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meridional radius of curvature for a toroidal shell with circular
cross section (see Fig, VI—1)
distance between the center of the cross section and the axis of a

toroidal shell (see Fig. VI—1)

cos my

- —Eh 3 extensional stiffness

1l -y

Young's modulus
thickness of shell

1/12 (b/a)?

3
—-—Eh—z—- , bending stiffness
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Fourier index
number of terms used in series expansions for the displacement
comporients

number of circumferential waves in buckle pattern

incremental stress resultants (see Fig. III — 2)

prebuckling stress resultants (see Fig. IV — 1)

external pressure loading for a toroidal shell
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= sin my

time
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I
INTRODUCTION

The first solution in the field of buckling of thin shells was given in Lorenz's
paper on axially symmetric buckling of axially compressed cylinders (Ref. 1).

In 1932, Flugge (Ref. 2) developed a general theory for buckling of cylinders and

presented numerical results for simply supported cylinders under various loading
conditions. For the case of the uniformly loaded cylinder, Flugge made the

usual assumption that the prebuckling stresses could be approximated by a
homogeneous membrane state of stress. Therefore, the stabilily equations con-
tain constant coefficients, and exact solutions can readily be obtained for isotropic
or orthotropic cylinders with arbitrary boundarv conditions. However, when the
applied loading is nonuniform the differential equations governing the stability of
the cylinder wili have variable coefficients. Consequently it becomes considerably
moce difficult to obtain solutions; for example, see Flugge's analysis of a

nonuniformly compressed cylinder (Ref. 2).

For shells other than cylindrical, the stability equations contain variable
coefficients. Most of the work done on noncylindrical shells has been devoted
to spheres (Refs. 3 through 5) and cones (Refs. 6 and 7). Relatively little atten-
tion has been devoted to shells with variable Gaussian curvature. Mushtari and
Galimov (Ref. 8), using shallow shell equations, presented a simple formula for
the critical normal pressure of an ellipsoidal shell. Their analvsis, however,

appears to be greatly oversimpiified. Machnig (Refs. 9 and 10) investigated the

stability of a torus subject to uniform external pressure. In his tirst paper (Ref. 9),

Machnig studied both axially symmetric and asymmetric buckling modes and
concluded that the former gives the smallest critical pressure. A parturbation

technique was used to solve a system of partial differential equations governing

“athy




the asymmetric buckling mode. Of course, it should be possible to separate the
space variables in the stability equations for a complete shell of revolution sub-
ject to axially symmetric loads and thereby obtain a system of ordinary differ-
ential equations. Apparently, Machnig had to contend with partial differential
equations instead of ordinary differential equations since it appears that it is not
possible to separate the space variables in his equations for the asymmetric
buckling mode. In his more recent paper (Ref. 10), Machnig considers only the
axially symmetric mode. A review of that paper was given by Koiter (Ref. 11).
The reviewer indicates that asymmetric buckling modes may well result in
smaller buckling pressures for some values of the shell's geometric parameters
and that the power series expansion must break down for toroidal shells with
small values of b/a (see Fig. VI-1* for notation). In spite of these critical
remarks, Koiter concludes that Machnig's paper must be regarded as a
significant first step in the solution for the buckling of a torus.

In this work, the stability of a general shell of revolution subject to arbitrary
loads will be investigated. First, the elastic law which relates the incremental
stress resultants to the incremental displacement components will be derived.
This law, derived from elementary considerations, turns out to be the same as
the elastic law derived by Reissner (Ref. 12) who used the methods of differential
geometry. Next, the equations of equilibrium will be applied to a differential
element of the deformed shell. The resulting partial differential equations are
linear and homogeneous in the incremental quantities, and the specification of

linear and homogeneous boundary conditions results in an eigenvalue problem.

*Combined Roman-Arabic numbers designate cross-chapter references of
figures or equations.




Thereafter, only complete shells of revolution urder axially symmetric loads

will be considered. This means that the coefficients in all equations are inde-
pendent of the circumferential coordinate 6 and that all incremental quantities
are periodic functions of 6 (see Fig. III-1 for notation). Therefore, it is pos-
sible to express all incremental quantities as Fourier series in 6 and replace
the partial differential equations by ordinary differentiel equations. Then, the

stress resultants will be eliminated from the equilibrium equations, and three

ordinary differential equations for the three incremental displacement components

will be obtained.

Next, by specialization of these equations, the ones governing the stability
of a toroidal shell subject to a uniform external pressure are obtained. It turns
out, as might be expected, that two types of asymmetric buckling modes exist:
one which is symmetric with respect to the plane ¢ - 0, 7 (see Fig. VI-1) and
one which is antimetric with respect to this plane. This will be evident when
series expansions are used for the incremental displacement components; as a
result, two uncoupled systems of linear homogeneous algebraic equations are
obtained for the free constants in the series expansions. A matrix iteration
technique is employed to obtain the lowest eigenvalue and the corresponding
eigenvector for each system. After the eigenvector has beei: computed, the mode
shapes are given. The matrix iteration method is programmed for the IBM 7094
digital computer and numerical results are presented in the form of design
curves which give nondimensional buckling pressures for a wide range of the
shell's geometric parameters. These results are compared with available test
results as well as with Machnig's results.

Finally, equations for the free vibrations of a pre-stressed shell of revolu-
tion will be derived and then specialized for the toroidal shell subject to external

or internal pressure.
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FUNDAMENTAL CONCEPTS AND ASSUMPTIONS

1. Concedt of Buckling

In order to establish basic notions and at the same time to introduce a
certain terminology, we will disc':ss the concept of bifurcation buckling in this
section. The ideas expressed here may be found in many works; e.g., Refs.
13 through 18.

Let us consider a conservative mechanical system subjected to applied
loads. The distribution and direction of the loads are assumed to be known.

The magnitude of the loads is assumed to be characterized by a single non-

negative scalar A, which we call the load parameter. When A is zero, all

the applied loads vanish and the system is undeformed. For other valuers of A,
the system will deform and develop stresses in order to be in equilibriumn under
the applied loads. Let the load parameter increase monotonically from its
initial zero value. Let us assume that for sufficiently small values of A, there
exists a unique solution to the equilibrium problem for the system. The equi-

librium configuration given by this solution is called the basic state or prebuckled

state. It may happen that for some value of A, say A = A*, there exists another

solution or equilibrium configuration, called the buckled state, which is infinitesi-

mally close to the basic state. If such a value A* exists, then it is called the

critical value of the load parameter. The objective of the buckling analysis is

to determine A*. The existence of two adjacent equilibrium configurations for
the same value of the load parameter means that there is a bifurcation of the
basic state. The stresses and displacements of the prebuckled state are called

the prebuckling stresses and prebuckling displacements. At the critical value




of the load parameter, the differences between the stresses and displacements
in the prebuckled and buckled states are called the additional or incremental

gtresses and displacements.

In the present analysis, the mechanical system is a shell of revolution; the
applied !oads are the conservative external pressures po(X) , P ¢(7\) : pz(k) :
the basic state is assumed to be a membrane state of stress; the prebackling

stress resultants are denoted by N and the incre-

00° Noo' Nogo' Noeo’

mental quantities are denoted by u, v, w, Ny, N¢, N0¢, N¢0' Qy Q¢,

M, M, M

0° To' oo

In the mathemratical formulation of the stability problem, we assume that
the shell is in a buckled state and we seek the smallest value of the load param-
eter for which all the basic equations can be satisfied. The basic equations in
shell theory, or in any branch of solid mechanics, are the equations of equilib-
rium, the equations for kinematics, and the constitutive equations (Hooke's law
for a linearly elastic material). Before presenting these equations, we list in

the next section the assumptions and limitations used in the analysis.

2. Assumptions and Limitations

(a) The shell is made from an isotropic and homogeneous material which
obeys Hooke's law (linearly elastic material).

(b) The thickness of the shell is constant.

(c) The thickness of the shell is small in comparison with the radii of
curvature of the middle surface (thin shell approximation).

(d) Kirchhoff-Love hypothesis
(i) A straight line normal to the middle surface before deformation

remains straight and normal to the middle surface after

deformation and retains its original length.




(e)
(f)

(®)

(ii) The normal stresses acting on surfaces parallel to the middle
su. face are small in comparison with other stresses and may
be neglected in the stress-strain relations.
All incremental quantities are infinitesimal.
The incremental strains are small in comparison with the incremental
rotations.

The basic state may be approximated by a membrane state of stress.
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THE ELASTIC LAW

The relations betwzen the incremental stress resultants and the incremental
displacement compoaents of the middle surface will be presented in this chapter.
These relations, which represent the elastic law for the shell, are obtained
through combination of the equations of kinematics and the constitutive equations.
The elastic law for the shell buckling problem considered here must be identical
to that for the problem of infinitesimal bending of a shell of revolution subject to
external loads. Therefore, we could use the elastic law derived by Flugge
(Ref. 13) in his analysis of the linear bending of a shell of revolution under
external loads. However, instead of proceeding directly to Flugge's final results,
we will closely foliow his derivation of the elastic law in order to see what assump-
tions are made and at what stage they are made. The elastic law derived here will
differ from the one derived by Fl'ﬁgge because we will deviate somewhat from

his derivation.

1. Geometry of a Shell of Revolution

The middle surface of a shell of revolution is shown in Fig. 1a. The equa-
tion defining the meridian, y =y(r) or y =y(¢), is assumed to be given. The
lines of principal curvature are the meridians (0 = const.) and parallel circles
(4 =const.). A point P on the middle surface of the shell is determined by
the intersection of a meridian and a parallel circle. Accordingly, we use the
angles 0 and ¢ as the curvilinear coordinates of the middle surface of the

shell.
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The principal radii of curvature r. and r, are shown in Fig. lb. From

1

this figure we can obtain the following useful relations

r=r, sin o (1)

dr _
dr, S rpcos o . (2)

1

The following notation will be used for the derivatives with respect to the

independent variables 0 and ¢

=()=() 3)
2()y=()or() 4)
od

2. Stress Resultants

Integration of the stress components through the thickness h yields expres-
sions for the stress resultants acting on a unit length of the section 0 = const.

or ¢ = const. (see Fig. 2 for notation and sign conventions):

h/2

o= [ o1 + z/rz) dz (5a)
-h/2

zZ
I

h/2
N, = f ool + 2/r ) dz (5b)
-h/2
p/z
j 1'¢0(1 + z/r,) dz (5¢)
-h/2

No(’

h/2
N, =[ rogll + 2/r)) dz (5d)
-h/2
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@ Fig. 2 Sign Convention for Stresses and Stress Resultants
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h/2
- [t vy (5¢)
-h/2

O
)
[

h/2

Q. = -f 7oz (1+ z/rl) dz (5f)
-h/2
h/2

M, = —f zo¢(1 + z/r2) dz (5g)
-h/2
h/2

M, = -f 20, (1 + z/r ) dz (5h)
-h/2
h/2

M¢9 = - ./1;/2219)0(1 & z/r2) dz (51)
h/2

M,, = -f 27,0 (1 + 2/7)) dz (5%)
-h/2

The present analysis is for a thin shell (Assumption II-¢). Therefore,
h/ri << 1( = 1,2) and, in Egqs. (5), we neglect the terms z/ri in comparison
with unity. As a result, NGQ = N, and M()a = MW) .

3. Constitutive Equations

The Assumption (II-a) that the shell is made from a linearly elastic material

enables us to express strains in terms of stresses by means of Hooke's law.

11




Since normal stresses on surfaces parallel to the middle surface are neglected

(Assumption II-d), Hooke's law takes the form

€ = il‘:-(o- - Vo‘g) (68)

¢

o = E O, - vay) (6b)

m
f

= X1+

Y o8 - T E 2 $0 (6¢c)
where E is Young's modulus and v is Poisson's ratio.
Solving Egs. (6) for the stresses in terms of the strains, we find
___E .
0'¢ = 2(€¢ + er) (Ia)
1 -
0y = — (s *+ Ve,) (7b)
6 2'\°0 9
1l -
= S Y (7¢)

Too T T - p) 90 "

4. Displacement and Rotation Components

The circumferential, meridional, and radial displacement components of a
point P on the middle surface of the shell are denotedby u , v , and w ,
respectively (see Fig. 3a). The displacement components « and v are taken
positive in the direction of increasing 0 and ¢ , respectively, w is positive
when it points away from the center of curvature of the meridian.

In the present analysis, the rotation components w 0? 9o and w, will be
used to determine the contributions of prebuckling quantities to equilibrium of a
deformed shell element. The angle of rotation of the normal to the middle sur-
face about the tangent to the parcllel circle at P is denoted by « y (see Fig. 3t).

Now because of the Kirchhoff-Love hypothesis (Assumption II-d), «, can be




(o) DISPLACEMENTS

Fig. 3 Displacement and Rotation Components

(o)

Fig. 4 Rotation Component w
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related to the displacement components of the middle surface. To establish this
relationship, let us consider the displacement of two neighboring points P and

Q on the same meridional curve of length rldt. (see Fig. 4). The radial dis-
placement of Q exceeds that of P by an amount wd« (see Fig. 4a). Conse-
quently, the tangent to the meridian at P rotates through an angle wdo, r ldo

and, by virtue of the Kirchhoff-Love assumption, the normal at P rotates
through the same amount. The displacement v along the meridian causes the
normal at P to rotate through an angle v/r1 (see Fig. 4b). The circumferential
displacement u does not contribute to the rotation of the normal about the tangent
to the parallel circle at P . Hence, by adding the two contributions to ¢;; in

accordance with the sign convention shown in Fig. 3b, we obtain

o [w -
sC() - —< rl ) . (8)

Proceeding in the same way, we can show that the angle of rotation of the

normal about the tangent to the meridian at P is given by

9)

w' - u sin«
"(‘) "( ) [

r
where the positive sense of «, is shown in Fig. 3b.

The rotation of the shell element around the normal, denoted by w, (see
Fig. 3b), is not clearly deiined because of the in-surface shear deformat.on.
The angle of rotation . of the tangent to the parallel circle around the normal
differs from the angle of rotation Gy of the tangent to the meridian around the

normal. Instead of using an average rotation w, = w, ¥ we more

z1 “’zz !

14




properly use the two separate rotations «_, and w__, when we determine the

zl 22

contributions of the prebuckling quantities to the equilibrium equations of a

deformed element. We let

& = ) (10)

where it is understood that w, = w if the prebuckling quantity under consid-

z1

eration acts in the direction of the tangent to the parallel circle, and that

w, = w if the prebuckling quantity acts in the direction of the tangent to the

z2

meridian. From Ref. 13, w,1 and w o are related to the displacement

components of the middle surface by

v!
w = - =
zl r

_u _u
w5 = T rcosd) : (11)

5. Equations of Kinematics

Let A be a point located at a distance z from the middle surface and let
the normal through A intersect the middle surface at tne point P. From

Eqs. (VI-2) Ref. 13, the strain-displacement equations for point A are

e =D A (12a)

u'A + Vp COS o + Wa sin ¢

€, = = (12b)
g r(l + ri)
2
: ooy, e
. i u, ) u, cos ¢ - Vi (12¢)
&l rl(l + f—) r(l + ;—z—)
1 2

15




Once again, we invoke the thin-shell assumption and thus neglect z/ri in Eqs.

(12). Hence
vV, + W
[h) X
1
u, + v, coso + w, sin ¢
;Y A A
€g = = {13b)
u u, coso - v'
_ A A A
ysa() = r1 = (13c)

The right-hand sides of Eqs. (13) contain the displacement components u A

Va o and w A of point A . Now, the Kirchhoff-l.ove hypothesis enables us to

A VA and w A to the displacement components u , v , and w of

point P on the middle surface and to the rotation components wy and w -

Since o and «, can be expressed in terms of u , v , and w by means of

relate u

Egs. (8) and(9), we see that the adoption of this hypothesis is equivalent to re-
ducing the problem of determining the displacements of the shell to that of
determining the displacements of the middle surface. The Kirchhoff-Love
hypothesis implies that the displacement components vary linearly through the
thickness and that the radial displacement component w A is independent of

z , i.e.,

Uy = U+ w2 (14a)
VA TVt uy (14b)
Wp =W (14c)

16




By inserting into Eqs. (14) the expressions for Wy and wo given in Egs. (8)and (9),

we obtain the relations between the displacement components of points A and P :

- ; - 4= 2N s
WS e thsingtoiwll (1 * r2> v (158)
s Z z dfg
Vy, = V+H(V=-W— =v(l+—)-w— (15b)
A r, ( r_1> r,
Wy =W (15¢)

These equations are the same as those derived by Flugge (Ref. 13). The more
general elastic law derived in Ref. 13 was simplified for a thin shell by re-
placing the terms (1 + z/ri) by unity. In Ref. 13, and in the present analysis,
this thin shell approximation was introduced into the equations defining the stress
resultants IEqs. (5)] and into the strain-displacement relations [Eqs. (12)].
Reference 13 applied the thin shell approximation to Eqs. (15) and, as a result,
neglected the underlined terms in Eqs. (15). For example, in Eq. (15b), the
term v ;- was neglected in comparison with v . However, in the present

1
analysis, v/r1 is interpreted as being a part u1 the rotation

@ - (52

and, as such, is not neglected. Therefore, the underlined terms in Eqs. (15)

are not neglected in the present analysis.




