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FOREWORD

The material on radar signal design in this report was presented by the
author in lectures given during the two-week summer course on radar conductcd
at MIT in 1961. The lecture material was afterward expanded and prepared in
written form for inclusion as Chapter 3 of a book entitled ""Elements of High-
Power Radar Design, ' edited by J. Freedman and L. Smullin of MIT. Now, in
June 1965, it appears that plans for the book have been abandoned. Therefore,
it seems desirable to make this material more generally available by issuing

it as a technical report.

The ideas on signal design contained in this report have come from many
sources, and these sources are acknowledged with care insofar as they are
known to the author. The author is indebted to many of his colleagues; in
particular, it is a pleasure to acknowledge many stimulating discussions with
E. L. Key, R. Manasse, J. A. Sheehan, and R. D. Haggarty, of the MITRE
Corporation, and with E. J. Kelly and R. C. Yost, of MIT Lincoln Laboratory.



A

ABSTRACT

This report discusses the design of radar signals. 1t is
assumed that the radar receiver is matched to the signal so that
the receiver output waveform, in the presence of signal Doppler
frequency shift, is characterized by Woodward's two-dimensional
signal correlation function. The signal correlation function is
discussed, and certain of its properties are collected together.
The problem of the detection of a target in the presence of many
nearby targets is discussed, and an expression for the target capac-
ity of a radar is developed in terms of the signal correlation
function. There follows a discussion of the general problems of
signal design for multiple target resolution and for detection of
single targets in clutter. Signal waveforms are classified according
to the type of modulation, and the design of waveforms of each type
is considered in detail. The two-dimensional correlation function
is given for each type of signal. Finally, the subject of techniques
for generation and reception of signals is discussed.

REVIEW AND APPROVAL

Publication of this technical report does not constitute Air Force
approval of the report's findings or conclusions. It is published
only for the exchange and stimulation of ideas.

Y.

HARRY ¥i. BYRAM
Project Officer
MITRE Project 750
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1.0 INTRODUCTION

Central to the discussion of radar signal design is the signal correla-
tion function and the related ambiguity function. It is recognized that the
ambiguity function characterizes the degree to which a signal can be located in
time and frequency. In Section 2.0 the subject of signal design is considered
primarily from the standpoint of the signal correlation and ambiguity functions.
First, we will collect some properties of the two functions. Then we will con-
sider the problem of resolution and develop an expression for the target capacity
of a radar in terms of the ambiguity function of the radar waveform and the
target parameters. Three different idealized ambiguity function shapes — the
ridge, the thumbtack, and the bed-of-spikes — are considered, and their utility

and method of use in a multi-target environment is discussed.

In Section 3.0 signals are classified as to the type of modulation
employed — amplitude modulation, phase or frequency modulation, and a
combination of the two — and some aspects of the design of each type of signal
are discussed. In every case some idea is given of the kinds of ambiguity

function shapes that are possible with the various kinds of waveforms.

In Section 4.0 a number of the most important, well-developed tech-
niques for the generation and reception of signals are considered, each in some

detail.

Section 5. 0 contains the list of references and, for convenience, a

bibliography listing the referenced documents in alphabetical order.



2.0 THE SIGNAL CORRELATION FUNCTION AND THE PROBLEM
OF RESOLUTION

20l Introduction

In this section we will tabulate some of the properties of the signal
correlation function and the related ambiguity function and proceed then to
discuss the problem of resolution in the context of the signal ambiguity function.
Then we will develop an expression for the target capacity of a radar which
depends upon, among other things, the ambiguity function of the radar signal.
The specific dependence gives some insight as to how the signal ambiguity
function ought to be shaped for various kinds of measurements and for various
distributions of radar targets. Then the broad problem of signal design to
achieve high target capacity is considered. The ideas developed for the problem
of resolving multiple targets are then applied to the problem of detecting targets
which are immersed in a clutter background.

22 Some Properties of the Signal Correlation Function and
Related Ambiguity Function

The significance of the signal correlation function and the ambiguity
function, and the manner in which these two functions enter the subject of
®Y (2] ,
number of properties of the two functions have been collected by Siebert;[ 3]

since these are not too readily accessible in the literature, it seems worth

detection theory has been discussed by Woodward and Siebert.

while tabulating them here for easy reference.

Several notations are used in writing the signal correlation function.

[ 1]

Woodward calls the signal correlation function x (7, v), where*

*The Notation u(x) denotes the complex conjugate of u(x).



5 _ -jervt
T ) = S u(t) u(t+ 7)e dat (1)

—00

[ 4,5]

while Siebert and others have used the symmetrical form, ©6(7, w),

with

e(T,w)=§ u(t-%)ﬁ(t+— dt - (2)

In Eq. (1), v is Doppler frequency in cycles per second; in Eq. (2), w is
Doppler frequency in radians per second. The relation between the two
functions, x and ©, is simple. If we write 27 v = w andput t=1t"-7/2

Eq. (1) becomes

jﬁ o0
L T u(t-—;-)ﬁ(ug-)e'wtdt : (3)
- 00
or
.WT
17
X('T,(U)':e e(T’w) * (4)

The functions x and © thus are seen to differ only by a phase factor. Notice

that

lx(m,0)] = |0(7, w)]

The squared modulus of x (7, v) or alternatively of © (7, w) is usually

referred to as the ambiguity function, ¢ . We have

g

Y2
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2
¥(r, v) = | x(r, v)| (5)
or

2
¥(r, w) = o, w)]” . (6)

The ¥ notation of Woodward occurs naturally in analysis and is perhaps the
most common in the literature, and for this reason the ¥ notation is used in
this report. Because of its symmetry, however, manipulation of the © function
yields neater results. Thus the properties of the signal correlation function
are tabulated below in terms of the © function. The theorems on © functions

[1]

changes. Proofs of the theorems are given only when the method of proof is

are taken directly from Siebert with permission and with only minor

not obvious.

We have the signal correlation function 6(7, w), Eq. (2), repeated

here as Eq. (7).

o0

o(r, w) = 5 u(t - %)ﬁ(t-{-%)e_

- 00

ot g . )

Definitions

1. We assume that u(t) is a reasonably well-behaved, complex-
valued function of the real variable t. In particular, any integrals involving

u(t) are assumed to exist.

2. We define

== 1 -jwt
Uw) = S‘ u(t) e dt (8)
var =00



so that

u(t) = \/;11? g Ty et d - (9)

3. We shall call a eomplex function 6( 7, w) of two real variables,
7 and w, a O function if and only if there exists a function u(t) which is such

that © (7, w) may be represented as in Eq. (7).

4. We shall call a real positive funetion ¥(r, w) of two real variables,

7 and w, a ¥ function if and only if there exists a funetion u(t) which is such

that
)
2 * W —-jwt )
Y(r, w) = |o(r, w)| = (g ut-F)t+3)e Yral . o
Theorems
1. O(r, w)=6(-1, -w)
2. If ©(t, w) is a Ofunction, it has the additional representations
A T
o(T. w) = g Uu-3)Tu+g)e 7 du (11)
and
. Wt
L -jup )2
(T, w) = up- 1) U - w) e e du dp . (12)
van -

\
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3. If 6(r, w) is a ©function corresponding to u(t), then (1/a)

;6[ at, (w/a)] % is a O function corresponding to u(a t).

4. If ©(1, w) is a O function corresponding to u(t), then ©(T, w + 2k T)
is a © function corresponding to exp [ jktz] u(t) .

5. If (7, w) is a©function corresponding to U(w), then

O (T + 20 w, w) is a O function corresponding to exp [ jo w 2] U (w).

6. If ©(1, w) is a®© function corresponding to u(t), then
cos ¢ ©O(w sin ¢ + T cos ¢, w cos ¢ - Tsin ¢)isa © function

corresponding to the time function

2 2
5 t tan ¢ - LW tan ¢ . wt
e - L 5 —I_J(w) e 2 e e dw
V2r v

In other words, the property of being a © function is independent of a rotation

in the coordinate axes.

7. If ©6(7, w) is a ©function, then, along any straight line through the
origin,’ Lo, w)y] /[ &0, 0)] 2 has the properties of a characteristic function;
for example,

-jwT

O (tTcos ¢, - Tsin ¢) e dr = 0 (13)

forall 7 and w.

8. A necessary and sufficient condition that © (7, w) bea

6 function is that



ZS‘ O(r, w-u)e dr (14)

shall factor in the form f(u) _f-(w). It this condition is satisfied, then U(w)

can be identified with f(w).
Proof:

Necessity follows directly upon substituting Eq. (11) into Eq. (14).
To prove sufficiency, assume that Eq. (14) factors and set u = ¢- (p/2) and
w= @+ (p/2). Then we have

20| _ o 1 0 0 . r
§ f(w—%)f(¢+%)e Jo4 do=—>=" {S\ e('r,p)e]wd'r} e ngqo

— 00

= e(&) p) r

which is valid if f(w) is identified with U(w).

9. An equivalent necessary and sufficient condition that 6(7, w)

be a © function is that

- O(r - p, w)e dw (15)

factor in the form

f(p) ()

If this condition is satisfied, then u(t) may be identified with f(t).



10. If 61(1', w) and 62(1', w) are both O functions and neither is
identically zero, then O(7T, w) = el('r, w) + 62 (T, w) is a O function if and only

if 61(1', w) = Cez('r, w), where C is a constant.

Proof:

The sufficiency of the condition is obvious. Necessity follows from
Eq. (14) because we must have U(u) E(w) = Ul(u) I_Jl(w) + Uz(u) I—Jz(w) for
all p and w. It is easily shown that this can be true only if Ul(u) is

proportional to Uz(u); that is, if 61 (T, w) is proportional to 62 (T, w).

11. If el(T, w) and 62(7, w) are both 6 functions, then both

o0

o' (T, w) = S‘ Gl(t, w) 62('1' -t, w)dt (16)
and
e”(T’ w) = S\ el(T9 2 ) 62(7’ w - IJ') d,U. (17)

are also © functions. In the case of Eq. (16)

U (w)

Ul(w) Uz(w) )

and in the case of Eq. (17)

u'' (t) ul(t) uz(t)



Theorems 3, 4, 5 and 6 also apply, with obvious modifications, to
¢ functions in place of © functions. In particular, the property of being a

Y function is independent of a rotation in axes. Other theorems are:

12, If (7, w) is a ¥ function, then ¥ (7, w) is its own two-

dimensional Fourier transform, i.e.,

[>e]
1 i 3
e §§ i, wye F eI Pardw =y p) - (18)
-0
13. If ¥(7, w) is a ¥ function, then
[>e]
1 ‘s
o ‘SS\ (1, wydrdw = Y0, 0)= Y(1, w) - (19)
-0
14, If ¢(r, w) satisfies condition 12, and a fortiori, if

Y (1T, w) is a ¢ function

[ o]
S\S“S § Y(rg=T1s Wy~ wp) BT, 0) BTy, ) d7y 7, dw) dwy =0

-0

(20)
for any function g(7, w).
150 If ¢'1(T, w) and zl)o('r, w) satisfy condition 12, and, a fortiori,
if ¢1(T, w) or ¢2('r, w) are ¥ functions, then
[~ o]
U(r, w) = S ¥ (t, ) Yylt - 7, @) dt (21)
-0

also satisfies condition 12 but is not necessarily a ¢ function.

10

|
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Necessary and sufficient conditions for ¥(t, w) to be a ¥ function

have not yet been discovered.

2.3 The Resolution of Two Nearby Targets

It frequently happens that radar targets are close enough together in
range and radial velocity so that their echoes overlap. When the echoes over-
lap significantly, the detection and parameter estimation problems become
considerably more complicated than is the case for isolated targets. The
problem of determining whether there is one echo or more than one in an
interval is called the resolution problem. In this section we will consider
the problem of two nearby targets. In the next section the problem of many

targets will be discussed.

Let us first consider the two-target problem in a qualitative way.
Assume that we have a radar whose receiver is matched to a known signal,
the echo from a stationary, point target. The input to the matched filter
consists of noise and possible signals. At the filter output a threshold is set.
When the filter output exceeds the threshold, we say a signal exists. The
probability of noise alone exceeding the threshold is the so-called probability
of false alarm. Let us assume that we are trying to decide whether there is
a target at a range corresponding to to . We ask: What is the effect on
detection at to of a possible second target at to +7? We assume 7T is
small enough so that the matched filter response to a target at t0 + 7 would
extend past the point to. It is obvious that the possible second target has the

effect of increasing the probability of false alarm, P at the point of

F H
observation, to. We can keep PF constant by raising the threshold. Raising
the threshold, however, reduces the probability of detection, PD. Increasing

the probability of the occurrence of the second target or reducing the separation,

7, would further reduce PD, if PF were held constant. So we see that

11



when the signal processing is predicated on isolated targets there is a loss in

detection when the targets cease to be isolated.

One possible approach to the problem of resolving two nearby targets

[ 6]

targets is exactly known and that the signal echo amplitudes are unknown. To

in noise is given by Helstrom. Helstrom postulates that the range of both
resolve the signals, one constructs a separate filter to give 2 maximum-
likelihood estimate of the amplitude of each signal. In the two-target case,
two such filters are required. When taken at the proper time, the estimates
of the amplitudes of the two signals are independent, and the estimates may

be compared to a threshold. If the threshold is exceeded by the output of filter
number one, for example, signal number one is said to be present, and so
forth. The probabilities of false alarm and detection may be calculated for
this process. If A* is the estimate of actual amplitude A of one signal and

if b is the threshold, we have for the probability of false alarm, PF

P, =P [[|a*]|>b/a =0] = 2erfe[b| 20 -2%/N] (22)
where
" =3} —t2/2
f = e d
erfc x m S‘ e t

X

N is the noise power per cycle and A is a parameter which depends on the
amount of overlap of the two signals, being zero for no overlap and one for
complete overlap. As the amount of overlap increases, the parameter A

increases and the probability of false alarm increases.

