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FOREWORD

This report was made within the Aeroelastic
and Structures Research Laboratory under United
States Air Force Grant No. AF OSR-62-363. The
project is administered by Dr. J. Pomerantz of the
Air Force Office of Scientific Research, United
States Air Force.
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ABSTRACT

The influence of orthotropicity and internal pressure on
the natural frequencies of a thin cylindrical shell whose ends
are freely supported is found using the shell equations of
Washizu. Other common shell theories are also presented.

Calculations are performed for four constant thickness
orthotropic cylinders, two stiffened cylinders, and a basic
isotropic¢ cylinder. For these calculations, only the special
cases of axial and circuuiferential stiffening were considered.

It is noted that there is a difference in the behavior of
the frequencies for then = 0, n =1, and n > 2 mcdes. For the
n > 2 modes, the lowest frequency is associated with predomi-
nantly radial motion. For the n = 0 mode, the lowesi frequency
is either associated with uncoupled torsional motion or pre-
dominantly radial motion, depending on the axial wave length.
For the n = 1 mode, the lowest frequency is associated with a
combination of circumferential and radial motion.

For the n > 2 and n = 0 modes, circumferential stiffening
generally increased significantly the frequency of the pre-
dominantly radial mode, while axial stiffening had little ef-
fect on these frequencies. ¥For the n = 1 beam-type mode, axial
stiffening increased the frequency, while circumferential
stiffening has little effect on the frequency.

Internal pressure significantly increased the frequency
of the predominantly radial mode for all cases of stiffening
for n > 2, while there was little effect on the n = 0 mode.
Internal pressure had small effect on the n = 1 beam-type mode
for all cases of stiffening.
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LIST OF SYMBOLS

Elastic stiffnesses referred to x-y axes
Stretching stiffnesses referred to x-y axes

Bending and twisting stiffnesses referred
to x-y axes

Bend1ng stiffness of unstiffened shell,
Et/(l-v)

Modulus of elasticity
Defined in Table 1

Forces per unit area in axial, circumfer-
ential, and radial directions

Shear modulus

Defined in Table 2

Thickness of orthotropic material
Length of cylinder

Longitudinal mode number, number of axial
half-waves

Mass per unit area of cylinder
Moment resultants per unit length

Circumferential mode number, number of
circumferential waves

Force resultants per unit length

Initial force resultants

Dimensionless initial axial force, N*/Céz

Dimensionless initial circumferential
force, ﬁé/Céz
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P Internal pressure

R Radius of cylinder

t Time

u,v,w Axial, circumferential, and radial displace-

ments of cylinder mid-surface

u,v,w Initial axial, circumferential, and radial
displacements of cylinder mid-surface

Urn? Van *Yon Magnitudes of displacements associated with
mn mode

8 (1/12)(D},/C},)

6 Variational notation

Q Dimensionless frequency stiffness parameter,
Ro /7T 55

€ €0 V%0 Strain components

eXO,eeo,yxeo Mid-surface strains

6 Angular coordinate

KysKgsKyp Curvature strains

A Axial wave-length factor, mwR/Z

v Poisson's ratio

P Density

Oy 993 Iy Stress components

P Angle between geometric and principal

elastic axis

) Circular frequency
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Subscripts

Superscripts

« )
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Pertaining to skin

Pertaining to web

Referred to principal elastic axes
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1. INTRODUCTION

Many papers have been written on the free vibrations of a
thin circular cylindrical shell. For example, Arnold and
Warburton (Ref. 1) have investigated the frequency spectrum for
freely-supported circuiar cylindrical shells using a set of dis-

placement equations of motion which are similar to those of
Goldenveizer (Ref. 2).

The effect of initial circumferential and axial stresses
on the vibration frequencies of freely-supported isotropic cylin-
drical shells has been studied by Reissner (Refs. 3, 4). In
Ref. 3,he derived a simple expression for the frequency on the
basis of Maguerre's shallow-shell theory by omitting the effect
of circumferential and longitudinal inertia terms. The results
obtained in Ref. 3 cannot be expected to be valid for modes
having a small circumferential wave number, due to the shallow-
shell approximation. In Ref. 4, Reissner developed the frequency
equation for isotropic cylindrical shells using membrane theory,
including all inertia effects.

Fung, Sechler and Kaplan (Ref. 5) have also studied the
effect of pressure on the vibration frequencies of freely-
supported cylindrical shellis. To include the effect of pressure,
the nonlinear equations of Timoshenko (Ref. 6) are used. How-
ever, the calculations were carried out using the frequency
equation of Reissner (Ref. 3).

More recently, Armen&kas (Ref. 7) has investigated the
effect of initial stress on simply-supported isotropic cylindrical
shells using a shell theory developed by Herrmann and Armenakas
(Ref. 8) which includes the effect on the motion of the change
due to deformation of the magnitude and direction of the applied
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Tkis investigation is primarily concerned with the effect
of circumferential and axial stiffening, as well as internal
pressure on the frequencies and mode shapes, of a freely-supported
cylinder.