6. Elastic Law
From Eqgs. (13) and (14), we obtain the strains € and Y0 at a distance
2z from the middle surface in terms of the displacements u , v , and w at the

middle surface and their derivatives:

€p = €y - ZKg (16a)
€ = ?0 - 2K, (16b)
where
= V+w
€ = & (17a)
1
- u' + veos 9 + wsin
€y = - 2 (17b)
=~ _ U4 _ucosg - v
y9’19 - r, r (11e)
¥ = - L (:) (17d)
¢ r, 0
1
PR R i 17
9 = = U T o cos ¢ (17e)
Y 1 [J 1 \J 1
o9 = - r, % Trw T “cs? (17)

and, from Eqs. (8) and (9),

18




The strains € € and Y¢0 from Eqs. (16) are now entered on the right-

hand side of Eqs. (7) to give the stresses % s G » and 0 in terms of u ,
v , and w . We now introduce these stresses into the integrals [Eqs. (5)],
which define the stress resultants, and finally obtain the elastic law for a shell

of revolution:

- - _ v+ w u' + vcosp + wsing

N, = D(g, + 1%p) = D[ s o 2 )] (18a)
_ -\ u' + vecosp + wsinog vV+w

N, = DE, + vE,) = D[ 2 s - )] (18b)
_D1-y)- _ D1-y)fu ucosp -V

Noo 727 = g r, r (18¢)

M = K(xk,+ v —Kr- lcb )+ u(-lw'-iw 8

o = Rixg Kg) = (r—lo r rocoo)

1fw-v
+ -;( T )cos¢] (18d)
[ 1

MO = K(K0+ W(o)

1}
o)
—
]
"]

'98-

]
I
<z:‘E‘.

]
-
ot
+
<
]

)
<b€
—

)

= - = = .].‘_..L' -._1_ ! .l.
MM = K(1 ")"¢9 = K(1 - p) 2( = “ T Y% & T Yo cose)]

1
=K(1_V)F1 <w'_usin9)+_l__<\;l-v>
2r r 2r r
| “T1 1
< 51; (L‘_rll_iiﬂ.ﬁ) COW] (18f)
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where the extensional and bending stiffnesses are given by

p=-—E5 (19)
1 -
and
3
K=—2 | (20)
12(1 - %)
respectively.

(Note that in a Donnell-type analysis, u and v are discarded from the
formulas for xq) , k_ , and K

6 M) )
The elastic law given by Eqs. (18) is the same as that derived by

Reissner (Ref. 12) and Gravina (Ref. 20) who used the methods of differential

geometry.

The elastic law gives six equations for nine unknowns (N b No 1 N¢ 0 °

M M M u, v, w) and therefore are not sufficient to determine the

9 6’
unknowns. The additional equations needed are, of course, found from the

oh ’

conditions of equilibrium which will be derived in the next chapter.

N
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EQUATIONS OF EQUILIBRIUM

In deriving the equations of equilibrium for the linear bending analysis of
shells it is irrelevant as to whether the forces and moments are assumed to act
on a deformed or on an undeformed element of the shell. In shell stability
problems, however, the equations of equilibrium must be written for an element
of the deformed (buckled) shell. These equations will be derived for a general
shell of revolution in this chapter.

1. Equilibrium Equations for the Stability of a Shell of Revolution

In this section, equations of equilibrium are derived based on the classical
assumption that the effects of prebuckling rotations may be neglected.

Figure 1 shows the middle su.face of a differential element of the shell in
the prebuckled state. At the center of the element, point P , there is shown an
orthogonal right-handed system of axes X , Y , and Z with the X axis in the
direction of the tangent to the meridian at P , the Y axis in the direction of the
tangent to the parallel circle at P , and the Z axis in the direction of the outward
normal at P . The force and moment equations of equilibrium for a differential
element of the buckled sh=1l will be written with respect tothe X , Y, and Z
dircctions. The terms that contribute to the equilibrium equations may be divided
into four groups denoted as Group 0, Group 1, etc. Group 0 contains only the
N N N

wot 00! QOO ’ OQO !p¢ :pe
prebuckling equilibrium, the net contribution of these terms to the equilibrium

prebuckling quantities (N ; pz) . Due to
equations for the buckled shell must be zero. Group 1 contains only the incre-
mental quantities which develop as the shell passes from the prebuckled state to
the buckled state. .. a linear stability analysis, only terms which are linear in

the (infinitesimal) incremental quantities are retained. These terms are the
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Fig. 1 Element of Prebuckled Shell
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same as those present in the linear bending analysis of shells. The Group {g}

terms arise because, in the buckled state, the prebuckling quantities

N , N.. , N , N
$0 60 $60 L act on a defornied element. These terms con-
P(b » Py s pz

sist of products of a (finite) prebuckling quantity and an (infinitesimal) incre-
mental displacement or its derivative. The contributions to the equilibrium
equations of terms which are linear in the incremental quantities, i.e., the
terms in Group 1, 2, and 3, are given in the next three suhsections.

1.1 Group 1: Incremental Stress Resultants

In the determination of the contributions of the incremental stress resultants
N SR ‘Qo y sy MO o to the equations of equilibrium for the buckled shell,
it is irrelevant as to whether the stress resultants are assumed to act on a
buckled or on an unbuckled element. This is because the equilibrium equations
for the buckled element differ from those for the unbuckled element only in terms
which are nonlinear in the incremental quantities, and, since the incremental
quantities are infinitesimals, these nonlinear terms vanish. Thus, the contri-
butions of the incremental stress resultants may be obtained from a consideration

of equilibrium for an undeformed element. The results of such a consideration

follow (Ref. 13):

ZFi = (qu))' e rlNép - rlNe cosp - rQq) (1a)
ZF'Z = (ero)' + rle + rle cosp - r, Qo sin ¢ (1b)
Fy = - r N sing - rN -1 Q) - (rQ¢)' (lc)
IM; = (rMM)' + T My + 1 M cosg -rr; Q (1d)
IMy = - (er)' T Mp, * T Mgcos 6+ rriQ (le)
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i,

Note that a common factor do de has been omitted in Eqs. (1). This factor
will also be omitted in the sequel when other contributions to the equilibrium
equations are obtained.

1.2 Group 2: Prebuckling Stress Resultants

When the st 11 buckles, the prebuckling stress resultants rotate and thereby
develop components which contribute to the equilibrium equations. These compo-~
nents, which consist of products of a prebuckling stress resultant and an incre-
mental rotation, will now be determined for each of the prebuckling stress

resultants N N

50 and N¢,00 .

80 * N9 g0
L2l N o

When the shell passes from the prebuckled state to the buckled state, the
meridional force No 0rde , acting at point Ml’ of the section ¢ = % (Fig. 1

and Fig. 2¢), participates in the incremental rotation w and therefore develops

a component

K., = rN

i ¢0w9d0

which points in the direction of the outward normal (to the prebuckled shell) at
M, . Similarly, the meridional force N9crd9 + (No Orde)'dq) , acting at point

M2 of the secticn ¢ = %0 * d¢ , develops a normal (or radial) component

+ . o) .
= N v + N 8 l = 6 ;
K1 h¢01d6 (I\nq)ord ) d¢l [wa + wodw qu)owod + (qu)OwgdG) de

which points toward the center of curvature of the meridian at point M The

9 -
contributions of the components K1 and K; to the equilibrium equations can
easily be seen frem Fig. 2b. Thus, due to the difference in their directions,

K 1 and K; contribute an amount -rN 00%; to the equilibrium of forces in the
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Fig. 2 Contribution of N 0
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direction of the tangent to the meridian at P , i.e., in the X direction; and due
to a difference in the magnitudes of K1 and K; , there is a contribution

—(qu)O wo)' to the equilibrium of forces in the direction of the normal at P ,
i.e., in the Z direction.

Due to the incremental rotation . the meridional force N‘p 0rd(') , at the

z2 "’

section ¢ = 9y develops a component

K, = rN

2 00+7297

which points in the negative Y direction (see Fig. 2¢), and the meridional force

rNMde + (rNoOdo)'do , at the section¢ = ¢ _ + do , develops « component

0

+ . 3 . . .
K, = [N o0 + (rN_ do) d¢“wzz T do)de

9 do] = qu)szde + (rN

z2 20 “"z2

which points in the positive Y direction. Since both K2 and K; act inthe Y

direction, there is a contribution +(rNQO-u;z2)' to equilibrium of forces in the

Y direction as a result in the difference in magnitudes of K, and K; .

2
The stress resultant NU 0 does not develop any components due to the

rotation w, since the direction of NU 0 is parallel to that of w,,
Thus, the contributions of the prebuckling stress resultant Ns , to the
equations of equilibrium of forces inthe X , Y , ard Z directions are

-rNOO wp +(rN00u;22) , and -(rNOOu;D) , respectively.

1.2.2 -I\L)L)

The hoop force N do , acting at point Cl of the section 0 = 06 (Fig.

no' 1

3a), participates in the incremental rotation «,, and develops a component

K3 = rll\oo u.odt




Ngor,dp+(Ngor,d$)’d8

Y

N\

| % Neow’d¢+("~0°w’d¢)'de

d€-sing

€))]

Noo's 9 +(Ngor,d) a8

(b)

Fig. 3 Contribution of NOO
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which points in the direction of the outward normal at C1 . Similarly, the hoop

force Noorldq) + (Naor1

develops a normal component

d¢)'de , acting at point C_ of the section g = g, + dg ,
2

0

+ '
K} = [N e + (0N, dob do”«:¢+ wédol
1
= r1N00w¢d¢ + (r1N90w¢d¢) do

which points toward the center of curvature of the meridian at point 02 . From

Fig. 3a we see that due to a difference in their directions, the forces K3 and

K; contribute an amount

- (rlNe0 w(psin ?)

to the equilibrium of forces in the Y direction, and that due to a difference in

the magnitudes of K3 and K; there is a contribution
-Y 1(N9 Owo)

to the equilibriur. of forces in the Z direction.

Due to the incremeatal rotation W1 the hoop force No 0r1d¢ , at 8 = 00 R

develops a component
K4 = rlNaowzldtp

which acts along the tangent to the meridian at g = 64 and which points in the

direction of increasing ¢ (Fig. 3b), and the hoop force N9 of ldtp + (NO orldq))'de ,
at the section 6 = 00 + d6 , develops a component

L
Ky = [r,Nyd0 + (rlrxoodmdo] [wzl +w! do

= TNggwy 90 * (r;Ngyw,,d0) d0




which acts along the tangent to the meridian at 6 = 00 + dg¢ and which points in
the direction of decreasing ¢ . From Fig. 3b we see that the components K 4

and K; contribute an amount

T (Nggwyz1)

to the equilibrium of forces in the X direction and an amount

T 1Ngg¥yy €08 ¢

to the equilibrium of forces in the Y direction.

The stress resultant NOO does not develop any components due to the rota-

tion wy .
Thus, the contributions of the prebuckling stress resultant NG 0 to the
equations of equilibrium of forces with respect tothe X , Y , and Z directions

] - : - \ L '
are -rl(Neowzl) , -r N w sin¢g - r N ~«w . cosp , and rl(N90w¢) .

1609 160 z1
respectively.
1.2.3 Noqu and NMO
The contributions of the prebuckling stress resultants N0¢0 and N¢0 0 to the

equations of equilibrium for an element of the deformed shell can be obtained in
the same way as the contributions of N¢ 0 and Ne 0" Thus, according to Figs.
4 and 5, we obtain for equilibrium of forces inthe X , Y , and Z directions

the contributions

-rlNO(pO w,o COSQ - rNoO 0 (erOszl) ,
- 1
-rlNowwo sin ¢ + rl(Nc)oO“’z2) , and
- ' ~ - A T 1
rl(NOoO“"o) rlNo 00% 22 sin ¢ (rNO()O"“O + rl\og 0¥zl ° respectively.




\\‘ d@-sin¢
fﬂw¢+ (f' ~a¢oﬂad¢)'da

(a)

p Nogor 9P +H(Nggoride) d8

- —

f NO’O“ zzd¢+(ﬁ~“oﬂzzd¢)'da

(d)

Fig. 4 Contribution of N 660
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Fig. 5 Contribution of N

®00
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1.2.4 Summary of Group 2 Contributions

The contributions of the prebuckling stress resultants N¢0 , N 60 °* N% 0 °

and N¢ 00 to the equations of equilibrium for an element of the deformed shell

are

z:Ff = -rN qwp - rl(Noowzl)' - 1Ny wyp €089 - TN o0

“(*N g9 1) &
21"2 = +(rN¢0wzz)° - 1N qwo 8ing - )N w0 ) 2089

-r N W Sin @ + rl(NGsoo“’zz)' (2b)
EFg = -(qu)owo)' - rl(NoOwg))' - rl(Nowowo)' - rleowzz sin ¢

-(rN¢00w¢)' + N oW,y - (2¢)

1.3 Group 3: Applied Loads

The contributions of the applied loads to the equilibrium equations will
now be determined. These contributions arise because, in the buckled shell,
the applied loads act on an element which has been deformed by the incremental
displacements.

Let the components of the applied load per unit area of the middle surface
of the prebuckled sheli be denoted by Py Py and p, as shown in Fig. 1.
The loads Py and p, are taken positive in the direction of increasing ¢ and
o , respectively; P, is positive when it points away from the center of curvature
of the meridian. Ncw the statical approach used here to obtain the buckling
loads is applicable only to conservative systems (Ref. 21). Hence, the load
components are assumed to be conservative; for example, constant directional

loads (dead weight loads) or hydrostatic pressure loads.




¥

Since all stability problems involve considerations of the deformed struc-
ture, it is necessary to specify precisely the character of the applied loads; i.e.,
the way the applied loads behave as the shell deforms. Thus, for example, the
stability equations for a constant directional pressure loading will differ from
those for a hydrostatic pressure loading. It is conceivable that small changes
in the nature of the applied loads might have an appreciable effect on the magni-
tude of the buckling load; indeed, for buckling of a ring the difference amounts
to 33% (Ref. 22). Two types of pressure loadings will be considered here: con-
stant directional pressure loading (dead weight 1oading) and hydrostatic pressure
loading. A constant directional pressure loading is such that the total {orce
acting on a shell element does not vary in magnitude or in direction as the ele-
ment deforms. Thus, a constant directional force does not contribute (explicitly)
to the equilibrium equations. A hydrostatic pressure loading is such that the
total force acting on an element of the shell is always proportional to the actual
size of the element and is always directed normal to the element. Then, due to

the incremental rotations wy; and w, , the hydrostatic pressure force rrlpzd6d¢

0°
acting on an element of the shell develops the components TP, Wy déde and
rrlpzw¢d0d¢ which point in the positive X and Y directions, respectively. In
addition, due to the str~tching of the middle surface during buckling, there is a
component, +rr1pz(29 + ?q)) d6de which points in the positive Z direction.
Thus, the explicit contributions of the applied loads to the ecuations of

equilibrium for an element of the deformed shell may be written as

3 — 3 e
Z‘Fl = +6ph(rr1pzu,9) (aa)
TFS = 45 (rrp ) (3b)

2 ph'" " 172%

IFS = +6. rr.p (e, + £ (3¢)

3 ph 1P2\€9 o




emerimmopiges

P where

5. = 1, for hydrostatic pressure loading 4)
“ph 0, for constant directional pressure

1.4 Summary of Results

By adding the contributions given by Eqs. (1) through (3), we arrive ot the

following equations of equlibrium for an element of the buckled shell:

).IF1 = (rN¢)' + rlNém - r1N9 cos¢ + I-rQD - erwe - rN°00w¢‘
* | MNgg@yy) - 0N pow ) = 1Ny ow ) cos °]
+ ‘Sph rrlpzwg =0 (5a)
ZFz = (rNQO)' + rlNé + rle cosg + -rlQo sinp - r1N9¢0we sing
-r1N90w¢ sinq)l + ['rlNeo“’zl cosg + (erszzf
(0 i rl(Ng powzz)'] + éph P = 0 (5b)
Ty = -r)Nysing - 1N, - r,Qf - (rQ) - (rNyjw) - 1 (Nyjwo)'
-1 (Nggg) = Ny i)+ [rN ggw,; = TNy g, i 0
+ 8 T P(E, + ) = 0 (5¢)
IM, = (rM@O)' + rlMé +T M cosp - rrQ =0 (5d)
ZMZ = -(qu,)' - rleo* rlMO cos ¢ + rr1Q¢ =0 (5e)

If effects of rotations around the normal are negligible, then the terms in the
straight brackets in Eqs. (5) are omitted. In a Donnell type analysis, the terms

in the braces and brackets in Eqs. (5) are neglected.
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2. Nonlinear Equations of Equilibrium for a Shell of Revolution

The stability equations presented in the preceding section were based on
the classical assumption that the prebuckling rotations could be neglected. In
this section, we present stability equations which include the effects of prebuckling
rotations. These equations are obtained through specialization of the nonlinear
equations of equilibrium which will be derived here. To obtain the stability
equations, we replace each unknown quantity (7) in the nonlinear equations of
equilibrium by ( )0 +( ) , where ( )0 represents the prebuckling value of the
quantity and ( ) represents the incremental value of the quantity which develops
durinz buckling. Then in the resulting equations, the terms containing only
prebuckling quantities may be subtracted out by virtue of prebuckling equilibrium,
and nonlinear terms in the (infinitesimal) incremental quantities may be dis-
regarded. The result is, of course, the linear stability equations. Actually,
only the nonlinear force equilibrium equations will be presented here. The
nonlinear moment equilibrium equations can be obtained from considerations
identical to those used in arriving at the nonlinear force equilibrium equations.
However, for the case of a thin shell, the nonlinear terms in the moment equi-
librium equations are negligible.

