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cross section (see Fig. V! - 1) 

distance between the center of the cross section and the axis of a 
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middle surface (see Fig. IV - 1) 

radius of a parallel circle (see Fig. Ill - 1) 

meridional and circumferential radii of curvature (see Fig. Ill - 1) 
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time 

displacement functions 

circumferential, meridional, and radial displacement components 
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Fourier coefficients [see Eqs. (VI - 20)] 
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- cos (p , cos 2(p 
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Kronecker delta [see Eq. (VI-25)] 
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INTRODUCTION 

The first solution in the field of buckling of thin shells was given in Lorenz's 

paper on axially symmetric buckling of axially compressed cylinders (Ref. 1). 

In 1932, Flügge (Ref. 2) developed a general theory for buckling of cylinders and 

presented numerical results for simply supported cylinders under various loading 

conditions.   For the case of the uniformly loaded cylinder, Flügge made the 

usual assumption that the prebuckling stresses could be approximated by a 

homogeneous membrane state of stress.   Therefore, the stability equations con- 

tain constant coefficients, and exact solutions can readily be obtained for isotropic 

or orthotropic cylinders with arbitrary boundary conditions.   However, when the 

applied loading is nonuniform the differential equations governing the stability of 

the cylinder will have variable coefficients.   Consequently it becomes considerably 

more difficult to obtain solutions; for example, see Flügge's analysis of a 

nonuniformly compressed cylinder (Ref. 2). 

For shells other than cylindrical, the stability equations contain variable 

coefficients.   Most of the work done on noncylindrical shells has been devoted 

to spheres fRefs. 3 through 5) and cones (Refs. 6 and 7).   Relatively little atten- 

tion has been devoted to shells with variable Gaussian curvature.   Mushtari and 

Galimov (Ref. 8), using shallow shell equations, presented a simple formula for 

the critical normal pressure of an ellipsoidal shell.   Their analysis, however, 

appears to be greatly oversimplified.   Machnig (Refs. 9 and 10) investigated the 

stability of a torus subject to uniform external pressure.   In his first paper (Ref. 9). 

Machnig studied both axially symmetric and asymmetric buckling modes and 

concluded that the former gives the smallest critical pressure.   A parturbation 

technique was used to solve a system of partial differential equations governing 
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c the asymmetric buckling mode.   Of course, it should be possible to separate the 

space variables in the stability equations for a complete shell of revolution sub- 

ject to axially symmetric loads and thereby obtain a system of ordinary differ- 

ential equations.   Apparently, Machnig had to contend with partial differential 

equations instead of ordinary differential equations since it appears that it is not 

possible to separate the space variables in his equations for the asymmetric 

buckling mode.   In his more recent paper (Ref. 10), Machnig considers only the 

axially symmetric mode.   A review of that paper was given by Koiter (Ref. 11). 

The reviewer indicates that asymmetric buckling modes may well result in 

smaller buckling pressures for some values of the shell's geometric parameters 

and that the power series expansion must break down for toroidal shells with 

small values of b/a (see Fig. VI-1* for notation).  In spite of these critical 

remarks, Koiter concludes that Machnig' s paper must be regarded as a 

significant first step in the solution for the buckling of a torus. 

In this work, the stability of a general shell of revolution subject to arbitrary 

loads will be investigated.   First, the elastic law which relates the incremental 

stress resultants to the incremental displacement components will be derived. 

This law, derived from elementary considerations, turns out to be the same as 

the elastic law derived by Reissner (Ref. 12) who used the methods of differential 

geometry.   Next, the equations of equilibrium will be applied to a differential 

element of the deformed shell.   The resulting partial differential equations are 

linear and homogeneous in the incremental quantities, and the specification of 

linear and homogeneous boundary conditions results in an eigenvalue problem. 

* Combined Roman-Arabic numbers designate cross-chapter references of 
figures or equations. 



Thereafter, only complete shells of revolution under axially symmetric loads 

will be considered.   This means that the coefficients in all equations are inde- 

pendent of the circumferential coordinate 0 and that all incremental quantities 

are periodic functions of 0 (see Fig. ni-1 for notation).   Therefore, it is pos- 

sible to express all incremental quantities as Fourier series in 9 and replace 

the partial differential equations by ordinary differential equations.   Then, the 

stress resultants will be eliminated from the equilibrium equations, and three 

ordinary differential equations for the three incremental displacement components 

will be obtained. 

