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* ABSTRACT

The influence of orthotropicity and internal pressure on

the natural frequencies of a thin cylindrical shell whose ends

are freely supported is found using the shell equations of

Washizu. Other common shell theories are also presented.

Calculations are performed for four constant thickness

orthotropic cylinders, two stiffened cylinders, and a basic

isotropid "cylinder. For these calculations, only the special

cases of axial and circumiferential stiffening were considered.

It is noted that there is a difference in the behavior of

the frequencies for the n = 0, n = 1, and n > 2 modes. For the

n > 2 modes, the lowest frequency is associated with predomi-

nantly radial motion. For the n = 0 mode, the lowest frequency

is either associated with uncoupled torsional motion or pre-

dominantly radial motion, depending on the axial wave length.

For the n = 1 mode, the lowest frequency is associated with a

combination of circumferential and radial motion.

For the n .2 and n = 0 modes, circumferential stiffening

generally increased significantly the frequency of the pre-

dominantly radial mode, while axial stiffening had little ef-

fect on these frequencies. For the n = 1 beam-type mode, axial

stiffening increased the frequency, while circumferential

stiffening has little effect on the frequency.

Internal pressure significantly increased the frequency

of the predominantly radial mode for all cases of stiffening

for n l 2, while there was little effect on the n - 0 mode.

Internal pressure had small effect on the n -I beam-type mode

for all cases of stiffening.
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LIST OF SYMBOLS

b ij Elastic stiffnesses referred to x-y axes

C.. Stretching stiffnesses referred to x-y axes

Di. Bending and twisting stiffnesses referred

to x-y axes

Ds  Bending stiffness of unstiffened shell,

EtS/(1 - v2)

E Modulus of elasticity

F1 ,F2 ,F3  Defined in Table 1

FxFeqFz  Forces per unit area in axial, circumfer-

ential, and radial directions

G Shear modulus

G1 ,G2 ,G3  Defined in Teble 2

b Thickness of orthotropic material

2Length of cylinder

m Longitudinal mode number, number of axial

half-waves

M* Mass per unit area of cylinder

Mx,MO,Mxe Moment resultants per unit length

n Circumferential mode number, number of

circumferential waves

N'Ne'Ne Force resultants per unit lengthS xe

Nx'Ne Initial force resultants

n x Dimensionless initial axial force, "x/C 2

ie Dimensionless initial circumferential
force, N/C'2  V
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f

p Internal pressure

R Radius of cylinder

t Time

u,v,w Axial, circumferential, and radial displace-

ments of cylinder mid-surface

uv3w Initial axial, circumferential, and radial
displacements of cylinder mid-surface

Umn,VmWmn Magnitudes of displacements associated with

mn mode
~(1/12)(D'

(22/C22)

6 Variational notation

0Dimensionless frequency stiffness parameter,

Rw v/m*C )22

E x'EeSYxe Strain components

exo' E eo ,'xeo Mid-surface strains

o Angular coordinate

KXIx' s Kxe Curvature strains

SAxial wave-length factor, mrR/1

v Poisson's ratio

P Density

a ' c'a xe Stress components

(Angle between geometric and principal

elastic axis

Circular frequency

vJ



S Subscripts

s Pertaining to skin

w Pertaining to web

S Superscripts

( )' Referred to principal elastic axes
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1. INTRODUCTION

Many papers have been written on the free vibrations of a

thin circular cylindrical shell. For example, Arnold and

Warburton (Ref. 1) have investigated the frequency spectrum for

freely-supported circular cylindrical shells using a set of dis-

placement equations of motion which are similar to those of

Goldenveizer (Ref. 2).

The effect of initial circumferential and axial stresses

on the vibration frequencies of freely-supported isotropic cylin-

drical shells has been studied by Reissner (Refs. 3, 4). In

Ref. 3,he derived a simple expression for the frequency on the

basis of Maguerre's shallow-shell theory by omitting the effect

of circumferential and longitudinal inertia terms. The results

obtained in Ref. 3 cannot be expected to be valid for modes

having a small circumferential wave number, due to the shallow-

shell approximation. In Ref. 4, Reissner developed the frequency

equation for isotropic cylindrical shells using membrane theory,

including all inertia effects.