2. BASIC SHELL EQUATIONS AND RELATIONS

Shown 'in Fig. la is the middle surface of an orthotropic
cylindrical shell. The x-y axes are the geometric axes, while
the x'-y' are the principal axes rotated an angle ¢ with respect
to the geometric axes. The stiffened axis of the cylinder will
be taken as x'. The stress resultants and couples are shown in
Fig. 1b.

The boundary conditions used here are those called freely-
supported by Arnold and Warburton (Ref. 1) and are given by

v(o,0,t) = (4, 6¢) = O

w(oe,t) = wlLses) =0
(1)

Nx(0,6,) =Ny (4,6,¢) =0
Mel(0,8,¢) =My (4, 86,¢) =0

The effect of other boundary conditions on the modal character-
istics of thin isotropic cylindrical shells has been investigated
in detail by Forsberg (Ref. 9).

2.1 Thin Cylindrical Shell Equations using Washizu's
Shell Theory

From Fig. 1, assuming that the thickness is small compared
to the radius (we limit ourselves here to Love's first approxima-
tion, i.e., 1 + z/R ~ 1), the stress resultants are



N‘:'.

&
O 42

Y%

and the stress couples by

&,
MX = Jfo; 2‘6/2“

-4,

(2)

(3)

(5)

(6)

(7)




Strain-Displacement Relations

The effect of transverse shear is neglected and normal
strains are assumed to be zero. VWhen the Euler-Bernoulli-Navier
hypothesis is also employed, the strains can be written as

€ = Ex,— 2Ky (8)

€s = €, -k, (9)

Jre

Yo~ 32 Rxe (10)

where é}o) 590/ and /}wb are the mid-surface strains and
Kx, Ko, and Kxe  are the curvature strains.

Using what Washizu (Ref. 10) calls the thin shell of
Type D, the strains are related to the mid-surface displacements
by

& = 24 o I 90) 94) Q)
Ao X +Z[2x Gx 2x (11)

&,

L _ W& 1| [M 2
R o f+ﬂi‘[7é‘) )( M)J (2

- 21 u + L .éki2£ EE(_QjE_ 2w/ v
Q2 i R [G’x 2 " ox( %0 99}( 7“9] (13



’ z
K« = ;>k£
2x

rL

Kxe =2 (4% +

2x2e

(14)

(15)

(16)

These expressions include nonlinear terms in midplane strains,

but not in the curvature strains.*

Stress-Strain Relations

The stress-strain relations for a thin orthotropic cylin-

drical shell are

N‘ = CII 6(, +C-‘z €90 + 613&0,
Ng = () éxo + (e 5&, + Cz3~’}jr%

Nx; = 5/3 Exo +CIJ 560 t 633 );’50

My == (Duky + D Ks +2Dys /Txr)

Me = — \/D,z_ hx + D;. ’79 + AD:3 ’Tx&)

(17)

(18)

(19)

(20)

(21)

»*
The nonlinear terms in the curvature strains are omitted here
since they will offer no contribution to the final linearized

cylindrical shell equations under initial membrane stresses.
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Mep = — (DB Kx + D25 Ko +2205; 'kx’) (22)

Equations of Equilibrium

For the special case of the boundary conditions given in
Eqs. (1), the principle of virtual work as applied to the cylin-
drical shell can be written as

j (Ne € + No Sa, + Nys Shia, — Me Sk — #e She
—-?M,mJ/rg;)A’/x/# —]‘/{F} da +FIV
44

G Jw)Rbds =0 23

where S is the area of the mid-surface and Fx, Fgy, and Fz are
the body forces per unit of mid-surface area. The equilibrium
equations obtained from Eq. (23) depend on the strain-displace-
ment relations given by Eqs. (11) through (16). This leads to
the following nonlinear equilibrium equations of Washizu (Refs.
10 and 11).

9[N(’(/+Qf.’+/%9x ] 9&’9 -/'%x//-f ]

+ KR =0 (24)
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?[N R—— +N,R(I+£' Z;r g]

v o[ (+% 2~ 4)+ Mo 39 -+ 4 B

y.’8 1 (PMs PMre =
+ Nys Qx] 13 ( 28 + AR o + Fe R = ©  (25)

2 [ka 24 4 Nys (0 + g-—)] [N,( ¥ %f’

+ Nyo 52 ]4—/‘/(/4 1 20 U -;—/}{m%

DMy Diyre 1 Me DMy _
9)([R9x * 2y ]+9&[K Qe * QXX]+F’_E'€—O (26)

2.2 The Frequency Equation

For the vibration problem, the nonlinear equilibrium equa-
tions [Eqs. (24) through (26)] are used as a basis for deriving
the influence of internal pressure on the frequencies and mode
shapes of the thin cylindrical shell. The shell stresses and
displacements can be expressed in terms of deviations from an
initially stressed configuration. We take here the case where

8
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the only initial stress resultants are K_and Ny, and all the
initial stress couples are zero. That is, let

Ny = N+ N
Ne + Neo (27)
Nxe = ﬁxb
Mc=HMx ,  Me= Ms , Mys= Mys (28)
and — o~ -~ A IF e LF
M=H+u, V=”+”} W= 4r 4+ U (29)

where ix Ng, u, v, and w are those stress resultants and dis-
placements resulting from the static loading conditions and
ﬂ N ’ N 6 Hx He, er, u, v, and w are the vibratory stress
resultants, couples, and displacements.

