digi- 

tal computer.  For the sake of discussion, I will concentrate on 

(3), the Fourier transform of the line source seismogram.  Fortu- 

nately, the elegance of contour integration is still at our 

disposal, making it possible to consider several  ays to go about 

the integration. 

A minimum requirement is that the integrand must vary smooth- 

ly enough along the contour to permit aoproximation of the integral 

by a sum.  When x is large, this may be troublesome, owing to 

the cos{kx) factor.  A method due to Filon [1928] avoids this 

problem by taking account of the cosine function in formation of 

each of the contributions to the sum.  Essentially a generali- 

zation of Simpson's rule, the Filon method requires only that g/A 

vary slowly within the interval of approximation.  By considering 

only cases for which both source and receiver are near or within 

the  layered part of the structure, we have only to worry about 

the behavior of g/A in the neighborhood of the contour of inte- 

gration (the restriction on source and receiver will be removed 

later). 

Evidently the contour pictured in figure la is unsatisfactory 

by this standard, since it passes over all the singularities. The 

obvious solution is to transform to C in Figure lb, and remove 

the trapped mode poles from the problem, leaving a fairly well- 

behaved branch line integral.  While this may be satisfactory 

for many values of u, it leads to difficulty when the integral 

must be evaluated for a series oi closely spaced frequencies 



(5) 

(for this is what constitutes a spectrum).  In the neighborhood 

of each cutoff frequency, a normal mode pole passes through the 

branch point from the lower to the upper Riemann sheet (Fig. 2). 

Then g/A varies too rapidly near the branch point for a numeri- 

cal method to be usable.  Furthermore, if this pole is to the 

right of, but very close to the branch point, its effect 1--;ixl 

have already been subtracted out as a residue contribution, and 

we will be in the position of adding in a nearly equal contribu- 

tion of opposite sign.  It is not possible to ignore these cutoff 

frequencies, since they provide the most important contributions 

to the refraction arrival.  Further manipulation of C" would lead 

to transformations on the lower sheet like those which have already 

proven to be too cumbersome. 

We are led back to consideration of the situation in F:g. la. 

Two apparent ways to smooth the integrand along the contour are 

(Fig. 3a and 3b):  a)  deform the contour upward in the k-plane 

to avoid the singularities and b)  move the singularities into 

the fourth quadrant.  It is important to note that the second of 

these methods changes the problem itself, since an analytic func- 

tion is determined by its singularities.  This is done by making 

u> a complex variable « = u-iA;  the singularities then lie along 

a straight line in the fourth quadrant which passes through the 

origin.  An investigation of how (b) changes the problem will 

show that only the modified problem is at all reasonable and why, 

as a consequence, method (a) must fail. 

Consider the Fourier pair relating a signal f(t) and its 

transform F(ü)) , where the bar over w denotes that u is considered 

as a complex variable Z =  u-iX: 
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f(t)   = 
tt 

.Itlit F(u))   d U) 

FU)   = -L. /  e"1 -iwt f(t)   dt 

(5) 

(6) 
/2TI   ~

C 

If f(t) is identically zero prior to t= 0, then F is analytic in 

the lower half plane, and the path of integration in (5) may be 

run along tht line Im(w) = -X  = constant.  The functional values 

of F along this path are precisely the same function implied if 

we evaluate (3) for complex w,   since we have performed analytic 

continuation of functions identical on the real axis A = 0. 

Calling this modified transform Fx, we then get, by a trivial 

change of variable: 

le -At f(t)] = JL- I 
/2J -' 

elü)t FA(ü)) da) 

V") = -Li A      /27 

,0D     _ loot r  "At le f(t)]dt 

(7) 

(8) 

Thus the modified transform is a function obtained by premulti- 

;lying the data f(t) by e~  and Fourier transforming in the usual 

way.  We have, in effect, smoothed the spectrum.  It is signifi- 

cant thrt this comes about in an attempt to find a practical way 

to do an integral;  in retrospect, it will be apparent that an 

unsmoothed spectrum will be an exceedingly ill-behaved function 

of frequency which is difficult to represent by a table of values 

produced by a computer. 