Fung, Sechler and Kaplan (Ref. 5) have also studied the

effect of pressure on the vibration frequencies of freely-

supported cylindrical shells. To include the effect of pressure,

the nonlinear equations of Timoshenko (Ref. 6) are used. How-

ever, the calculations were carried out using the frequency

equation of Reissner (Ref. 3).

More recently, Armenfkas (Ref. 7) has investigated the

effect of initial stress on simply-supported isotropic cylindrical

shells using a shell theory developed by Herrmann and Armenfkas

(Ref. 8) which includes the effect on the motion of the change

due to deformation of the magnitude and direction of the applied

1



initial lo.e9,

Tb*s investigation is primarily concerned with the effect

of circumferential and axial stiffening, as well as internal

pressure on the frequencies and mode shapes, of a freely-supported
cylinder.

I
I

a

2



2. BASIC SHELL EQUATIONS AND RELATIONS

Shown'in Fig. la is the middle surface of an orthotropic

cylindrical shell. The x-y axes are the geometric axes, while

the x'-y' are the principal axes rotated an angle 9 with respect

to the geometric axes. The stiffened axis of the cylinder will

be taken as x'. The stress resultants and couples are shown in

Fig. lb.

The boundary conditions used here are those called freely-

supported by Arnold and Warburton (Ref. I) and are given by

1f(Oy) 0" Ir (,t1, Z) =-0

. (0 1-11) X 1-(/#,) 0

(1)

N'.x(o,,,) = =0o

The effect of other boundary conditions on the modal character-

istics of thin isotropic cylindrical shells has been investigated

in detail by Forsberg (Ref. 9).

2.1 Thin Cylindrical Shell Equations using Washizu's

Shell Theory

From Fig. i, assuming that the thickness is small compared

to the radius (we limit ourselves here to Love's first approxima-

tion, i.e., 1 + z/R '- I), the stress resultants are

3



Nx =(2)

N . (3)

and the stress couples by

MX O r (5)J

(6)

4/M'. I= 6,-, 'L A e. zJ (7)
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Strain-Displacement Relations

The effect of transverse shear is neglected and normal

strains are assumed to be zero. When the Euler-Bernoulli-Navier

hypothesis is also employed, the strains can be written as

S= .- (8)

O = X-0 (10)

where and oo an are the mid-surface strains and

Kx, Io and K'-o are the curvature strains.

Using what Washizu (Ref. 10) calls the thin shell of

Type D, the strains are related to the mid-surface displacements

by

-R (TjX) (Y + (11)

L(12)

U NF'gx£'- 5 (3)

5



&_t  
(14)

I~T, (15) *

(16)

These expressions include nonlinear terms in midplane strains,

but not in the curvature strains *

Stress-Strain Relations

The stress-strain relations for a thin orthotropic cylin-

drical shell are

- ,e.+ c. + 13 o (17)

'0 6(18)

6,~ il 6. + 646a. t C33J'.(19)

The nonlinear terms in the curvature strains are omitted here
since they will offer no contribution to the final linearized
cylindrical shell equations under initial membrane s tresses.

6



-X0 (D> 3 kI P I hAJ4rkr& (22)

Equations of .quilibrium

For the special case of the boundary conditions given in

Eqs. (1), the principle of virtual work as applied to the cylin-

drical shell can be written as

{f(Nx'-NI,, 4 . +A'x&6, -Affk-A4o,

4 Aixo4/r.P9L x ffb(cxfi

)d ,(23)

where S is the area of the mid-surface and F , F6 , and Fz are
the body forces per unit of mid-surface area. The equilibrium

equations obtained from Eq. (23) depend on the strain-displace-

ment relations given by Eqs. (11) through (16). This leads to

the following nonlinear equilibrium equations of Washizu (Refs.

10 and 11).

7(24)

7



I 910

+ N- 0 J -(25)

+R- A#4 (41- -1- +[N o- (V -

+ 9 [R * o -2[++(26)OX Ox 1941g-9X

2.2 The Frequency Equation

For the vibration problem, the nonlinear equilibrium equa-

tions [Eqs. (24)through (26)] are used as a basis for deriving

the influence of internal pressure on the freqt:encies and mode

shapes of the thin cylindrical shell. The shell stresses and

displacements can be expressed in terms of deviations from an

initially stressed configuration. We take here the case where

8



the only initial stress resultants are R and U1, and all the
initial stress couples are zero. That is, let

N& N, et N& (27)

NxO = No r

MX- MX M# M#! My& = Vr& (28)

and
(' = , " U--(29)

where ire, , U, , and i are those stress resultants and dis-

placements resulting from the static loading conditions and

Rx' ' Nxe 10,osN9 u, v, and w are the vibratory stress
resultants, couples, and displacements.