The stress resultants, rotations, and strains which develop as the sheli
deforms due to the applicd loads p ® Py » and P, are denoted by N 6"
ﬁe, ,§¢, ’ﬁ6¢":’¢"-"0":’z1' ‘:’zz' Ed" and 20. These
quantities are zero when the shell is unloaded. Linearized relations between
these quantities and the displacement components of the middle surface can
be obtained from Eqs. (IiI-8), (III-9), (III-11), and (IIi-18) providing the dis-
placement components appearing in these equations are measured from the
unloaded shell.

Figure 6 shows the middie surface of a differential element of the unloaded

sheli. At the center of the element, point P* , there is shown an orthogonal




Fig. 6 Shell Eicment
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right-handed system of axes X , Y , and Z with the X axis in the direction of
the tangent to the meridian at P* , the Y axis in the direction of the tangent to
the paraliel circle at P* , and the Z axis in the direction of the outward normal
at P* . The equations of equilibrium for a differential element of the deformed
shell will be written with respect tothe X , Y , and Z axes. Let M’i‘ denote
the point of intersection of the meridian through P* and the upper parallel
circle (see Fig. 6). At the point M’i‘ let the directions of the tangent to the
meridian, the tangent to the parallel circle, and the normal be given by the X* ,
Y* , and Z* axes, respectively. Now due to the applied loads, the line MI.A ,
which is tangent to the meridian of the unloaded shell at M’I , acquires the new
direction X** as shown in Fig. 7a. The meridional force rﬁ¢d9 , at point

M; of the section ¢ = % is defined to act in the X** direction. Then ac-
cording to Fig. 7a, the components of ﬁq’ along the X* , Y* , and Z* direc-

tions are

rNQ coSs wo cos @, 9 dé ,

—
[

rNo cos - sin 0“22 do , and

rNg sin &pdd , respectively. These components
are shown in Fig. 7Tb. The components of the meridional force rﬁq,do

+ (rﬁ¢d0)°d9 , which acts at point M of the section ¢ = ¢, + de , are also

%
shown in Fig. 7b. Next, with sin Gi - ‘-“’-i and cos ‘:i - 1, and from
rig. Tb, the contributions of the stress resultant No to the equilibrium equations
written with respect to the X , Y , and Z directions are (rﬁo)' - rf*l'¢ @y
(rN owzz) , and -rN¢ - (rNowe) , respectively.

The contributions of the other stress resultants may be obtained in the

same way as the contributions of N 5 were cbtained. Thus, according to




~

Fig. 7 Components of N
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Figs. 8 to 10, the nonlinear equations of equilibrium for a differential element

of the deformed shell are

- rlNo

cosq»-r6¢-r§&,T -rN_ @

ZF w
o 0 00 o

1

(xN)" + (r )Ny )

— - — ' —
- (N 5, - (N -1 Ny @, cos e

+rrpy ¢ 6ph(rr1pzwo) =0 (6a)

1] . -
IF, = (rlﬁo) + (rﬁw) + rINW cos ¢ - rlQo sin ¢ - rleZDosin )

- )N wq)sin o + (rIN

0 + (rN ¢GJ

1] .
0¢m22) z2)

- rlﬁo‘-"-zl cosg + Irp, + Gph(rrlpzw¢) =0 (6b)

ZF3 = _rﬁ¢ - rl-N—o sin¢ - (rqp) = (rlﬁo)' = (I‘N¢wo) = (rINo¢w8 )!

— . — L} — o —
- (rN¢8m¢) - (rlNo ZD¢) + qu)owzl - rlNo’»D22 sin¢

+ rrlpz + Gphrrlpz(éo + e¢) =0 (6¢)
IM, = (rﬁw). + (rlﬁo)' + rlﬁw cos ¢ - "160 =0 (6d)
L] ' — —
M, = -(rﬁ¢) - (rlﬁ%) + 1 M, cos ¢ + rr1Q¢ =0 . (6e)

The equations governing the stability of a shell of revolution may now be

derived from the nonlinear equations of equilibrium. In Eqs. (6), we let

N¢=N¢0+N¢,...,M0¢=M6¢0+M0¢,..., (7a)
C;¢ = w¢o+w¢’ e . (7b)

where, for example, is a prebuckling quantity and N, is the increment

N
¢0 ¢
in inis quantity which develops during buckling. After insertion of Eqs. (7) into

Egs. (6), the terms containing only prebuckling quantities may be subtracted
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Fig. 8 Components of ﬁo
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Fig. 9 Components of ﬁe
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out by virtue of prebuckling equilibrium, and nonlinear terms in the incremental
quantities may be neglected since the incremental quantities are considered to
be infinitesimal. This procedure results in the replacement of the nonlinear

equations of equilibrium by linear equations of stability. These equations are

IF, = (rNgo) + (rlNOgo) -r,N coso - rQ° - r(NQOwo i NQ)""OO)
= r(Npgote * Noguyg) - (rNgoqw, ) + TNG 6o 10)
1§
- (rNpow ) T Ngw, 1)

- TNy gz * Noo¥ppe) €OSO * TT)6 P 6 = 0 (83)

P 1 ]
IF, = (r;N))' + (N )" + 1 N

9) ¢cos¢ - rlQo sin @

= T (Nooowy * Ngoupg) 8ine - ri(Nyjuy + Now, o) sin@

At Ngsowza * T1NgoWaae) * (TNjqw o + TN w o0)

- Y 3 =
rl(N N w 10) cos 9 + rr phpz“o 0 (8b)

60%z1 * No%z 1

ZF, = —qu) - rlNo sing - (rQo) - (rle)) - (qu)o“'o + rNoo;go)

1] .
- (rlN()oOwG + rlNGQwOO) —(rN¢90w¢ + rNoOwQ)O)

N

- (rlN + r. Nw o()szl + ¢owz10)

00%e * T1Np¥oo) * TN

- rl(NOQ)szZ + N szO) sing + rrlbphpz(Eo + (_9) =0 (8¢)

0o
le = (ng)O) + rlMO + rlM()q) cos 9 - rl‘lQ() = 0 (8d)
=T : - ; = 0 .
ZMz (rMp) er + rlMu cos O + rl'lQo - (8e)

When prebuckling rotations are neglected, these equations reduce to the
previously derived equations of stability [Eqs. (5)].

Nonlinear equations of equilibrium for a general shell have been derived by
Sanders (Ref. 23) and Kempner (Ref. 24). In Ref. 23, the derivation was carried

out in tensor form whereas Ref. 24 used a variational approach. The results
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of the presert analysis, Eqs. (6), agree with those of Refs. 23 and 24 except for
terms which invelve rotations around the normal. Kempner did not include such
terms whereas Sanders used an average rotation around the normal given by

w = w .+ « ., The present analysis uses w

Ko
Z 21 22 and W o for th~ rotations

1
about the normal of the tangent to a parallel circle and the tangent to the meridian.
Thus, the discrepancy between the present results and those of Sanders is due,
in part, to the use of different expressions for the rotation around the normal.

3. Equations of Equilibrium for a Cylinder

The equilibrium equations (5) will now be specialized for a circular
cyiindrical shell subjected to a uniform external pressure p, and an axial
compression at the edges. The axial force per unit length of circumference
is denoted by P . The sign conventions for the coordinates (x, €) , dis-
placements (u, v, w) , and stress resultants are shown in Fig. 11 (compare

with Figs. III-2 and I1I-3). Thus, in the equilibrium equations, we let ¢ —= ,

- —OW
r1d¢-o dx , r,—- ®, r, - a, andr - a . Also, welet “’e*ax ’
C_ 1w . -lau _Av g _w , ldv o _du
“o=2aGs "V YT 30 Y22"3x 93 "ad6’ %o Ix’
N‘p0 = <P, Ne0 = -pa , N¢60 =0, and Gph = 1 (assume p is a hydrostatic

pressure). This yields a set of equilibrium equations which are identical to

those derived by Flugge in 1932 (Ref. 2):

2
9. 19 ow _1au -
X Nx * a aeNex " p(ax a 2) \ 194)
a0
1 5 el 82"
2N 2k N 7™M i M - Pa =7 0 (19b)
2 2 2
1 9 ) 0
=~ — M 2— M _*+a —M + N
a aoz 6 Ix90 " x0 8x2 % 0
2 2
+paiu_+.“_’+.l-.a._‘.'_v +Paa_l.v_ =0 s (19¢)
X a a 2 2
96 ax
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(b) STRESS RESULTANTS

Fig. 11 Conventions for Coordinates, Displacements, and Stress
Resultants of a Cylinder




4. Equations of Equilibrium for a Sphere

The equations of equilibrium for axially symmetric buckling of a sphere

loaded by a uniform hydrostatic pressure p are obtained frcm Eqs. (5) by

- @ & = - e -

lecting r, =a (radius of sphere), r = a sin ¢, w -3 (w v) ,

€, = (veos o + wsing) , € =—1-(w+v°) N =-p& N =--p2

0 asing ) a * o0 2’ 60 2’
a9 I _ _ . . S— e

and 30 ) =u: N¢00 ENETH S Sho D = 0 . This yields a set of equilib

rium equations which are identical to those derived by Flugge (Ref. 13):

. < _ . B : =
(N¢ sin @) NO cos ¢ Q¢ sing + -2-(w v) sing ) (10a)
q _ . AP Ly e
(N¢ Ne)sin¢+ (Q¢sm¢) + 2(v sing + vcos ¢
+4wsin¢+\;/cosq)+\'a;sinq)) =0 (10b)
(M¢ sing) - Mgcosgp - aQQsinw =0 . (10c)
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SHELLS OF REVOLUTION UNDER AXIALLY SYMMETRIC LOADS

In this chapter, and in the sequel, only axisymmetrically loaded shells of

revolution are considered. Also, the eifects of prebuckling rotations are neglected.

Since the loading is axially symmetric, the space variables in the partial dif-
ferential equations governing the stability of a shell of revolution can be sepa-
rated. After the separation of variables, three equations in terms of the three
displacement components are obtained through combination of the equilibrium
equations and the elastic law.

1. Separation of Variables

The stability equations for a shell of revolution are given by a system of
partial differential equations with variable coefficients. For the case of axially
symmetric loading, the coefficients in these equations are independent of the
circumferential coordinate § (see Fig. III-1 for notation). Consequently, it is
possible to separate variables and thus replace the system of pa-tial differential
equations by a system of ordinary dii’erential equations. Such a separation of
variables is effected by means f the following Fourier series representation

for the incremental quantities:
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0 00

( v = z vn (¢) cos ne u z un (9) 8sin no

n=0 n=1
0 o0
w = z v (¢) cos ng N¢0 = N6¢ = z an(w)sin né
n=0 n=1
[ ] o0
N, = z.Nm (9) cos ng My = My, = z My, () sin no
4 n=o n=1
; } )
N, = z N, (g) cos no Q, = z Q,, (#) sin np
n=0 n=1
[ ] 00
M¢ = M¢n (p) cos nb w¢ = z w¢n (¢) sin ng
n=0 n=1
) [ ]
- - (1)
r M6 z MOn (¢) cos né W, = z “.1n () sin no
n=0 n=1
o0 [ ]
Q¢ = z Q,n(cp) CO8 ng W,o = z w, o (9) 8in no
n=0 n=1

0
wo = Z w0n (p) cos ng
n=0

n-3

€ on (p) cos n@
n=0

&l
"

[ ]
z €0n (9) cos nb
n=0
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These expressions represent the general solution of the stability equations for
the cases in which

(i) the shell is complete in the circumferential direction, i.e., 0< 6 < 27

) 0
(ii) the boundary conditions on the edges 6 = -2—0 , ?0_ for a partial
toroidal shell are
w=M9=v=N0=0. (2)

For the first case, the requirement that the incremental quantities should Le
periodic functions of 6 is satisficd by each term of the Fourier series in Egs. (1).
For the second case, the boundary conditions :Eq. (2)] are satisfied by each

term of the Fourier series obtained by assigning values to n in Eqs. (1) as follows:

n=n*-g;,n*=1,3.5.... . 3)

2. Equilibrium Equations

Insertion of the Fourier series representations of the incremental quantities

[Eqs. (1)] into the equations of equilibrium [Eqs. (IV-S)l results in the following

equations of equilibrium for each value of n :

= J ) = = =
TF n (rN ¢n) + nrlNo - rlNan cos9 - rQ - rN ¢0w0n
- nrINBO“’zln * rr16 ph P.%n =1 L (4a)

4
]
[

on = (ern) - "rlNon + r1N9¢_ncos¢ - rlt’;)‘,n sin ¢

- rll\leoc.o?m sin¢o - rlNoo""zln co8 ¢

+

(rll\le)o cos ¢ + rN¢o) W on + (er) @oon

+

rr 16 phpzwcpn =0 (4b)
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2F3n = er + rlem sing + nrlQen + (rQM)
( + (r;Ny, cosg + 1'1:I¢0)mon + rNQOd’an
+ nrll‘leomqm - rrlbphpz ('€¢n + E’en) =0 (4c)
IM, = (rM’on)' - nrlMen + rJM’On cos ¢ - 1'1'1696n =0 (4d)
IM, = (rMml)' + nrlen - M cos¢ - rrlQ¢n =0 (4e)

3. Elastic Law
The following relations, which are obtained from the elastic law [Eqs. (III-18)| ,
can be used to express the ejuilibrium equations in terms of the displacement

c nents u v and w
ompo tsn, n’ 5

Bl(rN¢n) = (vn) u, + (Vyl) Vs + (rﬁl-) ""n + (r—rl + vx1> v (5a)
nr r.y . r.x
5 (r,Np;) = (‘*) L ( lrl) 'n* M ( v ) "n =

- y - . -
botogd - [- (52 B s (52 iy |- (550

r.x y vE /
1 _ [ 11 I S § 1
K(rlMBn)_ (n Z)un+ r T2 vn+kvr)vn
1

r T 1
r y, vt
b A 5 W) _1_\ "
+ (—n 2) W + = 2 Wn + (u " v (5d)
r ry 1y
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where, for brevity, we have introduced the notation:

X, = sin ¢ ; Y, = cos¢ ; and y, = cos 20 (6)

4. Rotation and Strain Components

By substitution of Eqs. (1) into Eqs. (III-8), (LI-9), (IlI-11), and (III-17), we

obtain the following expressions for the rotation and strain components:

1 - 1
= — 7a
wOn r wn * r vn (72)
1 1
n x1
= = = {+)
wcpn rwn * r un (7b)
n
= - Tc
wzln rvn (7c)
y
1 - 1
. . 7d
wz2n r1 un r un (70)
‘.’n wn
én r1 r1
y X
_n 1 1
€m T T n T ¥n ()

5. Stability Equations for the Axially Symmetric Loaded Shell of Revolution

For a thin shell, the effect of the transverse shear forces Q én and Q on in
the first two equations of equilibrium [Egs. (4)) may be omitted. [Also we note
that Steele (Ref. 25) has pointed out that the retention of these terms in the first
two equations of equilibrium is inconsistent with the use of an uncoupled elastic
law. ] The mrment equations of equilibrium [Eqs. (4d—e)] may be used to elimi-

nate Q o1 and Q on from Eq. (4c), and the stress resultants, rotations, and
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strains may be eliminated from the equilibrium equations through insertion of