T.ie impulse response of a simple layered system persists 

to times greatly in excess of the slowest direct body wave arri- 

val tiue, due to the partial trapping of energy bouncing at near 

vertical angles in the waveguide.  A faithful representation of 

the Fourier transform requires that a very long time interval be 
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analyzed;  in the absence of smoothing, this spectrum can vary 

sharply within frequency intervals equal to the reciprocal of the 

time interval.  Matters become most serious in the rapid variation 

of the phase with frequency, which leads, in the case of a com- 

puter-produced table, to ambiguity in the total phase angle. 

Anyone who has computed "accurate" Fourier spectra from shonc- 

period vertical signals can especially appreciate the problems 

involved. 

The result is that, if numerical results are an objective, 

and one must deal with discrete valued functions computed at 

discrete frequency spacings, the "true" unsmoothed spectrum is 

worthless .  It is too sensitive to small errors and to details 

of the analysis.  In fact, the most natural way to smooth is to 

premultiply the signal by a damped exponential, since the theore- 

tical problem can be solved by evaluating (3) at complex w.  The 

alternative method, shown in Fig. 3a, is imacceptable, since the 

result must be the unsmoothed spectrum;  one would find that 

amplification of the singularities by an exponential in the imag- 

inary part of k would cancel out any smoothing of the integrand 

obtained by moving away from the singularities. 

It can now be said that we have a wave theory for first 

arrivals. How "first" in  arrival we are talking about lies in 

the arbitrary character of A.  An intelligent decision requires 

understanding of the problems of a particular application, 

and will depend on such parameters as distance, source spectrum, 

and the amount of detail desired.  In an application with little 

t A possible exception would be an expecially "leaky" waveguide 
with a very short response time, such as a high velocity layer 
on a low velocity substratum. 

5 
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advance knowledge about the unknown earth structure, one wants 

to use a large A, to provide strong smoothing and a relatively 

small number of degrees of freedom in the data. When data and 

theory can be reconciled at this level, another approximation to 

tne correct structure may be studied by working with a longer 

time window (smaller X).  While it may be premature to mention 

this, a very desirable feature of this approach is that the 

inversion problem for body wave spectrums seems to have a natural 

solution in «-erms of this sequence of smaller and smaller X. 

A salient property of the solution is that it is a single 

function which contains spectral information bearing in some 

degree (depending on X) on all portions of the signal.  All 

trapped modes ac '.•'ell as all leaking modes and undispersed body 

phases are described;  only by a choice of X can the relative 

contribution of the later-arrivals be made small.  This is of 

course a limitation in working with the better understood well- 

dispersed surface waves, for which group and phase velocity are 

•fery useful concepts.  In multilayered systems, however, the 

higher modes often have a complicated group velocity behavior 

by wnich they add up into the body wave arrivals from intermediate 

layers.  Such a mode sum is more conveniently looked at directly, 

through its smoothed spectrum. 
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Further Practical Matters; 

We have shown that numerical difficulties associated with 

evaluation of the line source solution (3) can be avoided by 

combining Filon's method with use of a complex frequency.  Before 

looking at examples, it is necessary to cover some matters of 

technique. 

1. Truncating the infinite integral:  It is impractical to 

evaluate the contour integral for large enough values of k to 

reduce the truncation er^or to an acceptable (1%) level.  The 

entire half-plane to the right of the last, singularity is analy- 

tic, allowing (3) to be split into posi'- 'e and negative 

exponentials: 

F (x,z,u)) = .5/elkx(g/Ä)dk +  . 5/e"lkx(g/A)dk (9) 

and the respective contours to be deformed into the upper and 

lower half planes as shown in figure 4, with the turning point 

beyond the last singularity. These two line integrals converge 

rapidly, and can be evaluated by any of the standard quadrature 

methods. 

2. The high frequency problem: For a fixed choice of X a 

computed spectrum becomes more and more complicated as higher 

frequencies are considered. This is due to the interaction of 

many "modes", producing beats in the spectrum. When going to 

higher frequencies with a fixed time window, one is getting 
jH 

a larger number of degrees of freedom associated with the large 

number of cycles in the analysis interval.  In a program aimed 

at data analysis and interpretation, there is no reason why X 

cannot be increased in proportion to w, giving a time window 

1 

T 
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which is variable, but in fixed p'-oportion to the period being 

analyzed.  The spectrum will then have the same number of degrees 

of freedom per frequency interval at all frequencies;  u may be 

considered as varying along the contour OA in figure 5.  The 

constant A case is contour BC.  To differentiate them from the 

raw, unsmoothed spectrum let BC define the X-spectrum and path 

OA the ^-spectrum, since the latter preserves th; phase angle ii 

of ü).  Subsequent discussion about the X-spectrum will refer to 

the  ^-spectrum unless exception is made. 