Considered in this report is the case in which the internal

pressure is taken as Constant Directional, i.e., the direction and

magnitude per unit original area remains unchanged during deforma-

tion. For a consideration of the case where the direction and

magnitude per unit original area chsinges with deformation due to

the internal pressure, see Ref. 8.*

All the vibratory stress resultants and couples, as well

as the vibratory displacements, are considered infinitesimal

quantities for the vibration problem and it is justifiable to

neglect their squares and products. It is also assumed that x
and Ne are constant and

*For that case, additional terms p j , ( + v), and

- ~ ~ ~ ~ ~ R 1  v Wtletan

6 1 6v i_ ] would be added to the left-hand sides

of Eqs. (31), (32), and (33), respectively.

9



-F W FI" 20 Fit - 'OW (30)

With this simplification Eqs. (2) through (26) become (here, for

convenience of notation we now write the vibratory stresses and

displacements Nx, N9, u, v, and w, as Nx, No, U, v, and w).

Nx :2--4 (31)

AT"- z -1 A_ (A1/+ - = 0 (32)

/A + .r) 0(33)

A' 9 +_ -/-_

where Eqs. (31) through (33) represent the equilibrium equations

of free vibration of a thin cylindrical shell about an initially

stressed configuration.

By combining Eqs. (11) through (16) and Eqs. (17) through

(22) and substituting this result into Eqs. (31) through (33), the

following differential equations in u, v, and w are obtained.

10



2 gA C/s &a e- CL~

C-ZL 
L -

C_ - 64! IN zjI ) 4N& k

l~wC 3 Z

(/3 2L 4  / (,fjC3 2 z

+ F2+

___ 
(35)



(36)

/Ci / "M~ z 4f 2 ~N

The expressions for F., F2, F3, and GI, G2, G3 appearing

in Eqs. (34) through (36) are given in Table 1. The explicit

values of F1 , F2 , F3 used here are those of Washizu (Ref. 10),

Novozhilov (Ref. 16), and Goldenviezer (Ref. 2), while the GI,

G2, G3 are those of Washizu (Ref. 10) and Herrmann (Ref. 8).

Numerous other versions of the cylindrical shell equations

have been published in the literature. All of these versions may

be written in the form of Eqs. (34) through (36) in which minor

differences are reflected in the functions FI, F2, F3 , and GI,

G2, G3. Some other common theories are also listed in Table 1.

We will be concerned in what follows with the special

cases of orthotropicity where the geometric and principal axes

are parallel and perpendicular, i.e., 9 0 and 90 degrees. This

corresponds to the conditions

-_,2 3 _.= " 1 - 2 = 0 (37)

With this simplification, a solution to Eqs. (34) through

(36) which satisfies the boundary conditions [Eq. (1)] is

12



Cos' COMTA Co5'voLL

/

where m and n are integers and w is the natural frequency of

vibration. The integer n represents the number of circumferential

waves, while the integer m, the number of axial half waves. A
pair of integers m, n then specifies a particular mode shape.

Upon substituting Eqs. (38) into Eqs. (34) through (36)

there are obtained three homogeneous linear algebraic equations

in um, vmn, and wrn, the nontrivial solution of which requires

13
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where

(40)

Note that the vibration frequency and initial stresses are ref-

erenced with respect to C 2 , i.e., the stretching stiffness

along the unstiffened y' direction.
When nx and n0 vanish and the material is isotropic,

Eq. (39) reduces to that given by Arnold and Warburton (Ref. 1).

If the determinant is written as

a, - 1~~,~~a/3

az, j1- qZ3- 0 (41)

there is provided a frequency equation of the form

+ 0 (42)

where

k =a + 22 a a33

Oil I al Ct1 azL a23
7= + + (43)

641 (43 Zi 33

15



a1, alL a, 3

& -3, a,. t235

Associated with the three positive roots (i 1 < P2 < 3)

of Eq. (42) are three mode shapes given by

linpq - - N

(44)
3),4

where

all3 a,,zaZI azz-fl

NI (45)

a 23 2 %

ii -- T 13

The general character of these mode shapes depends on the

shell parameters and nodal Iattern.