Eqs. (5 and 7) into Eqs. (4). In this way, we finally obtain a set of three ordinary

differential equations for the three displacement components un(¢) : vn(¢) , and
wn(¢) :
(hy +cpu + (hy+ cp) v + (g + ey + (hy + ) vy + (hg + cg) v
+ (hg + cg) 'w;n + (b, * cp) 'w}'n + (hg + cg) W+ (hy +cg) wn
+ g+ cpdWy + by +e )W+ (b te )W = 0 (8a)
(f1 + al)u + (f + az)u + (f +a3)u + (f + a )v + (f + as)vn
+ (g + 8g) Vy + Wy + ap) Y+ (fg + aghwy + (g + ag) W

+ 10% * G ta) iy rapw, =0 (8b)

10"
(8, + b u  + (8, +b)u + (8 + by i + (8 + b) v, + (85 + b)) ¥
+ (g6 + bs).‘;n ¥ (g,.l + b7)v;; + (ge + b8) wn + (g9 + b9) &n
+ Brg + Dy Wy + (B + )W+ Gy W, = 0 (8c)
where the coefficients a , b, ¢, f, g, h , whichdependon ¢ , are given

by the following formulas:

. 2 2 2
X ry y y X r.X.y
h =K[n RIS S N0 SN SR S.s s SR s o B
L rr]. 1'1'2 rz I‘z r2 r3
3 T1%,
+Dvn+n (9a)
y X y
I T %) XY
hz x[zn—n,l tn—7p+ 3 (Sb)
rr,
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X
h3 = K [-n?r_l- (9¢)
[ x r r .y, 2 ‘ r
b= K-z Y1 2 1 Y1, 21 N v,y 11
= -2 -n - + —_—— e —— D
4 l'rl r 2 rr e r2 r2 r 2 Tr 3
L 1 1 1 1
r X (i'l)zy1 r'f'l ri'l'fl r(i-l)3
-1+ W) —5 - §——p—+—3 - 10—F + 15—
T T | T T
r.x.y
17171
+ D[vy1 = ] (9d)
2 1 y12 X Ty, Tf r‘i”l)z
hy = K|m' g vt w6yt Ayt B
Ey 5 o r
r
+ D[i‘-l' + VXI] (99)
y rr
- o1 1
h6 K[2r2+6r4] (91)
1 1
r
h.7 = K["’T] (9g)
|
X r.y 2 r X 2
- W 271,211 471 r 1
h8 = K L-(3 -¥)n 5t 4n 3 +n “3]+ D[r +r1——+ 2»(1] {9h)
Tr r Ny 1
[ Xy PRy y, ¥ W T
_ 1°1 2 1 171 2’1 .71 1 11
h9—K+2 r1+2n ‘2+ st W5t —5 5+ (1 + 2n)—5
rr rr T r r r
L 1 1 1 1
= . 92 - . 8
r.y (r.)y rr rr.v r(r.)
o 171 ) LS U 11 _ 1
2 g + 6 r4 1”4+10]r5 151.6 (91)
T 1 1 1 1
2 1 -"12 X Ty, I r‘i"l)z
h10 = K|-2n ™ -—I'F—- (1 + l’)—74 -6 3 -4 3 + 15 5 (9)) L
1 1 r1 r1 rl r1 9
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(9k)

(91)

(9m)

(9n)

(S0)

(9p)

(9q)

(9r)

(9s)

(91

(Su)

(Sv)

(Ow)

(9x)




11 = B2 = 0

r.Xx

11
R N90 m.laphpz
c3 =90

- ri'l
Y150 T, Noo ~ 280 " T1Y1% prPs
¥y

r
-I‘-INN’ - rﬁphpz
c7 = 0

271

n"— Ngo rlxl,ﬁphpz T 0P
T i.1

- SIo== + e N

Y1Ngo r1N¢0 rr2 90
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(9y)

(92)

(9a’)
(9b*)

(9¢’)

(9d')
(9e')

(9f')

(9g")

(9h')

(9i')

(9j')

(9k')

(s1")

(9m’')




(9n')

(90")

(9p')

(9q')

(or')

(98')

(9t")

(u’)

(ov')

(Ow")

(9x')

(9y')

(9z')

(9a'')



For convenience, a subscript n was omitted in the exprcssions for the coeffi-
cients a, b, c, [, g, and h in Egs. (8) and (9). We note that the functions
a(¢) , o), and c!¢) in Egs. (8) depenx: on the prebuckling quantities N('.,0 .

Noo » and B, whereas () , g(¢) , h(¢) do not.
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TOROIDAL SHELL UNDER EXTERNAL
PRESSURE —~THEORETICAL ANALYSIS

1. Stability Equations for a Toroidal Shell Under External Pressure

As an application of the theory developed in the preced: g chapters, the
equations governing the stability of a general shell of revolution will now be
specialized for a toroida( shell subject to a uniform hydrostatic pressure p .
The notation for a toroidal shell with a circular meridian is shown in Fig. 1.
The radius of curvature of the meridian r, is denoted by a , and the distance
between the center of the circular cross section and the axis of revolution is
: denoted by b . Note that the shell geometry and the applied loading are sym-
{.t metric about the plane A-A (see Fig. 1). Hence, it is expected that the buckling
pattern will be either syri'metric or antimetric about this plane. Accordingly,
it is convenient to use instead of ¢ the coordinate § mezsured from the
plane A-A as shown in Fig. 1. The independent variable y is related to the
colatitude ¢ used in Chapter V by

¢=¢+? . (1)

From Eqs. (1) and (III-4) we find

= (y)y=%2cr=()y . (2)
For brevity, we introduce the notations

sin my, m = 1,2,.. (3a)

gm
N

@]
n

cos m$, m = 0,1,2,... (3b)




TN 06 A b e W e B b

e

Restite

-—u-.ﬂ

Fig. 1 Notation for a Toroidal Shell
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Therefore, the notations X; sin o . y, cos ¢ , and Yo = cOs 2¢

uscd in the preceding chapter are replaced by

X, = C1 = cos Y (4a)
y, = -S; = -sin{ (4b)
Yy = -02 = -cos 21 " (4c)

From Fig. 1, we find that
r ~b+acosiy |,

which can be rewritten as

T

—_— i (Y +

= < (5)
where a is a nondemensional geometric parameter

o =— (6)

The prebuckling stress resultants NN) and No o May be obtained froem

Ref. (13):

N, - 2

a
0 "B+ asine P fgsine

2

- - B2
Noo 2

We introduce a nondimensional load parameter

R (7)
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where E is Young's modulus and h is the shell thickness. Then the prebuckling

stress resultants may be written as

1 2
Ny = -3(1 - » )5 (2a+ C)A (8a)

o~

0

1 1 2
DNgo = "z(1 - vIX . (8b)

where D is the extensional stiffness of the shell | see Eq. (III-19)I.

We may now obtain the stability equations for a toroidal shell through
specialization of the equations for a general shell of revolution [ Egs. (V-S)I.
We multiply Eq. (V-8a) by (ig , Eq. (V-8b) by © , and Eq. (V-8c) by
(—E-)z in order to remove any dependence on ¥ in the denominators of the coef-
ficients in the stability equations. Next, we divide the resulting equations by

D and introduce the nondimensional geometric parameter

k=—'§=1—2(E) . 9)

Finally, we substitute >ns. (i) through (9) into Eqs. (V-8) and (V-9} and obtain
the following stability equations for a toroidal shell subject to a uniform
external pressure:
(hy + e A)u  (9) + (by + cyA)u, (4) + (bg + CgA) U (¥)
+(hy *+ €M)V (§) + (b + CA) v (@)
+(bg + cgA) YV, (9) + (by + ¢ M)V (¥)
+ (bg *+ cgA) W (§) + (bg + cg)) W (¥)

+hyg * CpM) Wy () + (hyy + ey M)W (V)

*(hy * M)W (H) = 0 (10a)
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(€ +a ) u @)+ @, + 8,00 @)+ By + 8,V @) + (, + ad)v (@)
sl + agn) v (W) + (g + 8gA) v @) + By + 2 M)V ()
+ g+ agh)w (V) + (g + agh) W (¥) + (0 + 8,0 M) W ()
MUTRE LN UR NP a'mn'i&'n W = o0 (100)
(8, * b MU () + (g5 + bA) U (@) + (g5 + byA) U ()
+ (84 * bA)V. () + (5 + DAV, (V) * (B *+ b)YV (W)
+ (g7 * boA)V_(¥) + (Bg * BgA) W (¥) + (Bg + bgA) W_ (¥)

+ @ * DM W @)+ (g) B MW W)+ (g, bmx)'&’n @ = 0

(10c)
In Eqs. (10) the coefficients a, b, ¢, f, g, and h, which are now different

from those defined in Eqs. (V-9),are given by

_ 2 2 2 .
h —nk[ncl-wls]_ (a+Cp)C’-@-v)a+C)C,

+ (1 +py)(a+ Cl)Sl2 + (a+ Cl)2 Cl]
3
+ n[(a+ C1)2 C,+v(a+C) ] (11
h =nk[-3(a+C)cs +z(a+C)2s]
2 A ) 51
h, = -nk (@+ C,)2C
3 Y €

‘ 2 2
h, = k|+(a+ c, 513 -n®(a+CpS, + 2(ar CH°C S,

3 2 3
- v(ia + Cl) Sl - (a + Cl) Clsl - v(a + Cl) Sl

h, = klnz(a & CI)Z + (a ¢+ CI)ZSI2 + (1 + v)y(o+ C1)3C1
v v@rcpie, o cpt
3
h, = +2k (o Cl) Sl
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4
*k (o + Cl)

nzklnz - aasl2 -3 -v)(@+C)C, |+ (arC
+2u@+C)C, +(a+C)
URY 1

k[-2n2 (x+C))8, - (@+C)S,

+ V(a + C1)3 Sl]

k[-2n2 @+ C

3

-2k (@ + Cl) S

& (a + 01)4

1
+'2-(3 -v) nSl

2
1

1

- (o + Cl)2

(1 +v)n(@+ C))

0

-v(a + Cl) C1 -

-(a + Cl)sl

2
(a+ Cl)
0

- ole

(o + Cl)2 + v(a+ Cl) C

f,=1,=0

11 12

1 2
(1 -v)n

1
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2,2
1

4

3 2
-2(@+ C)°CS,

S.“-(1+v)(a+ c,)’ C1l

2
.s1

(11 cont'd)



¢

-n2(a+C1)-%(l -v)(a+Cl)Sl2+—1—(1 -u)(a'+C1)2 c,

2
21 -y @+ c)’s,

3=y @+ C)°

+>(3 -v)n(a+ C)S,

-%—(1 +v)n(a+ C1)2

g, = 0
2
-n (a + Cl) Cl-un(a+ Cl)

8o ~ By ~ 82 =0

1 3
(1 - v¥n| -Ha+ cp?c, + (@+C)

1 2 3
‘5'(1 -v)(a+ Cl) S1

(1 - vz)[-;—(2a+ Cl) (a+ Cl)3 + (o + C1)4l

c7=0

2] 1.2 2. 3 . 4
(l-v)l-zn (a + Cl) + (a+ Cl) C1 + (a+ Cl) I

1 2 3
7“ -v)(a+ Cl) S1

41 - v%) 2a+ € (a+ C°

(1 - 3 %(20:4* C)la+C) - (a+ C1)2 +—;—n2,
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a, = a, = a, = &, = 0 {11 concl'd)

ag = (1 - A[-gear c))(ar cp + (a+ €

9
810 = 833 =80

_ 2(1 2 2. 1 1 2,
by = (1-¥ )[2(o:+cl)c1 (a+C,)2C, -2(2a+ C ) (a+C ) C, -5,

b, = %(1 - vz)l(a + €28, -(@a+ C)(a+ CS,
by = -1 - »%) @a + C)) (¢ + C))°

b, = -3(1 - )n(a+C)S,

by = by = b, = 0

b8 = (1 -v2) +%n(a+ Cl)C1 -n(a+ Cl)2

b, =b,, =b._ =b, =0

S 10 11 12

2. Solution of the Stability Equations
2.1 Qutline of Method of Solution
The stability equations for a toroidal shell [Eqs. (10)] consist of three

linear homogeneous orainary differential equations with variable coefficients.
The unknowns in these equations are the three displacement components un(¢) .
vn(¢) , and wn(lp) . For a complete toroidal sheil, the boundary conditions are
simply conditions of periodicity on the displacement components; hence, un(#*) .
vn(tp) , and wn(lp) may be represented by Fourier series in the meridional
coordinate ¥ . Next, in order to pave the way for a Fourier series analysis,
the coefficients in the stability equations are expressed as linear combinations

of trigonome: .ic functions. Then, with the aid of some identities which will be




(’{‘
'
=

derived, it is possible to write each of the three stability equations in the

following form:

[}

zo I Im cos (my) + 21 ‘ Im sin(m¥) = 0 . (12)
m= m=

The braced expressions in Eqs. (12) represent homogeneous linear combinations
of the Fourier coefficients used in the expansions for LI A and W The
trigonometric functions in Eqs. (12) are linearly independent for 0 € ¥ < 27 ;
hence, eacii of the braced expressions must vanish. Thus the problem of
solving a system of ordinary differential equatior.- with variable coefficients is
reduced to that of solving an infinite system of linear homogeneous algebraic
equations. A matrix iteration technique is used to get the lowest eigenvalue of
a finite system of equations which is obtained through truncation of the infinite
system of equations. The size of the finite system of equations is then succes-
sively increased until no significant change occurs in the computed eigenvalue.
2.2 The Solution

In order to facilitate the subsequent Fourier series analysis, we now
express the coefficients in the stability equations as linear combinations of trig-
onometric functions. This is effected by employing the well known trigonometric

identities
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from which it follows that

r‘ <
(a + ,1) cl

(@ + Cl) C2

(o + Cl) 812

(@+cps®

2
(a + Cl) C1

2 .2
(o + Cl) C1
2

2
@+ C) 8§

2
(a+ C)"C,;8y

(@ + Cp°

3
(e + Cl) C1

(a + Cl) S

(a+ C))

(a + Cl)S1

2

(o + Cl) C1

(@+C,)C;8,

a + (3a+ 4a3) C1 +(;—+ 3d2)C

3 1
+4¢JzC3+BC4
3 3 1. 3
(‘4“’““)81 +(T+?
-g—+ 3az+ 4
+aC, ++c
378"
1
aSl+-é-Sz
a 3 a 1
7+53C v 76+ 7€
1 a 1.
251738, t 15

N

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)

(13g)

(13h)

(131)

(13j)

(13k)

(131)

(131n)

(13n)

(130)



2 _ 1 2 1
(a+ Cl) =5t +2¢JtCl+-2-C2 (13p)

Insertion of Eqs. (13) into Eqs. (10) and (11) yields the following form of the

stability equations:

[(h10 + 0107\) + (h11 + cnk) C1 + (h12 + clzk) 02 + (h13 + c137t) 03] un('l’)

} [h21 §; + hyp Sy + hyg Sal“n("’) 'l(hao *+hgy € + by, Cy

+ hgg Cal'lJi ¥ *[‘h«n tCuM S+ by, + e M) S, + (hyy + e ) S,
+(hyy + ey S, v +| gy + o) + (b, + e N C,
+ lagy *+ €50 Cp + (g + egd) C + (hyy + €5,M C, v (9

- |6y 8, + gy S, + gy 85 + g, S,]¥ M - [bg + by € + B2 Co
* hyg Cg + oy C4];n(¢) * [(hso + cggr) + gy + e Cy

+ (k A)C +(h + g x)c +(h + )C4Iw(¢)

g2 *
|(b91 + 0917\)8 + (h92 + 092)‘) S+ (h93 + cgsk)S

+ (hgy + cggM) S4I“’n("’) - [(hlo,o *€0,0M * hyg,1 * €10,1M C;

+ (b M C, + (b 2 €, + (g 4+ €10 MCH, W

10,2 * ©10,2 10,3 © 10,3

+[1‘11,151 thyy a8yt hyy 383 +h)) 4|“’ @) +[h

thyp 1€yt hyz,0C * hyp 3Cy by g C4I“’n("') = 0 (14a)
lfu 5 ]“n"”) ) lfzo * iy Cl]“n”’) * l(f4o taggh) ty taMC
* gy *agh) Czl" @) + lf‘”l S, * 15y Sz]" )

'lfeo *ig1 C1 * fg2 2]" ) |f81 ll“’ (%) - 1ilgg + agoM

+ (fgl * ag|A) cl + (f92 + a921\) Czlwn(il) =0 (14Db)

68




R IREITE

[T THNEN O AT T o

l @19 * P1oM) * @)y * D) NC) + @5 + b NCy + (g1 + bigN) Ca]“n“”)

- l(gzl * by N S; + (Byp * byod) Sy + (B9 + bygd) S3I ur¥)

- [(330 + bggh) + (8g) * by N C) + (85, + by M) C,

+ (833 * bag)) Csl u @)+ [ By + DN 8] + (g5 + byyd) szlvn("')

& [gso *+ 851 C) * 85 Czl"n“") & l(gso * bggh) + (gg; *+ bg M) C)