An obvioas extension of these notions is to evaluate the 

spectrum on the contour OD or EF.  These are, respectively, the 

Laplace i-ransform of the signal or the Laplace transform of the 
imt 

signal as premultiplied by e   .  Complete knowledge of either 

of these implies complete knowledge of the spectrum on any other 

contour, such as OA or BC, since F is analytic in the lower half 

plane, and we may go from one contour to another by analytic 

continuation. The difficulty is that analytic continuation can- 

not be performed with numerical data on a contour, since we do 

iiot know all the derivatives of F on that contour.  This is 

exactly the same as attempting to solve an elliptic differential 

equation by applying numerical operators to the data on an ini- 

tial value line;  the problem is said to be ill-posed. The 

same may be said of attempting to perform an upward continuation 

of data on OA or BC; then, however, we huve a reasonable amount 

of information in our data and do not want continuation.  In 

contrast, the Laplace spectrum is virtually devoid of information 

which can be seen above the numerical noise.  The situation is 

illustrated in Fig. 6, which show a Laplace spectrum and 
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f a X-spectrum. 

3. Extension to the point source problem: The essence of 

Filon's method is that the integral is divided into subintegrals 

of the form 
ki+6 

/     cos(kx) (g/M dk 
k.-6 

if g/A varies slowly enough, it can be represented by a second 

degree polynomial in the interval.  Knowing the indefinite inte- 

1 2 
gral  jcos(kx){a+bk+ck ]dk, we can then write down a quadrature 

formula, with 6 a parameter.  The equivalent operations for the 

point source reduce to the problem of knowing the indefinite 

integral 
.ki+6 p 

I(k.,5,n,p) =  j   Jn(kr) (k-k.rdk 

Term by term integration of the power series for the integrand 

gives a power series for the integral in terms of 6 and k.. 

By application of the theory of Taylor series, this power series 

can be re-expressed as an expansion about some new point k , giving 
1 0 

a ranidly converging series in 6 and (k.-k0).  As far as numeri- 

cal objectives are concerned, this integral may be regarded as 

a known function, which can be generated on a computer as readily 

| as    the trigonometric functions. For values of k^ larger than 

about 15, it is desirable to have an asymptotic formula for the 

| integral.  Manipulations leading to such a formula are straight- 

| forward and will not be discussed here. We can conclude that 

| the point source solution requires a little more programming than 

| the line source, but does not differ in any substantive way. 

4. Extension of the line source problem to admit a source 

■ in the halfspace:  This is best handled by an illustrative case. 
H H If we assume a line source and receiver both located in the 
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halfspace (figure 7), then the response has the form 

I     -i(kx + v  Z) 
Fx   j e 

— 00 

q(üj,k) dk (12) 

where v„     *     >'KZ   -  kz   ?  K = w/a 

We want to put this in the form 

2    • 
Z = z + h 

-iuR 
dk F  =   /e   q(u,,k(u)) Jg du (13) 

and integrate along a path such that either Im(u) = constant or 

Re(u) = constant.  The methods described earlier in this paper 

will then be applicable. 

Set  x = R cos e       k = K cos n 

Z = R sin e 
• 

va2 = K sin n 

Then     kx + va2Z  = KR cos(n - ß) 

or       u = K cos(n - 9) ~  k cos 9 + v^sin 0 

We can solve for k(u) in this special case: 

k = u cos 9  +  /K^ - u^  sin 6 

with 
dk 
du 

( ) 

= cos e /K^F ! sin 8 

(14) 

(15) 

(16) 

I 
We are in a position to make use of (13).  The mapping of the 

real k-axis onto the u-plane is described by (14) and shown in 

figures 8a and 8b.  Point A, at u = K sin 0, is the map of k = 0; 

for small k, u is real and increasing, as can be seen from the 

derivative 

du 
dk =  COS 6 

) 

m?& sin 6 
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which vai ishes at k = K cos B,   the well known stationary phase 

point, wher* 9 = n •  Point S, at u = K, is the map of this 

stationary phase point, and represents a singularity where the 

mapped contour reverses direction.  This singularity (an addition- 

al branch point in the u-plane) will provide an important part 

of the value of the integral.  Point B, at k = K, u = K cos 6, 

is the singularity where du/dk is undefined, and the contour 

moves into the complex u-plane.  The ambiguity in the square 

root is resolved by the original condition that Retv^) > 0, 

which, in light of  va2 = iva2, requires that Im(va2)  < 0.  The 

remainder of the contour is a limb of a hyperbola in the fourth 

quadrant, asymptotic to the line -Im{u)/Re(u) = tan 8.  The 

remaining singularities of the integrand are folded into the 

interval ASB on the real axis. 