Considered in this report is the case in which tue internal
pressure is taken as Constant Directional, i.e., the direction and
magnitude per unit original area remains unchanged during deforma-
tion. For a consideration of the case where the direction and
magnitude per unit original area changes with deformation due to
the internal pressure, see Ref. 8.#

All the vibratory stress resultants and couples, as well
as the vibratory displacements, are considered infinitesimal
quantities for the vibration problem and it is justifiable to
neglect their squares and products. It is alsc assumed that Nx
and Ny are constant and

*For that case, additional terms p 3— bw § (g% + v), and
- p[gﬁ- (3-6 — )] would be added to the left-hand sides

of Eqs. (31), (32), and (33), respectively.
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F :"”"g—tf”/ Fo = “’”'3{{1 th-”’;‘zt:é: (30)

With this simplification Egs. (24 through (26) become (here, for
convenience of notatlon we nOW‘wrlte the vibratory stresses and

displacements Nx’ Ne, u, v, and w, as N, Ng, u, v, and w).

Ix R 9¢ ﬁ 2 ,q 7; 0% (31)
Neo , ! M6 _ ! (5% 20\ , 2%
T +.A? o 1 -f5?4’ /) + Mr ryet
E_&/?I'f — _gir M" 9 f —
TR (75" 72 ( ) = © (32)
_A./ﬁ + 2 My z Mo + 4 z ?/‘f: + /'V; N
R Ix* R XxDe R 98 Ix?
N& aif f()l Ng. 0 ¥ D
+—= [ = + — W g« -
RL(Qo‘ Qe* T ,el- 26 4 9{2. O (33)

where Eqs. (31) through (33) represent the equilibrium equations
of free vibration of a thin cylindrical shell about an initially

stressed configuration.

By combining Eqs. (11) through (16) and Eqs. (17) through
(22) and substituting this result into Eqs. (31) through (33), the
following differential equations in u, v, and w are obtained.

10




_C_L’ 2% ,2 ¢s5 24 1 Cas 7'« 4 Crs 2V
L xt R ch x9e R G pe” Gl Ix®
sl Catln Py, 1 G £ Ca 09
R (—/zzt © e R* Cx P87 R L. Px
oL Gz 2K R f(40,4) 4 G(Nx,/\/&/

m* (jz

- q,_ = 0

Cir Bt
(i3 2 A Cro +C3s 2% ! C;, Iu Cas 2
o Ixr R oL ¥ RY L 26t i Ix*
26 D 0 Gz Dy L Gy olw 1 Sr W
R i Ix08 ,e‘ Gl 28 R Guw Ox R ¢l 76

oL Do £ (40, ‘f)+5(/yx/”’&”,1§af)

m* Jy
- =0
En. /f”

11
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_LGZZf._,_/(z,)(/_/_/C-zs:)__'zf‘_f__iC}z_;&_"_r_f
é

R Gl 2 R G 26 R Gi I R &

~\
AN

__{ C22 /(f‘-—é .D'z:. [.J_Dﬁ R" 2_’_;’:)" 7"[2 }/Lf'ﬂ?])-” ZfIJ-

R al” TR Gl DL xe YRS
(36)
/ )zz 270‘ / ﬁz: - <,
R o ‘9’;7} 7 25 () G 45 %)
¥ 4
Cor P

The expressions for Fl’ FZ’ F3, and Gl’ Gz, G3 appearing
in Eqs. (34) through (36) are given in Table 1. The explicit
values of Fl’ F,, F3 used here are those of Washizu (Ref. 10),
Novozhilov (Ref. 16), and Goldenviezer (Ref. 2), while the Gy»
Gy, G3 are thogse of Washizu (Ref. 10) and Herrmann (Ref. 8).

Numerous other versions of the cylindrical shell equations
have been published in the literature. All of these versions may
be written in the form of Eqs. (34) through (36) in which minor
differences are reflected in the functions Fl, F2, F3, and Gl’
GZ’ G3. Some other common theories are also listed in Table 1.

We will be concerned in what follows with the special
cases of orthotropicity where the geometric and principal axes
are parallel and perpendicular, i.e., 9 = 0 and 90 degrees. This
corresponds to the conditions

Crs _ (a3 _ L3 — Des = 0

€32 i 2 2

(37)

With this simplification, a solution to Eqs. (34) through
(36) which satisfies the boundary conditions [(Eq. (1)] is

12
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‘Dt
U 605_"_:?//2’ Cosne g*

W= My 57 22X 5inpe?t (38)

. wt
W = Way sin TX Cos o t”

where m and n are integers and w is the natural frequency of
vibration. The integer n represents the number of circumferential
waves, while the integer m, the number of axial half waves. A
pair of integers m, n then specifies a particular mode shape.

Upon substituting Eqs. (38) into Eqs. (34) through (36)
there are obtained three homogeneous linear algebraic equations

in U Vim? and wmn, the nontrivial solution of which requires

13
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where

S= KOP'/C},;. )\ = 1”/7[7/?

ﬂx—- X /'70 = Ne

= > 7
22 Cz2

(40)

|
Z|

(

Note that the vibration frequency and initial stresses are rei-
erenced with respect to Céz, i.e., the stretching stiffness
along the unstiffened y' direction.