+ (Bgy + bgoM) Czl‘”n(‘“ = 0 (14c)

where

-

(1 4 y) k + (1 +§-u)+ vaz]an

2 2

L

7.3 2 2 3 2
l (-z-+—4—v)+a +n ]k +3(1+v)+(1+ e }n

P(-2 +—;—)k + (1 +-g-u)]an

1 1
-I(l -v)k +T(1 +u)]n

(--ii+ ZQF)nk

~ank
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=“%(11 + 9v) + (1 +v)ot2 + 2n2]k + (3 +-9—v)

1

v)— n? - vaz]k - %- -i—v - va2} a (15 cont'd)

=3
]
»]w

-
1 1 2 3 .\ 2 1 1 2
F(3—v) -3n +(1--,z-v}a]k-4(1+v)-5(1+3v)a

%(1 - V) k --81-(1 + v)

(4300 (2 o2 (e i g o
+(3 -t--g-v+ 02)a2
4
+ (4 + y)azla

’1 312 12 1 3
?-(1+V) +(1 +-§v)a +?n]k+?(1+u)+(3 +2v)dz

L(;iﬂ %u)k + (1 +%u)]a

1

8 vk +8—(1 + V)
3, ,2

g+ ) ok

e sy

G-+ &)
-(3 + 402) ok
A+ %)«
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hag
hog

80
31
hg2
83
84

91

Bos
Bos
Boq

10,0
10,1
10,2
10,3
10,4
11,1

11,2

"

_[1 2 3 7 2
—I-z—(-7+v)+n In2k+4(1+v)+(2+3u+a)a

i

L

1
-§.k

l-(3 -v)nzk +%(1 + )+ (4+ 2y)azla

',].,;'(1 + ) nzk + (1 + ) +(—;—+ 3y)az
3

—2-(1 +v)a

A+ v

l—i—(-7 + 3u) +vo® - 2n2Iak

[%(-3 +) + (-1 +-‘;’-v)az- nz}k

3
"?(1 -v)ak

--;-(1 -k

(-% -%v)-— (2 + %y+ 2n2)¢:tt2 - n2]k
4

-.i_(u + 9 -(1+ u)a2 - 4n2]ak

--;—(1 +v) - (1 +%u')¢:\?'a - nZ]k

L

-41(1 + 31) ok
--;-vk

(3 s
e o)
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11,3

11,4

12,0

12,1

12,2

12,3

12,4

"

+(1 - v2) 1+ az)an

- B S

8 2
+1 - vz)an
1 2
+8 (1 -v)n

ta-AEa)a

-2a - He
--l% (1 v2)

2/3 3 2
a- g ge)
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10,0

10,1

10,2

10,3

10,4

11

20

2
+7(1 - V)a
1 2
t7 (1 -)

S 2
+8(1~V)a

1 2
+16(1-v)

g
+2(3 v)n

1
"’E(l + v) na

(15 cont'd)



1
le = +-2-(1 +v¥)n (15 cont'd)

t‘40 = -%[(1 +v) + (1 - v)n2
f41 = -va

f40 = +71:(1 -v)

f5p = @

f5e = '%

fao = {2+ o)

f61 = 2«

fo2 = *7

f81 = -

f90 = +%(1 +y) + 02
t‘91 = #2 +v)a

f92 = +-;-(1 + v)

440 = (1 - VA (--1—+-‘,1?n2)

1
ag, - -%(1 -v¥
390 = %—(1 - v2)
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V) na

V)n

-’-;-(1 + V) + vazln

-(1 + 2v)on

1
31 +v)n

1. o2

-0z %)

a
-(1 - ")_2-

- g1 - v)
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80

81

82

30

31

()

-(1 + v) no
-Zl-(l +V)n
-%(1 - ¥
-1 - vz)(% + 20%)
21 -Be
-3 -h
-5 - }a?
-3 - De
0

-%(1 - vz)na
-‘—i-(l - uz)n

-(1 - uz)(‘—iwaz)n
-%(1 - vz)an
-%(1 - vz)ﬂ
-(1 - Vz) (1 + az) a

VR
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= =(1 - yz)a (15 concl'd)

o
|

32

byg = ~3(1 - v9)

33

For each value of n , the displacemert ~omponents un(w) R vn(w) , and

wn(lP) may be represented by the Fourier series:

u (@) = z Um cos my + z ?Jm sin my (16a)
m=0 m=1

AV z V_sin mj + z V_ cos my (16b)
m=1 m=0

wn(w) = z Wm cos my + z &m sin myp . (16¢c)
m=0 m=1

The series with the Fourier coefficients U,n s V_, Wm represeut a buckling

m
mode which is symmetric about the plane ¥ = 0, m(plane A-A in Fig. 1),

~

whereas the series with the Fourier coefficients ﬁm R ?’m R Wm represent a
buckling mode which is antimetric about the plane ¥ = 0, *. After insertion of
Eqs. (16) into Egs. (14), it can be shown that the resulting stability equations

may be put in the form:

(-] [ -]

z A_cos mp + Z A_sinmy = 0 (17a)
m=0 m=1

(-] (-]

z B _ sin my + z B  cos my = 0 (17b)
m=1 m=0

I
(-

a0 a0
z C_cos my + z C_ sin my (17¢)
m=0 m=1
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where

A=A (U ,V W), (88 A=A (U ,V ,W ) (18d)
B =B (U.,V ,W), (1) B =B (U ,V .W ) (18e)
C =C, (U ,V W), (18d c,=C, @,V W ).qs

Since the functions sin (m¥§) and cos (m¥) in Egs. (17) are linearly independent

for 0 £ ¥ <27, we conclude that

A =B _=C_ =0 (19a)

Am=Bm=Cm=0 . (19b)

From Eqs. (18 and 19) we see that t!le Fourier coefficients Um R Vm . Wm
may be determined from a set of equations which do not contain U m ° Vm 5
“~’m . This means that a toroidal shell under uniform external pressure can
buckle into a mode which is either symmetric or antimetric about the plane
$ = 0, r, and thus these modes can be investigated separately. For convenience,
the buckling mode which is symmetric about the plane ¥ = 0, 7 is called Mode A
and the buckling mode which is antimetric about the plane ¥ = 0, 7 is called
Mode B. These two modes are considered in the next two subsections.
2.2.1 Mode A

For the buckling mode which is symmetric about the plane ¥ = 0, 7, we

let
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oAbt smeents s o G I

u, @) = 2 Um cos m§y = E U _C (20a)
m=0

m “m
m=0
[ -} (-]
o M = z Vm sin my = Vm Sm (20b)
m=1 =1
w ) = z W_cos my = z w_C_ (20¢)
m=0 =0

where, for brevity, we have used the notations given by Ege. (3). Substitution
of the Fourier series expansions for the displacement components [Eqs. (20)]

into the stability equations for a toroidal shell l Eqs. (14) ]yields

[‘hl.o et hyy e NG+ by, + N Gy

a0
* byt °13")Csl 2 U Cm 'lhzl §) + by S,
m=0
o0
+ hyg 83] 2 mU, S, - lhso +hyy €+ by Cy
m=1
+ h C]z m2U C +[(h +c,,A)S. + (h,, +c, NS
33 €3] 2. m Sm a1 ¥ €4 8 * (hyy + e M S,
m=0
a0
thyg + cggM By + (hyy + ey M S4] z Vin 5m
m=1

"[“‘50 v egoh) + (hg) + €5y M) C) + (hg, + c5o)) Cp

+ (hgg + cgaM) Cy + (hg, + M) C4] 2 mV,Cn

=0
" (cont'd)
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2
[hsls + he, S, + by sa+h64s4]z m’v_s_
m=1

a0
3
'["70“"7101“’72(’2‘“"'13(’3+ "7404] z m Vi Cm
m=0

¥ [ (hgg * CgoM + (hg; + cg M C) + (hgy + CgoA)Cy + (hgy + e 2N Cy

+ (hgy + cggM) c4l z w_cC_ - [(hu + gV 8 + (hgy + ¢, S,
m=0

o
* (hgg * CoaX) Sg + (hg, + cg N 84! 2 mW, S

m=1

(h NC, +(h A) C

‘[‘hlo,o 10,0 * (g1 * 10,1 10,2 * 10,2

{‘ +(h

2

a0

2
10,4 * €10,4" 04] z m W, C,
m=0

10,3 * ©19,30 C3 + (b

*Ih11,131+h11,232+h113 3*thy g 4, z m° Y Sm

¢ [h12,0 thipg 1€ thypCht hip3Cs

a0

4 _
+ h12’4C4I z mfw_cC_ =0 (21a)
m=0
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a0
15 Um Cm - [fzo * Iy Cll 2 ™ Upy S * [(f4o * 2N
m=0 m=1

[ <]
tfyy *ag M €yt (B, +al Cz] Z Vi &m
m=1

0
g [f51 S + 15 Sz] 2 ™V Cm
m=0

[ ]
2
- [fso +61C1 + fg Cz] z L (S
m=1

+ 13,8 Z Wi Car [“90 * 2508 + (fy; + a5;N) C,
m=0

+ (fgy ™ 250 Gy z mW_S_ =0 (21b)
m=1

- ]
[(510 *hyoM {8y + D) N Cy* (B + DN Cy + (Byy + bygd Cs] 2 Un

m=0

[ )
- [@ar * 021N 8 + By + by N S, + By 8] Y mu s,
m=1
- |30 * BygM + (Bg) *+ by N C; + (Bzp + by N €,
[ -]
2
+ (Bgg + Dag)) c3] z m“y_c_ + [(g41 +by NS,
m=0

[~ <] [
* (Bgp + byM Sz] Z Vin Sm * [8s0 * 851 €1 * &5, c,] Z ™ Vi Cm

m=0 m=0

[~ <]

+ [(Bgo * bgeM *+ (B * g N €; + (Bgy + bgyN) Cz] Z YmCm ©
m=0

(21c)
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The terms in Egs. (21) consist of products of trigonometric functions and

Fourier series. These terms can be put into the form

31w 31 Lo

by use of some transformation equations which we will now derive. As an

example, let us consider a term of the form

[ -]

P=S z m3 w_S_, (<4 . (22)

m=1
We use the trigonometric identity
BS = Cab ~ Canp

to write P as the sum

2P - 4 - B (22a)
where
a0
_ 3
A= Z m° W Cm-r (22b)
m=1
3
B= ) mW, Co . . (22¢)
m=1
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In Eq. (22b), welet q = m-r. Then

oc

_ 3
A = z (Q +r) Wq+r Cq »
q=-r+l
or,
00 -1
_ 3 3
A = Z (qQ +r) Wq+qu + 2 (qQ + r) Wq+r Cq . (22d)
q=0 q=-r+l

We let q = -p in the second t-zin on the right-hand side of Eq. (22d). Thus

-1 1
z (q+l‘)3W C = z (r-p)3W C
q+r q rp p’
q:-r+1 p:tﬂl
or,
-1 r-1
Z q+rw _c = z r-q°w c (22e)
g+r q rq q °
=-r+l q:l

The upper limit for q on the right-hand side of Eq. (22e) can be changed to «
if we make the agreement that Fourier coefficients wr-q with negative subscripts

vanish. Hcenee
-1

a0
3 _ P
z @+ W, €= > E-a’W_ C O (220)
q:-r+l q=1
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Insertion of Eq. (22f) into E7. (22d) results in the following expression for A

a0 a0
_ 3 3
A = 2 (m + r) wm+rcm + z (r - m) wr-mcm
m=0 m=1
3 3
+r WrC0 -r WrC0 (22g)

where the terms +r3 Wr Co and - r3 Wr C0 were added to the right-hand side

of Eq. (22d).

But
S 3 3 S 3
Z(r-m) W__C_+rwcC = Z(r-m) S
m=1 m<

and

o0
3.~ _
-r'w C = z 6 om+0)°W . C_
m=0

where 6mo is the Kronecker delta:

Hence, Eq. (22g) may be written as

A = Z {(1 = Gmo)(m + r)3Wm+r + (r - m)awr-mlcm . (22h)
m=0
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By proceeding in the same way, we can write B in Eq. (22c) as:

[ ]

3

= ) w . )

B Z (q - r) q-r Cq (221)
q=0

We now insert the expressions for A and B given by Eqs. (22h and i) into

Eq. (22a) to get

[ -]
3
2P = Z l-(m -oPw_ s -8_)m+ r)3wm+r
m=0
s -mPw e . (22§)
Then, with the notation
‘+1, m<r
€ = 0, m=r .
mr -1, m>r
we can write
3 : 3 _ 3
-(m - r) wm-r + (r - m) wr-m =@ e Im - ri WIm - x| (22k)
Then from Eqgs. (22j and 22k) we obtain, finally,
[- -] o0
Sr z m Wm Sm =3 lemr hn - rl wlm-ri
m=1 m:o
3
+ (1 - omo) (m + r) wm+r Cm (23)
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m=1

o0
( Thus, the term Sr z m3 Wm Sm has been expressed in the form

o0
z ‘ lm Cm . By proceeding in the same way, identities may be obtained

m=0

which enable us to write each term in Eqs. (21) in the form

o0

m=0, 1

These identities are:

> | bnCm-on O

o0
2C, z Wn®m = z '(1 * 6 Wimr * U - émo) lCm (24a)
m=0 m=0
oD [- ]
{P 28, z Ve z [+ €ar Vim-rl * (- g mo’ Vm+rl Cm (24b)
m=1 m=0

o0
28, > W € - dlave ow L -w_, |s
r m m mr’ !m-rl m+r] m

m=0 m=1

e o0

2C zvs=z[-e v sv_ s
r m m mr |m-ri m+r

m=1 m=1

(24c)

(24d)

o0
2 Cr m "m Cm - 2 ' im-ri Vlm-rl + (1 - 6mo) (m + r)Vm+r Cm
m=0

[
Bz
(N
3
£
2
V]

mr
m=1 m=0
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+€ Ilm -

t(1-6 )m+ )W

(24e)

(24f)




r m m
1
< 2
2Cr zm m m
m=0

m=1
(- «]
2C zmzv S
r & m
m=1
[ o]
2
2s z méw_ C
m m
m=0

1§

(24h)
2
5; [Im ri wlm-rl
m=0
2 .
+ (1 - Gmo) (m + r) wm+r Cm (24i)
2
2 |+em im ri vlm-rl
m=0
2
+ (1 - émo) (m + r) vm+r Cm (24j)

hd

[ _ a2 2 l
2 U mr ™ T Vgt 0V
m=1

(24Kk)

Lo

2 [ im - ri2 W - (m ) wnm_]sm (241)

a0
3 3
2 l m - rl Vim-rg * (1= 6,0) (m+ 1) ¥ v lcm
m=0
(24m)
a0
Z [+ € Im - r|3 w
mr im-rl
m-=90
+(1-6_)(m + r)3w C (24n)
mo m+rl m )




m=1
+ (m + r)3 w S (240)
m+r | m
[ ] a0
28 2m3v c_ = lem—rlav —m+1r)Pv ]s (24p)
r m m Im-xi m+r| m
m=0 m=1
< < 4 4
4 = -
2C_ Z miv_s_ - Z[ e, Im-rl*V,__+(m+r) Vm+r|Sm
=1 m=1 (24q)
N < 4 4
4 — - - v
2C, Z m WeoCm = 2[|m rl Yim-rl ¥ bmo) (ma + 1) Wm+rlcm
m=0 m=0
(24r)
where
5 - 1, m=r
mr Obm#gFr , r=1,..,4 , (25)
5 - 1, m=0
mo 0, m#0 , (26)
1, m«r
€ = 0, m=r (27)
mro | er L r=1,..,4

We note that identities involving Um may be obtained by replacing Wm in
Eqgs. (24; by Um

We now apply the transformations given by Eqs. (24) to the stability equa-
tions IEqs. (21),. As a result, we find that all terms in each of Eqs. (21) may
be written as an infinite summation over the same trigonometric function and

over the same range for m . Hence, in each of Egs. (21), we may collect all
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terms under the same summation sign and arrive at the following form of the

stability equations for buckling Mode A:

a 3

2 ‘2 hig + €1oM Uy * z (hy, + clr")l(l O Vimen
m=0 r=1
3
-8 Um+r] - Z h2r’€mr Im - rl Uim-n
r=1
2
+ (1 - Gmo) (m + r) Um+r] - 2m h30 Um
3
-Zh [lm-rle +(1-6_)(m+12U ]
3r Im-rl mo mir
r=1
4
* z (hyy + c‘lrk)[emr Vim-rl + (1 = 6p4) Vm+rl
r=1

4
+2m (hgy + cg MV ¢ Z (hs + cgA) ['m il W
r=1

4
2
+ - dmo) (m + 1) Vm+r] - 2 hsrlemr e - rl Vim-r
r=1
v (1-6_)an+ 1YV ]- 2m3 h, Vv
mo m+r h’?O m
4
—zh [!m-r|3V +(1 -6 )(m+r)3V
7r Im-r| mo m+r
r=1
4
f
A +
+ 2(hgy + cgy W+ Z (hgr *+ CgpM | + 0 DV n
r=1
F I =00} Werer