16



3. APPLICATION TO CONSTANT THICKNESS ORTHOTROPIC AND

STIFFENED CYLINDERS

The rbsults of the preceding section are now applied to

an orthotropic cylinder of constant thickness and also to a

stiffened cylinder of skin thickness ts, which is integrally

stiffened on one side (Table 4). In the latter case, it is

assumed that the spacing of the stiffeners is small compared to

the radius and length, so that for the purpose of studying over-

all or average behavior, it is plausible to replace the actual

cylinder by an equivalent uniform orthotropic cylinder. Note

that in this report the shell theory used applies to cross sections

of shell elements which are symmetrical with respect to the middle

surface. For asymmetric cross sections, there will be coupling

between the mid-surface strains and changes of curvatures. This

coupling effect is omitted here.

3.1 Properties of Constant Thickness Orthotropic

Cylindrical Shell

For an orthotropic material of constant thickness h, it is

possible to express the stress-strain law in the form

O b=4,6+ A/ z + 413 4

-- ,z x+- bz z -6 3 '& (46)

where the bij are the elastic stiffnesses of the cylindrical

shell referred to the x-y axes. The stiffness b.. can be written

in terms of the stiffnesses b! referred to the principal axes,

x-y, as shown in Ref. 12 as follows:

17



If bit Cos1fS + b21 ,,p + -{6 12. 4 es

17L b, 42 " - -I Co$ ' ' 511 "0 1 (e-t'%t-.'

(47)
b, = A A,,;-n,'co - (A+..9@ o,.,,-,;

b23 7,3 as -'j; -i v., )sg S/V, ,,, + . ,<, ,

where the four independent material constants b!. have the follow-

ing physical meaning

bil

(48)

_."# _. -- 6,,6'P¢9
and

The stiffnesses of the cylinder bij are completely determined by

the moduli of elasticity E'x E, the shear modulus Gx , ', the
Poisson's ratio vOx,, and by the angle 9.

When the geometric and principal axes are parallel, i.e.,

p=0 deg,

18



46a 4a z3~- (49)

When the geometric and principal axes are perpendicular,

i.e., q = 90 deg

(50)

$33 A,,$z3V-6

When the material is isotropic,

/) 4C

(51)
,, /.E/,46Z E

Note that for the constant thickness orthotropic case, the

stretching stiffnesses and the bending stiffnesses are not in-

dependent, i.e., from Eqs. (2) through (7) and (17) through (22),

they are given by,

12. (52

3.2 Properties of Stiffened Cylinder

A cross section of a repeated element of the stiffened

cylindrical shell is shown in Table 4. The stiffeners are

aligned along the x' axis and make an angle 9 with respect to

the x axis.

19



The stretching stiffnesses, referred to the principal
axes x'-y', are C 1 , C2, C' C', and may be approximated (with

the assumption of no stress lag) by

by ts /; .t(53)

r; ,[ -e ]'4

where Cs is the stretching stiffness of the basic unstiffened
skin

x11' 12' D 2 , D 3 , arid may be approximated (see

Refs. 13 and 14) by

20



W 1 -( .)

M,. = Ix/ = -WD

_+ tbs 3

II
(55)

D ( -/I - Le.)3 + (,L 4 /4)

/ z c _ A

where C is the torsional rigidity of the web, B is a constant

based on bw and tw which varies from 0.333 to 0.141, and Ds is

the bending stiffness of the unstiffened skin

/- (56)
/2 /I-vz

The thin cylindrical shell with closely-spaced stiffeners will be

21



considered as an equivalent orthotropic thin cylinder with given

independent bending and stretching stiffnesses. With this ap-

proach and in conjunction with the stiffness transformations

given by Eqs. (47), the stiffnesses Cij and Dii referred to the

geometrical axes x-y can be written in terms of the stiffnesses

C!. and D!. referred to the principal axes x'-y' as

(c111 C A)=(~. ,)osto + / x

+2( , )c, " C., '5 Z

(C22 ]2Z [C 0p-,) (c 5

22



(C3 , 3  [/~'P;)uy ~6Jcs (57)