When ;x and Ke vanish and the material is isotropic,
Eq. (39) reduces to that given by Arncld and Warburton (Ref. 1).
1f the determinant is written as

a; - N Qv a/_;
Ay, azz“ﬂl Az = O (41)
A3 a;, Ass le

there is provided a frequency equation of the form

N-kN'+kN -k = o0 (42)

where
K, = a, +a,, + dss3
an A1 A n Qi3 Az1 Az3
Kl = + + (43)
Arr Qar A /B A3z d33

15




KO =

Associated with the three positive roots (01 <9< ﬂ3)
of Eq. (42) are three mode shzpes given by

Uy
Waen

Vien
W

where

Ny =

It

a13

d23

ay - "

A2y

az3

(44)

(45)

The general character of these mode shapes depends on the
shell parameters and nodal pattern.

16
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3. APPLICATION TO CONSTANT THICKNESS GRTHOTROPIC AND
STIFFENED CYLINDERS

The results of the preceding section are now applied to
an orthotropic cylinder of constant thickness and also to a
stiffened cylinder of skin thickness to» which is integrally
stiffened on one side (Table 4). 1In the latter case, it is
assumed that the spacing of the stiffeners is small compared to
the radius and length, so that for the purpose of studying over-
all or average behavior, it is plausible to replace the actual
cylinder by an equivalent uniform orthotropic cylinder. Note
that in this report the shell theory used applies to cross sections
of shell elements which are symmetrical with respect to the middle
surface. For asymmetric cross sections, there will be coupling
between the mid-surface strains and changes of curvatures. This
coupling effect is omitted here.

3.1 Properties of Constant Thickness Orthotropic
Cylindrical Shell

For an orthotropic material of constant thickness h, it is
possible to express the stress-strain law in the form

0’} = b, €x +é/z.c(,} + b/_a };&
O = b2 €x + b2: €6 + b235 Iyp (46)
0}9 = 5,5 Ex -f/z; Ep + A.?j’ /?0

where the bi' are the elastic stiffnesses of the cylindrical
shell referred to the x-y axes. The stiffness bi' can be written
in terms of the stiffnesses b{ referred to the principal axes,
x'-y', as shown in Ref. 12 as follows:

17




by = b Cos?8 + b,) sir*d + R (4. + ,u,,’) Cos's sin &
b, = (b"’ + - 1£,;) Cos* @ srz?f + é/z,‘/éﬂ‘s K +5/};*¢)

bl] 51-” ‘,¢ + ézzl Cos 1/ +2(é/z’*¢2é3;)6051/ Ssrr 4

bz,

7 ’ s s (47)
bl3 = Lb;zz sin’*¢ —é/, 6'05"/ - (é/z +¢?é_,3/)(£os'ﬁ—-slll‘/)]a05¢ sr7f

b23 = bzl 2 Cos 2/ -é// S5/ Y ( é/z, +R 53’3)(505 b -5 '46'05 ¢ s

z

by; = (é,,’ Fbey—R4,s ) COsE sir'd +43; (C’as ‘g S/b‘;é)

where the four independent material constants bij have the follow-
ing physical meaning

b, - EX’ é / _ é—_p’
= 22 —

1= 2535 /- Do Dr's

(48)

/ A, 7 V4

26'x £, / _ ,
by, = 212X byy = Cxp’

/- Vex’ Vs

and
Ex’ﬂd’x’ = E&/ﬁxlaf

The stiffnesses of the cylinder bi j are completely determined by
the moduli of elasticity E;( Ey, the shear modulus G1gs the
?
Poisson's ratio vgi,:, and by the angle ¢.
When the geometric and principal axes are parallel, i.e.,
¢ = 0 deg,

18




(49)

4

533 = é’} 5 4/3 :ézj =0

When the geometric and principal axes are perpendicular,
i.e., 9 = 90 deg

é,/ = ézz’ Y, é/z_ = é/; Y} b2 =4,

, (50)
435 = 435 P b3 =623 =
When the material is isotropic,
- - £ P PE
é//——-ézz - /—’)L J éiz_ - /‘_7),_
(51)
E
33 = / é/3 = b5 = O
R(7tv)

Note that for the constant thickness orthotropic case, the
stretching stiffnesses and the bending stiffnesses are not in-
dependent, i.e., from Eqs. (2) through (7) and (17) through (22),
they are given by,

Dij= L4k  Cy=bh (52)

3.2 Properties of Stiffened Cylinder

A cross section of a repeated element of the stiffened
cylindrical shell is shown in Table 4. The stiffeners are
aligned along the x' axis and make an angle 9 with respect to
the x axis.