89




2

m=1

4
= z (h9r g cgr)\) !Gmr st wlm-—rl (- 6mo) (m + 1) wm+r

r=1
4
- 2m?(h. . .+ Cyq AW -z(h v )Ilm-rlzw
m (150 * €10,0¥ "m 10,r ¥ S10,0* Im-rl
r=1
4
+(1-86 )m+r)2W l+2h [ Im-rI3W
( mo’ ¢ m+r 11,rl€mr Im-r|
r=1
4
+(1-6 )(m+r)3w l+ 2m4h \' +2h [im-rl4w
( mo m+r 12,0 m 12,r im-rl
r=1
4 - .
+(1- Gmo) (m +r) Wmﬂ” coes(my)y = 0 (28a)

‘fu[(l *O0m1) Um-1l - Um+1]' 2m o U = Ty~ €a Im - U0 )

+

(m + 1) Um+1]+ 2ty * 3,00 Vi

2
* }, (f4r X a4r7\) [-emr Vlm-rl * Vm*-rl
r-1
2
2
" 2 fSrIIm -rl Vlm-rl - (m + r) Vm+r]- 2m f60 Vm
r-1
2
-Zf [-e Im-rlzv +(m+r)2V l
6r mr Im-rl m+r
r=1
i fsll(1 + 00 Wim-1t = Wipaa|™ 2m g + 85N W

2
- z gy * a9r7‘)l-€mr Im -l W
r=1

+

(m + 1) Wm+rllsin m¥) = 0 (28b)

—= ~



© 3
z ‘2(310 = b10’\) Um * z (glr * blr}‘) l(l + émr)Ulm-rl +a- 6mo) Um+r]
m=0 r=1

3

A -
z (gzr * b21' )lemr im - rl UIm-rl
r=1

2
rd-6)(m ) Um+r| - 2m- (ggo * b301) Um
3
-N @ +b l)[lm-rlzu +(1-6_)(m+ 1)U
B3y 3r im-r| mo m+r
r=1
2
A -
* 2 By * b4r )lemr Vlm-rl +a 6mo) vm+r
r=1
2
+2m g50 vm * 2 gSr['m -1l VIm-rl Ll 'smo) (m + 1) vm+r l
=1
2
+2 (380 * bBOM Wm * 2 (gSr * bSrM {1+ Gmr) wlm-rl
r=1
+ (1 - Gmo) Wm+rl}cos (my) = 0 (28c)

In order for Eqs. (28) to be identically satisfied for all values of ¥ , each

of the braced expressions in Eqs. (28) must vanish. This yields

3 3 4
(m) E (m) E (m) (m) (m)
Z - +
10 Um ! zzr UIm-rl * zar Um+r ¥ z40 Vm - Z5r Vlm-rl
=1 r=1 r=1
4 4
(m) L (M) 2 (m)
* z Zer "mer 370 Vm * 28r Vim-ri
r=1 r=1
4 ()
m) _ -
N 2 2w =0, m=(0L2...) (29a)
=]
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(m) {m) (m) (m)
(“ X10 Um * %21 YUm-11* %31 YUmer * X0 ¥

2 2
* (m) z (m) (m)

i 2 Xsr Vim-rl * Xer Vmer T %70 "m
=1 =1
2 2

x(m) Z x(m _ _

* Z 8r wlm'-r! * 9r'wm+r = 0., m=(,2...)

r=1 r=1 (29b)

(m) (m) (m) (m)
Y10 Um Z }Zr Im-r! Z Y3 v m+r y40 m z ySr Im-rl

(m) (m)
2 Ye Vm+r ¥ y70 Z Ya Im—rl
Z y™w =0, m=012..) (29¢)
where
A _ gm) _ (m)
ij ij ij
ij ij ij
(m) _ 2(m) _ -(m)
yij = yij = (“‘yij ’
and
)
=3 TaER - (31)
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The coefficients on the right-hand sides of Eqs. (30) are given by

2(1!3) = -[2 hg - 2m° hag (32)
7 - —[(1 #8 b - im-rle by - im-riPhg | = 1,2,9)
& - - omo)[hlr - m+ r)hy - (m + 1)’ har], (r = 1,2,3)
Egg) B '[2“‘ Bso - 2m’ h70]
Eg:) = -[emr h4r + im - rl h5r - im - r12 € v hsr

- im -3 h7rl, (r = 1,2,3,4)
Eg:) = 5(1 -Gmo)[h‘lr *(m+ 1) hg - (m + r)2 her

-(m+1)] h,h_l (c = 1,2,3,4)
Bg) = -|ehgg - 2m hyg o+ 2m’ ha,of
ngr-l) = '[‘1 + O e Bgy ~ Imorl € by - Im - r'21110,:-

+ Im - rl3 & hll,r + Im - rl4 h12,r] , (r = 1,2,3,4)
Eg:) = SR Gmo)[hBr - (m+ryhy, - (m o+ r)? h10,1'

3 4 :

+ (m + T) hu'r + (m + r) hlz,r] , (r = 1,2,3,4)
o) = 2ey
A TR ST r = 1,23
2;::1) L L ON (ELE ity

93




—~(m)
X6r

=(m)
%70

=m)
x81'

—(m)
Xor

a(m)
X10

=} € c

= 2m ¢

50

+im-rlc (r =

mr 4r sr

a- Gmo) Cqp * (m + r) Cor

2
2 c80 - 2m ClO,O

e, - Im -r| €

(1+ 6m 8r mr

r

a- Gmo)[°8r -(m+r)ey - (m+ r)2 c

S e f2o]

- g
(L+6 )f, +m-1le_

-1y - (m+ 11,y |

11

- - 2m?2
2f 2m f60]

C

1

1,2,3,4)

(32 cont'd)

(r = 1,2,3,4)

9r

f21

2

-m-nr"¢c

10,r

o, = 1234

o(r = 1,2,3,4)

40
e £, 4+ | f 12 €

mrige ¥ -rlifg 4 Im-r mrfﬁr]’ r =12
-k -(m+r)f -(m+r)2f ] (r = 1,2)

4r Sr ér ]’ ?

--2mfgol
qare 08t tm-me t |, @=1,2
--GrlfSr-(.'n+r)f9r R (r=1,2)
0
0
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<(m)

=(m)
y9r

a(m)
Y10

0

2349

“€nrlgy ¢ L2

a4r (r = 1,2)

-2m 90

im -rl € .8, (r = 1,2)

-(m + r) 8. (r = 1,2)

2 .
-[2 810 ~ 2m B3

-I(l + Omr) g1y ~ Im - ri € r Sor

-8 e - m gy - @m0 g @ = 1.2,3)

-fom €5

-lsmr g4r +Im - rl 851'] , (r = 1,2)

1 -8 Byt m o DEg | = LT

) 2[3801

-(1+6 = 1,2)

mr) Bar (r
-1 -8 )gg. (r = 1,2)

- 2m2b

2b10 30
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(32 cont'd)

(v = 1,2,3)




a(m) 2

(32 concl'd)

Yor = (1 +6mr)b1r - im - rl emrbzr - m -rl bar , (r = 1,2,3)
F = @-8_ b, - @+ by - m+ e | = 1,23

75 = 0

Ag:) - €mrb4r (r = 1,2)

i = a -6, )b, (r =12

o) = 2bg,

g'(sl:) = +omr) b81' (r = 1,2)

9;11!'1) = (-8, b (r =12

The coefficiente a , b, ¢, f, g , and h in Egs. (32) are given by Eqs. (15).

By letting m take on the values m = 0,1,2.... in Eqa. (29), we obtain an
infinite system of algebraic equations in which the unknowns are the Fourier
coefficients Um , Vm , and Wm . The coefficients in this system of equa-
tions are shown in Table 1. Hence, the system of ordinary differential equations
with variable coefficients | Eqs. (10 and 11)] has been replaced by an infinite
system of linear homogeneous algebraic equations IEqs. (29), or, see Table 1
forUm » V. oand W

Using matrix notation, we rewrite Eqs. (29) as:
[5][v] - ofs]fv] - fo

where IRI and [SI are square matrices formed by the coefficients

(ﬁgn) , 9311) , ﬁgn)) and ()—((i;n) : ﬁgn) , ign)) , respectively; !VI is a
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column vector formed by the unknown Fourier coefficients Um , V_ W

m m '
The elements Ty g and 8y ¢ of [R) and [S] can be obtained from Table 1 and

Eqgs. (30, 32, and 15). For example, the diagonal element 35 5 in the Sth row
of [S] may be expressed in terms of the geometric parameters 9 and =, and
the number of circumferential waves n , as follows:
(1) -(1)
35’5 Table 1 & Egqs. (30) 2 Zgo
Egs. (82) - 2hgy =bgy * hgy * 2hy o +hyg 5 =By 9= 2hyy g hyp o
1 b2 .mi.s 3 2\ 2
Eqs. (15) 75 [- 3-v-az+3m() -2(2) +(—2-—-2-v -2n )n

2

a0 - Fu- @)@ o)

where the reference above the long equal sign indicates the means by which the

right-hand side was obtained. Similarly the element r, o = z%) ‘gl)

5
12

for a fixed value of the number of circumferential waves n, the coefficients

AT g ytom)
ij

The objective of the stability analysis is to determine the lowest value of A (or

For fixed values of the geometric paran:eters a = 2 and k= ) , and

, and y in Eqgs. (33) depend only on the load parameter A.
equivalently, the highest value of w =1/A) for which Eqs. (33) admit a non-
trivial solution. This value of A is called an eigenvalue of the system of equa-
tions and the associated nontrivial solution is called an eigenvector. The
components of the eigenvector are the Fourier coefficients Um , Vm , and Wm
These componeats are only determined up to a scalar factor. The displacement

functions

u @) = z U_cos my (3aa)

m=0
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Table 1
MODE A STABILITY EQUATIONS

i

s i v , T v , U v w . ’ s
w; U; V5 oW Vg Vg Wg U Vo W Lo v, W 9 9 Yo U Ve Yo Yy YooYy
M 13 16 1T 18 19 20 2r 22 22 24 25 % 2T 28 29 30 31 32 33 34 35 ...
i ()
284
(1) (1) L)
Zg3 264 94
(2)
Xg92
(2 (D)
Y92 Y32
L2 @ e @ L@ @
292 %33 %3 %93 Zgs  Zgg
{3} “] (3)
Xg) X62  Xy2

(3) ('ﬂ 3) 3 (3
Vo1 Y3z Yg2 Yoz Yaa

£LF.0 B O G & @ 0 B @
91 Z32 62 ‘92 33 63 93 %64 94

TV O S O S @

0 *a1 %61 *a *62 %92

M B @ ¢ B @B @ D)

YullYe Y3 Yer Ye1 Y3z Yez Yoz Vi3
A0 e @ @ e @ @ e e e oL@
70 %31 %1 %91 "3z %z %9z %33 %3 w3 84 ‘o4
Ol W) m) ) ey —
X1 F10 %50 F10 *m; 61 91 62 92 |
: A{m) _(m) _(m) (m) (m) (m) _(m) _.(m) (m)  _(m) _(m) |
¥s1 Y10 Ys0 Y70 Y1 Yer Ye: Y32 Yez Yoz 33 It s
! i {m} Am (m)  (m) (m) Zim (m) _(m) _(m) _(m (m) _(m) (o) (m) _(m)
g% Y10 %0 %10 _“;1_ %1 e 32 62 _“92 _“33_ %63 83 _ __ 64 _‘9;1_}
(m; ‘{m) mpo(m)  (m)  (m) _(m) x{m) xlml «im) (m) x{m)
Xs2 Y21 *si fm1 %10 Y0 *120 ;1 *s1 *m X62 Yg2
! M (m) (m) (m) (m) (m) (m) (m) (m) .(m) .(m) .(m) .(m) (m)
Y2 Yz Ys1 Yur Yo Ys0 Yoo Ym Yer Ymi Yaz Yez Yu2 Y3y 4
| Lm (m)  (m) _(m) _(m} _(m)  (m) Lm o (m) _(m) _(m} _(m) () LM (m)(m) Am L, (m)
gz %21 %1 "s1 %10 %40 70 T3 "y oy %32 T2 Tez %33 Zgy gy Zey  Zo4
(m)  (m) (m) Jm) o m) my  (m) (m)  (m) (m) (m) (m) (v
Naa Xgs 21 %1 %1 % Y Y *mi Y&l Yoy Xg2 ; ?

(m) (m) (m) (m)  (m) Am) o (m)  (m)  dm) (m) o (m) o im) o (m) (M (mj o (m)

Yo Ysz Ye2 Y21 Ys1 Ymi Yo Yso Yo Ymi Yer Ye1 Y3z Vg2 Yoo Yag 7
| {m) ,m) _(m) ,2m(m) (m) _(m) _(m) fm} (m) _(my _(m} _(m) M m) LM (m)  (m)  (m) (m) (m)
W fa2 Taz w2 P s s i fae Pro Tar e el %y Zgy gy gy ey Zgn ‘64 ‘a4
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vn(‘l') z Vm sin my (34b)
m=1

w©
w. (¥ z W cos 11y (34c)
m=0
p
corresponding to the eigenvalue A are called the eigenfunctions or mode shapes.
In order to effect a solution, we truncate the infinite set of equations lEq.s. (33)]
and employ a matrix iteration technique [Ref. (26)]) to determine, from Rayleigh's
quotient, the lowest eigenvalue A of the resulting finite equation system. Next,
the size of the equation system is increased and the lowest eigenvalue of the new
system is determined. This procedure is repeated until the successive values
of A have stabilized to the value Acr' Then by varying r, we obtain a set of
these values of Acr , one for each n, and the solution to the buckling problem
is given by the minimum valuc of Acr in this set. This procedure was pro-
grammed for the IBM 7094 digital computer and the numerical results are
presented in the next chapter. At this point we may remark that, although a
mathematical proof of convergence has not been presented here, the numerical
results indicate convergence of the eigenvalues within a wide range of values of
geometric parameters.
2.2.2 Mode B

For the buckling mode which is antimetric about the plane ¥ = 0, 7
(plane A-A in Fig. 1), the displacement components u @ , Vo (¥) , and wn(lll)

are represented by the Fourier series:

u (¥ = z ﬁm sin (m¥) = ﬁ'm s_ (35a)
m=1 m=1



a

v @) = z V_cos my = z v.C. (35b)
m=0 m=0

W W) = z W_sin my = z wos . (35¢)
m=1 m=1

A detailed analysis of buckling in the mode which is symmetric about the plane
¥ = 0, ™ has been given in the preceding subsection. Corresponding equations
for the antimetric mode can be obtained in the same way and therefore a detailed
analysis for this buckling mode will not be presented here.