Next, by specialization of these equations, the ones governing the stability 

of a toroidal shell subject to a uniform external pressure are obtained.   It turns 

out, as might be expected, that two types of asymmetric buckling modes exist: 

one which is symmetric with respect to the plane i - 0, 7r (see Fig. VI-1) and 

one which is antimetric with respect to this plane.   This will be evident when 

series expansions are used for the incremental displacement components-, as a 

result, two uncoupled systems of linear homogeneous algebraic equations are 

obtained for the free constants in the series expansions.   A matrix iteration 

technique is employed to obtain the lowest eigenvalue and the corresponding 

eigenvector for each system. After the eigenvector has beeu computed, the mode 

shapes are given.   The matrix iteration method is programmed for the IBM 7094 

digital computer and numerical results are presented in the form of design 

curves which give nondimensional buckling pressures for a wide range of the 

shell's geometric parameters.   These results are compared with available test 

results as well as with Machnig's results. 

Finally, equations for the free vibrations of a pre-stressed shell of revolu- 

tion will be derived and then specialized for the toroidal shell subject to external 

or internal pressure. 



r 

r 

ii 

FUNDAMENTAL CONCEPTS AND ASSUMPTIONS 

1.    Concept of Buckling 

In order to establish basic notions and at the same time to introduce a 

certain terminology, we will discuss the concept of bifurcation buckling in this 

section.   The ideas expressed here may be found in many works; e.g., Refs. 

13 through 18. 

Let us consider a conservative mechanical system subjected to applied 

loads.   The distribution and direction of the loads are assumed to be known. 

The magnitude of the loads is assumed to be characterized by a single non- 

negative scalar X, which we call the load parameter.   When X is zero, all 

the applied loads vanish and the system is undeformed.   For other valuer of X, 

the system will deform and develop stresses in order to be in equilibrium under 

the applied loads.   Let the load parameter increase monotonically from its 

initial zero value.   Let us assume that for sufficiently small values of X,   there 

exists a unique solution to the equilibrium problem for the system.   The equi- 

librium configuration given by this solution is called the basic state or prebuckled 

state. It may happen that for some value of X,   say X = X*,  there exists another 

solution or equilibrium configuration, called the buckled state, which is infinitesi- 

mally close to the basic state.   If such a value  X*  exists, then it is called the 

critical value of the load parameter.   The objective of the buckling analysis is 

to determine X* .    The existence of two adjacent equilibrium configurations for 

the same value of the load parameter means that there is a bifurcation of the 

basic state.   The stresses and displacements of the prebuckled state are called 

the prebuckling stresses and prebuckling displacements.   At the critical value 



of the load parameter, the differences between the stresses and displacements 

in the prebuckled and buckled states are called the additional or incremental 

] stresses and displacements. 

In the present analysis, the mechanical system is a shell of revolution; the 

applied loads are the conservative external pressures p0(A),  pA>),  p (X); 

the basic state is assumed to be a membrane state of stress; the prebickling 

stress resultants are denoted by  N0O,  N  _,  Nfl,Q,   N. 0Q ; and the incre- 

mental quantities are denoted by u, v, w,  Nö,  N   ,  N0   ,  N  .,  Q0,  Q   , 

M0'   *V   M<t>6' 
In the mathematical formulation of the stability problem, we assume that 

the shell is in a buckled state and we seek the smallest value of the load param- 

eter for which all the basic equations can be satisfied.   The basic equations in 

shell theory, or in any branch of solid mechanics, are the equations of equilib- 

rium, the equations for kinematics, and the constitutive equations (Hooke's law 

for a linearly elastic material).   Before presenting these equations, we list in 

the next section the assumptions and limitations used in the analysis. 

2.   Assumptions and Limitations 

(a) The shell is made from an isotropic and homogeneous material which 

obeys Hooke's law (linearly elastic material). 

(b) The thickness of the shell is constant. 

(c) The thickness of the shell is small in comparison with the radii of 

curvature of the middle surface (thin shell approximation). 

I (d)   Kirchhoff-Love hypothesis 

j (i)   A straight line normal to the middle surface before deformation 

1 remains straight and normal to the middle surface after 
I 
I deformation and retains its original length. 



#* (ii) The normal stresses acting on surfaces parallel to the middle 

su~ face are small in comparison with other stresses and may 

be neglected in the stress-strain relations. 

(e) All incremental quantities are infinitesimal. 

(f) The incremental strains are small in comparison with the incremental 

rotations. 

(g) The basic state may be approximated by a membrane state of stress. 

6 
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THE ELASTIC LAW 

The relations lietwaen the incremental stress resultants and the incremental 

displacement components of the middle surface will be presented in this chapter. 

These relations, which represent the elastic law for the shell, are obtained 

through combination of the equations of kinematics and the constitutive equations. 