For reasons discussed earlier, the frequency must be taken 

with a negative imaginary part.  The mapping of the real k-axis 

is shown in figure 8b. The points A, B, and S have moved into tb5 

fourth quadrant, but are defined as in the previous paragraph. 

All other singularities lie on the line segment ASB. The contour 

AC is the image of the real k-axis.  AC can be deformed into the 

path AHJ without crossing any singularities;  the integration from 

A to H is done by Filon's method and the rapidly converging inte- 

gral from H to J by any common quadrature formula.  This final 

transformation demonstrates an important physical result— that 

the predominant contributions to the integral come from the 

singularities between A and S, including the stationary phase 

contribution itself.  Singularities lying on the (folded) segment 

SB will not contribute significantly.  In the original variables, 

J 

1 
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this means that wave numbers greater than the stationary phase 

value do not contribute, or that phase velocities less than the 

critical phase velocity do not contribute. 

To carry out the integration it is necessary to know the 

complex values of k corresponding to points on the contour AHJ. 

For the problem just described, a solution (15) can be written 

down,  A more general case is the partial ray integral 

FA " 

-i(kx + va2h + Vg2z) 
e q(u,k) dk (17) 

which describes an upgoing P-wave coupled to the layer, coupled 

in turn to a downgoing S-wave.  The defining equation for the 

phase function u becomes 

uR=kx+v     h+vöz 
012 P2 

(18) 

where R is some characteristic distance which we would normally 

take as the optical distance for the PS reflection.  Inversion 

to give k as a function of u must be done nuiTierically, since (18) 

cannot be solved algebraically.  With a slight change in notation, 

(18) is the same equation which must be solved to get the Cagniard- 

deHoop path used in the Cagniard method.  None of the further 

elegance of this technique is of use in boundary value problems 

involving more than one interface. 

5.  Combining the previous two problems— a poirt source in 

the halfspace:  The method must embody features from the preceding 

two sections; no attempt is made in this paper to do the problem. 
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Later arrivals, filtering, and the refraction problem: 

The numerical X-spectrum described here most naturally is 

applied to the first arrival-- invariably some sort of P-wave. 

It is of practical interest to study the extent to which one can 

look at later-arriving body waves. 

1.  Partial ray expansions:-  Muj,k) contains sums of expon- 

entials in the various layer parameters.  Various binomial expan- 

sions of g/A may be formed, each corresponding to a particular 

way of partially decomposing the solution into rays.  An example 

of one term in such an expansion is (17), where we can identify 

exponential phase factors describing ray propagation and a gener- 

alized reflection coefficient giving the complete response of 

the layers involved.  Many of the later-arriving body phases can 

be established as first-arrivals of a partial ray integral.  One 

must be reasonably sure, when looking at data, however, that the 

body phase being studied is not contaminated by earlier-arriving 

energy. Somewhat more limiting is the fact that each partial ray 

gives rise to more than one refraction arrival in addition to the 

principal optical ray event.  These refractions cannot be separa- 

ted by further decomposition of the integrand.  The situation is 

illustrated in figure 9.  The partial ray is defined by the  geo- 

metrical path PS (and h(?s the same form a:,  ir (17)).  Evaluation 

of the integral and formation of the impulse response would give 

a seismogram containing: 

a) the first   -ival, a refracted event PpS 

b) a refracted event PsS 

c) the reflection PS 

No manipulation of partial rays can separate these three events. 
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In addition, the refraction PpP arises from a different partial 

ray entirely, but may arrive so close to PpS that separation of 

the phases is not possible.  It would be necessary in this case 

to compute at least these two partial rays. 