19




The stretching stiffnesses, referred to the principal
axes x'-y', are Cil, Cjas Co9s 033, and may be approximated (with
the assumption of no stress lag) by

2w 4 / év/‘
[+(7-2v) 22 2>
G - 6 )| HDEE G

t‘ ,_,_ Ew ‘ /— f”//
6 t‘ /1 ts/‘y

C/Z:C'z//-'-'?}(,? I+Z-‘yté”

‘t_‘!’ _‘_b" /— Ew/éy
[+ by s\ ;4 é:/fw) (53)
/ [ /+ év -1’4 ]
6;2 = (s by %5

l_:.f‘_".é_" _____/'f“’/dy
i é)’ ts /+ és/{w ]
[3/ _ 6‘4— /'/'?;;’éf
? | B b 1=t /fly
é)’ Zs /+fs/llw

where Cs is the stretching stiffness of the basic unstiffened
skin

A= (54

The bending stiffnesses, referred to the principal axes
]

x'-y', are Dj;, Diy, Dyy, Dj;, and may be approximated (see
Refs. 13 and 14) by

20
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b e e el s %

v ey b —— A B A ¥

-

D, = Q+""' 1+t 22(m02) + B () fa0-)+3]

£, 4

Gl ww(f,)(‘)( s b 52) ¢ 2 (8 (&)

(55)

[ I — -
é)' (H' é“'/‘{s)}

b

/I Gt ¢ _ Dlr-») bo [ bnY
), = + & = &+ o [
D, /2 Aby A [I 4 | t,)ﬁJ

where C is the torsional rigidity of the web, B is a constant
based on bw and t, which varies from 0.333 to 0.141, and Ds is
the bending stiffness of the unstiffened skin

1 FA
'D’— /2 /2% (56)

The thin cylindrical shell with closely-spaced stiffeners will be

21




considered as an equivalent orthotropic thin cylinder with given
independent bending and stretching stiffnesses. With this ap-
proach and in conjunction with the stiffness transformations
given by Eqs. (47), the stiffnesses cij and Dij referred to the
geometrical axes x-y can be written in terms of the stiffnesses

c{j and Dij referred to the principal axes x'-y' as

(C’,,/ -_D//) = ((//: -pul)c”’fé + (C‘zz,, Dz:z) Sim 1P

+z[( Ci) D) 4 2 (G, D) Cosp 50 %]

(G, 22) = |02, 2) + (G 08) - #( 3, 23)|cost 6 simg

+ ( C/z; .])/zl)(Cﬂs 8+ sm ’¢)

(sz, Du) = (5//; ,D,,) S/t “/‘(Czlz/ )z’z) Cos?g

2|( ¢, DY) + 2(Cs, 25)] Cosip 57

22




|
! (0/3,9/3) = [((zz', Dsz)snrp — (<) p,,y cos’d (57)
§

| _ { (i, D) +2 (G55, D_,,')} (Cos'p-sim w)}c’w s

(ng, ng) = [( Cz;ll :Dzzl)(’052¢ - /(//; ﬁ/’) 5//'/'/

— {(C/z,/ J),;) -+ 02 (C;;// DB;)}(C051¢ _5/;7 t¢4c&5¢ 5/"7¢

((;3/ 23) = [( C,/'/])”’) +(sz// )zzf) - ,2((/2_: _D,z')] C’O.Szﬁ)lS/}lﬁ

+ ( Cos, Dy ) ((Cosé = 5in')

When the geometric and principal axes are parallel, i.e.,
¢ = 0 deg

C// = 5/// (/2 = (/z Y} Kzz = C;zf
357 G, (3= Co3 =0
, , , (58)
D = "y Ls =D Y, Drz ™ D
D, = Dy, D3 = iy 0
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When the geometric and principal axes are perpendicular,
i.e., 9 = 90 deg

Cy = (22,, Crr = C/z,, C22 = C;/,

Csz = C”', Cs =Ces =0

D, =D, D:=2; Dr:=D, o
D3 = D, D3=2Le; =0

3.3 Numerical Application

a) Constant Thickness Orthotropic Cylinder

Four example cylinders were selected for numerical applica-
tion for the constant thickness orthotropic case and their prop-
erties are given in Table 1. Calculations for the isotropic case
were also carried out for purposes of comparison. The thickness-
to-radius parameter was chosen as 0.001 for these calculations.
Note that for the constant thickness orthotropic case, the ratio
of stretching stiffnesses and bending stiffnesses are the same,
i.e.,

G o Dy | by (60)

G, D W]

b) Stiffened Cylinder

Two examples of stiffened cylinders were selected whose
bending stiffness ratio Dy;/D;, is the same as those of cylinders
(1) and (5) for the constant thickness orthotropic case. In
order to compare the frequency spectrum for the constant thickness
orthotropic cylinder and the stiffened cylinder in a meaningful
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way, the term (l/Rz)(Déz/Céz) for the stiffened cylinder is set
equal to (1/12)(h/R)Z.
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4. DISCUSSION OF CALCULATIONS

4.1 Constant Thickneses Orthotropic Cylinder

The general character of the frequency spectrum is indi-
cated in Figs. 4 through 13. These curves indicate that the
modes for which n ¢ 2 have a different behavior than thosz for
n > 2. The modal characteristics for n = 0 and n = 1 for the
isotropic case are essentially independent of the bending stiff-
ness of the shell (i.e., independent of h/R), since for these
cases the deformaticn consists mainly of stretching, whereas
for high n the frequency characteristics depend more strongly
on bending stiffness.*