12



The probability of detection of one signal is given by Helstrom

= * =1-
PD Pr[ |A*| >b/A 2 o] 1-erfcy, + erfc ¥y (23)
where
/ 2
¥ = 21 -A27)/N (A +Db)
and

Vg /2(1—x2)/N (A - Db)
We can hold the probability of false alarm constant by setting the threshold
b in Eq. (22)

K
b = 1 : (24)

V2@ - 7\2)/N

where K1 is a constant. With the above value of b the probability of

detection becomes

PD =1 - erfc y2 + erfe y1 ) (25)
where
28 |/ 2
y. = /[— Vi-A + K
1 N 1
and

_f2E2 2
y2 = N 1 A Kl ’

13



where we have written E = Az, the energy in the signal. The probability of
detection is the shaded area in Fig. 1. As A approaches 1, the unshaded
region moves toward the origin, and its area increases, thus reducing the
probability of detection. If the signal-to-noise ration,

22 _ %
N

’ (26)
1- }\2

where K2 is a constant, the probability of detection will be kept constant. The

signal-to-noise ratio, then, must be increased as the overlap of the signals

increases, to maintain a certain probability of detection when the probability of

false alarm is held constant.

1A— 13,446

Fig. 1. Sketch to illustrate the effect on probability of detection of an overlap of
the two echoes and of signal-to-noise ratio. Probability of detection is
given by shaded area.
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Thus we see that, even when elaborate signal processing methods are
employed, a loss in detection occurs when two signals overlap. In the case
considered, the range of both was assumed known exactly. As additional quanti-
ties are allowed to vary, for example, the range to the first target, the target
separation, frequency shift, carrier phase and so forth, the processing required
to make maximum-likelihood estimates of the unknowns becomes very complex.
Detection is apparently impaired by each successive estimate of an unknown

parameter made in the presence of noise.

The problem of the resolution of echoes from two nearby targets can
be approached, alternatively, from the standpoint of signal design. To obtain
the best probability of detection for a given probability of false alarm one
should design the radar signal so that the responses from the expected targets
do not overlap significantly. Not only does this approach give the best detection,

but it results in the simplest signal processing as well.

2.4 The Resolution of Multiple Targets*

In the last section, the maximum-likelihood processing of the echoes
from two targets was considered and expressions for probability of detection
and false alarm were given. We saw that the probability of detection of either
of the two targets decreased as the overlap of the echoes increased when the
false alarm probability was held constant. Similar expressions could be
developed for the three-target situation. It is clear that addition of a third
target whose echo overlapped the first two echoes would have the effect of

reducing further the probability of detection of any one target. As the number

* An excellent qualitative discussion of the multiple-target detection problem
is given by Applebaum and Howells in Ref. 7.
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of targets becomes large, it is clear that the probability of dctection of any one

target is going to be small if thcre is a significant amount of overlapping of the
echocs. One should approach the multiplc-target resolution problecm, then,

from the standpoint of signal design. The decsigner should find a signal which
would optimize, as nearly as possible, the probability of detection of the
individual targets. The ideal signal would be such that the echocs did not overlap
at all. The optimum way (from the detection standpoint) to solve the multiple-
target resolution problem is to avoid it, for when the signal is designed so that
the echoes do not overlap, thc multiple-target problem disappcars. The signals

are isolated and the receiver consists of an array of singlc target processors.

To design the signal so that the echoes do not overlap significantly,
one must define some measure of total ovcerlap of responses in a way which
takcs into account the number of targets, their cross scctions, thcir probable
distribution in time and Doppler frequency, and the dectailed characteristics of
the radar signal. Fowle, Kelly and Sheehan[ 8] have defined as "interfercnce"
the mean energy from a complex of n objects with average cross scction b,

distributed according to a probability density function P(t, f). Thcy get

2 _
E |c(t, v)| = an‘ g (T - t, v - f) P(t, f) dtdf (27)

where Y (1, v) is the single-target ambiguity function, Eq. (5), and the

signal u(t) is normalized to havec unit energy so that ¥ (0, 0) =1 and

o0
S‘S‘ Y(t, f) dtdf = 1. Here (7, v) is the point in the time-frequency plane
_oo 2
at which the output of the single-target processor is obscrved. E [e('r, V) l

is a noisy background against which the detector must look for objects of interest.
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If now at the point (7, v) we insert a target of energy b, we may

form a signal-to-interference ratio, S/I,

s _ b
i ~ (28)
& nb §§ (T - t, v -f) P(t, f) dtdf
- 00
where I = E le('r, v)lz . Or, solving for n, and using the fact that S =b,
n = 1
o (29)
(b/1) gj Y(r -t, v-f)P@, f)dtdf
- 00
We note that from Eq. (29) that b/I need not be greater than unity.
: An upper bound for n, N , may be obtained as
max
1
N = % ) (30)
max _
®/M S‘S‘ Y(r -t, v - f) P(t, f) dtdf
-0

and this will be the maximum number of objects (in addition to the target of

interest) which may be tolerated, subject to the constraints of a given P(t, v),

i a given (1, v) and a given minimum (mean signal)-to-(mean interference)

>

ratio.

If we write

G-, e



(since S =Db), wec sec that the ratio (-l;/I)min may be partitioned into the produet
of an extremum of signal-to-interference ratio, and an extremum of dynamic

range, either (but not both) of which is arbitrary.

A more careful treatment of this problem recognizes the fact that the
integration in Eq. (27) through (30) should be extended only over that region
of the t, f plane which is external to a small area which includes thc point
(T, v), since echoes from objects very near (7, v) should properly be inter-
preted as targets of interest to the filter '""tuned'" to (7, v). We should rewrite

Eq. (30) for Nmax thus:

1

§ § Y(t -t, v-f) P, f)dtdf
Rl

N =

— ) (32)

(b/1)

min

where R' is the T, v plane less an area centered at (71, v).

It will frequently be true that the target distribution function, P(t, f),
will not be known. In that case, it is interesting to assume the objects uniformly

distributed over a region in the t, f plane of area TTWT' Then, if we take

15 w
1 T T
T W o] < TR £ | < =
P, f) = (33)
0 , otherwise,
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I2q. (32) becomes

'Y
= TTT

Nmax =< A : (34)
<_. "X—> gg Y(r - t, v - f) dtdf
b . AL .
min

mi R

The integration in Eq. (34) is now over the region R, which is given by

[t [= TT/2 and |f | = WT/2 with a small area excluded at t=f=0.

Since n itself will usually be of a statistical nature, Nmax should

be viewed as the average number of targets that the radar could separately

detect (or resolve), That N varies inversely with b/b_ ., the dynamic
max min

range of range of target sizes, and (S/I)min’ the minimum tolerable signal-

to-interference ratio, appears quite plausible. The dependence of Nmax on

2

TTWT and on the double integral of [x[ is more interesting, however.

We have the facts that the dimensionless quantity TTWT is a measure of the

intrinsic capacity of the target space. The target capacity of the radar can

be increased over the intrinsic capacity by appropriate design of the radar

signal.

2] Signal Design for Multiple Target Resolution

In the preceding section an expression for interference power was
taken as a measure of the total overlap of the echoes from the multiple-target
complex. From the expression for interference an expression was developed
for Nmax’ the average maximum number of targets that a radar can accommodate
on an isolated target basis. In this section we investigate techniques of signal
design which make it possible to reduce thé interference (or to increase Nmax)'
The discussion will be cast in terms of several idealized signal ambiguity
function shapes. The subject of the design of actual signals whose ambiguity

functions approximate the ideal shapes will be reserved for Section 3. 0.
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We repeat the expression for interference E le (T, V)l 2

b

Ele(r, u)]2 = Tnsv SS P(r-t, v-f)dtdf . (35)
T g

The integration in Eq. (35) is over the target space, which is assumed to have
its center at the origin of the (7, v) plane. The interference will tend to be
worst when the point of observation (7, v) is at the center of the target space,

that is, at 7=v = 0. Let us consider that case. Then we have

2 b ("
Ele(0, 0)]° = — BS (t, f)dtdf (36)
TTWT
R
n, S and TT in Eq. (36) are characteristics of the target complex and are

beyond our control. The Doppler frequency spread of the target space, WT’
is proportional to carrier frequency; thus the interference may be reduced by
increasing the carrier frequency. But generally the most promising way to
reduce interference, and certainly the most interesting way, is to shape the
ambiguity function, ¥(r, v), in such a way as to reduce the value of the

integral in Eq. (35).

We recall that (0, 0) =1 and that

S‘\S Y(t, f)yddf =1 , (37)

-0
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beeause of the normalization of the signal, u(t). While the total volume under

¥(t, f) is thus constrained, the value of the integralg g Y (t, ) dtdf may be

R
reduced by shaping ¥(t, f) to cause some of the volumc under ¥ to lie outside

the target space, that is, outside the region R.*

Accuracy requirements in the measurement of range and radial velocity
will determine the shape of the ambiguity function near its peak. For example,
if accurate estimates are required of both range and radial velocity, the central
response of the ambiguity function must have the shape of a narrow spike. In
addition, if the interference is to be low, the spike should be surrounded by a
clear space, that is, a region where ¥ is zero or very small. A signal
consisting of a train of equally spaced pulses has an ambiguity function of the
correct general shape. The pulse train signal and its ambiguity function are
sketched in Fig. 2. The ambiguity function is identically zero except in strips
oriented in the Doppler direction. The spacing of the strips is, of course, the
spacing between pulses, A, and the strips have a width of 26 where ¢ is the
pulse length. In the strips where ¥ has value, the volume is primarily con-
centrated at points spaced at intervals of 1/A in Doppler frcquency. As shown
in Fig. 2, the central peak has significant value over a region, the area of
which is approximately equal to 6/mA, where mA is the total time duration
of the train of pulses. Noticethat the central response is surrounded by an

approximately clear space of dimensions A in range by 1/A in Doppler.

We should use the pulse train signal in the multiple-target problem

by scaling the radar parameters to cause echoes from objects in the target

* A very good general discussion of signals and the shapes of their
X functions is given by Siebert in Ref. 9.
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8 DIMENSIONS OF REGION
l r | WHERE SPIKES HAVE

Fig. 2. Sketch of a pulse-train signal and its ambiguity function.

space to fall within the clear space surrounding the central response in Fig. 2.
To scale the radar parameters properly, we would set A, the interval between
pulses in the train, equal to TT, the time extent of echoes from the multiple
targets. Next we select the carrier frequency, fo’ to spread the objects in
Doppler frequency sufficiently to fill the dimension 1/A in Fig. 2. To do this
we would set

1

e ) 38

T C 0 A (55)

where V_ is the total spread of the multiple-target complex in radial velocity,

R
and C the velocity of light. This would yield for the carrier frequency fo

22



¢ (39)
o 2VRA

The required range and radial-velocity accuracies can be achieved by making

6 sufficiently small and mA sufficiently large. The region R in Eq. (36) by

the above discussion consists of the space A by 1/A about the origin in Fig. 2.

We can estimate the volume under ¥ in R. The volume under the central

response is roughly

volume = height at origin x area of base
0
~ ] —_
o X
e , (40)
signal time-bandwidth product

and the volume under ¥ in R will be of the same order of magnitude. Then

the interference is approximately

nb
; (41)
(T W) (TgW)

E|e (0, 0)]2

where TSWS is the signal time-bandwidth product. The interference is thus

-4 -
reduced by a factor 1/TSWS , which can be of the order of 10 "~ or 10 2 when
the signal is a properly designed pulse train.

If the requirements of the radar system do not include estimation of
both range and Doppler frequency simultaneously, other signal designs may be

employed to reduce the volume under ¢ inside the target space. For example,
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if it is sufficient to detect the targets and measure their range only, then one
may choose a signal whose ambiguity function has the shape of a thin ridge
oriented in the Doppler direction. The volume under ¥ in R may be reduced,
by making the ridge extend in Doppler far beyond WT, the Doppler extent of
the target.complex. A signal whose ambiguity function has the general shape

of a thin ridge oriented in the Doppler direction is the short, constant-frequency
pulse. A pulse of length 6 has an ambiguity function having a width in the
range direction of about 6 and an extent in the Doppler direction of about 1/6.
The pulse length & would be chosen so that the ridges corresponding to the

objects in the multiple-target complex would not overlap significantly.

If the simple pulse signal is made to have a large duration, thc
signal ambiguity function assumes the shape of a thinridge oriented in the range
direction. If the duration, ¢, is made much greater than TT, the extent
of target echoes in time, the volume under ¥ in R, and hence the interference,
is reduced. Targets may then be separated by their differences in radial

velocity. This is the CW radar case.

Another type of signal which may be useful in multiple-target situations
is the large time-bandwidth product, frequency-modulated signal whose frequency
variation is uni-directional with time. Such signals tend to have ambiguity
functions of the shape of a thin ridge, except in this case the ridge is at an angle
to both the time and frequency axes. An example of this type of signal is the
so-called '"tangent FM" signal described by Key, Fowle, and Haggarty.[ 10}
Another such FM signal is the familiar linear FM or '"chirp' signal described

[ 11] [ 12] [ 13] [ 14]

by Cook, Klauder et al. Fowle et al, Jacobus, and others.

In the discussion up to this point we have explicitly assumed that the
dense target complex was bounded in time and Doppler frequency. When the

target complex extends so far in time and Doppler that it is not practical to
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design the signal to cause any of the volume under ¥ to lie outside the target

space, we have

g S‘ P(t, f) dtdf =~ (signal energy)2 =1 , (42)
R

and N becomes
max

(43)

Now it is meaningful to speak of target capacity in terms of a density or target
capacity per unit area in range-radial velocity space. To do this we may

write for TT

R
T = =
313 C ’
d for W
an or T
2V
W=7 £

where RT is twice the extent of the target complex in range, V the spread
in radial velocity, fo the radar carrier frequency, and C the velocity of
propagation. Then we have Nma.x per unit area in the range-radial velocity

plane given by

25



N 9 fo
max _ . (44)

R .V 2 T
T C (b/bmin) (S/I)min

The target capacity per unit area may only be increased by increasing the
carrier frequency when the target complex is of large extent in range and radial

velocity, as shown by Eq. (44).