2. Filtering in the w-k plane:  From our understanding of 

the kinematics of propagation of body phases, we may discriminate 

against the first arrival on the basis of i^-s phase velocity, in 

effect transforming a later arrival into the first arrival.  Since 

filtering can be done by simple multiplication in the variables w 

and k, multiplication of the integrand by a velocity filter can 

be used to reject higher phase velocities associated with first 

arrivals.  Normal care in the design of the filter is still re- 

quired;  a conservative procedure would be to use only filters 

with physical analogs in simple array processing. 

3. Windowing wy convolution:  It has been shown that use 

of the complex frequency variable provides the effect of an expo- 

nential window in the time domain.  It would be desirable to have 

more general windows available, such as a lagged exponential, 

which could be used t  elect later-arriving body waves.  I can 

see no other way of doing this except directly— by applying 

a convolution operation in the frequency domain.  This adds 

another integration, which would be as much work as computing 

the impulse response directly by Fourier synthesis. 

4. Crossover of refraction lines from different layers: 

An obvious application of the x-spectrum is to first arrivals at 

intermediate refraction distances where two or more refraction 

lines have nearly identical arrival times.  When a refraction, 

such as line 2 in figure 9, does not appear as a first arrival, 

m   
■^ 
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its identification from later arrivals at large distances can be 

a serious problem.  Even if it appears as a first arrival in a 

short distance interval, the distribution of geophones may be 

such that it can only be seen at one station, in which case the 

slope, or even the identification of the line is in doubt. 

Since the x-spectrum contains all the information inherent 

in the wave solution for the time window and frequency band under 

consideration, it is appropriate to work with it at several dis- 

tances near the crossover.  The result is an extended type of 

refraction plot: a A-spectrum versus distance, which constitutes 

a surface or a nest of curves.  It would be the object of the 

refraction study to adjust the model parameters to bring the 

theoretical and experimental spectrum-distance data into agreement. 

This is one of a class of problems in which geometrical 

optics gives more than one arrival line with nearly the same 

travel time.  The neighborhood of a cusp in a travel time curve 

is of this nature.  The multiple branches of the PKP phase which 

grazes the inner core are an example in a spherical geometry. 

To interpret the data in terms of ray theory, one must be able 

to distinguish separate arrivals, no matter now close they are in 

time, and to identify the point of a cusp.  Neither is possible 

with seismic data recorded on an instrument with a finite pass- 

band.  In practice, conventional short period seismometers come 

close enough in the PKP example to show the existence of several 

branches;  it cannot be shown, however, whether other branches 

have been missed, or whether the identification of the cusps is 

correct.  This latter problem comes about because of the existence 

of a diffracted pulse at stations in the geometrical shadow. 
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The principle of a X-spectrum-distance profile can be used to 

resolve problems of this nature.  It will be possible to use con- 

ventional long-period seisnometers for wave theory interpretations 

of earth structure at certain depths where diffraction effects 

are important:  the base of the upper mantle at 4c0+ km; the core- 

mantle boundary;  the inner core boundary.  This paper does not 

describe any calculations of ehe spectrum in a spherical geometry. 

There ar^, however, no real obstacles to doing so. 
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Calculation of phase velocity, attenuation, and group velocity; 

Phase velocity and attenuation are basic notions in the kine- 

matics of traveling waves, and are easily applied in a description 

of trapped modes.  When studying arbitrary transients containing 

various types of waves, these variables nust be regarded merely 

as derived quantities, defined by certain operations with the X- 

spectrum of the signal. 

Writina the soectrum F. = A e i* (19) 

i 

we define the phase velocity c, by 
u 

c=0 
and the attenuation coefficient,y by 

(20) 

1 3A 

By differentiation of (19) 

3F. 
3X + Ai^1* 

and division by (19): 

we get: 

1 9F, 
p äxA 

=  1 3A 
A 3x 

+ 1 M 

c = T ,1 3FX 
ln»(p 7j) 

(21) 

(22) 

(23) 

(24) 

and: 

3F 

Y = -Re(i^) Fx9x 
(25) 

To form ^A from the theoretical solution, differentiate (3) : 

9F 
9x k sin(kx)(^/A) dk (26) 
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aF; From (26) we can corpu-e i^-x  by Filon's method at the same time 
o X 

hat we compute F^.  The theoretical phase velocity ^nd attenua- 

cion follow from (24) and (25).  It will become apparent from 

the numerical examples to follow that these functions are not 

always very diagnostic when several modes or rays contribute to 

the X-spectrum. 