The stability equations for the buckling mode which is antimetric about the
plane ¥ = 0, 7 are

3

5{m) 3

3 4
S(m) & ~(m) & ~(m) 5 ~m)
10 m U +zzzir Um+r+ Vm+zz v

2r Im-r|

M

m 8r  Im-r|
r=1 r=1
4
S EPW Lm0, m=z) (36a)
r=1

2
~m) ~(m) ~(m) z ~(m -
X10 Um * X21 Ulm--ll Um+1 * x m X5y Im—rl

2
~m) & + %M §; ~(m) &
* zxsr Vmer * %70 Vi Z Xer Vim-rl
r=1 r=1
2
" z;g;‘)wmr =0, m=(01,2..) (36b)
r=1
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¢

2
~(m ~(m m) & (m) 5 (m)
Y10 Ym z Yor Yim-ri 2 9( Unir * Y40 Ym * Z’Ysr v
r=1 r=1
2 2
~(m) 3 ~(m) & ~(m) &,
* z YVor Vmer * Y70 Vm * z Yar Yim-rl
r=1 r=1
Z}g;‘) e = 0, m o= (L2,...)
where
~(m) _ %(m) -(m)
£ T VI
=(m) _ s(m) =(m)
xij £1j wgij
~(m) _ ~(m) —(m)
Yi o T My T 9Ny

The coefficients on the right-hand sides of Eqs. (37) are given by

2(1?) - '[2 hio - 2m” hso]

2 E
-[-emr hlr + Im - rl h2r + emr Im - rl h3r] (r = 1,2,3)

B = hy - me by, - n?hg | o = 129
_(m) _ 3
T = -[-2m h50 + 2m h70|

(m) _ _ - - m - rl?
-E5r = [(1+6mr)h4r+emrlm r'hSr m - ri hsr

3 _
~e Im -1 h7r] (r = 1,2,3,4)

Im-ri

(36¢c)

(37a)

(37b)

{(37¢)

(38)

'{(6’;‘) = '['h4r -m+r)h, + (m+ r)? he + (m + r)3 h?r] (r = 1,2,3,4)



Tim)

70

8r

(m)
-E9r

)
i3
i
tm)

#(m)
g5r

$(m)
£6r

$(m)
g70

#(m)
CSr

A(m
§91'

+{(m)
£10

T

21

(m)
-531 -

2 4 ]
'[2 hgg = 2m"hj5 o + 2m by,

2

(38 cont'd)

3
-[-cm hgy * Im - rihy 4 e tmo-ri®hg -m-nihy

4 l _
= € im - rl h12,r (r = 1,2,3,4)
-[h -m+r)h,_ -(m+1r)°h,._+(m+r)°h
8r 9r 10,r 11,r
+(@m+r)th ] r = 1,2,3,4)
12,r 1o
2 ¢
= €nr Sir (r = 1,2,3)
Cir (r = 1,2,3)
-2m Cs0
1+ cmr) C4r + €mr im - ri Coy (r = 1,2,3,4)

<4 (m + r) c5r (r = 1,2,3,4)

2¢c -2m2c

80 10,0

2
-blm-rlcr+c im -rl®¢

“€mr c8r 9 mr 10,r (r = 1,2,3,4)

Cgr -(m + r) °9r - (m + r)2c (r = 1,2,3,4)

10r

) [2’“ f2()]

”I‘ml f11 + Im - 1If21]

~(1 -6

+ (m + l’lel

mo) [fll
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F(m)

{m)
ESr

(m)
z-Gr

70

(m)
-Esr

m)
Tor

2(m)
10

a(m)
£21

31
%
i
i

A

(m)
g70

£(m)
g81'
g(m)
g91'

7(m)
"0

m)
ﬁ(zr

-[2f - 2m? ¢

40 60 (38 cont'd)

2 -
-[(1 + 6mr”4r = o m - rl f5r - im-rl f6r] (r = 1,2)

-1 - Gmo)[f4r - (m + r) f5r - (m + r)2f6rl (r = 1,2)

’!2“‘ f90]

"[érl nr fge + 1M - T f9r] (r = 1,2)

-(1 + (m + r) f9r] (r = 1,2)

= 0me [6r1 f8r

2a

(1+s da,. (r= 1.2

(1r- émo) Br (r = 1,2)
2m a90
Im - rla r = 1,2)

Or

(1 - Gmo) (m + 1) g (r = 1,2)
2
'[2 810 ~ 2M B39

2 - 1
-i-emr Bip * im - rl Bor * €mr im - rl &3y (r = 1,2,3)



d)

~(m)
n3r

»(m)
M40
~(m)
n5r

2(m)
n6r

»(m)
70

»(m)
nBr

A(m)
n9r

" “€mr "1r

= 2 = : t
“1B1r = (m + 1) Boy (m + 1) g3rl (r = 1,2,3) (38 concl'd)
= [em g50]

-(1+6mr)g4r+emrlm-rlg5r‘ (r = 1,2)

- "841' - (m+7r1) gSr‘ (r = 1,2)

'z%d

-cmrgsrl (r = 1,2)

lese| &= 12

2
2b10 - 2m b30

2 -
b, + Im - ri b2r LI im - rl b3 (r = 1,2,3)

r

2 -
blr - (m+r) b2r - (m +r) b3r (r = 1,2,3)

1+ )b (r = 1,2)

Gmr 4r

-b (r

4r 1,2)

& b80

-Gmrber (r = 1,2)

= b (r=1,2)

8r

The coefficients a , b, ¢, £, g , and h in Eqs. (38) are given by Egs. (15).
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By letting m take on the values m = 0,1,2,.... in Egs. (36), we obtain
an infinite system of linear homoger 20us algebraic equations in which the
unknowns are the Fourier coefficients ﬁm : Vm , and va . The coefficients
in this system of equations are shown in Table 2. Using matrix notation, we

rewrite Eqs. (36) as:
~ ~ ~ ~ \
&1 - [ - o
where [ﬁ] and I 8 l are square matrices formed by the coefficients

(Egn) . ﬁgn) . fgn)) and (fgn) , ﬁgn) , fgn)) , reSpectively;|'\7|is a

column vector formed by the unknown Fourier coefficients ﬁm : Vm , and Wm ;

The buckling load is obtained by the method discussed in the preceding
subsection and numerical results are presented in the next chapter.

3. Stability Equ~tions for a Sphere

The stabilitv equations for axially symmetric buckling of a sphere subject
to gas pressure are optained by setting u = n = o - 0 in the stability equa-
tions for a torus [Eqs. (10{)] . As a result, Eq. (10c¢) which corresponds to
equilibrium in the circumferential direction is identically satisfied. And, with
the aid of the trigonometric identities given in Eqs. (13),the non-zero coefficients

in Egs. (10a and 10b) are:

= l - ..1. - - + l 1 — 4 -
h4 = kl4(3 v)S2 + 8(1 v)S4} (1 v)[482 + 884] C1 k[(2 v)T1
. T3] - (1 +v) T (40a)
1 : “1

L S e 2
hs“"z*s”*z“”’cz*8041*““’)(8*201*804)

' i (40b)

R . 2
= C, kl(l.x)+'r1]+(1+u)
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Table 2
MODE B STABILITY EQUATIONS
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hg = k%sz +%S4| - C14|k(2 :1)|’ h, = k['%‘ '%Cz '%04,

= C4i—k| (40c)
-as+n(drcric,)-cflzan], by = k36 -

1 -

k[-(z V)T, - T13]| (40d)

hjo = k[’(% *% ”)'%(1 )Gy '%C4| = Cl4t.(1 tv) - T12|'
hy, = k|-38, - 18, = ¢ tlx-2 1y (40e)
h12=kg+ < +8C ] Cl4ik| qi%z"‘%] C ‘Q(Tl)l
(40f)

€5 = q[%*%cz +'81'04]= C14'q" Cg = ql'z'* 28y * C4| C4,4“|

(40g)
cg = a[-55, - 35,]= c*ac-Tp]. ey = a2+ 50, 5] 'ld
(40h)
f, = ~g+v) +30-0C, = ¢ (e TP}, £ = -8, = ¢ *|-1)]
(401)
g edale, - e g - asmfdede)s c2lies] o
a, = a3 - 3G |- c?l-al. o - q!';?* %Czl x C12|"| (405)
where
a=50-2H (41)
and
T, = tan 1 . (42)
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With a trivial change in the independent variable

we arrive at the following form of the stability equations for symmetric buckling

of a sphere under hydrostatic pressure:

(1 +v)lvcot¢ + v+ 2w]+ k[-v(z -v + not2¢)cot¢+ \./(1+ v + cot2¢)

-2cot¢'v'-3+vb(2-v4- cot2¢)cot¢-\'r&(1+v+cot2¢) (43a)
+2cot¢'v'v'+;?]+q[vcot¢+\'r+4w+6/cot¢+{\3 = 0
~(u+cot2¢)v+{rcot¢+'s}+\ir(1+v)-q(v-\?v) =0 . (43b)

These equations are identical to Egs. (VII-76a) and (VII-76b) of Ref. (13)
provided that, as was done here, the transverse shear force Q o is omitted
from the equation of equilibrium in the meridional di1ection [Eq. (VII-76a)

of Ref. (13)}].
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TOROIDAL SHELL UNDER EXTERNAL PRESSURE -
NUMERICAL RESULTS

Numerical results for the buckling of a complete toroidal shell under
uniform external pressure are presented in this chapter. All numerical
results are for a value of Poisson's ratio, v = 0.3 .

1. Numerical Results

The procedure used to obtain the lowest eigenvalue will now be illus-
trated by means of a typical example. l.et us consider a torcidal shell
whose geometric parameters are a/h = 100 and b/a = 4, and which
buckles in Mode A with n = 2 circumferential waves. From these values,

all of the coefficients r in the infinite system of stability equations

k.2’ %k,
[Egs. (V1 — 33)] may be determined. A matrix iteration technique is then
used to get the lowest zigenvalue A of a finite system of equations which is
obtained through truncation of the infinite system of equations. The size of

the finite system of equations is determined from the number of harmonics M
used in the series expansions for the displacement components unw) . vnw) ,
and wn(z}i) . That is, in Eqs. (VI — 20), the Fourier index m takes on the
values m = ¢,1,2,..., M. The rcsults obtained from the matrix iteration
method are shown in Table 1for a system of equations corrcsponding to M = 14.

From Table 1, we see that four place accuracy in the eigenvalue A = pa/Eh

was achieved after eight iterations. Next, by assigning a sequence of values

B (e 1

to M, we successively increase the size of the system of equations until no

significant change occurs in the computed eigenvalue A. The resuits so

S

i
o
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obtained are shown in Table 2. We sce from Table 2 that the sequence of eigen-
values A converged to the value Acr =0.1746 X 10_3 . By proceeding in this
way, we can determine the eigenvalues Acr corresponding to different integer
values of the number of circumferential waves n. Such results are given in
Table 3 which shows that the lowest eigenvalue occurredat n = 2. To com-
plete the analysis of the toroidal shell with a/h = 100 and b/a = 4, itis
necessary to consider also buckling of the shell in Mode B and in the axially

symmetric mode (n = 8). The eigenvalues for these modes can be obtained

by the same procedure used for Mode A.

Table 1

RESULTS OF MATRIX ITERATION

Mode A: a/h =100, b/a =4, n =2, M=14

Iteration %\- X 103 Iteration % X 103
1 7.6551 Q 0.1746
2 1. 0454 10 0.1746
3 0.1973 11 0.1746
4 0.1763 12 0.1746
5 0.1752 i3 0.1746
6 0.1747 14 0.1746
7 0.1746 15 0.1746
8 C.1746
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Table 2

EFFECT OF SIZE OF MATRIX ON COMPUTED

BUCKLING PRESSURE

Mode A: a/h =100, b/a=4,n=2
M % x 105 M %“‘E x 10°
1 5.0164 13 0.1716
2 1. 1389 14 0.1746
3 0.4549 15 0.1746
4 0.2762 16 0. 1746
5 0.2136 i 0. 1746
6 0. 1840 18 0. 1746
7 0.1773 19 0.1746
8 0.1749 20 0.1746
9 0.1746 21 0. 1746
10 0. 1746 22 0. 1746
11 0. 1746 23 G. 1746
12 0.1746 24 0. 1746
Table 3

VARIATION OF BUCKLING PRESSURE WITh
NUMBER OF CIRCUMFERENTIAL WAVES

Mode A: a/h =100, b/a=14
pa 3 pa 3

n EL % 10 n Eh x 10

1 0.6978 0.2878

2 G. 1746 0.3873

3 0. 1923 10 0.5167

4 0.2179 12 0.6714

5 0. 2494 18 1.2427 |




The effect of the size of the system of equations on the computed eigen-
value is illustrated in Table 4 for other values of the geometric parameters
a/h and b/a. Inspection of Table 4 reveals that the number of harmonics M
required for the same degree of accuracy in thr 2igenvalue increases with
increasing a/h and decreases wiih increasing b/a.

For all cases considered, the eigenvalues for the axially symmetric buck-
ling mode were higher than the eigenvalues for the asymmetric buckling modes.
For the same value of n, the eigenvalues corresponding to the two asymmetric
buckling modes (i.e., Modes A and B) were always close to each other, and, as
can be seen from Table 5, the eigenvalues for Mode A were sometimes higher
and sometimes lower than the eigenvalues for Mode B. In all cases investi-
gated, the lowest eigenvalue occurred at n = 2 for both asymmetric buckling
modes. Some mode shapes for n =2 are given in Figs. 1 and 2.

For the limiting case of a sphere (b/a — 0) under external pressure, the
classical solution p=1.21 Ehz/a2 was here reproduced numerically for both
the asymmetric and axially symmetric buckling modes. Results for the limit-
ing case of axially symmetric buckling (b/a -- ©) can be compared to the
critical load for an infinitely long cylinder under external pressure. However,
in order to make the aralyses comparable, we first have to modify the cylinder
analysis through deletion of the transverse shear force from the in-surface
equilibrium equation. Once this has been done, the results from the two

analyses are icentical.
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Table 4

EFFECT OF SIZE OF MATRIX ON COMPUTED BUCKLING PRESSURE

Mode A, n = 2

a/h=500, b/a=2 | a/h=100, b/a=2| a/h=500,b/a=8 | a/h=100, b/a=8

M g% X 104 g%x 103 -E—;‘;— X 104 g—i X 103
6 3.9804 0.5176 0.3104 0. 1157
7 2.3602 0.3886 0.2195 0.1134
8 1. 5499 0.3203 0. 1626 0. 1132
9 1. 0051 0.2949 0. 1403 0.1132
10 0.7757 0.2848 0. 1283 0.1132
1 0.5824 0.2824 0. 1239 0. 1152
12 0.4828 0.2813 0. 1222 0.1132
13 0. 4072 0.2812 0.1217 0. 1132
14 0. 3652 0.2811 0.1216 0.1132
15 0. 3367 0.2811 0.1216 0.1132
16 0. 3201 0.2811 0.1216 0. 1132
17 0.3108 0.2811 0.1216 0.1132
18 0. 3052 0.2811 0. 1216 0.1132
19 0.3029 0.2811 0.1216 0.1132
20 0.3015 0.2811 0.1216 0.1132
21 0.3010 0.2811 0. 1216 0.1132
22 0.3008 0.2811 0. 1216 C. 1132
23 0.3007 0.2811 0.1216 0.1132
24 0. 3007 0.2811 0.1216 0. 1132
30 0. 3007




e S e

Table 5

COMPARISON Or RESULTS FOR

MODE A AND MODE B

(a) a/h = 100, n = 2
22 103
b/a =
Mode A Mode B
1.2 0.520 0.516
2 0.281 0.281
4 0.175 0.176
8 0.113 0.115
20 0.066 0. 067
i..u (b) a/h = 500,n = 2
pa ., 104
b/a Eh
Mode A Mode B
1.2 0.441 0. 440
2 0.301 0.301
4 0.191 0.192
8 0,121 0. 122
20 0.068 0.069




AXIS OF ROTATION\i

|
i
|
|
|
|
|
b/a=1.2 = b—sf b/az2 B, b—

b/a=8l s b -

Fig. 1 Mode Shapes, a/h = 100, n = 2, Mode A
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b/a=1.2 - b > b/a=2
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b/az= 4 2 b >l b/a=8 ——b >

Fig. 2 Mode Shapes, a/h = 100,n = 2, Mode B
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1.1 Buckling Curves

The accuracy of the numerical results, of course, depcnds on the use of
a sufficient number of terms in the Fourier series expansions for the displace-
ment components. On the other hand, the computer time increases rapidly
with an increasing number of terms. The convergence of the method, there-
fore, was explored through calculation of buckling loads for fixed shell param-
eters and a successively increasing number of terms. By use of these
exploratory calculations it was possible to establish, as a function of the
geometrical parameters, the number of terms needed for 1%, or better,
accuracy in the final results.

The computed critical values of the external pressures are shewn in
Fig. 3. From Fig. 3 we see, as expected, that the critical pressure p de--
creases with increasing a/h and increases with increasing a/b.

1.2 Rigid Body Modes

Let us denote the coefficients of the unknowns U 0" Vo. Ul’ V., and W1

1’

in the ith row of [S] or [S] by ai’bi’ ci’di’ and e,, respectively.

i *
Then, from Eqs. (VI- 15, 29, 30, and 32) or Egs. (VI — 15, 36 through 38).

we can obtain, for each value of i, the following relations:

(i) Mode A, n = 0

(ii) Mode A, - =1
a = e - di (2)

(iii) Mode B, n = 0
d = -e (3)
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(iv) Mode B, n = 1

bi = -a(di+ ei) - C . (4)

With these relations, we can show that the equations which govern the stability
of a toroidal shell [Los. (VI — 29) for Mode A or Egs. (VI — 36) for Mode B}
admit the fcllowing nontrivial solutions:

(i) Mode A, n = 0

A=0 (5a)
u=r = a(ed + cos ) (5b)
v=20 (5¢)
w =0 (5d)
(ii) Mode A, n = 1
A=0 (6a)
u = sin 6 (6b)
v = sin g cos 6 (6c)
w = -cos § cos 6 (6d)
(iii) Mode B, n = 0
A =0 (7a)
u=0 (7b)
vV = Ccos Y {Tc)
w = sin § (7d)
(iv) Mode B, n = 1
A=0 (8a)
u =sinygrnod (8b)
v = (1 + a cos ) cos 0 (8¢c)
w = «a sin cos 6. (84d)
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Now these solutions, which occur at a zero value of the eigenvalue A, are
recognized as being the following rigid body modes for a toroidal shell:

Case (i) Rotation about the axis of revolution (Mode A, n = 0)

Case (ii) Translation in a plane normal t> the axis of revolution

(Mode A, n = 1).
Case (iii) Translation along the axis of revolution (Mode B, n = 0)
Case (iv) Rotation about an axis normal to the axis of revolution
(Mode B, n = 1)
[Two more rigid body motions are obtained from Eqs. (6 and 8) through re-
placement of 8 by 0+ n/2 ]

Since the proposal here is to obtain buckling loads, it is necessary in each
of these cases to determine the lowest non-zero value of A for which the
stability equations admit a nontrivial solution and, of course, this value of A
was used to arrive at the numerical results already presented.