2.6 Detection of a Target in Clutter*

In the situation that exists when an isolated target is imbedded in clutter

at T =v =0, itis meaningful to speak of the signal-to-interference ratio, S/I

S _ b , (45)
I

ngg § O(t, f) P(t, f) dtdf

—00

where n is very large and b very small so that the product (nf)) is finite.
If the clutter is assumed to be uniformly distributed over time Tc and Doppler

frequency shift Wc’ the expression for the signal-to-interference ratio becomes

T W
TS= G ¢ , (46)
(o/b)g g Y, f)dtdf
R

* This section follows Fowle, Kelly, and Sheehan, Ref. 8. For a treatment
of the problem of the detection of a target in clutter distributed in range
only, see Manasse, Ref. 15.
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where we have written ¢ = nb to signify an "average clutter cross section, "
The region R now includes the entire clutter space. Quite obviously, all the
commentary about the problems of detection in the multiple-target situation
apply to the case of a target in clutter. In addition, it is possible that the clutter
cross section, ¢, may be reduced by appropriate choice of carrier frequency.
As previously mentioned, once the interference is lowered to a point where
targets of suitably small cross section can be detected, there is little motivation
for going farther and exploring the structure of the clutter, even if that could

be done. When the clutter is of very great extent in time and Doppler, as in

the unbounded multiple-target situation, the only method available for reduction

of interference is that of increasing the radar carrier frequency.
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3.0 WAVEFORMS
3.1 Introduction

As a preliminary to a discussion of the design of radar waveforms, it
is most appropriate to assert that no one waveform is ideal in all operating
situations. A particular waveform can be very useful in one situation and less
than optimum in another. Hence, in the design of a versatile radar it is con-
ceivable that provision should be made for the transmission, at the option of the

operator, of any one of several waveforms.

For example, the radar operator might want to perform with a long-

range, high-power radar a sequence of operations somewhat like the following:

(1) Search a given region of space for targets with potentially
large velocity toward or away from the radar; upon detection

of an echo, measure coarse range and velocity.

(2) Following reception of an echo, determine whether the target

is single or multiple.

(3) Measure with increased accuracy the range and radial velocity

of the object (or objects).
(4) Distinguish between genuine signal echoes and bogus echoes.

In the search mode, because of the possible large velocities and
correspondingly large Doppler frequency shifts, it is necessary to provide in
the radar receiver a bank of matched filters spaced uniformly in frequency
over the anticipated Doppler band. Many filters may be necessary in some
cases. In the search mode the only important parameter of the signal is the
energy it contains (all signals of equal energy received in matched filters give

the same probability of detection of isolated targets). The radar operator,
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looking for possible distant targets, would thus begrudge a waveform design
which made his transmission inefficient. Also, the waveform should be simple.
Simple signals generally have simple matched filters, and simple matched
filters are desirable when a large number of them must be built, paid for, and
maintained. For the search mode a signal consisting of a rectangular burst

of constant frequency sinusoid might serve well. With the flat-topped signal

the transmitter can be operated in the saturated mode at maximum efficiency.

When an echo is received, the coarse range and radial velocity of the
object are measured. To determine whether there is one object or several
nearby objects the operator might switch to a different signal — one of large
bandwidth with an autocorrelation function having a very narrow central peak
and very low sidelobes. In general, echoes somewhat more widely separated
in time than the duration of the central part of the autocorrelation function may
be resolved, and the lower the sidelobes, the greater the permissible ratio of
the cross sections of the resolvable nearby objects. Signal-to-noise ratio is
always important, but to answer the question of whether there is one or many
objects, ultra-low sidelobes are important, too, and one might use a less
efficient signal than that employed in Operation 1 to get the low sidelobes. For
example, one might use an amplitude- and phase-modulated signal, say, a linear
FM signal with a Gaussian envelope or a simple amplitude-modulated, pulse-
burst signal. The former would provide high resolution in range and the latter

high resolution in both range and Doppler.

To perform Operation 3, that is, to measure with greater accuracy
the range and radial velocity of an object, the operator might transmit a very
complicated signal having an ambiguity function of the thumb-tack shape. Such
a signal, as we shall see, might have a symmetrical (about the center of the

pulse) frequency sweep and more or less constant envelope. The matched filter
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for such a signal can be very complex to design, build, and align and, hence,
very costly. One would not want to make a filter bank consisting of many such
filters. However, one might make, say, three such filters tuned to different
frequencies so that their responses overlapped at the minus 1- or minus 2-db
points. One could steer the bank of three filters to the approximate frequency
of the echo (measured in Operation 1) and refine the measurement of frequency
(and hence of radial velocity) by interpolating between the filter outputs and at

the same time, refine the measurement of range made in Operation 1.

Finally, the operator, by hypothesis, has the problem of distinguishing
between genuine and bogus echoes. There are a number of things the operator
could do. For example, he could detect certain kinds of bogus echoes by trans-
mitting several highly structured signals in succession and observing the output
of the respective matched filters. If the output waveform did not have the shape
of the signal autocorrelation function in each case, the operator should suspect

that the echoes were not genuine.

It should be clear, of course, that there are other equally valid signals
and procedures for solving the operating problems postulated in the example.
The reader can invent his own. The above discussion serves to illustrate,
however, the point made earlier that no one signal solves all radar operating
problems in an optimum way and that it is not unreasonable in the design of a
radar to provide several signals to serve various purposes. In fact, this is

frequently done.

In the preceding section we classified signal correlation function (and
the related ambiguity function) shapes and gave a discussion which indicated
something of the utility of the various shapes in regard to the accuracy of
target parameter estimation and to the resolution of multiple targets. It

would be pleasant if there were a method of synthesizing a signal to have a
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[5 [ 16]

have studied the general problem of signal correlation function synthesis but

specified two-dimensional correlation function. Sussman and others
have not produced useful general methods. In the last analysis the signal de-
signer must choose a signal, calculate its two-dimensional correlation function,
and continue the process until he finds a satisfactory signal whose X function
is also satisfactory for his purpose. In this process he may, of course, be

guided by experience.

In this section we will classify signals by type of modulation, that
is, whether amplitude modulation, phase modulation, or a combination of the
two. We will try to see what kinds of X- function shapes are possible with the
various kinds of modulation in the signal and, where possible, see how to
control the X-function shape, at least over a limited region. For purposes of
convenience we will distinguish between "compact' signals (energy concentrated
into one time interval) and "distributed" signals. An example of the former is
a single rectangular pulse; an example of the latter is a burst of pulses spaced
at intervals in time. Compact signals are treated in the first 12 sub-sections,

and distributed signals are treated in the 3 sub-sections which follow,

In the discussion which follows we will assume that the signal s(t) is

s(t) = u_(t) cos [or ft+ o)) (47)

where ue(t) is called the envelope and ¢ (t) is called the phase modulation.
We will assume that narrow band conditions apply and represent s(t) as the

real part of sc(t) where

4

s(t) = R_ ! 5, (V) f

(48)

Re 3ue(t) expjo(t) expj2m fot z
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We let

u(t) = u (t) expjo(t) - (49)

The function u(t) is usually referred to as the complex modulation of the signal.
Notice that u(t) completely defines the signal except for the carrier frequency
which is, at this point, of no particular concern. For simplicity, then, we
shall refer to u(t) as the signal in the material which follows, unless otherwise

noted. The Fourier transform of u(t) will be U(f) where
u@) = U_(Dexpjo(f) - (50)

The two-dimensional signal correlation function x (7, v) has the two representa-

tions, one in terms of u(t) and the other in terms of U(f) thus:

X(t, v) = S\ u(t) u(t + 7) exp(-j2r vt) dt (51)
= g V() U + v) exp(-jorfr) df - (52)

The complex conjugate of u(t) is denoted by u(t). Notice that along the 7

axis
x(t, 0) = S\ u(t) ﬁ(t+'r) dt (53)
- Sw U2 (0 exp (-j2rtr) df - (54)
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The first Eq., (53), shows x(7, 0) to be the complex signal autocorrelation
function, and the second line, Eq. (54), shows x(r, 0) to be the Fourier
transform of the square of the modulus of the signal spectrum. From the

latter relation we may deduce that the effective duration of (7, 0) is inversely

proportional to the bandwidth of the signal. Along the v axis

x(0, v) = g U(f) U(f + v) df (55)
= S‘ ue (t) exp(-j2rvt) dt . (56)

x(0, v) is given by the complex autocorrelation of the signal spectrum and,
alternatively, by the Fourier transform of the square of the signal envelope,
ue(t). The extent of x(0, v) is thus inversely proportional to the duration of
the signal. It should be noted, however, that the function x(r, v) is not in

general determined in the 7, v plane by its behavior on the 7 and v axes.

3.2 Amplitude-modulated Signals

When the signal is merely amplitude modulated, u(t) = ue(t), and
@(t) = 0. U(f) is then determined solely by the envelope, ue(t). We have

for x(t, v)
x(t, v) = 5 ue(t) ue(t+ T) exp(-j2rvt) dt . (57)

To show how the ambiguity function shape is related to the envelope shape,
let us calculate the ambiguity function for two amplitude-modulated signals.

First let us consider a signal with a rectangular envelope. We take
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u, () = , (58)
) 0 , otherwise

We substitute Eq. (58) into Eq. (57) and integrate to obtain for x(7, v)

sin Ty (1 - T)

' jT =L HS = =
aplFeE=T] (Ter) Somsm=» 0 = o=
. sin Ty (t + T)
. = T -T + , -T = = , 9
X(7, v) ?eXP[J vts =Tl (T S T=71=0 (59)
0, otherwise
Along the v axis (thatis, v =0) we have
T 1= T ; 0=7 =T
x(7,0)=) T T , -T=7 =0 , (60)
0 , otherwise
and along the v axis we have
si T
(0, V) = exp (-jr v T) T == (61)

mvT

The function IX(‘T, V) [ is sketched in Fig. 3. The section of [ X [ along the
7 axis is triangular in shape with an extent of 2T; this section is the auto-
correlation function of the envelope ue(t). In the v direction the section of

] X I is the Fourier transform of ui(t) . The extent of [x I in the 7 direction
is effectively, T, the reciprocal of the bandwidth of the signal. The extent

of lx [ in the v direction is effectively the reciprocal of the signal duration.
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Fig. 3. Sketch of the | X | function of a rectangular, constant-frequency signal.
Profiles are shown vs. time at intervals of 1/2T in Doppler where T is the
signal duration. (Taken from Applebaum and Howells, Ref. 7, with permission.)

Next, as a second example, let us consider a signal with a

Gaussian envelope. We take

u () = exp (-t%) (62)

The signal correlation function becomes

oo

X(r, v) = 51 exp(-t2) exp - (t + 7)° exp (-j2mvt) dt . (63)

- 00
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We complete the square in the exponent in Eq. (63) and use the relation

o 2
§ exp <——Lé>dy= Jzr o (64)

to obtain for x(r, v)

2 2! 2
x(t, v) = /% exp (jtvT) exp - <TT+ ‘n; > . (65)

Notice that in Eq. (65) sections of ]x I taken in the 7 direction are all

Gaussian of constant width between e-1 points. The effect of a Doppler shift
is to reduce the amplitude of the peak. The signal correlation function of

the Gaussian signal is sketched in Fig, 4.

The two examples above serve to illustrate somewhat the extent to
which the signal correlation function may be shaped by shaping only the signal
envelope, ue(t). In both of these cases lx] has appreciable value over
approximately the interval 1/W (where W is the bandwidth of the signal) in
the 7 direction and 1/T in the v direction. In both cases TW is approxi-
mately equal to one. The volume under ]x] is thus largely contained in a unit
area centered about the origin of the 7, v plane, and lx] has approximately
unit height in this region. The width of ]xl in the 7 direction can be decreased
by increasing W (that is, by decreasing T) and target range may thus be
measured more accurately in presence of noise. However, decreasing T has
the effect of increasing the extent of |x| inthe v direction and reducing our
ability to measure frequency shift. In the following sections we will show that

a combination of amplitude and phase modulation will permit the time-bandwidth
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Fig. 4. Sketch of the | x| function of a constant-frequency signal with a Gaussian
envelope.

product to be much greater than one, and that with a large time-bandwidth

product a great deal more control over the shape of | x(T, v) | is possit.e.

3.3 Phase-modulated Signals

We will say a signal is phase modulated when its structure : nd that of
x(t, v) is largely determined by the phase modulation and is relativcly inde-
pendent of the amplitude modulation. We have seen that the extent of x on the
T axis is reciprocally related to the signal bandwidth and that the extent on the
v axis depends on the reciprocal of the signal duration. Simple amplitude-

modulated signals have time-bandwidth products of approximately one. By phase
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modulation we can make the bandwidth much greater than the reciprocal of the
duration, and hence, it is possible by phase modulation to make X narrowly
confined in both the 7 and v directions, subject, of course, to the volume
constraint on I X |2 . However, we will see that phase modulation achieved

by sweeping the frequency in one direction does not necessarily narrowly con-
fine the peak of x inthe 7, v plane. To confine X to an area of 1/W by 1/T
in the 7, v plane it is necessary that the frequency sweep be symmetrical,

that is, down and up or vice versa. But confining ¥ inthe 7 and v directions
is not always necessary or desirable. We will see that by sweeping the frequency
in one direction we can control the shape of x in a narrow strip about the T
axis. We will develop a procedure for designing signals to do this and give some
examples. Then we will extend our results to see what can be said about phase-
modulated signals whose X-functions are narrowly confined in both the 7 and v
directions. We will also consider phase modulation achieved by making step
changes in the phase of the signals, and see what kinds of yx functions are

associated with this kind of signal.

If the range of expected Doppler frequency shifts is small and if
measurement of Doppler frequency is not desired, then a suitable shape for
Ix(-r , V )| would be a narrow ridge perpendicular or nearly perpendicular to
the time axis. The ridge should be sharp enough to permit a sufficiently
accurate determination of range to be made in the presence of noise, and it
should fall away quickly enough in range to make the interference due to echoes
from nearby objects small. With v =0, the signal correlation function
becomes x(r, 0) which is, of course, the signal autocorrelation function, and
the problem of shaping l x(T, v) I in a narrow strip about the T axis becomes

that of designing the signal to have a desirable autocorrelation function.
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If the only problem were that of designing a signal whose auto-
correlation function were short, the solution would be easy: a simple signal
of short duration. But in general the easy solution is not acceptable because
the returning signal echo is detected in noise on the basis of the encrgy it
contains, and energy in the echo is proportional to energy in the transmitted
signal. To get high energy in a short signal requires high voltages in the
transmitter, leading eventually to arcing, etc; frequently it is not possible
to get sufficient energy in a short signal, and recoursc must be had to long
signals whose autocorrelation functions are narrow. The problem of dcsigning
a relatively long, rectangular, phase-modulated signal to have an autocorre-
lation function of short duration and specified shape has been trcated, by Key,

[ 10] [ 17]

Fowle, and Haggarty and, independently, by Watters.