-~~ Z) -Z. (C-3 3  - i #cos Sr('

, - c2 , + A)Cs, - (cS ,) cos (51

,"' z

+ ( c3, ,)(cosL' -, ¢

When the geometric and principal axes are parallel, i.e.,

=0 deg

/ z = 2' Lz 2 = Cz

6,, 3 I; ,

, /(58)

23



When the geometric and principal axes are perpendicular,
i.e., - 90 deg

C,= / /

C33 =  3,, 3 o

P2 2 
(59)

3.3 Numerical Application

a) Constant Thickness Orthotropic Cylinder

Four example cylinders were selected for numerical applica-
tion for the constant thickness orthotropic case and their prop-

erties are given in Table 1. Calculations for the isotropic case

were also carried out for purposes of comparison. The thickness-

to-radius parameter was chosen as 0.001 for these calculations.

Note that for the constant thickness orthotropic case, the ratio

of stretching stiffnesses and bending stiffnesses are the same,

i.e.,

(60)

b) Stiffened Cylinder

Two examples of stiffened cylinders were selected whose

bending stiffness ratio DII/D'2 is the same as those of cylinders
(1) and (5) for the constant thickness orthotropic case. In

order to compare the frequency spectrum for the constant thickness

orthotropic cylinder and the stiffened cylinder in a meaningful

24



way, the term (l/R2)(D22/C22) for the stiffened cylinder is set
equal to (l/12)(h/R)

25



4. DISCUSSION OF CALCUTATIONS

4.1 Constant Thickness Orthotropic Cylinder

The general character of the frequency spectrum is indi-

cated in Figs. 4 through 13. These curves indicate that the

modes for which n < 2 have a different behavior than those for
n > 2. The modal characteristics for n = 0 and n - 1 for the

isotropic case are essentially independent of the bending stiff-

ness of the shell (i.e., independent of h/R), since for these

cases the deformation consists mainly of stretching, whereas
for high n the frequency characteristics depend more strongly

on bending stiffness.*

Let us consider in detail the frequency spectrum for
n - 0. For this case one of the three roots of Eq. (42) repre-

sents the frequency of the uncoupled torsional mode, while the

other two frequencies involve predominantly longitudinal and
radial motion. From Eq. (39) the uncoupled torsional frequency

is

r 7- (61)

while tze torsional frequency of a thin-walled circular btam

according to St. Venant torsion theory is

(62)

For short axial w--s' lengths (large mR/1), the effect of bending
stiffness (h/Ra P.iv jecome important for n - 0 and 1. (See
Figs. 2 and 3)

26



The other two frequencies also shown in Figs. 4 through 8 have

as asymptotes the frequency of axial vibrations of a bar,

ILjz' (63)

and the frequency of radial vibrations of a ring in plane strain

for long axial wave lengths,

(64)hLL

and a ring in plane stress for short axial wave lengths,

__ __ _ (65)

For the n = 0 case, the lowest frequency is not necessarily

associated with predominantly radial motion. Figures 4 through

8 show that the lowest natural frequency can be associated with

either the predominantly radial mode or torsional mode depending

on mR/1. The value of mR/1 for which the lowest natural fre-

quency changes from the predominantly radial mode to the torsion-

al mode depends on the stiffness ratio b'j/b 2 and the angle .ib22 adteage

From Figs. 4 through 8, it is observed that the torsional fre-

quency is slightly affected by the stiffness ratiosbl1/b22

and the angle p, while the axial frequency, since it depends

mainly on the stiffness in the axial direction, is affected by

the stifiness ratio bjl/b'2 only when T - 0 deg. It also may

be noted that the rise in the predominantly radial frequency at

very short axial wave lengths (large mR/1) is due to the effect

of h/R.

2
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Let us turn now to the case for n = 1. Here, for long

axial wave lengths (small mR/1), the mode associated with the

lowest frequency involves strong coupling in the circumferential

and radial directions. For long axial wave lengths, this cor-
responds to the vibration of a cylinder as a beam. The asymptotes

for cases (1) and (5) that are shown in Fig.14 are those of a

simply-supported thin-walled circular cross-sectioned beam as

found from elementary beam theory to be

A = T21(66)

Figures 9 through 13 show that for long axial wave lengths

(small mR/1) circumferential stiffening has a negligible effect

on the beam-type frequencies while axial stiffening has a signifi-

cant effect; whereas for short axial wave lengths (large mR/1)

axial stiffening has a slight effect and circumferential stiffen-

ing has a significant effect on the frequency.