Let us consider in detail the frequency spectrum for
n = 0. For this case one of the three roots of Eq. (42) repre-
sents the frequency of the uncoupled torsional mode, while the
other two frequencies involve predominantly longitudinal and
radial motion. From Eq. (39) the uncoupled torsional frequency
is

éa[/+_’ (i)] (61)

while tke torsional frequency of a thin-walled circular bzam
according to St. Venant torsion theory is

N = W(-’Ef)% (62)

*For short axial w~ < lengths (large mR/£), the effect of bending
stiffness (h/R) »:v secome important for n = 0 and 1. (See
Figs. 2 and 3)
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The other two frequencies also shown in Figs. 4 through 8 have
as asymptotes the frequency of axial vibrations of a bar,

— AR b _ b,; é'lT
ﬁ m V4 ){ b7 [' {//) 61:.}] (63)

and the frequency of radial vibrations of a ring in plane strain
for long axial wave lengths,

M= , :”f (64)

and a ring in plane stress for short axial wave lengths,

L]

n- g @

For the n = 0 case, the lowest frequency is not necessarily
associated with predominantly radial motion. Figures 4 through
8 show that the lowest natural frequency can be associated with
either the predominantly radial mode or torsional mode depending
on mR/Z. The value of mR/! for which the lowest natural fre-
quency changes from the predominantly radial mode to the torsion-
al mode depends on the stiffness ratio bil/béZ and the angle o.
From Figs. 4 through 8, it is observed that the torsional fre-
quency is slightly affected by the stiffness ratios bil/biz

and the angle ¢, while the axial frequency, since it depends
mainly on the stiffness in the axial direction, is affected by
the stiffness ratio by;/by, only when ¢ = 0 deg. It also may
be noted that the rise in the predominantly radial frequency at
very short axial wave lengths (large mR/Z) is due to the effect
of h/R.

27




Let us turn now to the case for n = 1. Here, for long
axial wave lengths (small mR/f), the mode associated with the
lowest frequency involves strong coupling in the circumferential
and radial directions. For long axial wave lengths, this cor-
responds to the vibration of a cylinder as a beam. The asymptotes
for cases (1) and (5) that are shown in Fig.1l4 are those of a
simply-supported thin-walled circular cross-sectioned beam as
found from elementary beam theory to be

| T I

Figures 9 through 13 show that for long axial wave lengths

(small mR/2) circumferential stiffening has a negligible effect

on the beam-type frequencies while axial stiffening has a signifi-
cant effect; whereas for short axial wave lengths (large mR/!)
axial stiffening has a slight effect and circumferential stiffen-
ing has a significant effect on the frequency.

Now let us consider the case for n > 2. The asymptotic
values of the three frequencies for long axial wave lengths
(small mR/2) are (for E% = ng = 0):

Flexural vibrations of a ring (€6° =0, u=0)

_ | e [ ] 2200
n = z(K) 3/ [' (é”>éu)] ey (67)
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Axial shear vibration (w = v = Q)

n-

) & 68
b2 (68)

Extensional vibrations of a ring (xe =0, u=0)

v

n- |2 - Ble)e

For the n > 2 cases, the lowest frequency corresponds to the pre-
dominantly radial mode for all values of mR// and stiffnesses,
while the remaining two correspond to predominantly axial and
circumferential motion. In general, these two are at least an
order of magnitude higher than the predominantly radial fre-
quency. From Figs. ¢ through 13, the effect of the stiffness
ratio and the rotation of the principal axes of stiffness through
an angle of 90 degrees can be studied. It may be seen that
stiffness ratio bil/béz has little effect on the predominantly
radial frequency for long and intermediate axial wave lengths
when ¢ = 0 deg (axial stiffening), while this frequency shows a
marked increase when the stiffness ratio bil/b'ZZ increases for
¢ = 90 deg (circumferential stiffening). Specifically, it may
be noted that for mR/Z = 0.01, n = 3, bil/béZ = 24.2, when ¢ =

0 deg the frequency is 0.00225, and when ¢ = 90 deg, the fre-
quency is 0.0108; while for the corresponding isotropic case,

the frequency is 0.00219. For all values of stiffening both in
circumferential, as well as axial direction for large axial wave
lengths, the frequency is proportional to n2 (for sufficiently
high n) as indicated by Eq. (67).
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In all the cases of stiffening for n > 2, the value of n
for which the minimum frequency occurs, increases with increasing
mR/£. This is also true for the isotropic case.

4.2 Stiffened Cylinder

In the preceding section, the results were obtained from
the analysis of a cylindrical shell which was orthotropic due to
the natural properties of the material. Here we will consider a
shell which is orthotropic due to attachment of stiffeners on to
the basic thin-walled cylinder. The purpose of this analysis will
be to compare the frequency characteristics obtained from a study
of the stiffened cylinder with those obtained from the constant
thickness orthotropic cylinder.