The solution
for the phase modulation when the signal envelope is constrained and of arbitrary
shape (that is, non-rectangular) and duration has been given by Fowle. ) We
will first treat the general rectangular signal case and then eonsider examplcs

to illustrate the design procedures. Then we will discuss an approximation to

a smooth frequency sweep: a rectangular signal whose frequency changes by
discrete steps at intervals during the signal duration. Next we will discuss
rectangular signals with phase modulation obtained by making step changes in

the phase at intervals during the signal's duration. Following that, we will
return to smooth frequency sweeps and consider the general problem of designing
a signal of arbitrary envelope shape to have a specificd autocorrelation function,
and, finally, we will give an example of an amplitude- and phase-modulated

signal.
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3.4 Uni-directional FM Signals*

Here our purpose is to consider how to design a signal of rectangular
envelope and given duration so that the lxl function of the signal will have a
specified shape along the 7 axis. By controlling the shape of the Ix | function
along the 7 axis we will, in fact, shape the Ix | function in a strip on either
side of the T axis. Such a signal will be useful when the range of expected

Doppler shifts is less than the width of the strip. We have for x(r, 0)

oo
2
X(t, 0) = g ludf) |© exp (-jor frydf - (66)
—-00
Specification of x(7, 0) determines Um(f), the modulus of the signal

spectrum, thus:

o 1/2
Um(f) = S‘ x(t, 0) exp (j2w f7) df . (67)

-~ 00

At this point we have specified the modulus of the signal (i.e., that it be
rectangular) and the modulus of the Fourier transform of the signal, Um(f).
The question is, what phase functions must be associated with these moduli

to make a Fourier pair? We must find an expression for © (f), for example,

to make

*Early work in FM signal design is described in the patents of Sproule and

Hughes in England,[ 19) Dicke[ 20} and Darlington[ 21 in the U.S., and
Cauer in Germany.[22] The material in this section is based upon Key etal. 1K
Watters,[ 17] and Fowle .[18]
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o0

§ U_() exp jO(f) exp (j2rft) df | = luy | (68)
-0
where lu(t)l = constant during the signal duration. Eq. (68) is an integral

equation of an unusual kind; it is not clear how the solution for © (f) should
proceed. The problem is further complicated by the fact that an exact solution
for © (f) does not, in general, exist, because the moduli of a Fourier pair
may not be arbitrarily specified. Worse still, a concise set of necessary and
sufficient conditions on two functions to be the moduli of a Fourier pair does

not exist. How then are we to proceed to solve the problem we have formulated?

Fortunately there is a way. An approximate expression for © (f)
in terms of the specified moduli may be gotten from Eq. (68) by the method of
stationary phase. As we will see, the approximate expression for ©O(f) together
with the initially specified Um(f) will satisfy Eq. (68) with good accuracy under

certain circumstances even for modest signal time-bandwidth products.

To begin the approximate solution for ©(f), we write for u(t)

o0

ut) = § U_(f)exp jO(f) exp (j2r it) df - (69)

— 00

According to the principle of stationary phase, * the integral of an oscillatory
function, such as Eq. (68) above, has little value except in the vicinity of points
where the phase is ''stationary' or where the derivative of the phase is zero.
The phase in Eq. (68) is S (f) where B (f) = 2rft + ©(f), and the derivative,
B '), is

* For a discussion of the method of stationary phase, see Sneddon, Ref. 23.
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p'f) = 2rt + O©'(f) (70)

where the prime denotes differentiation with respect to f. The phase is stationary

at the point f=A, which makes S'(f) = 0. Then we have

o'(\) = - 2mt . (71)

In the stationary phase method, B (f) is expanded in a Taylor's series about the
stationary point, A, and terms of higher degree than second are dropped.
The resulting equation can be integrated to give the following approximate ex-

pression for u(t):

Uu )
at) = J2r ———— expj[2mAt+OQ) % 7/4] (72)
leno\)l

where the + sign is taken in the exponent for ©"(A) > 0 and - for ©'"(\) < 0.
Equation (72) above assumes that only one stationary point exists at time t,
and this is adequate for our purpose. We note that ue(t) and & (t) are given

approximately by

Um(x)
u (t) =27 W (73)
and
Q) =~ 2TAt + O(\) = m/4 . (74)
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The trouble with the solutions for ue(t) and ¢(t) above is that they are func-
tions of the variable A, and A is, as yet, an unknown function of t, given
in Eq. (71). In the special case which is of interest here, ue(t) is required

to be constant. With ue(t) constant, Eq. (73) becomes

6"\) = k Ufn(x) : (75)

and the phase, ©(f), is given by two integrations of Eq. (75) with A =f,
We get

f  x
on =k | | o (76)

—-00

By definition, the group time delay T(f) = - ©'(f)/27 ; we differentiate Eq. (76)
to obtain for T(f)
f
T(f) = k g U2 (x) dx (77)
1 m '

- 00

where k1 is a constant.

Up to this point, we have obtained the following result: If we
associate with an arbitrary spectral modulus a group delay proportional to the
integral of the square of the modulus, we then have the Fourier transform of
a function that has an approximately constant envelope. In other words, we

have the result that
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4

f x
3 2 .
g Um(f) exp | jk g g Um(y) dy dx | exp (j2rft) df

-~ 00 -00 =00
(78)
A exp jo(t), for t such that a
stationary point exists,
0, elsewhere,
where A is a constant. We have the final question to answer: What is the
phase modulation, ¢(t)? To get an approximate expression for ¢(t), we
differentiate Eq. (74) with respect to t. We get
don da
1 ~ + + __—(_L —— e
Q'(t) =~ 2mA |:27rt n :| at (79)
The term in brackets in Eq. (79) is zero by Eq. (71). Then we
have
Q'(t) = 2m A (80)
If we define the instantaneous frequency f(t) = ¢'(t)/2m, Eq. (80)
becomes
f(t) = A (81)

The instantaneous frequency at time t is thus given approximately by A, the
frequency which makes the integrand in Eq. (69) stationary. Another relation

between A and t can be gotten from Eq. (71). We have
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o'\
t=- . 82

But -©'(A)/27 is, according to the discussion above, the group time delay,

T( ), and Eq. (82) becomes
t=TQA) - (83)
If we use Eq. (83) in Eq. (81), we get
flTa)]=ar (84)

which shows that instantaneous frequency and group time delay are approximately

inverse functions. That is, we have

TO) =1 (0) s (85a)
and, in addition
=1
fit) = T ~(t) - (85b)

Using Eq. (85b) we can write for ¢'(t)
-1
@'(t) = 2T ~(t) - (86)

We integrate Eq. (86) to get for ¢(t)

oty = 2 § T (x) dx - (87)

46



©(t) in Eq. (87) is given by the integral of the inverse of the group delay,
T(f), which depends only on the spectral modulus Um(f) and upon the fact

that the envelope Ue(t) is required to be constant.

Let us now summarize the procedure that we have given for the design
of unidirectional FM signals. The problem is to design a constant amplitude
signal to have a specified duration and an autocorrelation function of specified
shape and duration. Specification of the autocorrelation function determines the
modulus of the signal spectrum. We then associate with the modulus of the
signal spectrum a group time delay characteristic proportional to the integral
of the squared spectral modulus to obtain the approximate transform of a con-
stant amplitude signal. Because Urzn(f) is non-negative, the group delay,

Eq. (77) will either monotonically increase or decrease with frequency, depending
on the sign of k 1 Since the instantaneous frequency and group time delay are
approximately inverse by Eq. (85), the instantaneous frequency will be a mono-
tonic function of time. A little thought will show that if the group delay increases
with increasing frequency, the instantaneous frequency will increase with time
and vice versa. In the two sections which follow we will consider signal design

examples that will illustrate the ideas we have developed in this section.

3D The Rectangular Linear FM Signal

We will consider the linear FM signal for two reasons. First, it
illustrates in the simplest way the FM signal design ideas we have developed
and second, the linear FM signal is a widely used and useful radar signal. To
put the linear FM ideas in terms which fit our development, let us suppose that
we want a rectangular signal whose X function along the 7 axis has the

following form,
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sin 1rt/T1

x(t, 0) = (88)

1
T ! Tt/T 1
The effective duration of the signal autocorrelation function above is Tl' We
2
set T, =1/W. The Fourier transform of X(7, 0) is Um(f). We perform

1
2
the transformation and obtain for Um(f)

2 o
v 0= ) : (89)

0 , otherwise

The modulus of the signal spectrum, Um(f), is

U _(f) = 2 ; (90)
0

, otherwise

We find the group delay T(f) required, with Um(f) [ Eq. (90)], to make the
Fourier transform of a rectangular signal by means of Eq. (77). We have two
choices, one corresponding to a frequency sweep whose frequency increases
with time, the second to a frequency which decreases with time. To find the

former, we set
)

T() = K g df
-W/2
(91)
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We find K by requiring that the signal have duration T2 where T2 >> Tl'

The signal duration is given approximately by the range of delay through which

T(f) varies. Hence we set

and find that

T
2
K=w
Hence
Ty (28 e
W 2 i 2
DEE) =
o , otherwise

We can find the instantaneous frequency vs. time by use of Eq. (83) which

says

t=T(A) ’

where A, by Eq. (81), is the instantaneous frequency. We set

t=T_2“m>
W 2

and solve for A . We find that

0 : otherwise
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It is: apparent. in: Eq,. (97) thatl the instantaneous frequency increases with time:
from -W/2 to +W/2..

In order to find the second solution for T(f) we re-write Eq. (77),
changing the limits: of integration thus,

‘.W/Z;
TE) = K § dar (98)
i
and! require that T{-W/2)= '11"2.. We obtain for TV(f)
W \2 y ! 2 2
() =
? (99)
0o , otherwise

We find the frequency vs. time, X, corresponding to T(f) in Eq. (99), to be

wil - L. 0<teT
) e
2
x-u-? , (100)
. @ , otherwise

“

which shows: that the frequency decreases with time: from +W/2 to -W/2.

It is well to note here that we hawve been trying to design a band-
limited signal to be time limited as well. Paley and Wiener show that it is
impossible for a function to be both time limited and band limited. * As the

* See Theorem 10 of Paley and Wiener, Ref. 24.
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time-bandwidth product of the signal increases, however, the above restriction
appears to lose force, and a better and better approximation to a time-limited

[ 12]

signal is possible. Klauder et al. calculate the envelope of a signal whose
spccetrum has a rectangular modulus and linear group delay. Their results are
given in Fig. 5 for several TW products. For TW = 10, the envelope is not
very rectangular. For TW = 60 the approximation is better; finally for

TW = 120, the approximation is fairly good. As the TW product increases,
the envelope will become more and more nearly rectangular although, of
course, never exactly rectangular. For modest TW products it can be shown
that the frequency vs. time is quite linear except near the ends of the pulse,

and that the fraction of the pulse over which the frequency is approximately

linear increases as the TW product increases.

The linear FM signal can be generated in a number of ways. The
most common way is to apply an impulse (i.e., a short pulse) to a composite
filter with a frequency response that has an approximately rectangular modulus
and a group delay that is linear with frequency. The signal can also be generated
by sweeping an oscillator in frequency at a uniform rate and holding the ampli-
tude constant. In the latter case it is the spectrum that has the ripple and is
only approximately rectangular. We will say more about the techniques that

are available to generate and receive signals in Section 4. 0.

In Fig. 6 we show schematically a radar which employs a matched
filter receiver. The transmitter is represented as an equivalent linear filter
whose impulse response is the linear FM signal. The system operates in the
following way. The impulse response of the transmitter bandpass filter in
Fig. 6 is a sin 1 Wt/r Wt waveform of duration T1 =1/W. The sin nWt/7Wt
pulse is dispersed in the all-pass filter in a manner which, according to the

previous discussion, gives a waveform of nearly constant amplitude with
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Fig. 5 Envelope of a signal with a Fourier transform that has a rectangular modulus
and quadratic phase for (@) TW = 10, (b) TW = 40, and (c) TW = 120. (Taken
from Klauder et al, Ref. 12, with permission.)
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duration T2. The ratio of the duration of the waveforms is T2/T1 = TW,

the time-bandwidth product. The dispersed waveform, which we call the signal,
is transmitted. A replica of the signal, attenuated and delayed, is presented

to the receiver. The receiver, in this case a matched filter, is shown as an
equivalent linear filter whose impulse response is the signal inverted in time.
The dispersed signal echo is compressed in the receiver all-pass filter, the
output waveform of which is again sin 7 Wt/mr Wt. The signal then passes, in
this case without change in shape, through the bandpass filter to the receiver

output terminal.

When the echo returns with a Doppler frequency shift (due to reflec~
tion from an object moving radially with respect to the radar), we have the
situation in the receiver illustrated in Fig. 7. In Fig. 7(a) the receiver frequency
response is shown centered at fo. The signal spectrum is shown shifted up

in frequency from fo by f the Doppler shift. The moduli of the frequency

functions of the signal and t(}ile receiver multiply and the group delay charac-
teristics add, to give the modulus and group delay, respectively, of the
receiver output waveform [ Fig. 7(b) ] . The effect of the Doppler shift is
two-fold. First, the bandwidth of the output waveform is reduced and its
duration correspondingly increased, and second, the signal appears at the output

terminals advanced in time by AT which is proportional to f When the

Doppler shift is negative, the signal is delayed in time by ATC? As the output
waveform broadens because of Doppler shift in the signal, the resolving power
of the radar (the ability to make echoes from nearby objects distinct or non-
overlapping) decreases. The time shift which results from the Doppler shift
causes an error to be made in the estimate of the range to the target. But,
regardless of Doppler shift, the group delay of the waveform at the receiver

output is constant (non-dispersive) and the output waveform thus is free of

phase modulation.
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Fig. 7 Effect of Doppler frequency shift on linear FM pulse compression system.
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Fig. 8 shows a model of the two-dimensional correlation function,
Ix('r, V) l , corresponding to a signal of rectangular envelope and exactly
linear instantaneous frequency. The TW product of the signal is 10. The
profiles in Fig. 8 are taken vs. time at intervals in Doppler equal to one-tenth
of the signal bandwidth. The profile with the tallest peak is the envelope of
the signal autocorrelation function; the peak occurs at the origin of the T, v
plane. The most significant feature of the function is the ridge which runs at
an angle to the time and Doppler axes. Elsewhere in the plane the function

is low.