The taking of a derivative by means of an analytic relation 

such as (26) does not eliminate the amplification of error which 

occurs in the derivative operation.  It is found that, in general, 

calculations of c and y   have about one less decimal place of 

accuracy than do the calculations of F  itself. 
A 

A derived group velocity, U, can be defined by 

u= I = 
3ü} 

(27) 

This is based on the fact that the impulse response integral 

fi*\        r n / x  i(ut + $) 
f(t) = j A((ij) e        du) (28) 

receives its greates contribution at time t from the frequency 

for which   I—(wt + 4s) = 0.  Equation (27) follows.  Like phase 

velocity, U is of limited usefulness in looking at an arbitrary 

transient.  Further difficulty lies in the necessity of either 

programming the analytic form of -r-^- or obtaining the derivative 

by simple differencing.  An illustrative example will use the 

latter method. 
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Numerical examples: 

Calculations are shown for the line source response for 

the liquid layer/liquid halfspace and liquid layer/solid halfspace 

problems.  Parameters are listed in Tabla 1. 

Model ß 

LPLTE1 
LOL002 
LOS002 
LOS010 
LOS011 
LOS012 
LOS013 

3.0 
3.0 
3.0 
3.0 
3.0 
3.0 

1.732 
.95 
.40 
.70 

1.30 

2 
2 
2 
2 
2 
2 

5 
5 
5 
5 
5 
5 

Table 1.  Layered models used for calculations. For all models 
 H^ - 1.0,  oj = 1.0» p1 - 1.0,   for normalization. 

Expressions for g/A are in Ewinq, Jardetzky, and Press [1957], 

chapter 4. 

Model LPLTE1 is unique in having a residue series solution 

which is complete, and which is unencumbered by a branch line 

integral.  To provide a check of the numerical integration 

program, the spectrum for this model was obtained in two different 

ways:  first by substituting P2 = 0 in the liquid/liquid kernel 

g/A, and then 1/ using the residue series. 

If an acceptable numerical noise level is 1 or 2 in the third 

decimal, then it is found that Ak = .04 is a small enough spacing 

provided that A ^ .15 and x < 20.  On the IBM 7094, calculation 

of 100 spectral values takes about 5 minutes for the liquid/liquid 

problem and about 7 minutes for the liquid/solid problem.  When 

computing a A-spectrum for a set of different x, however, the 

same values of g/A are generated in each pass.  By saving these 
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values in a high speed backup storage (disk file) and reusing 

them in the second and succeeding passes, the time requirement is 

reduced to about 40 seconds per case for all but the first. 

While the limitation to  A > .15 is not serious, the restric- 

tion that x not be too large is annoying.  This comes about from 

accumulation of roundoff error in foriuing the sum of contributions 

frcm the various k-intervals.  As x increases, one is adding up 

the same table of g/A values with different weights;  for larger 

x, the values tend to cancel, and roundoff becomes a problem. 

To a limited extent, this can be overcome by grouping terms or 

by selecting xAk to be a multiple of 2^ and grouping. A more 

satisfactory resolution of the problem is deferred at this time. 

The notion of a profile of X-spectrum versus distance is 

illustrated in figure 11, which shows model LOL002, with A = .15, 

h = 1.3, and z = 0.1.  For a liquid/liquid case, the early arriv- 

ing signal is very nearly described as a sum of dispersed normal 

modes (Pekeris [1948]), with the branch line integral contribu- 

ting a relatively weak signal.  Our curves should reflect, there- 

fore, the mode character of the response.  Most of the energy is 

concentrated around the theoretical cutoff frequencies of the 

first two modes at .26 and .78, due to the source being in the 

halfspace.  The irregular behavior (for x = 7 and 10) at the 

higher frequencies is due to the effect of mode mixing. 

Figure 12 gives phase velocities and a single instance of 

group velocity for this model.  The mode-like character of the 

signal is demonstrated by the invariance of c with x. The effect 

of the branch line integral is automatically included at frequen- 

cies near cutoff, causing c and U to behave differently from c 
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given by mode theory.  The variability of c in the vicinity of the 

second node cutoff (due to node interference) demonstrates the 

kind of limited service that can be expected of this parameter at 

higher frequencies. 

A comparable example for the liquid/solid problem LOS002 

appears in figure 13.  The irregular structure of the amplitude 

function is a result of mixing the first-arriving PL mode with 

the trapped modes.  Even though  A = .3 in this case, giving a 

shorter time window, the trapped modes still arrive in the time 

covered by the window except at the greatest distances. 