Figures 15 through 18 show the results of the stiffened
cylinder analysis. The properties of the cylinders are given in
Table 4. The essential difference in the properties of the
stiffened cylinder and the constant thickness orthotropic cylinder
is that in the former, the stretching stiffness and bending stiff-
ness ratio are quite different while in the latter case they are
identical. In particular, for the stiffened cylinders considered
in this section, when the bending stiffness ratio Dil/Déz was
taken to be the same as that of the bending stiffness ratio in
Cases 1 and 5 of the constant thickness orthotropic cylinder,
namely DiI/DéZ = 24.2, the stretching stiffness ratio Cil/Céz in
the case of the stiffened shell was 1.26. Returning to Figs. 15
through 18 one finds that for the n = 0 and n = 1 cases, which
correspond to predominantly stretching of the shell middle surface,
the values of the frequency are approximately the same as those of
the isotropic case.*

5 :
For ¢ = 0 deg and n = 0, there is a slight increase in the fre-
quency (when compared with the isotropic case) of the mode associ-

ated with predominantly axial motion since this frequency is ef-
fectively proportional togC]l/ng. This increase is also true for
the n = 1 case when ¢ = 0 and mR/Z > 5, due to the slight effect
of bending for these high values of mR/%.
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For the n > 2 cases, the effect of bending becomes ex-
tremely important even for n as low as 2. If we compare Fig. 17
with Fig. 9 (which correspond to ¢ = 90 deg), it is evident that
the values of the predominantly radial frequency for the stiffened
cylinder are approximately the same as those of the constant
thickness orthotropic cylinder when mR/f¢ ¢ 0.5, and n > 2. For
higher values of mR/f, the frequency of the stiffened cylinder
decreases below that of the corresponding constant thickness
orthotropic cylinder for all values of n > 2. Note that this
decrease diminishes with increasing n, so that for very high n,
the frequencies for both thesc cylinders (constant thickness and
stiffened) again become approximately the same. This is ex-
plained by the fact that for large values of n and mR/£ the in-
fluence of bending is predominant. When the stiffeners are
aligned in the axial direction (¢ = 0 deg), one observes from
Figs. 13 and 18 that for n > 4, frequencies for both type cylinders
are nearly the same for long axial wave lengths (low mR/Z); for in-
termediate axial wave lengths, the difference in the frequency for
these cylinders becomes appreciable, while for short axial wave
lengths, this difference again becomes small. For n = 2 and 3,
the frequency of the cylinder with axial stiffeners is lower
than the corresponding constant thickness orthotropic cylinder
for all but short axial wave lengths.

4.3 Effect of Internal Pressure

For a closed-end cylinder under internal pressure p,

ne = 28, 7 = 2 (70)
Zo

In order to gain some physical insight into the magnitude of the
pressure stiffness parameter Eb, one can express He in terms of
the initial static circumferential stress 35 as follows,
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6; — 22 }70_ (71)
(éﬂ;l;)

For the constant thickness orthotropic cylinder

Eos =
-4 /7}
/._ 7’[:"’77X'J’

S\
!

With Vorg! = Vytgr T 0.3, Egr = 107 psi. This becomes

Go = 1/ x/07 /6 pse.

Shown in Figs. 19 through 21 is the variation of Q4 with
the pressure stiffness parameters Hb, E# for the isotropic case*
for three values of the axial wave length. Comparison of these
figures shows that the value of n for which the lowest frequency
begins to vary significantly with Eb depends on the axial wave
length mR/Z. For mR/£Z = 0,06 there is a significant increase in
Ql with ﬁb when n > 2, for mR/Z = 0.5 the increase becomes signifi-
cant when n > 5,and for mR// = 3 when n > 10. For all these
values of mR/Z, the two larger frequencies, which correspond to

predominantly tangential motions, are little affected by ng, Ek.

a) Constant Thickness Orthotropic Cylinder

The effect ci internal pressure on the frequencies of the
axisymmetric mode (n = 0) is illustrated in Figs. 4 through 8.
For both ¢ = 0 and %0 degrees and all values of stiffening, the
frequency of the predominantly radial mode is slightly increased
by the addition of internal pressure at high values of mR/Z. The
increase in the frequency of the torsional mode, due to pressure,

*1In all the pressure investigations, n is always included, and
is taken equal to ne/Z
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increases with increasing bil/béz and is the same for ¢ = 0 and
90 degrees. This increase in frequency diminishes rapidly with
increasing values of mR/f. Internal pressure has a negligible
effect on the predominantly axial frequency when ¢ = 0 and 90
degrees for all values of the stiffness ratio bj,/bj,.

For the n = 1 mode, the effect of pressure on the lowest
frequency is shown in Figs. 22 through 26. For stiffening in the
circumferential direction (¢ = 90 deg) the frequency is independent
of the stiffness ratio bil/b§2’ There is an increase in frequency
due to pressure in these cases, which is large for small values
of mR/Z and diminishes with increasing mR/f. For stiffening in
the axial direction (¢ = 0 deg), the frequency does depend on the
stiffness ratio bil/béZ' There is an increase in frequency in
these cases, which is small for low values of mR//4, diminishes
for intermediate values of mR//, and increases for high values
of mR/£. The effect of pressure on the two higher frequencies
for n = 1 is negligible.