We might consider how the linear FM signal could be used. The
duration of the signal we will assume will be determined by the energy require-
ments for detection and the available transmitter peak power. The bandwidth
of the signal should be large enough to give the desired resolution in range.

The duration of the signal at the receiver output in Fig. 6 is approximately

T and T1 =1/W, where W is the bandwidth. To resolve echoes which

a;e separated by an interval in time equal to Tl’ a bandwidth of at least W
is required. It is possible, depending on the parameters of the radar, that
the error in the estimate of range caused by Doppler shifts is negligible. For
example, the error in the estimate of time of arrival, AT, of a Doppler

shifted signal can be shown to be

T
= e 101
AT fdw (101)

where fd is the Doppler shift, T the signal duration and W the signal
bandwidth. The Doppler shift fd = 2VR fo/c where Vi is the radial velocity
of the target, fo the radar operating frequency, and C the speed of light.

If the radar transmitting at 400 Mcps a 100 p sec signal of 1 Mc bandwidth looks

at an airplane traveling at 600 miles/hr toward the radar, the resulting error
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in the estimate of range will be of the order of 40 feet, in all likelihood a

negligible error.

However, the same radar measuring the range to a satcllite traveling
toward it at 4 miles/sec would be in error by about 970 feet, and 970 feet might
not be negligible. What can be done to eliminatc the error? One thing that
eould be done would be to measure the range to the target on a number of
suecessive pulses, and from the measured values of range compute the range
rate or veloeity of the target. With range rate known, one could compute the
Doppler shift and correct the measured values of range by use of Eq. (101).

In addition, one could reduce the range error eaused by Doppler shift to a

negligible value by making the signal bandwidth W suffieiently large.

One disadvantage of the linear FM signal is the shapc of the auto-
eorrelation function of the signal. When it is desired to resolve two eehoes
elose together in time, it is desirable to use a signal that has an autoeorrelation
function that falls off rapidly and smoothly from its peak. In this way the
reeeiver response due to one signal may fall to a low value beforc the responsc
to a nearby echo occurs, and the resolving power of the radar is enhanced.

The autoeorrelation function of the linear FM signal falls off as 1/t (which

is not very fast) and it is oscillatory, which is to say that it has sidelobes.

In most applications it is desirable to suppress the sidelobes, while at thc same
time preserving the reetangular signal shape and its approximately linear
frequeney sweep. The sidelobes of the autoeorrelation function arise, of
course, beeause of the reetangular shape of the signal spectrum. The usual
method of suppressing the sidclobes is to weight or taper the frcqueney charac-
teristic of the receiver, leaving the shape of the signal speetrum, and hence
the signal envelope, rectangular. The spectrum weighting problem here is

exaetly the same mathematically as that of tapering the illumination of an
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antenna to reduce sidelobes, a problem treated by Taylor[ 25] and others.

Figure 9 shows: (a) the unweighted spectrum of the receiver output and (b) the
associated sin mWt/mr Wt time function, and (c) the general shape of the spectrum
after weighting and (d) the associated time function. Notice that the effect of
tapering is to broaden the output waveform, usually by a factor of about two.

The weighted receiver is, of course, no longer a matched filter to the signal,

and a loss in the detection capability of the system results. This loss is

usually about 1 to 1-1/2 db, and in many cases is not serious. The reader

[12]

details of the problem of suppressing the sidelobes of the autocorrelation function

is referred to the paper by Klauder et al for a thorough discussion of the

of the rectangular linear FM signal.

(a) (b)

(€) (d)

1A-13,453

Fig. 9 Sketches to show (a) spectrum of receiver output before weighting, (b) receiver
output waveform before weighting, (c) spectrum of receiver output waveform after
weighting, (d) receiver output waveform after weighting.
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3.6 A Rectangular Non-linear FM Signal*

Earlier in this section we gave a method for the design of rectangular,
phase-modulated signals of large time-bandwidth product to have a specified
autocorrelation function. In the preceding section we applied these ideas to
design a rectangular signal of large TW product whose autocorrelation func-
tion was of the form sin7 W7t /7 Wr. In most applications it is desirable to
have a signal whose autocorrelation function has sidelobes of low rms value
(so that the sidelobes of echoes from many nearby targets will not build up and
obscure echoes from objects of small cross section) and whosc peak sidelobes
are low (to avoid ambiguities; i.e., is it a sidelobe or a second nearby targct?).
The objectionable sidelobes of the linear FM autocorrelation function are

usually suppressed by mismatching the receiver at some loss in detection.

As a second example of the procedure, let us design a signal to have
an exponential autocorrelation function. The exponential shape falls off
smoothly (i.e., does not oscillate and cause ambiguities) and with adequate
bandwidth can be made to fall off rapidly. With such a signal the receiver can
be an ideal matched filter, because no mismatching, with the attendant losses
in detection, is necessary. For the envelope of the autocorrelation function

we take

x(T, 0) = cxp ‘j - 2tW ['r l i : (102)

The duration of x(7, 0) between e—l points is T1 =1/rW. We takec the
Fourier transform of x(t, 0) above to gct Urzn(f)’ the square of the signal

spectrum. We obtain

* The example in this section is taken from Key et al., Ref. 10.
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(103)

To be the Fourier transform of a rectangular signal, the modulus Um(f) must
be associated with a group delay characteristic proportional to the integral of
Ufn(f) as shown by Eq. (77). As in the previous example, there are two
possibilities: one corresponds to a signal whose frequency increases with time,
the other corresponds to a signal whose frequency decreases with time. To

obtain the group delay corresponding to the former signal we write

f

2
T{) = k S‘ Um(f) df ) (104)
. o]
which yields, using Eq. (103),
_k [m -1 £
T(f) = = [2 + tan W] . (105) .

We find k by setting T(«) = T, the desired pulse length, and obtain k= T.
The frequency vs. time, A , is obtained from Eq. (105) by use of Eq. (95),
here repeated as Eq. (106):

t= TQ) - (106)

We obtain for A

i T
= = = = i = 107
A WtanT (t 2) (107)



The signal autocorrelation function, its spectrum and group delay, envelope,
and frequency vs. time are all illustrated in Fig. 10. The amplitude of the

envelope is found by use of Parseval's law, which requires that

5 Um(f) df = g ue(t) dt . (108)
— 00 - 00
We obtain
1
= 5 0<t< T
VT—
u(t) = ) (109)
0 . otherwise

We should emphasize, of course, that the procedure we have followed is
approximate. For a suitably large time-bandwidth product (hcre the time-
bandwidth product may be taken, again, as TW) the Fourier transform of the
spectral modulus, the square root of Eq. (103) together with the group dclay,
Eq. (105), should have a rectangular envelope and the instantaneous frequency

[10]

given by Eq. (107). Key et al. have by numecrical integration determined
the Fourier transform of thc modulus and group delay cited above. Their
rcsults are shown in Fig. 11. For TW =5/r in Fig. 11 (a), the envelope is
within about +4 percent of being constant. For TW =50/r [ Fig. 11(b)] , the
envelope is constant to within the limits of accuracy of the numerical calculation
(about 0.25%). In this example, where the signal spectrum is a smooth, con-

tinuous function, the method of signal design we have outlined yields good

results for TW products of the order of 10.
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As in the case of the linear FM signal considered previously, the
signal can be generated in a linear fashion by applying an impulse to a linear

filter or by sweeping properly the frequency of an oscillator.

In this example the signal and receiver have non-linear group delay
characteristics. The non-linear group delay permits the signal spectrum and
hence the autocorrelation function to be of controlled shape while the signal
has rectangular shape for efficient transmission. The receiver is exactly
matched to the signal, and the maximum detection capability is obtained. The
group delay characteristic of the receiver output is constant only for zero
Doppler shift; when the signal is Doppler shifted, the delay of the receiver
output becomes dispersive and hence, in general, the peak of the receiver
output will fall off more rapidly with Doppler shift than it does with the linear
FM signal.

The modulus of the two-dimensional signal correlation function of the
tangent FM signal is shown in Fig. 12. Notice that | x(T, v)l is sharply
peaked at the origin. With the sharp peak, there is some possibility of locating
the signal in time and Doppler frequency and hence, of measuring both parameters
with a single pulse. (This was not possible with the linear FM signal.) We
will later get some insight into the problem of designing frequency-modulated
signals to have sharply peaked two.dimensional correlation functions; we will
see then that non-linear frequency sweeps (or non-linear group delay charac-

teristics) are required.

St The Rectangular, Staircase FM Signal

A smooth frequency sweep can be approximated crudely by a fre-
quency pattern which changes in steps at intervals in time. Such signals are

useful in many applications and will be discussed briefly here.
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Let us suppose that we have a rectangular signal whose frequency
changes by equal steps at equal intervals of time, as shown in Fig. 13. The
signal is a stepwise approximation to a linear FM signal. The signal duration
is nT, and the bandwidth with the frequency step W = 1/T is approximately
nW, making the duration-bandwidth product n2TW.

2 ENVELOPE
TIME

nT >

fotln-Nw
l_.

4

f°02W

FREQUENCY
fotW

CTT e T b o T e )
Fig. 13 Envelope and frequency vs.
time of the staircase FM

signal .

1a-13a56]
o

Consider the block diagram of a filter shown in Fig. 14 whose
impulse response is the staircase FM signal. The impulse is applied to a
bank of sin f/f filters arranged in parallel. Each filter has an impulse re-
sponse which is a rectangular pulse of constant frequency and duration T,
and the filter responses are spaced at intervals of W in frequency. The
response of the kth filter is delayed by kT and all pulses are added to form

a long-duration signal of constant amplitude.

The matched filter for the signal is required to have an impulse
response which is a replica of the signal inverted in time. The matched filter
for the staircase FM signal is simply the filter of Fig. 14 with delay lines
rearranged so that the longest delay, nT, appears on the first line, next to

longest on the second and so on, with zero delay on the bottom line. When
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BANDPASS FILTER

tA-13,457

7T f-fo-(n-1)W

. SINw T(f=to0) DELAY
T=0
7 T(f-fo)
SIN7TT(f-fo-W) DEL AY
@© |
_L =T
mT(f-fo-w)
SIN wT[ f-to—(n-1)W] DEL AY
| r=(n-1)7

Fig. 14 Block diagram of a filter whose impulse response is the staircase FM signal.

the signal is inserted into the matched filter, after an interval t = nT all of

the pulses appear simultaneously at the output and add together.

interval,

as

During this

nT < t = (n+1) T, the matched filter output e(t) may be written

n-1

e(t)

k=0

n-1

k=0

68

Z a(t) cos 2rw (fO + kW)t

Re Z a(t) expj2nm (fo+kW)t ,

(110)

(111)



where

R , -T=<t=T

a(t) = (112)

0 , otherwise

is the autocorrelation function of the envelope of the short pulse of duration T.
Equation (111) is a simple geometric progression and may be summed to

obtain for e(t)

n-1 W] sin TnWt (113)

= +
e(t) a(t) cos 27t |:f0 5 SinT Wi
Notice that the waveform e(t) has a carrier frequency of | f +(-1) w/2] ,
the mean frequency of the signal. The waveform without the carrier is sketched
in Fig. 15. The duration of the signal at the 3-db points is approximately

1/nW. The compression ratio, C, is the ratio of the signal duration to the

duration of the receiver output. We have

nT 2
C = W n TW . (114)
The interesting thing is the fact that the compression ratio goes as n2, where

n is the number of sub-pulses.

It should be noted that the receiver output waveform exists in time
for an interval about equal to twice the duration of the signal, that is, (2n - 1)T.
Physically, the extended duration of the receiver output is due to cross-channel

leakage. The bandpass filters in Fig. 14 overlap in frequency as shown in
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(a) SKETCH OF

SINTnWt
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(b) AUTOCORRELATION
FUNCTION OF SHORT
PULSE ENVELOPE

a ()

|-

(¢) ENVELOPE OF MATCHED nw

FILTER OUTPUT

SIN7TnW!

t
ik SIN 7Wt

Fig. 15 The staircase FM signal.
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Fig. 16, and, hence, respond somewhat to sub-pulses centered in the passband
of other channels. When a signal leaks through a wrong channel, it appears at
the output at a time different from that at which the peak occurs. The leakage

is distributed over an interval of about nT on either side of the peak.

VASAWAAN

fo+W fo+2W fo+(n-1) W

Ia—13,527

Fig. 16 Sketch showing the frequency characteristics of the channels in Fig. 14.

Analytically, the leakage may be viewed as the sidelobes of the signal
autocorrelation function. The sidelobes are difficult to calculate, and usually
the calculation is not made. The sidelobes may be suppressed by weighting in
a way similar to that done for the linear FM signal. In the case of the stair-
case FM signal, however, one may insert a complex weighting function in
each channel and adjust each channel separately in turn to suppress the side-

lobes. Signal-to-sidelobe ratios of 30 db or better may be achieved in this way.

71



The staircase FM signal is u.seful over a range of Doppler frequencies
which is less than the reciprocal of the signal duration, nT. Over a wide Doppler
range, the two-dimensional signal correlation function generally resembles that

of the linear FM signal, being a ridge at an angle to both the time and Doppler

axes.

The individual channels of the filter shown in Fig. 14 have only band-
width W. From many components, each of narrow bandwidth, a widc-band

system can be fashioned in this way. This is frequently an advantage in practice.