The effect of the basement shear velocity at a given distance 

is shown by figure 14.  In all other respects, this analysis has 

the same parameters as the liquid/liquid case in figure 12.  By 

letting ß2 become small we have a check on the liquid/solid 

calculation.  When it is as small as 0.4, the agreement with the 

liquid/liquid result is good;  for values greater than 1.0, the 

spectrum is mainly determined by the existence of the trapped 

shear modes.  At the lower shear velocities, the shear and surface 

wave energy arrives so late that it is excluded by the exponential 

time window, and we see only the effect of the P modes. The phase 

velocity (figure 15), being a derivative quantity, is rather ill- 

behaved by comparison with the spectrum itself, and the agreement 

with the liquid/liquid case is achieved only at the lowest values 

of ß2.  Discontinuities in c appear near minima in the amplitude 

spectrum. 

My viewpoint in this paper has been that the X-spectrum is 

an appropriate function to work with in data analysis.  The pre- 

ceding examples demonstrate that its behavior may be sufficiently 
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strange to most workers that a demonstration is in order.  The 

X-spectrum has been computed for LOS002 at x = 20. for an increas- 

ing sequence of X   (figure 16).  Fourier synthesis has been applied 

to each spectrum to yield a theoretical seismogram— as modified 

by the exponential window.  To reduce the effect of chopping the 

x-spectrum at a particular frequency, a realizable low-pass 

filter has been applied before synthesis.  The results appear 

in figure 17.   The creation of a theoretical seismogram appears 

to be the only process in which the X-spectrum is preferable to 

the ^-spectrum (which has the virtue of smoothness at high fre- 

quency) .  If Fourier synthesis is based on a ^-spectrum, the 

theoi-tical time function is a peculiar modification of the 

full seismogram, in which each frequency has been premultiplied 

by a different time window.  This time function would appear as 

though it had been generated by a set of constant-Q delay lines, 

in which the attenuation coefficient is proportional to frequency. 
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Conclusion: 

It has been shown that the requirement of nume-ically realiz- 

ing the theoretical response of a layered medium leads naturally 

to the conclusion that signals must be viewed through a decaying 

exponential time window.  The ultimate object of such work is 

to be able to use comparisons between theory and data to deter- 

mine velocities and densities in the earth.  At the present time, 

however, data processing technique is considerably more advanced 

than the theoretical work, and a considerable a' ount of computer 

programming must be done to close the gap.  This includes not 

only complete realizations of the methods described in the text 

(or alternate methods), but a realization of available formal 

schemes for obtaining the response function in multilayered media. 

From a practical point of view, the Thomson-Haskell matrix method 

should be supplemented or replaced by methods based on a continu- 

ous velocity-depth function which will be faster by virtue of 

their dependence on fewer independent parameters.  For example, 

the base computing time for one spectrum is 5 minutes in the most 

elementary case;  if 20 solid layers were required to model an 

earth structure, the time could go over 200 minutes per curve— 

for the same amount of output information.  A compensating 

factor will be the availability in the near future of computers 

which can provide 10-100 times the computing speed of present 

models. 

Despite this present lack of theoretical capability to match 

| with data analyses, it is clear that work in data processing of 

| body waves must be affected by the importance of the exponential 

1 window.  Demonstrations must be made of the way in which the 

i 
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X-spectrum varies with distance and choice of smoothing parameter, 

In cases where the source is controlled or sufficiently kn;wn, 

it is necessary to establish the repeatibility of the result over 

a given path, and to determine the relation between X and the 

repeatibility.  In the area of data analysis techniques, it does 

not appear that work with sets of analysis functions more sophis- 

ticated than the damped exponentials can be meaningfully related 

to wave propagation theory .  This comes back to the elementary 

fact that the complex exponentials are the correct choice of 

functions for separation of the wave equation. 
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Appendix 

1.  Conventional geometry of a layered system; 

source 
(0,h) 

FREE  SURFACE 

receiver o 
—(x,z)  