The elastic law for the shell buckling problem considered here must be identical 

to that for the problem of infinitesimal bending of a shell of revolution subject to 

external loads.   Therefore, we could use the elastic law derived by Flügge 

(Ref. 13) in his analysis of the linear bending of a shell of revolution under 

external loads.   However, instead of proceeding directly to Flügge1 s final results, 

we will closely follow his derivation of the elastic law in order to see what assump- 

tions are made and at what stage they are made.   The elastic law derived here will 

differ from the one derived by Flügge because we will deviate somewhat from 

his derivation. 

1.   Geometry of a Shell of Revolution 

The middle surface of a shell of revolution is shown in Fig. la.   The equa- 

tion defining the meridian,   y = y(r)  or  y = y(6),   is assumed to be given.   The 

lines of principal curvature are the meridians  (0 = const.)  and parallel circles 

(rt = const.).    A point  P on the middle surface of the shell is determined by 

the intersection of a meridian and a parallel circle.   Accordingly, we i se the 

angles 0  and  0  as the curvilinear coordinates of the middle surface of the 

shell. 



c 

c 

Y~ 
MERIDIAN   y = y(r) 

MIOOLE  SURFACE 

PARALLEL 
CIRCLE 

NORMAL TO SHELL 

(a) 

( 

r,=OP 
r2=AP 

(b) 

Fig.  1   Notation for a Shell of Revolution 
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The principal radii of curvature r. and r„ are shown in Fig. lb.   From 

this figure we can obtain the following useful relations 

r = r_ sin o (1) 

dr £■ = r2 cos p   . (2) 

The following notation will be used for the derivatives with respect to the 

independent variables 0 and p 

g?<>- < >' <3> 

^(  >-()■«(•) (4) 

2.   Stress Resultants 

Integration of the stress components through the thickness h yields expres- 

sions for the stress resultants acting on a unit length of the section 0 = const, 

or p = const,   (see Fig. 2 for notation and sign conventions): 

(5a) NP = f ap(l + z/r2) dz 
-h/2 

h/2 

N* 
= f aQ(l + z/rx) dz 

-h/2 

h/2 

N    n 00 "   i        V1 + Z/r2)dz 

-h/2 

h/2 

N9p = /    V1 + z/ri)dz 

(5b) 

(5c) 

(5d) 

-h/2 



r 

N 9 

(a) STRESSES 

MIDDLE 
SURFACE 
(2=0) 

«t 
(b) STRESS RESULTANTS 

%*> 

Fig. 2 Sign Convention for Stresses and Stress Resultants 
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h/2 

% = -( T0Z(1 + Z/r2)dz 

-h/2 

h/2 

%= " / T0z (1 + z/rl> dz 

-h/2 

h/2 

M0= " / ^p*1 + z/r
2)dz 

-h/2 

h/2 

M0= - J     za0(l + z/rx)dz 
-h/2 

h/2 

(5c) 

(5f) 

(5g) 

<5h) 

%   =   "/     ZV(liZ/r2)dZ (51) 

-h/2 

h/2 

M00  =  -/      ZT
0p<1 + z/rl)dz <5*> 

-h/2 

The present analysis is for a thin shell (Assumption n-c).   Therefore, 

h/r. « 1 (i = 1,2) and, in Eqs. (5), we neglect the terms z/r. in comparison 

with unity.   As a result, Nfl    = N „ and M~    = M () . 

3.   Constitutive Equations 

The Assumption (Il-a) that the shell is made from a linearly elastic material 

enables us to express strains in terms of stresses by means of Hooke's law. 

11 



Since normal stresses on surfaces parallel to the middle surface are neglected 

(Assumption n-d), Hooke's law takes the form 

% = f<%" "V <6a) 

ee   =  |(or0 -  wr0) (6b) 

2(1  +   ^) j 

where E is Young's modulus and v is Poisson's ratio. 

Solving Eqs. (6) for the stresses in terms of the strains, we find 

<?a) 

(7b) 

(7c) 

4.   Displacement and Rotation Components 

The circumferential, meridional, and radial displacement components of a 

point P on the middle surface of the shell are denoted by u , v , and w , 

respectively (see Fig. 3a).   The displacement components u and v are taken 

positive in the direction of increasing 0 and o , respectively, w is positive 

when it points away from the center of curvature of the meridian. 

In the present analysis, the rotation components   u;   ,    u.'  , and a;   will be 

used to determine the contributions of prebuckling quantities to equilibrium of a 

deformed shell element.   The angle of rotation of the normal to the middle sur- 

face about the tangent to the parallel circle at P is denoted by u.() (see Fig. 3r). 