3.8 Rectangular, Phase-reversal Signals

In previous sections we have considered various methods for increasing
the bandwidth of a signal of given duration. We have discussed some methods of
modulating the phase and/or frequency of the signal to do this. These methods
so far have yielded signals whose two-dimensional correlation functions have a
useful shape only in a relatively narrow region on either side of the T axis. In
this section we will consider another kind of phase-modulated signal, which is

useful, again, over a narrow Doppler region.

The bandwidth of a constant frequency pulse can be increased by
making step changes in the phase at intervals during the pulse. One could make
the phase steps any amount, but in the most commonly used phase-step signals
the step is 7 radians. A signal of duration A is divided into n parts and
the phase of each part (taken with respect to a phase reference) is set at either

Zero or m .

The autocorrelation function of the phase reversal signal may be shown
to have an envelope which is the autocorrelation function of the plus-minus code

waveform. We take the signal, s(t), to be

2



s(t) = a(t) cos[ 27 ft+ <pk(t)] . (115)

where <Pk(t) is the phase code; the corresponding complex form, sc(t), in the

narrow band case is

s(t) = a(t)expjo, (t) exp(j2nit) - (116)

We see in Eq. (116) that the complex modulation, u(t), is

ut) = aexpie ®) . (117)

Since qok(t) is either zero or 7, exquok(t) is either (+1) or (-1); and with

a(t) given by
1 , 0<t< A

a(t) = , (118)

0 , otherwise

u(t) is purely real, that is, either plus one or minus one. A possible u(t)
for a phase-coded signal is shown in Fig. 17. The autocorrelation function of

s(t), A(T), is given by the real part of the complex autocorrelation of sc(t).

That is,

A(T)

Re{ g sc(t)Ec(t+'r)dt 2

— 00

s -j27rf07 i 3 .
= Re \( e u(t) u(t + 7) dt s - (119)

—00
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Since u(t) is real,

A(T) = cos 21rfo‘rS‘ u(t) u(t + 7) dt . (120)

- 00

The envelope of A(T) is thus seen to be the autocorrelation function of u(t).

Fig. 17 A plus-minus code waveform.

The sequence of phases in u(t) may be chosen randomly or according
to a code. If the sequence is chosen at random, it is likely that the autocor-
relation function of the signal will have rather large sidelobes. To control the
sidelobes the sequence will be chosen according to a carefully selected binary

code.

Plus-minus or binary codes having satisfactory (in some sense)

2
autocorrelation functions have been investigated by Zierler,[ 26 | Lerner,[ 71
9
Elspas,[ 2511 Barker,[ 29] and many others. Three-phase codes have been
[ 30]

investigated by Delong. We will not here attempt to discuss codes in
general but rather refer the reader to the literature. Instead, we will illustrate
our remarks about phase-reversal codes in general by using for an example a

particular class of codes called '"Barker codes' or "optimum words."
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An nth order Barker code is a sequence of plus ones and minus ones
of length n which has the property that its autocorrelation function has a peak
value of n and has uniformly spaced sidelobes, all of unit height. The plus-

minus code shown previously in Fig. 17 is actually a 7th

order Barker code;
its autocorrelation function is shown in Fig. 18. Table 1 lists all of the known
Barker codes. The highest code of odd-order has been shown to be 13, and it
has been shown that higher order codes, should they exist, must have orders

which are even and perfect squares. So far none of the latter have been found.

Fig. 18 Autocorrelation function of the

7th order Barker code of Fig.17.

1A-13,460

Table 1
Barker Codes
Order Code

3 ++-

4 ++-+

5 -+

7 R e o
11 B T
13 bttt -t -+
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A= 13T

{a) THE WAVEFORM

13T -5T =3T =T ©

(b) ITS AUTOCORRELATION FUNCTION (FUNCTION IS EVEN ABOUT THE ORIGIN)

|3_|
AT

.

3 2 : 0

T T T
(c) ITS SPECTRUM (FUNCTION IS EVEN ABOUT THE ORIGIN)

1A-13,461

Fig. 19 The 13th order Barker code waveform.
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The highest order Barker code, of length 13, has been used as a
phase-reversal code in a radar signal. The 13-code waveform, its auto-
correlation functions, and its spectrum are shown in Fig. 19. The spectrum
has the bandwidth associated with a simple pulse of duration A/13. The time
bandwidth product, TW, is then

13
™ = Ax~— =13 (121)
A
The block diagram of a tapped delay line filter that may be used to
generate the 13-code signal is shown in Fig. 20. Discussion of the design,

however, will be reserved for Section 4. 0, where tapped delay line techniques

are considered.

DELAY LINE, T SECONDS

/
SUMMING BUS “ sin wTt
wTf

|A—I3.462J

Fig. 20 Block diagram of video filter used to generate and "match" 13-code waveform.
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A model of the modulus of the two-dimensional signal correlation
function of the 13-eode signal is shown in Fig. 21. The profiles are taken in
the time direetion at intervals of 1/4A in Doppler frequency. For elarity,
only one-half of the time-Doppler plane is shown. The zero-Doppler profile,
the 13-code autoeorrelation funetion, is the first profile. TFor a Doppler shift
of 1/4A (the second profile), the sidelobe levels are fairly constant although
the height of the peak does deerease somewhat. However, for Doppler shifts
v > 1/4A, the surface is terrible. Henee, the earlier remarks on the utility

of the signal in a narrow Doppler strip.

Figure 22 shows a photograph of the recciver output waveforms of

a radar operating alternately with a simple uncoded signal (top) and a 13-code
signal of the same duration (bottom). In the top trace one can sec a ground

clutter return on the left, followed by a return from a single moving target,

and finally a return from scveral nearby moving targets. But how many ? In
the bottom traee the radar views the same targets as in the top trace. Notiee
on the left that the rms value of the clutter return is much decrcascd and that
the position of the isolated target can be much morc accurately fixed in time,
and finally, that there were threc targets in the overlapping returns of the top

trace. In the bottom trace the echoes stand out clearly without overlapping.

But notice also that the sidelobes of the autocorrelation function arc
visible in the lower trace and are bothersome. The question always arises:

Is it a sidelobe or a nearby small target ?

The sidelobes may be suppressed in this case by a simple method

[ 31]

given by Key, Fowle, and Haggarty. The sidelobe suppression method
makes use of the faet that the central part of the autoeorrelation function and
the sidelobes are all triangles. Because of this geomctric similarity, it is

possible to suppress the sidelobces by adding to the signal autocorrelation
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Fig. 22 Photograph of A-scope of a radar operating alternately with a simple pulse
and with a 13-code signal of the same length. Top: simple pulse operation.
Bottom: 13-code signal operation. (Courtesy of G.B. Tiffany, of The
MITRE Corporation.)

function properly scaled replicas of the autocorrelation functions which are
relatively advanced and delayed in time. * Figure 23 illustrates this process.
Here a weighted and shifted replica of the autocorrelation function is shown for
each of the 12 sidelobes and for the central peak. Weights are found for each
so that they add up to produce g(t) shown at the bottom of Fig. 23. We have
for g(t)

[ 31]

*The method of Key et al. is very general and may be applied to shape
waveforms at bandpass as well as at video.
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k=0 By ¢ (1)
-6x -4x -2x 0 2x 4x 6x
k=1 138 B¢ t-x)

|3;?._|:7 B ¢ (t+x)

I
k=6
I =
Ba¢ (t—=6x) '3,85
k=-6
13— 6
gin=2 B, ¢ (t-kx)
K=-6
e = e e,
-6x -4x -2x 0 2x 4x 6 x
X =2T

Fig. 23

Hiustration of the method of suppression of the sidelobes of the 13-code
autocorrelation function.
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6
gV = z B Pt-kx) (122)
k=-6

where o(t) is the 13-code autocorrelation function., We let t assume the
values -6x, -5X, ... 0, +x ... +6X in succession. For each value of t we
specify the value we want g(t) to have and set it equal to the sum on the right.
In this way a set of 13 equations is generated whose solution yields the values of
the weighting coefficients, S K If the weighted waveform is made symmetrical,
B—k = Bk and the number of equations reduces to 7. In Fig. 23, g(t) has been
made zero where the original sidelobes were. New sidelobes farther out in t
are created, of course, and these may be suppressed in the same way, if de-
sired. Table 2 gives the weighting coefficients which reduce the 6 sidelobes on
either side of the central peak to zcro, and Fig. 24 shows the block diagram of

the sidelobe suppression network.

Table 2

Weighting Coefficients for the Suppression of
Sidelobes of 13-Code Autocorrelation Function

B 0° 1.047722182 64 = - 0.0542686157
B 157 0.0407328662 65 = - 0.0580662589
B 9 =-0.0455717223 66 =-0.0614606642
63 = - 0.0500941064

When the original sidelobes are suppressed to zero, the ratio of the amplitude
of the peak to the maximum sidelobe is increased to 42(32.4 db) from the initial
value of 13 (22.3 db). The loss in detection due to mismatching the receiver to

suppress the sidelobes in this way is of the order of 0.25 db.
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3.9 Amplitude- and Phase-modulated Signals *

Earlier in Section 3.0 we derived a method of designing a rectangular
signal of large TW product to have a specified autocorrelation function. By
controlling the autocorrelation function, one in fact shapes the two-dimensional
signal correlation function in a narrow strip on either side of the 7 axis. The
x function associated with a rectangular signal, however, is not a smooth
function over a very large time-Doppler region. For example, the x function
associated with the rectangular, tangent FM signal, shown in Fig. 12, begins
to have an oscillatory character for v > 1/T where T is the signal duration.
In many cases some improvement in the shape of a x function might be obtained

if the requirement were relaxed that the signal have a rectangular envelope.

In this section we will extend the method of designing FM signals to
cover signals of arbitrary envelope shape. To put it another way, we will give
a method for determining the phase characteristics necessary to the construc-
tion of a Fourier pair when, initially, the signal envclope and the modulus of
the signal spectrum are specified.

jo(t)

We may begin with the statement that u(t) = ue(t) e is, by
j O
definition, the inverse Fourier transform of U(f) = Um(f) e’ (f) thus,
[}
ue(t) expje(t) = § Um(f) exp jO(f) expj2rft df . (123)
- 0O

We can control the signal shape by specifying ue(t), and the autocorrelation

function by specifying Um(f). When ue(t) and Um(f) are independently

* This section follows Fowle in Ref. 32.
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specified, we need a method of finding ¢(t) and © (f) to make u(t) and U(f)

a Fourier pair.

We should point out that it is not possible in general to specify
independently the modulus of a function and the modulus of its Fourier trans-
form. The two moduli must satisfy certain constraints, the full details of
which Fourier theory does not make clear. However, as the time-bandwidth
product of the signal increases, these constraints seem to lose force, and
independently specified moduli may be realized in a Fourier pair in some cases

with very good accuracy.

The derivation of expressions for ¢(t) and ©(f) begins with the
approximate relations, Eq. (72), calculated from Eq. (69) by the method of
stationary phase. We have Eq. (73), which relates the two moduli with the

second derivative of one of the phase functions,

[ U, @)
u(t) = {2r ——— (124)
€ /|e " (7\ ) l
The relation between A and t, Eq. (71), is given by one of the unknown
functions thus,

21t=-O'\) . (125)

We must first find a relation between A andt in terms of the known functions,
the moduli u (t) and Um(f). To do this we square Eq. (124), and substitute

e
in it the expression for ©'"(\A) obtained by differentiating Eq. (125) with

respect to A. We obtain
2 2
u (tydt = U _(A) da 5 (126)
e m
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which upon integration yields
P(t) = Q) + C , (127)
. g s 2 9 )
where P and Q are the indefinite integrals of ue(t) and Um(f), respectively,
and C is a constant of integration. Equation (127) may be solved for either
t or A. We may solve for t and substitute for t in Eq. (125) to obtain for
e'()

o'(\) = -27rP_1[Q(}\) + C] . (128)

We integrate Eq. (128) and substitute f =A to obtain for ©O(f)

o(f) = - 2n g P_I[Q(f) + C] d . (129)

We may find an expression for ¢'(t) by solving Eq. (127) for A and sub-
stituting into Eq. (80). We obtain for ¢'(t),

oty = 2rn QT [P(H) - C1 (130)

from which we get ¢(t) by integration,

o) = 27 gQ'l[P(t) - C] a . (131)
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Equations (129) and (131) give ¢(t) and O (f) entirely in terms of the specified
functions ue(t) and Um(f) and are, therefore, the results we sought. We

have derived the following approximate Fourier pair

u_(t) expj27rS‘ Q_l[P(t) —iGH] b ff'l) U_(f) exp—j27r§ B [Q() + Cc](df .

11t

(132)

We may obtain another corresponding pair of relations for ¢(t) and © (f) by
conjugating Eq. (132). Conjugation of Eq. (132) has the effect of changing the
direction of the frequency sweep, so that of the two expressions for ¢(t), one

corresponds to an upward frequency sweep and the other to a downward sweep.

There are several comments that are appropriate at this point. First,
as shown earlier, the group delay characteristic, -0'(f)/27 , and the instan-
taneous frequency, ¢'(t)/27, are approximately inverse functions. The
frequency sweep (and hence the group time delay) is ordinarily a non-linear
function. The exception, of course, occurs when the signal envelope and
spectral modulus are required to have the same functional form; then, frequency
vs. time and group delay vs. frequency are linear, as the reader may demon-
strate. The argument given above is predicated on the assumption that the
signal time-bandwidth product is large. Just how large quite obviously depends
on the shape of the signal envelope and spectral modulus and upon the accuracy
desired. If both envelope and spectrum are smooth, continuous functions, the
method described can give excellent results for TW products as small as 3
or 4. If one modulus is smooth and continuous and the other rectangular, TW
products of the order of 10 give very good results, as we saw in the example

[31]

of the rectangular, tangent FM signal of Key et al. discussed earlier.
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Finally, if both moduli are required to be rectangular, as in the linear FM
example considered earlier, (a requirement which, by the way, expressly
violates Paley-Wiener Theorem 10), TW products of the order of 100 or more

are required to get good results.