Now let us consider the case for n - 2. The asymptotic

values of the three frequencies for long axial wave lengths

(small mR/I) are (for Nx = Ne = 0):

Flexural vibrations of a ring (Eo = 0, u = 0)

t b b (67)

28



Axial shear vibration (w - v - 0)

- 1' (68)

Extensional vibrations of a ring (ce 0 0, u 0)

J ' L - 'fbl ' [b1Nj 1 + 1) (69)

For the n .2 cases, the lowest frequency corresponds to the pre-

dominantly radial mode for all values of mR/1 and stiffnesses,

while the remaining two correspond to predominantly axial and

circumferential motion. In general, these two are at least an

order of magnitude higher than the predominantly radial fre-

quency. From Figs. 9 through 13, the effect of the stiffness

ratio and the rotation of the principal axes of stiffness through

an angle of 90 degrees can be studied. It may be seen that

stiffness ratio bll/b22 has little effect on the predominantly

radial frequency for long and intermediate axial wave lengths

when - 0 deg (axial stiffening), while this frequency shows a

marked increase when the stiffness ratio bll/b'22 increases for

= 90 deg (circumferential stiffening). Specifically, it may

be noted that for mR/1 = 0.01, n - 3, bj/bi2 - 24.2, when q

0 deg the frequency is 0.00225, and when - 90 deg, the fre-

quency is 0.0108; while for the corresponding isotropic case,
the frequency is 0.00219. For all values of stiffening both in

* jcircumferential, as well as axial direction for large axial wave

lengths, the frequency is proportional to n2 (for sufficiently

high n) as indicated by Eq. (67).

29



In all the cases of stiffening for n ; 2, the value of n

for which the minimum frequency occurs, increases with increasing

mR/1. This is also true for the isotropic case.

4.2 Stiffened Cylinder

In the preceding section, the results were obtained from

the analysis of a cylindrical shell which was orthotropic due to

the natural properties of the material. Here we will consider a

shell which is orthotropic due to attachment of stiffeners on to

the basic thin-walled cylinder. The purpose of this analysis will

be to compare the frequency characteristics obtained from a study

of the stiffened cylinder with those obtained from the constant

thickness orthotropic cylinder.

Figures 15 through 18 show the results of the stiffened

cylinder analysis. The properties of the cylinders are given in

Table 4. The essential difference in the properties of the

stiffened cylinder and the constant thickness orthotropic cylinder

is that in the former, the stretching stiffness and bending stiff-

ness ratio are quite different while in the latter case they are

identical. In particular, for the stiffened cylinders considered

in this section, when the bending stiffness ratio D'1/Di2 was

taken to be the same as that of the bending stiffness ratio in

Cases 1 and 5 of the constant thickness orthotropic cylinder,

namely DII/Di2 - 24.2, the stretching stiffness ratio CII/C22 in

the case of the stiffened shell was 1.26. Returning to Figs. 15

through 18 one finds that for the n = 0 and n = I cases, which

correspond to predominantly stretching of the shell middle surface,

the values of the frequency are approximately the same as those of

the isotropic case.*

For q - 0 deg and n = 0, there is a slight increase in the fre-
quency (when compared with the isotropic case) of the mode associ-
ated with predominantly axial motion since this frequency is ef-
fectively proportional tojICl/02. This increase is also true for
the n = I case when P - 0 and mR7 > 5, due to the slight effect
of bending for these high values of mR/L.
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For the n 1 2 cases, the effect of bending becomes ex-

tremely important even for n as low as 2. If we compare Fig. 17
with Fig. 9 (which correspond to 9 - 90 deg), it is evident that

the values of the oredominantly radial frequency for the stiffened

cylinder are approximately the same as those of the constant

thickness orthotropic cylinder when mR/1 < 0.5, and n > 2. For
1 higher values of mR/1, the frequency of the stiffened cylinder

decreases below that of the corresponding constant thickness

orthotropic cylinder for all values of n . 2. Note that this

decrease diminishes with increasing n, so that for very high n,

the frequencies for both thesr cylinders (constant thickness and

stiffened) again become approximately the same. This is ex-

plained by the fact that for large values of n and mR/1 the in-

fluence of bending is predominant. When the stiffeners are

aligned in the axial direction (9p = 0 deg), one observes from

Figs. 13 and 18 that for n .4, frequencies for both type cylinders

are nearly the same for long axial wave lengths (low mR/1); for in-

termediate axial wave lengths, the difference in the frequency for

these cylinders becomes appreciable, while for short axial wave

lengths, this difference again becomes small. For n = 2 and 3,

the frequency of the cylinder with axial stiffeners is lower

than the corresponding constant thickness orthotropic cylinder

for all but short axial wave lengths.