2. Compsarison With Test Results

A comparison of the results of the present theory for complete toroidal
shells and available results from tests conducted at Lockheed Missiles & Space
Company is given in Table 6a. From Table 6a, we see that test and theory
agreed to within 10%.

We note that the present results for complete toroidal shells can be used
to predict buckling pressures for partial toroidal shells which are simply
supported on the meridional edges 6 = 0, 6 = 8. For example, the solution

for a simply supported shell with g8 = n, 2 /3, n/2, ... can be obtained
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from the solution of a complete toroidal shell which-buckles in n = 2,3,4,...
circumferential waves. A 180° toroidal shell was tested at LMSC. A com-
parison between test and theory is shown in Table 6b. Again, the agreement
was within 10%.

The infinitely long cylinder (b/a = «) and the sphere (b/a = 0) repre-
sent limiting cases of a toroidal shell. For external pressure loading, it is
well known that the correlation between theory and experimental results is
reasonably good for the cylinder and quite poor for the sphere. Now the cor-
relation between the present theoretical results and the few available test
results shown in Table 6a was quite good. However, the test results were
for a slender torus (b/a = 8) , and it should be pointed out that the correla-
tion might not be as satisiactory for smaller values of b/a .

3. Comparison with Previous Investigation

The only previous investigation of the stability of a toroidal shell under
external pressure was performed by Machnig (Refs. 9 and 10). In the first of

his papers (Ref. 9), Machnig studied both axially symmetric and asymmetric

buckling modes and concluded, contrary to the present results, that the former

buckling mode gives the smallest critical pressure. In his more recent paper
(Ref. 10), Machnig considers only the axially symmetric mode. A comparison
between Machnig's results and the results of the present analysis is given in
Fig. 4.
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Fig. 4 Comparison With Previous Investigation
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Vil

FREE VIBRATIONS OF PRESTRESSED SHELLS OF REVOLUTION

The components of the applied loads per unit area of the shell's middle sur-
face are denoted by p¢(9,¢) 3 pe(O, ¢), and pz(o, ¢) as shown in Fig. IV-1.
The sheli is in a state of equilibrium, called the prestressed state of equilibrium,
under the action of the applied loads and the resulting membrane stress resultants

of the prestressed shell will be neglected. The additional quantities that develop

0(6,(1:) , and N @ eo(e,cp) . The effects of deformation

as the shell vibrates about iis prestressed state of equitibrium are denoted by
(see Figs. III-2 and 3) N¢(9,¢,t) 3 TN Q8(0,¢,t) - -8 M¢0(8,¢,t) » oo, W(0,9,t).
These additional or incremental quantities are considered to be infinitesimal.

The mass per unit area of the shell's middle surface is denoted by pu.

1. Basic Equations for Shells of Revolution

The equations of motion for a differential element of the vibrating shell are
obtained by addition of the inertia terms -rr # azv/at2 , -rrluazu/at2 , ané
I 82w/8t2 to the left-hand sides of the equations of force equilibrium

derived for the stability problem of a she!l of revolution {Eqs. (IV - 5)]:

2Fy = (N + 1Ny, -x Ny cos ¢ +{-rQ - rN qug = tN g,

*Lory(Npg@aq)' = (N 00@51) ~ T1Np @22 08 9]

)
v _
+ ophrrlpzw 0 IT 1 a—-—tz =0 (1a)
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- . ' r_ q _ .
ZFZ (rNd,o) +r1No+r1No¢ cos ¢ +{-1,Q, sin ¢ r1N0¢0wo sin ¢
- rlew(p sin ¢} + [ -7 N oW, oS ¢ + (rN‘powzz) + rl(N0¢0wzz)']
a2,
LI
+ ¢Sphrr1pzu.»<z> - I at2 0 (1b)
< = o : - - 1] - 3 - \o - []
LFq rlNo gin ¢ rN¢ rlQo (rQ¢) (rN¢0w9, rl(N9¢0w9)
- L i = \ i
rl(N00w¢) (rN¢00w¢) + [rN¢00wzl rlho¢0wzz sin ¢]
82w
+ ¢Sphrr1pz(e<z> + eo) - ITp ;5 =0 (1c)
EMI = (rMM) M+ r1M8¢ cos ¢ - rr.Q = 0 (1d)
EMZ = -(rMy) -rIM;’¢+r1M'9 cos ¢+rr1Q¢ =0 \Ze)

The rotations w and w_, are defined in Eqs. (IlI — 8) through

o’ % Y21’ 22

Eq. (III - 10) and Gph is defined in Eq. (IV —4).

The elastic laws which relate the incremental stress resultants N el
Q 9 M 0 to the incremental displacement components are given by
Egs. (IO — 18).

2. Shells of Revolution Under Axially Symmetric Loads

From Eqs. (1), we see that the vibrations of a shell of revolution are
governed by a system of partial differential equations with variable coeffi-
cients. For the case of axially symmetric loading the coefficients in these
equations are independent of the circumferential coordinate ¢ and the time t.
Consequently, it is possible to separate the space and time variables and thus

replace the system of partial differential equations by a system of ordinary
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differential equations. Such a separzi.on of variables is effected by means of

the following Fourier series representation for the incremental displacement

components:

e iw t

u(@, ¢,t) = 2 u (¢} sin (ng) e B (2a)
n=1
= iw t

v(0,0,t) = 2 v (¢) cos (n9) e (2b)
n=0
= iw t

w(d,o,t) = 2 w n(¢) cos (ng) e (2¢)
n=0

Then by proceeding in the same way as in Chapter V, we obtain a set of three
ordinary differential equations for the three displacement components un(¢) ;
vn(¢), and wn(¢) . For a given value of n, these equations are

(h1 + cl)un + (h2 + c2)un + (h3 teg)u + (h4 + °4)vn + (h5 + cs)vn

+ (h6 + c6) Vn + (h7 + °7Wn + (hs + Cg + 68)wn + (h9 + °9)‘i"n

thyg ¥ e Wyt (g Feg Wy iy, te )W =0 (32)

(f1 + al)un + (f2 + az)ixn + (f3 +a3)un + (f4 +a +a4)vn + (f5 +a )vn

4 5

tifg tagVy +(f; +ay)V + (g +agw +(Ig+ag)w + (), +a) )W,

\ o0 3 L sens - 3
Ay rapw rE,ta)w =0 G

12¢




(8 * by +bj)u, + (g, +by)u +(gy +bg)u, + (g, +by)v, + (85 +bg)V,

*+ (g +bg)V, *+ (87 + b}V + (Bg + D) wy + (8g +bg) Wy + (815 +b )W,

+ (gn + bn)iir’n + (g12 + blz)’\',\’r'n =0 (3¢c)
where

~ ~ 2
8, = 51 = -Cg = *rrpw (4)

and all other coefficients in Eqs. (3) are given by Eqs. (V —9). For convenience,

a subscript n was deleted from a,.. ,h, d 4 b and w in Egs. (3)

1 ] 68 2
and (4. We note that the functions a(¢), b(¢), and c(¢) in Eqs. (3) depend

on the prestress quantities N , and | whereas the coefficients in

40 * Noo
Eq. (4) depend on the frequency w.

3. Free Vibrations of a Prestressed Toroidal Shell

The equations governing the free vibrations of a prestressed toroidal shell
are obtained through specialization of the equations for a generai shell of revo-
lution [Eqs. (3)]. We consider the case in which the prestress is due to a
uniform pressure p; p is positive for external pressure and negative for
internal pressure. The notation for a toroidal shell with a circular meridian
is shown in Fig., VI-1.

It can be shown that a toroidal shell under an initial uniform pressure
can vibrate in a mode which is either symmetric or antimetric about the
plane ¥ = 0,7 (Plane A-A in Fig. VI-1). The symmetric mode is called
Mode A, and the antimetric mode is called Mode B. These two modes are

considered separately in the next two subsections.
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3.1 Mode A

For the vibration mode which is symmetric about the plane 3 = 0, 7,
we let
@0 0
un(tp) = z Um cos my = Z UmCm (5a)
m=0 m=0
(-} a0
v = Y v sinmy = 3 V.S (5b)
m=1 m=1
L) a0
w () = Z_ W cosmy = §; w _C. (5¢)
m=0 m=0

where, for brevity, we have used the notations given by Eqs. (VI —3). Then
by inserting Eqs. (5) into Eqs. (3) and proceeding in the same way as in

Chapter VI, we obtain the following form of the vibration equations:

K] 3
(m) z (m) z (m)
z10 Um + U| m-r| + 3r Um+r
r=1 r=1
. (M)
(m) z (m) z m
+ z40 Vm * v| m-r| 6r Vm-!-r
r=1 r=1

m (m) (m) - =
+ 2w+ z S z Mw L =0,m = (0,1,2,...)

(6a)
2 2
x(m (m) (m) (m) /4n) x(m)
*10 Um * *21 Y m-1| **31 Vm+1 o +2" V|m-x-|+z1 6r Vme+r
r=
2
*"%"Wm*z o | mor D Ko Wy < 0am = (1,2,.0) "
r=1
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3 3 2
(m) (m) (m) ,(m) (m)
Y10 Um * z Yar Vim-r| * zlysr Untr *¥40 'm * zlysr Vi m-r|
r=1 r= r=

2 2 2
(m) (m) z (m) 2 (m) -
v zyﬁr Vm+r+y70 wm+ Ygr w|m-r|+ Yor Vimer = 0
r=1 r=1 r=1

m=(0,1,2,...) (6¢c)

where
(m) _ *m) _ 1f.(m)_,a(m)
zij = zij ) inj )‘zij (7a)
(m) _ *m) _ 1 [ (m) _,z(m)
X =% - elfy My (7b)
(m) _ *m) _ 1 [o(m) _,s(m)]
and
A= B (8
and
2.2
g = B (@

The coefficients ign) ] ign) , ign) . agn) , ign) , and S"g’“) in Eqs. (7) are

given by Egs. (VI —32). The remaining nonzero coefficients in Eqs. (7) are
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;'(zrg) = 20y, (108)
2ot = +6_ Jg . (r=1,2,3,49) (10b)
2™ = (1-6 8. . (r=1,2,3,4 (10c)
o = 28y (10d)



where

*(m)
x5r

*(m)
x6r

*(m)
Y10

*(m)

*(m)
y R )

-emra4r 3 (r = 1,2
§4r , (r=1,2
2by,

1+ omr)Slr , (r=1,2,3
( “’mo)slr , (r=1,2,3)

- A2 + a2 e o)
-(1 - A3 + 403
- - vA(3 + 34%)
- -Ha

-a-vH g

(- A aad)
a-A(E 307

a- A

a-/41
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(10e)

(10)

(10g)

(10h)

(10i)

(11a)

(11b)

(11c)

(11d)

(11e)

(11f)

(11g)

(11h)

(1)



i, = (- vz)(-;- + az) (11j)
a8, = Q- v2) 20 (11k)
i, = (1 -9 3 (110)

In Eqs. (10) and (11), we have used the notations given by Eqs. (VI —6), (VI — 25),
(VI — 26), and (VI - 27).

By letting m take on the values m =0,1,2,...,in Egs. ), we obtain
an infinite system of algebraic equations in which the unknowns are the Fourier
coefficients Um R Vm , and Wm . The coefficients in this system of equations

are shown in Table VI-1. Using matrix notation, we rewrite Egs. (6) as

(R1{V} - (g)Is - ATI{V} = {0} (12)

where [R] and [S - AT] are square matrices formed by the coefficients

[R50 3] ana [ol) - o), 5 - Gl g pzfm)

oy Ry IS T VR VI IR

respectively; {V} is a column vector formed by the unknown Fourier coef-
ficients U_,V_, and W_ . The elements of the [R], [S], and [T]
m’ m m
matrices can be obtained from Table VI-1 and Egs. (7), (10), (11), and (VI — 15).
3.2 Mode B
For the vibration mode which is antimetric about the plane $ = 0,
(plane A-A in Fig. VI-1), the displacemcat components are represented by the

Fourier series:

u @) = mz=lum sin my mzz:lumsm (13a)
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v.() = 3 V_cosmy = v C_ (13b)
m=0 =0
w@ =~ 3 W_sinmy = Y LG (13c)
m=1 m=1
The vibration equations for Mode B are
3 3
3(m) 5 ~(m) ~ ~(m) =
Z10 Um + z u| m-r| * 2 Z3r Um+r
r=1 r=1
(m) . (m) 5 : (m) &
~(m) & ~(m ~(m
+ Z40 vm * 2 V| m-r | * 2 Z6r vm+r
r=1 r=1
4 4 ( -
~(m)= ~(m)y z(m = =
W *228r“’;m-r|*z Zg. W .. = 0,m =(1,2,...) (14a)
r=1 r=1
2 2
X10 Un* %21 | 1| m+1 * %49 lm -r| X6r 'm+r
r=1 r=1
: ) : (m)<
(m) ~(m)sz ~(m - -
+ W+ 2 e W) o) * z ZOW L, = 0,m = (0,1,2,...) (14b)
r=1 r=1
= ~(m)s= ~(m) (m) <(m)g
y(ll: z Yor U|m -r| 2 Y3 U.n+r V 2 y5r | m-r|
2 2
Fmy mg 2 Hm) Z 7(m -
z Yér 'm+r y70 y8r | m-r| 4 Yar m+r
m=(1,2,...) (14c)
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where

given by Eqs. (VI —38).

¥(m)
$70

¥(m)
¢ §r

sm) _

gS)r

;(m)

£40

g(m)
g(m)

*(m)
Mo

*(m)
Nor

*(m)
M3r

The coefficients Egn) ,Ei(‘_n) a(m) #(m)

$ My 0

(15a)

(15b)

(15¢)

’ é(m) , and ﬁgn) in Egs. (15) are

The remaining nonzero coefficients in Eqs. (15) are:

2080

-€
mr 8r

ot

8r

25.40

(R 6mr)a4r

(1- 6m0)§4.r

10

ot

“Cmr 1r

o

1r
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1,2,3,49

1,2,3,49)

1,2,3)

1,2,3)

(16a)

(16b)

(16c)

(16d)

(16e)

(16f)

(16g)

(16h)

(161)
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Using matrix notation, we rewrite Eqs. (14) as:

(®1{%} - (§)18 - AT {9} = {0} (1)

where [R] and [§ - AT] are square matrices formed by the coefficients
* x * A
lf(m)  p(m) (m)] and lg(m) c(m) n(m) M(m) . §(m) Mgm)] ,

M ij ij ’7ij j
respectively; {V} is a column vector formed by the unknown Fourier coef-
ficients U_ ,V_ , and W_ . The elements of the (R], (8], and [T)

m’' m m
matrices can be obtained from Table VI-2 and Egs. (11), (15), (16), and
(Vi - 15).

5.3 Eigenvalues and Eigenfunctions

The eigenvalues and corresponding eigenfunctions for Modes A and B can
be oltained from Eq. (12) ard Eq. (17), respectively. For a given value of
the pressure paranieter A, the lowest eigenvalue Q for which these equa-
tions admit a nontrivial solution may be obtained by the same method as v.as
used in Chapter VII for the stability analysis of a toroidal shell. The corre-
sponding eigenfunctions or mode shapes can be determined after substitution

of the computed eigenvalue in Eqs. (12) and (17).
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CONCLUDNING REMARKS

This work presents a theoretical investigation of the stability of thin shells
of revolution. Stability equations are derived for a shell of revolution under
general loading conditions. These equations are specialized for a toroidal shell
loaded by uniform external pressure. The resulting equations are solved by use
of series expansions in the circumferential and meridional directions for the
displacement components that develop during buckling. The analysis shows that
a toroidal shell can buckle in a mode which is either symmetric or antimetric
about the equatorial plane and that the corresponding buckling pressures are
always close to each other. Axially symmetric as well as asymmetric buckling
modes are considered. The numerical results show that the asymmetric modes
give lower buckling pressures. Design curves which give nondimensional buck-
ling pressures for a wide range of the toroidal shell's geometric parameters
are presented. In addition, the variation of the mode shapes with the geometric
parameters is illustrated. In a comparison between the resulits of the present
theory and tor few available tests on toroidal shells, it is shown that test and
theory agree to within 10%. For the limiting case of a sphere under external
pressure, the well-known classical result (p = 1.21 Ehz/az) is obtained
numerically for both the asymmectric and axially symmetric buckling modes.
Finally, equations governing the free vibrations of a prestressed sheli of revo-
lution are presented and specialized for a toroidal shell subject to external or

internal pressure.
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