3.10 An Amplitude- and Phase-modulated Signal

To illustrate the method described in the preceding section let us
assume that we want a signal whose autocorrelation function has a Gaussian
shape and whose envelope also has a Gaussian shape. Let us take for the desired

autocorrelation function

X (1, 0) =E exp - ”—-%lv— <%)2 . (133)

The squared spectrum Urzn(f) is given by the Fourier transform of x(r, 0)

thus,
v2m = f{xe o
= % exp - 2 <—\%>2 , (134)
which gives
UL = —— - (TVL)Z . (135)
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In addition, we require that the envelope ue(t) be Gaussian thus:

- 1 wtlail
u M) = = exp <T) : (136)

If we take the interval to the e_1 point for duration and bandwidth, the time-
bandwidth product of the signal is TW. We assume that TW is adequately
large. We want to find an expression for the phase characteristics ¢ (t) and
© (f) which when associated with ue(t) and Um(f), respectively will make a
Fourier pair. As the first step, we determine the relation between t and

A by use of Eq. (126). We have

2 2
1 t 1 A
S, - e =  e——— = —_— d
g exp 2< ) dt g exp 2( > AT (137)

which yields immediately

t A
T W (138)
From Eq. (138) above we find, by the methods of the last section, an expression

for ©(f) and ¢(t). We obtain

2
o(f) = -[nTW(%) + eo] (139)
and
t 2
oty = rTw(%) + 9o, (140)



where 60 and <p0 are constants, We have now constructed the approximate

Fourier pair

2

2 2 .
o) coalrm ) rofe sl 2 coni) e

+ qpojl f . (141)

The right side of Eq. (141) above has an exact Fourier transform which we
may compute as a check on the approximate methods. For TW = 10/7 we

have the following exact Fourier pair:

(100)1/4 , ,
101 100 / f 100 £
Bl R R (ke -3 —

& ( ) = J[101 "TW< ) * e1j|

2

2 (
exp - (—,;—) exp j l}r T™W (‘,%‘) i <PJ s >

-

(142)

which differs negligibly from the approximate pair, Eq. (141). Thus, good
results are obtained here for TW =~ 3, which is in accord with our earlier

statement. The signal u(t) is

o - & om-() emrmw () - e
(143)
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We see that the signal and its approximate Fourier transform, Eq. (141), have
quadratic phase, corresponding to a linear frequency sweep and to a linear

group delay.

: We may compute the two-dimensional signal correlation function for

this linear FM Gaussian signal. We have

-}

X(t, v) = S‘ u(t) u(t + 7)exp(-j2rvt) dt . (144)

-0

We substitute u(t) of Eq. (143) into Eq. (144) above and integrate and rearrange

terms to obtain for x(7, v)

2 2
T . 1 (mr TW) v
= (T, V) =/: exp (jrvT)exp|- <
2 & 1+ (1rTW)2 <W>
2
1+(1rTW)

X exp - (145)

v
W

2

|:1 + (1rTW)2 :|

When 1r2T2W2 >> 1

2 T 2 2
(T, v) Egexp(jwvﬂexpl} —;—(%—) :Iexp|:_ -(EZ_WL<% +%> '
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Notice that x(r, 0) is approximately equal to the value required at the beginning
of this example. For Eq. (146) above to hold, the TW product need not be

very large.

Figure 25 shows a photograph of a model of the two-dimensional
correlation function of the linear FM Gaussian signal. The profiles are taken
vs. time at intervals in Doppler equal to 20 percent of the 3-db signal band-
width. The interesting thing about this two-dimensional signal correlation
function is that all profiles taken vs. time are Gaussian functions regardless of
the value of Doppler shift v, and, further, that the standard deviation or width
of the function between e“1 points in the 7 direction is constant. The function
does not broaden (and degrade resolution) with Doppler shift. The effect of a
Doppler shift is to attenuate the r_eceiver output by exp - 1/2 (V/W)2, and to
shift in time the position at which the peak value of the receiver output wave-
form occurs. The latter we should suspect from the linear FM discussion
given previously. We see, further, that relaxing the requirement that the
envelope be rectangular did, in this case, yield a smooth, non-oscillatory x

function.

Figures 26, 27 and 28 show photographs of waveforms in a pulse
compression system which employs a linear FM Gaussian signal. * Figure 26
shows the Gaussian signal generated by applying a short pulse to a passive
filter. Figure 27 shows the signal autocorrelation function. The time scales
in Figs. 26 and 27 are the same. The time-bandwidth product (or compression
ratio) is about 50. Notice that there are no sidelobes visible in the photograph

of the autocorrelation function. Figure 28(a) through (f) shows the effect of a

*The experimental results are taken from Fowle et al., Ref. 13.
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Fig. 26 Observed linear FM Gaussian signal generated by applying a short pulse to a
linear filter. (Taken from Fowle et al, Ref. 13, with permission.)

Fig. 27 Output waveform of the filter matched to the linear FM Gaussian signal when
the signal has zero Doppler shift. (Taken from Fowle et al, Ref. 13, with
pemission. )
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(a) Zero Doppler (b) 5%

()10 % (d) 20%

(e) 25% (f) 50 %

Fig. 28 Output waveform of the filter matched to the linear FM Gaussian signal when
the signal has various Doppler shifts. Amount of Doppler shift is given as a

percent of the 3-db signal bandwidth. (Taken from Fowle et al., Ref. 13,
with permission.)
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Doppler shift in the signal on the shape of the matched filter output waveform.
(The time shift of the peak caused by the Doppler shift has been suppressed in
the photographs.) The shape of the receiver output waveform does not change
appreciably for Doppler shifts of up to 25 percent of the signal bandwidth; the
sidelobes remain low. The shape of the output waveform changes considerably
in Fig. 28(f) for a Doppler shift of 50 percent of the signal bandwidth, but this

is due to the details of the equipment used.

3.11 Design of Phase-modulated Signals with Two-dimensional
Correlation Functions of the Thumbtack Shape*

So far in this chapter we have discussed a variety of phase-modulated
signals, most of which have been useful over a (relatively) narrow range of
Doppler frequency shifts. If the signal x function were sharply peaked at the
origin and low elsewhere in the time-Doppler plane, it would be possible to
locate a signal echo accurately in time and frequency and hence, permit simul-
taneous measurement of target range and radial velocity. In this section we
will discuss a particular class of signals whose ¥ functions are sharply peaked
at the origin and which have, approximately, the shape of a thumbtack with its

point up.

To begin our discussion, let us represent the signal correlation

function in terms of u(t). We have

x(r, v) = S\ u(t) ut + 7) exp(-j2rvt) dt . (147)

-00

*The material in this section is taken from Fowle, Ref. 33.
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jo(t)

To place the phase modulation in evidence, we substitute ue(t) € for wu(t)
. in Eq. (147).
= o]
N, B = S‘ u (t) u(t+7) exp-j[2rvt- @t)+ o(t+7)] dt . (148)
-0

Now let us evaluate the integral in Eq. (148) above by the method of stationary
phase. For a given Doppler shift, v, and time shift, 7, the argument of the

exponential is stationary when its derivative is zero, that is, when

%[mm- ot) + ot+1)] =0 . (149)

The stationary point is given by the value of t which satisfies the equation

oty - QN t)+ @'(t+ T)=0 . (150)

Assume Eq. (150) above is satisfied for t = ts. The instantaneous frequency,

f(t), is related to ¢'(t) by the relation

2rf(t) = @'(t) . (151)

In terms of the frequency, f(t), Eq. (150) above becomes
p s B, +r) = HE =10 (152)
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If the frequency sweep is unidirectional with time, we have the situation illus-
trated in Fig. 29. In the figure the solution of Eq. (152) for tS is indicated
graphically. By inspection of Fig. 29, one can see how the stationary point,
ts’ moves with time shift, 7, and Doppler shift, v. In Fig. 29(a), where
v and 7 are both greater than zero, and in Fig. 29(b), where v and 7 are
both less than zero, a stationary point exists. For values of 7 and v in the
first and third quadrants of the 7, v plane, where a stationary point exists,
the integral which gives x(7, v) will tend to have non-zero value. In the
second and fourth quadrants a stationary point does not exist, as shown in Fig.
30, and the integral which gives x(7, v) will tend to have zero value. Where
a stationary point exists, we can evaluate the integral for x(7, v), Eq. (148),

by the method of stationary phase described in an earlier section. We obtain

for x(7, v)
ue(ts)ue(ts+'r) - for v, 7>0
o expjl 2rvt - @@t )+ @t + Ty <]
[ i s S S 4
lﬂn(t)] and v, 7<0
NT, P = °
0 . otherwise ,
(153)

where B (t) = 2rvt - @(t) + ¢(t+ 7) and B'(t) is the second derivative with
respect to time. We take + for "(tS) > 0 and - for "(tS) < 0. There
are two objectives at this point in our development. First we want to determine
what kind of phase modulation we should use to make x(7, v) small in the
regions of the 7, @ plane where it has value. Second, since the total volume
under l X(T, QD)I - is constrained, to make x(t, v) as small as possible

everywhere in the 7, ¢ plane away from the origin, we should probably try
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.29 Solution of Eq. (152) for b illustrated graphically. (a) for 7 > 0, v >0;
(b) for T< 0, v < 0.
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L

(a) FOR T < o0, ¥>0

£t}

v+t (t+T)

{b) FOR T>o0,v<o

-
(o]

. 30 Solution of Eq. (152) for tes illustrated graphically. (a) for 7 <0, v > 0;
(b) for 7 >0, v <O.

100



to spread the volume out uniformly rather than let it concentrate in the first

and third quadrants.

The latter problem has a simple solution, so let us consider it first.
We can cause x(7, v) to have value in the second and fourth quadrants by re-
designing the shape of the frequency sweep so that a stationary point exists for
values of 7 and v in those quadrants. A frequency sweep which does this
is illustrated in Fig. 31 for two of the four quadrants. The frequency sweep
shown first decreases and then increases; a sweep which first increased and then
decreased would do quite as well. The frequency sweep shown in Fig. 31 is an
even function about its center; it does not have to be even, but there is probably
no reason why it should not be. Let us consider, then, that for our purpose the
frequency sweep is an even function. Now x(7, v) has a stationary point in
all four quadrants everywhere, except on the v axis; with the surface l X [
more nearly uniform, it can be lower and still satisfy the volume constraint

on |xtr, v)|2

We have the first problem yet to answer: What should the nature of
the phase modulation be to cause X(7, v) to be small in the regions where it
has value ? First we note that the stationary phase solution for x(r, v) now

applies everywhere except near the origin and on the v axis. We have

ue(t )ue(t )
X(1, v) = f2_7T :

18t )|

S

expj[B (t) + E—] . (154)

We have hypothesized that the product of the envelopes is to be slowly varying;
the envelope product cannot, therefore, be manipulated to make x(7, v) small.
The exponential has a modulus of unity. Clearly if x(7, v) is to be small,

the function ]B "(ts) l must be large for every ts. Let us see how this may be

done. We have for S (t)
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v+t (t+7T)

t (1)

T

ts

(a) >0, ¥ >0

v+t (t+7)

f(t)

(b) ¥y>0,7<0

1A—=13,467

Fig. 31 Solution of Eq. (152) for a symmetrical frequency sweep. (a) 7 >0,
(b) v> 0, 1 <O.
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B(t) = 2mvt + ot + T) - @(t) . (155)

By differentiating Eq. (155) twice with respect to t and substituting t = B

we obtain
" = " - 1"
BUt) = o't +T)-o"(t) . (156)

In Eq. (156) above let us expand ¢'(t + 7) in a Taylor's series about t = tS.

We obtain
v
@ (ts) o
BUL) = @Mt )+ @) T T - PN )
v
@ (t)
- BRI __.__S_ 2
= @ (tS)T+ o1 TR g : (157)

In terms of the instantaneous frequency f£(t), pB "(tS) becomes

fl"(ts) 2
B ) =zm | FUE T = T Fem ) - (158)

Equation (158) states that before IB "(tS) l can begin to be large, the frequency
sweep must have a non-zero second derivative. Vee-shaped linear frequency
sweeps, for example, will not do, because the second derivative is zero. At
least a quadratic frequency sweep is required before g "(ts) can be large and
x(T, v) therefore small. The existence, in the frequency sweep, of derivatives

higher than the second will help make S "(tS) even larger and x even smaller.
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Let us recapitulate our progress up to this point. We first make the
frequency sweep bi-directional, that is, a downward sweep followed by an upward
sweep (or vice versa) to cause the x function to have some value in all four quad-
rants of the 7, v plane so that the volume under lx] 4 would be spread over all
four quadrants. Next we saw that to make the y function small away from the
origin, the second and higher derivatives of the frequency sweep should be large.
No stationary point exists, however, in the integral of Eq. (148) for points on
the v axis, and we ask how the x function may be controlled there. With 7 =0
in Eq. (148), we see that x(0, v) is given by the Fourier transform of the square
of the signal envelope, ue(t). Given a desired shape for x(0, v), one may then
compute the required signal envelope shape. We have thus determined one method
of constructing a signal so that its two-dimensional correlation function will be

sharply peaked at the origin of the 7, v plane and low elsewhere.

The facts that we have deduced about the characteristics necessary to
the frequency sweep of a signal to cause its x function to assume the thumbtack
shape confirm our experience and extend our ideas. For example, the x-function

[ 54]

frequency sweep. Figure 32 shows the envelope and frequency versus time of

modulus has been given by Miedema for a signal with a vee-shaped linear

ENVELOPE

| — ¢

e 400 us ———»

FREQUENCY
250KC

] —

Fig. 32 Envelope and frequency sweep of
the vee-shaped linear FM signal .

1A-13,468
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the signal, and Fig. 33 shows a photograph of a model of the x function of the
signal in the region near the origin of the 7, v plane. The shape is not very
much like that of a thumbtack and indeed, according to our argument it should

not be.

Fig. 33 |X | function of the vee-notch linear FM signal of Fig. 32. Region shown
is near the origin of the 7, v plane. (Photo courtesy of Western Electric
Company and H. Miedema, of Bell Telephone Laboratories.)