4.3 Effect of Internal Pressure

For a closed-end cylinder under internal pressure p,

- _ (70)

* In order to gain some physical insight into the magnitude of the

pressure stiffness parameter Fe , one can express ne in terms of

the initial static circumferential stress a' as follows,
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)7 (71.)

For the constant thickness orthotropic cylinder

With vetx , = Vx~ e , = 0.3, Ee, - 10 7 psi. This becomes

0- Y/O~ '#,P~

Shown in Figs. 19 through 21 is the variation of l with

the pressure stiffness parameters no, _x for the isotropic case*X
for three values of the axial wave length. Comparison of these

figures shows that the value of n for which the lowest frequency

begins to vary significantly with ie depends on the axial wave

length mR/i. For mR/1 = 0.06 there is a significanL increase in

n with ii when n 2, for mR/i = 0.5 the increase becomes signifi-

cant when n 5,and for mR/i = 3 when n ; 10. For all these

values of mR/1, the two larger frequencies, which correspond to

predominantly tangential motions, are little affected by n., nx.

a) Constant Thickness Orthotropic Cylinder

The effect cf internal pressure on the frequencies of the

axisymmetric mode (n = 0) is illustrated in Figs. 4 through 8.

For both q = 0 and 90 degrees and all values of stiffening, the

frequency of the predominantly radial mode is slightly increased

by the addition of internal pressure at high values of mR/1. The

increase in the frequency of the torsional mode, due to pressure,

* In all the pressure investigations, Nx is always included, and

is taken equal to W/2. 32



increases with increasing bll/b22 and is the same for P - 0 and

90 degrees. This increase in frequency diminishes rapidly with

increasing values of mR/A. Internal pressure has a negligible
effect on the predominantly axial frequency when (p 0 and 90
degrees for all values of the stiffness ratio b'l/b22.

For the n = 1 mode, the effect of pressure on the lowest

frequency is shown in Figs. 22 through 26. For stiffening in the

circumferential direction (9 = 90 deg) the frequency is independent
of the stiffness ratio bjj/b22 . There is an increase in frequency

due to pressure in these cases, which is large for small values

of mR/1 and diminishes with increasing mR/1. For stiffening in

the axial direction (cp = 0 deg), the frequency does depend on the
stiffness ratio bil/b22 . There is an increase in frequency in

these cases, which is small for low values of mR/1, diminishes
for intermediate values of mR/9, and increases for high values

of mR/i. The effect of pressure on the two higher frequencies

for n = 1 is negligible.

For n ; 2, Figs. 22 through 26 show that the lowest fre-

quency increases significantly with internal pressure for all

cases of stiffening. The increase in the frequency generally

diminishes with increasing mR/A. It is observed that the in-

crease in frequency due to pressure is greater for stiffening in

the axial direction than in the circumferential direction. Thus

for mR/1 = 0.01, b~1 /b22 - 24.2, and n 2, for stiffening in

the circumferential direction (9 = 90 deg), the unpressurized

frequency n1 = 0.00383, while in the corresponding case of axial

stiffening (9 = 0 deg), nI = 0.00130. However, with the addition

of internal pressure (F0 = 2Fi = 0.001), when = 90 deg the fre-0 x
quency ni = 0.0426, while for 0 deg, n1 = 0.0424. This same

pattern of behavior, namely the influence of internal pressure

on the frequency being greater for axial stiffening than for cir-

cumferential stiffening, is found for all n > 2 as well as n - 2.