HALFSPACE 

interface 

0 

1 

2 

n-2 

n-1 

layer 

1 

2 

n~2 

n-1 

n 

2-axis 

2.  Notation: 

A 

c 

f 

F 

h 

H. 
i 

k 

n 

r 

t 

u 

U 

v 

X 

amplitude of the spectrum 

phase velocity 

some field variable in the time domain 

some field variable in the frequency domain 

depth of source 

thickness of ith layer 

horizontal wave number 

used as a subscript referring to the hdfspace 

radial coordinate of receiver in cylindrical coordinates 

time 

phase variable (equation 14) 

group velocity 

denotes a body velocity, either a or ß 

horizontal distance from source to receiver (line source 
problem) 



3^ 

ß 

2.  Notation (continued): 

compressional velocity in ith layer 

shear velocity in ith layer 

Y       attenuation coefficient 

6        ray angle (equations 13-14) 

n        wave angle (equations 13-14) 

X        (negative ) imaginary part of complex frequency 

ai 

81 

9 

w 

= lv 

= 1 V 

ai 
< 

ßi 
density in ith layer 

phase angle of spectrum 

minus phase angle of w 

angular frequency 

complex frequency variable = w - iA 

3.  FiIon's method: 

This is a method of numerically integrating trigonometric 

integrals of the form 
b 

I = / cos(xp) f(p) dp 
a 

where x may be large.  Let the range be divided into 2n equal 

parts with an interval h such that 

b = a + 2nh 

After representing f(p) over the interval (a+(s-l)h , a+(s+i)h] 

by a second degree polynomial whose coefficients can be determined, 

we get, after some manipulation 

I = h[a{f(b)sinfxb) - f(a)sin(xa)} + 6C2S + YC2S-XJ 

where, if 6 = xh, 

a = e"3{e2 + esine cose - 2sin 2e} 



ß = e~J{e[i + cos2e3 - 2 sine cose} 

Y = 4 6'3{ sint) - 6 cose} 

and 
n 

C2s = l   f (a-f-2jh) .cos[x(a+2jh) 3 - i[f (b) cos (bh)+f (a) cos (ah) ] 
j=0 2 

n 
c7*.i   ^  l   f(a+{2j-l)h].cos{x[a+{2j-l)h]) '2s-l j-1 

A complete description of the method is given by Tranter [1956] , 

following the original paper by Filon [1928] . 

gj^Bjj—WBl 



Figure Captions 

la,  k-plane for integration of (3), and initial contour, 
showing singularities on the real axis. 

lb.  k-plane for integration of (3), with the contour deformed 
into path C around the branch cut. 

2.  u)-k diagram for singularities of the integrand on the top 
sheet. 

3a.  Numerical integration by deforming the contour away from 
the singularities. 

3b.  Numerical integration by moving the singularities into 
the fourth quadrant. 

4. Truncation of the integral by splitting into exponentials 
and deforming the respective contours into the upper 
and lower half-planes respectively. 

5. oj-plane.  Examples of lines along which the spectrum may be 
computed. 

6. Comparison of computed Laplace and >-spectrum for model LOS002. 
Curves are separately normalized. 

7. Geometry for a source and receiver in the halfspace. 

8a.  u-plane, showing map of the real k-axis, using (14), when 
u) is real. 

: 

8b. u-plane, showing map of the real k-axis, using (14) , when 
Im(a)) is negative. The deformed contour AHJ is used 
in the numerical evaluation of (13). 

9. Geometry for a PS partial ray integral in a three-layer model. 

10. Illustrative travel-time curve for a three-layer model with 
a masked refraction arrival. 

11. Model LOL002:  X-spectrum as a function of distance for 
h= 1.3, z= 0.1, x= .15, due to an impulsive line pressure 
source. 

12. Model LOL002: Phase velocity spectrum as a function of distance 
and a single example of group velocity, obtained from the 
A-spectrum of Figure 11. 

13. Model LOS002:  X-spectrum as a function of distance for 
h= 0.9, z= 0.1, >=   .30, due to an impulsive line pressure 
source. 



Figure captions (continued) 

14. Depend ;nce of x-spectrum on p2, for a sequence of models 
with decreasing shear velocity in the halfspace, at 
x= 10., h= 1.3, z= 0.1, \=   .15.  The limiting case of ß2= 0 
is computed using a liquid/liquid program. 

15. Pha^e velocity spectrum for the models computed in Figure 14 

16. Model LOS002:  X-spectrum as a function of X for x= 20., 
h= 1.3, z= 0.1 due to an impulsive line pressure source. 

17.  Model LOSO" :  Impulse response obtained by Fourier synthesis 
of spectrum, in Figure 16. 
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