In Fig. 34 we have the envelope and instantaneous frequency vs. time
for a quadratic FM signal.* Figure 35, from Miedema[, 54] shows a photo-
graph of a model of the x function of the signal, again in the vicinity of the
origin. Notice that the x function of the quadratic FM signal is much closer

to the desired thumbtack shape, as our argument above says it should be. The

*The quadratic FM signal was proposed independently by Richman,
Ref. 35 and by Callahan, Ref. 36.
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le———400us —

Fig. 34 Envelope and frequency sweep
of a quadratic FM signal.

shape in Fig. 35 is a dramatic improvement over that of the x function of the
vee-notch FM signal of Fig. 33. The envelope shape of both the vee-notch FM
signal and the quadratic FM signal is rectangular. Smoother signal envelopes
would no doubt lead to smoother x functions. However, a smooth envelope
would not eliminate the very high ridges in the x function of the vee-notch FM

signal.

x functions of signals with frequency sweeps of higher power than
quadratic have not, to the author's knowledge, been computed, although there
is no practical reason why they cannot be. The stationary phase argument
given above indicates that such signals should have x functions which are better

approximations to the thumbtack shape than the quadratic FM signal.

It is interesting, at this point, to inquire whether there are other

types of signals that have x functions of the general thumbtack shape. We
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Fig. 35 | x I function of the quadratic FM signal of Fig. 33. Region shown is near
the origin of the 7, v plane. (Photo courtesty of Western Electric Company
and H. Miedema, of Bell Telephone Laboratories.)

recall that it was noted in Section 2. 0 that if a signal gives a certain x function,
then its Fourier transform, if taken for the signal, yields the same y function
but rotated 90° in the 7, v plane. A signal with a symmetrical envelope and
symmetrical frequency sweep has a Fourier transform with a highly structured
modulus and a phase which alternates between zero and = . In short, the
Fourier transform, taken as the signal, is an amplitude-modulated phase-
reversal signal. Or to put it another way, certain phase-reversal signals also
have x functions which approximate the thumbtack shape. Figure 36, for
example, shows another photograph of the model of the x function of the 13-code,
phase-reversal signal. Note the similarity between the shape of the y function

of the 13-code signal and that of the X function of the vee-notch FM signal.
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In the next section we shall discuss a procedure for the design of
phase-reversal signals which have x functions of the general thumbtack shape

but which have smoother skirts than the ¥ function of the 13-code signal.

3. 112 Amplitude-modulated, Phase-reversal Signals with x functions
of the Thumbtack Shape*

In the last section we saw that signals of large time-bandwidth product
with smoothly varying envelopes and symmetrical, highly curved frequency
sweeps had x functions of the general thumbtack shape. The Fourier transform
of such a signal has a highly structured modulus and a phase which changes by
7 radians at points in frequency where the modulus is zero. Thus we see that
we can get a thumbtack yx function by transmitting certain kinds of amplitude-
modulated, phase-reversal signals. Since the phase-reversal signal is
attractive because of the relative ease with which it can be generated and
received (see Section 4. 0), it seems worthwhile to explore the matter further.
Earlier in Section 3.0 we considered the problem of designing phase-reversal
signals to have yx functions of useful shape in a narrow Doppler region on either
side of the time axis. In that case we had to worry only about choosing codes
that had good autocorrelation functions. Here we have the problem of choosing
codes that have good two-dimensional properties. The problem seems very

difficult. How do we proceed ?

[ 37]

An ingenious method of approach has been invented by Lerner.
To explain Lerner's method, let us for the moment assume that we have a
signal which consists of a periodic sequence of numbers. The periodic function

has, of course, a line spectrum. The X function associated with such a periodic

* The material in this section is taken from Lerner, Ref. 37.
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sequence must be zero except for values of Doppler shift equal to multiples of

the line spacing, and it must be zero except for values of time equal to multiples
of the space in time between the members of the sequence. The X function of
such a periodic sequence thus has value only at lattice points in the 7, v plane,
and, of course, it is periodic in both time and Doppler. The value the x function
has will be a maximum for values of 7 and v equal to multiples of the period

of the sequence in time and frequency, respectively. The values x has in between
must, by Theorem 13 of Section 2.0, be less than the maximum values. For

our purpose here, an ideal sequence would have a ¥ function (i.e., | X ]2 )
whose values at the lattice points would be uniform and, of course, small

compared to the maximum values.

The next step is to truncate the periodic sequence (which we tentatively
took for the signal at the beginning of this discussion) in time and to truncate
its spectrum in frequency. The X function of the sequence after truncation in
time is given by the convolution in the Doppler direction of the x function of the
periodic sequence with the x function of the time-truncating function. The ¥
function following frequency truncation, analogously, is given by the convolution
in the time direction of the x function of the time-truncated sequence with the
x function of the spectrum-truncating function. This is the statement of
Theorem 11 of Section 2.0 for © functions, and the same theorem also holds
for x functions. Quite obviously, if the function used for time truncation is
chosen so that its x function has an extent in Doppler less than or about equal
to the spacing in Doppler of the lines of the x function of the periodic sequence,
then the x function of the truncated sequence will be at least as low, relatively,
in regions away from the maximum values as was the x function of the sequence
before truncation. Analogously, the spectrum-truncating function should be

chosen to have a x function with an extent in time less than or about equal to
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the spacing in time of the lines of the x function of the sequence. Thus, if

the truncations are done carefully, the space between the lines of the x function
of the periodic sequence is filled in (by the convolution processes) without
raising the level of the x function away from the origin in the 7, v plane
relative to the maximum value. The signal that one transmits is the time-

and frequency-truncated sequence.

To implement the design procedure we have given above, we need
periodic sequences which have y functions that are uniformly low away from
the periodic lattice points. Useful periodic sequences are the so-called
maximal length, binary shift register sequences (abbreviated to M-sequences)

[ 26]

which have been studied by Zierler and used by Lerner and others in the
design of signals. In the material which follows in this section we will discuss
a method of generation of M-sequences, give a few of their properties, and
calculate their x functions. Finally, we will give an example of a signal

derived from an M-sequence and give its ¥ function.

An M-sequence is a set of plus and minus ones (xp) such that for all

p the next member of the sequence is given by the product

(159)

in which the numbers Y, are either one or zero. With a set of y's and an
initial set of x's, Eq. (159) generates a sequence (xp) which, after an initial
transient, is periodic. The period of the sequence is at most 2" _ 1. Fora

given n there is always at least one sequence of maximal length.

For example, if we take n = 3, y1=0,y =il y3=1, and xp=_1’

2

X =-1, x =1, the sequence one obtains (which has length 7) is
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one
= peTriodge

+-+l - ++-+1 _--_ andso forth. *

Some of the properties of M-sequences as given by Lerner are of

interest here. They are as follows:

(1) The algebraic sum of the x's taken over a period P is minus

one. That is
E x =-1 . 160
p ( )

(2) The product of two M-sequences one of which is a translate of

the other is itself a translate of the same sequence. That is

(prp+k) = (xp+h) , k# OmodP . (161)

(3) The autocorrelation function of a sequence (xp) has a period P.

At the origin its value is P, elsewhere in the period it is (-1). That is

zxx =P , k=0 modP
p p+k

-1 , k# 0 mod P . (162)

* The seven-bit sequence marked off constitutes one period; by accident
it turns out to be the 7th order Barker code (see Table 1, Section 3. 0).
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(4) The Fourier transform of the periodic sequence (x) is another
periodic sequence of complex numbers (X) with period P. The zero order
term and those which occur at multiples of the period have magnitude one.

The other terms all have magnitude of (P + 1 . That is

jzlpm
X =er E
m p
p

2
[X[ =il m=0 modP
m

=P+1 ; m=+ 0 mod P . (163)

Now we are in a position to compute the analog of the ¥ function,

bks’ for the M-sequence which we take as an. We have
el ns
b = Z a a e] P (164)
ks n n+k )
n

Here k and s are parameters of the two-dimensional sequence analogous to
the variables T and v, respectively. The an are real, of course, and

using Prdperty (2) above, Eq. (164) becomes
] —P- ns
b = Z a .p© , k¥ 0 mod P . (165)
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But the right side of Eq. (165) gives the Fourier coefficients of the sequence
a shifted by h. Use of the shifting rule of Fourier Series on Eq. (165) gives

2T
EF e
bks = AS e , k# 0 mod P . (166)
Also
L 2T
J'ﬁ" ns:
bks=2e , k=0 mod P . (167)

We represent the squared moduli of the b the ambiguity function

ks’

of the M-sequence, by C Using Egs. (163), (166), (167) and the relation

ks’
Y
Z exp(j 211'—n> = 0, we obtain for C
P : ks
n=1

C =P2,k,s=00modP

0, k=0 mod P, s 0 mod P
(168)

1, k# 0O mod P, s=0 mod P

P + 1, elsewhere

The ambiguity function for an M-sequence of length 7 is sketched in Fig. 37.

Now let us consider a signal consisting of very narrow pulses with
complex magnitudes an(t). Let the period be of duration T1 and the interval

between pulses Tl/P' The ambiguity function x(r, v) will look like Cks
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Fig. 37 The ambiguity function of a
7-digit M=sequence. (Taken
from Lerner, Ref. 37, with
permission.)

1A-13,470

where the intervals in k correspond to Tl/P in 7, and the intervals in s

correspond to 1/T1 in v. We now truncate this sequence in time by h(t)

where

sin 7t/ T1

Ry = 7rt/T1

(169)
The X function corresponding to h(t) has an extent of roughly l/T1 in the
v direction, which is equal to the spacing of the lines of the x function of the

M-sequence in Doppler. Next we truncate the function in frequency by g(f)

where

sin 7 Tlf/P

g(f) = T i/P Tlf/P (170)
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The x function associated with g(f) has a duration of about Tl/P’ the line
spacing in the 7 direction. The le function of the time- and frequency-
truncated 7-digit M-sequence is shown in Fig. 38. Notice in our example that

the time duration of the signal is approximately Tl’ and the bandwidth P/Tl'
The time-bandwidth product, TW, is then

™ = P (171)

Fig. 38 | x | function of the truncated 7-digit M-sequence. (Taken from Lerner,
Ref. 37, with permission.)

The truncation has been designed so as to keep the relative levels of the peak
and the skirts the same as those of the line function Cks of Eq. (168). In the

2
ambiguity function of Fig. 38, the peak-to-skirt ratio is approximately P~ /P+1.

For the y function, the ratio is Vi P2/P+1. For long sequences, the skirts
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of the x function are below the peak by about f?, where P is the time-
bandwidth product. It should be emphasized that when the an(t) are given

by the M-sequence, their values will be plus or minus one. The signal after
truncation will be an amplitude-modulated, phase-reversal signal. When the
an(t) are complex (for example, if they are taken as the Fourier transform of
an M-sequence), the phase of the resulting signal will, of course, be given by

the phase angle of the an(t).
Other truncations more conservative of time and bandwidth than those

used here are discussed by Lerner.

3.13 Amplitude-modulated, Phase-reversal Signals With
Circularly Symmetric x Functions*

We shall now discuss a class of ambiguity functions that have the
property that their moduli are functions of . + V2 only. A more general
formulation would recognize the fact that a change of time scale t' = at,
where a is a constant, maps the circles T 2 Y 2 = constant into the
ellipses T '2/a2 + a2V2 = constant, but this perspective would encumber the

notation without particularly clarifying the discussion.

We consider the function
-jmT Vv

O(t, v) = x(1, v)e ) (172)

the modulus of which is l x(T, V) l :

*This section, which depends on Klauder, Ref. 38, and on Wilcox,
Ref. 16, was written by J. A. Sheehan.
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Then a necessary and sufficient condition that © (7, v) should be

2
a functionof 7 + v . only is that it should satisfy the differential equation

9O 00
e -k (173)

It can be shown that this equation for ©(7, v) reduces to the following one for

u(t):

2
CMW, 25 %) = 0

; (174)
at’

where A is an arbitrary parameter. It can further be shown that the only
values of A which yield solutions u(t) which are finite-energy waveforms are

the odd integers, and we have the result that any solution of

2
i_ué.t.L - tzu(t) + (2n+1)ut) = 0 (175)
dt

will produce an ambiguity function with a radially symmetric modulus.

The solutions of Eq. (175) are the Hermite functions

2
. -t/2
u (t) = e H )

where Hn(t) is the nth Hermite polynomial

2 dn e—t

n

n t
H (t) = (-1) e
n dt
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The © function of Eq. (172) is, within a suitable normalizing factor,

+v2> %+ o2
e

<72
o =

(176)

where Ln(x) is the Laguerre polynomial,

L (x) = e” dn (xne_x)
. dx

It is important to note the fact that the Hermite functions solve a specific
problem, that is, that the ©(7, v) of Eq. (172) shall be radially symmetric.
The discussion here does not preclude the possibility that other functions exist

which have ¥y or © functions which have radially symmetric moduli. *

Figures 39(a) and 39(b) illustrate the 10th order Hermite function and
its associated autocorrelation function, respectively, both of which are even
functions. A view of the 10th order ambiguity surface is given in Fig. 40. With
the type of ambiguity function shown in Fig. 40, there is no correlation of range
and Doppler measurements, and both may be accurately measured simultaneously.
The difficulty with the signal of Fig. 39(a) and its ambiguity function of Fig. 40
is that it is suitable for general use only with isolated targets according to the

discussion in Section 2. 0.

* This is one aspect of a more general situation: Statements relating to
uniqueness, realizability, etc. of the complex function x (7, v) are
relatively easy to make; it has not yet been possible to establish analogous

statements for [x(r, V) ] g
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Fig. 40 The radially symmetric two-
dimensionol correlotion function
ossociated with the 10th order
Hemite function signol. (Token
from Klouder, Ref. 38, with
permission. )
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3.14 Pulse Burst Signals

According to the discussion in Section 2.0, the pulse burst signal has
a X function which has a shape that is useful when one wants to resolve (i.e.,
detect) a large number of nearby objects and, at the same time, measure with
high accuracy both the range and Doppler shift parameters of the objects.
When the number of pulses in the burst is large, the peaks of the x function
near the origin of the 7, v plane are nearly the same size, and in the presence
of noise the measurements of range and Doppler are somewhat ambiguous (i.e.,
which peak corresponds to true range and Doppler ?). When the ambiguity is
objectionable, it may be removed by operation of the radar in different modes
(perhaps by transmitting different signals) or by making measurements with a
second radar, etc. The vi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>