Also illustrated in Figs. 22 through 26 is the fact that for

33



= 90 deg, the increase in frequency due to internal pressure
decreases with increasing values of the stiffness ratiobjj/b'

while for T = 0 deg, this increase is independent of b 11/b2 2.
For n > 2, internal pressure has a negligible effect on the two

larger frequencies.

b) Stiffened Cylinder

The effect of pressure on the n = 0 mode for the stiffened
cylinder is similar to that of the isotropic case. This is due

to the fact that the stretching stiffness ratio C'1/C22 of the
stiffened cylinder and the isotropic cylinder are nearly the same.
For both 9 = 0 and 90 degrees, the frequency of the predominantly
radial mode is slightly increased by internal pressy-e for high

mR/1. The increase in the frequency of the torsional mode due to
internal pressure is the same for q = 0 and 90 degrees and again
diminishes rapidly with increasing mR/I. The axial frequency is
unaffected by internal pressure for both 9 = 0 and 90 degrees.

Turning to the n = 1 case, Figs. 17 and 18 show that the
increase in frequency due to pressure is approximately the same
as that of the isotropic case for q = 0 and 90 degrees (except
for mR/1 > 5 where the bending stiffness ratio D'1/D 2 begins toDI/22beiso

take effect).

For n > 2, the frequencies of the stiffened cylinders
under internal pressure are the same as those of the constant

thickness orthotropic shell (i.e., cylindis 1 and 5), except

for large values of mR/I. The effect of pressure on the two

higher frequencies for n 1 is negligible.
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5. CONCLUSIONS

The equations for the vibration of a thin orthotropic

cylindrical shell under internal pressure were deduced from the

nonlinear shell theory of Washizu. Application was made to four

constant thickness orthotropic cylinders, two stiffened cylinders,

and for purposes of comparison, an isotropic cylinder. This in-

vestigation has been principally concerned with the effects of

circumferential and axial stiffening, as well as internal pres-

sure, on the frequencies and mode shapes of an orthotropic cyl-

inder with freely-supported ends.

The significant conclusions are that there is a difference

in behavior of the frequencies for the n = 0, n - 1, and n 2

modes. For the n > 2 modes, the lowest frequency is associated

with predominantly radial motion. For the n = 0 mode, the lowest

frequency is associated with either the uncoupled torsional mo-

tion or the predominately radial motion, depending on the axial

wave length. For the n w1 mode, there is strong coupling be-

tween circumferential and radial motion, and the lowest fre-

quency is associated with a combination of circumferential and

radial motion.

For the n 2 modes, the frequency of the predominantly

radial frequency was significantly increased by circumferential

stiffening, while this frequency was unaffected by axial stiffen-

ing for all but large values of mR/1. For the n - 0 mode, there

was a slight increase in the frequencies of the torsional mode

and predominantly radial modes due to circumferential stiffening,

while the frequency of the predominantly axial mode was unchanged.

For axial stiffening, the frequency of the predominantly axial

* mode was significrntfy increased, while the frequency cf the tor..

sional and predominantly radial modes was slightly affected. For
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the n - 1 mode, circumferential stiffening increased the fre-

quency only for large values of mR/1, while axial stiffening in-

creased the frequency mainly for small mR/1.

The effect of pressure on the frequencies was also in-

vestigated. For the n > 2 modes, for both circumferential and

axial stiffening, the predominantly radial frequencies were sig-

nificantly increased by pressure. For the n - 0 mode, for both

circumferential and axial stiffening, the torsional frequency
was increased by pressure at small mR/1 and the predominantly

radial frequency was increased by pressure at large mR/1. The

predominantly axial frequency was not affected by pressure. For

the n 1 1 mode, for circumferential stiffening, the frequency
was increased by pressure at small mR/1, while for axial stiffen-

ing the frequency was slightly increased by pressure.

For purposes of comparison, the frequencies of two

stiffened cylinders were also investigated. It was found that

the frequencies of the stiffened cylinders whose bending stiff-

ness ratio Djj/D2 was taken equal to the stiffness ratio

bl/b22 of the constant thickness orthotropic cylinder are essen-

tially the same as the frequencies of the isotropic cylinder for

n - 0 and n - I modes, while for the n > 2 modes the stiffened
cylinder frequencies are the same as the frequencies of the con-

stant thickness orthotropic cylinder. This occurs since the

n - 0 and I modes correspond to primarily stretching motion,

while the n k 2 modes correspond to predominantly bending motion.

The above behavior is true for both the pressurized as well as

the unpressurized cases.
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