For n > 2, Figs. 22 through 26 show that the lowest fre-
quency increases significantly with internal pressure for all
cases of stiffening. The increase in the frequency generally
diminishes with increasing mR/£. It is observed that the in-
crease in frequency due to pressure is greater for stiffening in
the axial direction than in the circumferential direction. Thus
for mR/4 = 0,01, bil/bé2 = 24.2, and n = 2, for stiffening in
the circumferential direction (¢ = 90 deg), the unpressurized
frequency Q= 0.00383, while in the corresponding case of axial
stiffening (9 = 0 deg), Q; = 0.00130. However, with the addition
of internal pressure (He = 26# = 0.001), when ¢ = 90 deg the fre-
quency Q4 = 0.0426, while for ¢ = 0 deg, Q; = 0.0424. This same
pattern of behavior, namely the influence of internal pressure
on the frequency being greater for axial stiffening than for cir-
cumferential stiffening, is found for all n > 2 as well as n = 2.
‘ Also illustrated in Figs. 22 through 26 is the fact that for
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¢ = 90 deg, the increase in frequency due to internal pressure
decreases with increasing values of the stiffness ratio bil/béZ’
while for ¢ = 0 deg, this increase is independent of bj;/b),.
For n > 2, internal pressure has a negligible effect on the two
larger frequencies.

b) Stiffened Cvlinder

The effect of pressure on the n = 0 mode for the stiffened
cylinder is similar to that of the isotropic case. This is due
to the fact that the stretching stiffness ratio Ch/Cé2 of the
stiffened cylinder and the isotropic cylinder are nearly the same.
For both ¢ = 0 and 90 degrees, the frequency of the predominantly
radial mode is slightly increased by internal pressnure for high
mR/2. The increase in the frequency of the torsional mode due to
internal pressure is the same for ¢ = 0 and 90 degrees and again
diminishes rapidly with increasing mR//. The axial frequency is
unaffected by internal pressure for both ¢ = 0 and 90 degrees.

Turning to the n = 1 case, Figs. 17 and 18 show that the
increase in frequency due to pressure is approximately the same
as that of the isotropic case for ¢ = 0 and 90 degrees (except
for mR/Z > 5 where the bending stiffness ratio Dil/DéZ begins to
take effect).

For n > 2, the frequencies of the stiffered cylinders
under internal pressure are the same as those of the constant
thickness orthotropic shell (i.e., cylindcis 1 and 5), except
for large values of mR/f. The effect of pressure on the two
higher frequencies for n > 1 is negligible.
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5. CONCLUSIONS

The equations for the vibration of a thin orthotropic
cylindrical shell under internal pressure were deduced from the
nonlinear shell theory of Washizu. Application was made to four
constant thickness orthotropic cylinders, twec stiffened cylinders,
and for purpcses of comparison, an isotropic cylinder. This in-
vestigation has been principally concerned with the effects of
circumferential and axial stiffening, as well as internal pres-
sure, on the frequencies and mode shapes of an orthotropic cyl-
inder with freely-supported ends.

The significant conclusions are that there is a difference
in behavior of the frequencies for the n =0, n=1, and n > 2
modes. For the n > 2 modes, the lowest frequency is associated
with predominantly radial motion. For the n = 0 mode, the lowest
frequency is associated with either the uncoupled torsional mo-
tion or the predominately radial motion, depending on the axial
wave length. For the n = 1 mode, there is strong coupling be-
tween circumferentiai and radial motion, and the lowest fre-
quency is associated with a combination of circumferential and
radial motion.

For the n > 2 modes, the frequency of the predominantly
radial frequency was significantly increased by circumferential
stiffening, while this frequency was unaffected by axial stiffen-
ing for all but large values of mR/Z. For the n = 0 mode, there
was a slight increase in the frequencies of the torsional mode
and predominantly radial modes due to circumferential stiffening,
while the frequency of the predominantly axial mode was unchanged.
For axial stiffening, the frequency of the predominantly axial
mode was significantly increased, while the frequency cf the tor-
sional and predominantly radial modes was slightly affected. For
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the n = 1 mode, circumferential stiffening increased the fre-
quency only for large values of mR/¢, while axial stiffening in-
creased the frequency mainly for small mR/f.

The effect of pressure on the frequencies was also in-
vestigated. For the n > 2 modes, for both circumferential and
axial stiffening, the predominantly radial frequencies were sig-
nificantly increased by pressure. For the n = 0 mode, for both
circumferential and axial stiffening, the torsional frequency
was increased by pressure at small mR/{ and the predominartly
radial frequency was increased by pressure at large mR/f. The
predominantly axial frequency was not affected by pressure. For
the n = 1 mode, for circumferential stiffening, the frequency
was increased by pressure at small mR/Z, while for axial stiffen-
ing the frequency was slightly increased by pressure.

For purposes of comparison, the frequencies of two
stiffened cylinders were also investigated. It was found that
the frequencies of the stiffened cylinders whose bending stiff-
ness ratio Dil/Déz was taken equal to the stiffness ratio
bil/béZ of the constant thickness orthotropic cylinder are essen-
tially the same as the frequencies of the isotropic cylinder for
n=20and n = 1 modes, while for the n > 2 modes the stiffened
cylinder frequencies are the same as the frequencies of the con-
stant thickness orthotropic cylinder. This occurs since the
n = 0 and 1 modes correspond to primarily stretching moticn,
while the n > 2 modes correspond to predominant’y bending motion.
The above behavior is true for both the pressurized as well as
the unpressurized cases.
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