Now because of the Kirchhoff-Love hypothesis (Assumption Il-d), u^ can be 

12 

% 
= E 

rS + V€ 
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ae = 
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-   V 
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M.S 

(a) DISPLACEMENTS (b) ROTATIONS 

Fig. 3  Displacement and Rotation Components 

I 

w*d<*> 

(o) (b) 

Fig. 4  Rotation Component u>fl 
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r related to the displacement components of the middle surface.   To establish this 

relationship, let us consider the displacement of two neighboring points P and 

Q on the same meridional curve of length r.di   (see Fig. 4).   The radial dis- 

placement of Q exceeds that of P by an amount wd<   (see Fig. 4a).   Conse- 

quently, the tangent to the meridian at P rotates through an angle wdo/r.dp 

and, by virtue of the Kirchhoff-Love assumption, the normal at P rotates 

through the tiame amount.   The displacement v along the meridian causes the 

normal at P to rotate through an angle v/r. (see Fig. 4b).   The circumferential 

displacement u does not contribute to the rotation of the normal about the tangent 

to the parallel circle at P .   Hence, by adding the two contributions to o Q  in 

accordance with the sign Convention shown in Fig. 3b, we obtain 

w - v \ 
ri / 

* "   ■   ' (8) 

Proceeding in the same way, we can show that the angle of rotation of the 

normal about the tangent to the meridian at P is given by 

-f-»""    ) . (9) 

where the positive sense of u0 is shown in Fig. 3b. 

The rotation of the shell element around the normal, denoted by u>   (see J     z  • 

Fig. 3b), is not clearly defined because of the in-surface shear deformation. 

The angle of rotation   ....    of the tangent to the parallel circle around the normal 

differs from the angle of rotation u 2 °* tne tangent to the meridian around the 

normal.   Instead of using an average rotation u   =   cc . +   u> „ , we more 

14 



properly use the two separate rotations u      and u?, 2  when we determine the 

contributions of the prebuckling quantities to the equilibrium equations of a 

deformed element.   We let 

Z 

zl 
(10) 

z2 

where it is understood that u>    = oo .   if the prebuckling quantity under consid- 

eration acts in the direction of the tangent to the parallel circle, and that 

oo    ~ w 0  if the prebuckling quantity acts in the direction of the tangent to the z        zz 

meridian.   From Ref. 13,   a? ,   and w „  are related to the displacement zl z2 

components of the middle surface by 

v' 
zl r 

wz2  = Tx -r
00**    ' (11) 

5.   Equations of Kinematics 

Let A  be a point located at a distance  z from the middle surface and let 

the normal through A  intersect the middle surface at the point  P .    From 

Eqs. (VI-2) Ref. 13, the strain-displacement equations for point A  are 

v.  + w. 

•41 + # 
u'A + v. cos d> + w. sin 4> 

eQ   = j —  (12b) 

I1 +1) 
yCB 

^A       UA COS »  ' VA (12C) 

•41 + *)   -(l +3 
15 
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( 

Once again, we invoke the thin-shell assumption and thus neglect z/r. in Eqs. 

(12).   Hence 

VA     WA 
f.     = — - (13a) 0 r. x 

u.  + v. cos 0 + w. sin 0 
(13b) 

UA       UA COS P   " VA 

V - 77 - -A—r  <13c> 

The right-hand sides of Eqs. (13) contain the displacement components u.   , 

v.   ,  and wA of point A .   Now, the Kirchhoff-Love hypothesis enables us to 

relate u.   , v.   ,  and wA to the displacement components u , v ,  and w of 

point P on the middle surface and to the rotation components au  and  u   . 

Since u-    and  u-   can be expressed in terms of u , v ,  and w by means of 

Eqs. (8) and(9), we see that the adoption of this hypothesis is equivalent to re- 

ducing the problem of determining the displacements of the shell to that of 

determining the displacements of the middle surface.   The Kirchhoff-Love 

hypothesis implies that the displacement components vary linearly through the 

thickness and that the radial displacement component w.  is independent of 

z ,  i.e., 

uA       u - -oz (14a) 

VA       v  '  a07' <14b) 

w.   -   w    . (14c) 

IG 



By inserting into Eqs. (14) the expressions for UQ  and a-   given in Eqs. (8)and (9), 

we obtain the relations between the displacement components of points A and P : 

UA = u + (^iLni  " w,)f" = "f1 + r" )" w'r" (15a) 

vA = v 4 (v - w) f-  = v/l + j- y w f- (15b) 

w.   = w    . (15c) 

These equations are the same as those derived by Flügge (Ref. 13).   The more 

general elastic law derived in Ref. 13 was simplified for a thin shell by re- 

placing the terms (1 + z/r.) by unity.   In Ref. 13, and in the present analysis, 

this thin shell approximation was introduced into the equations defining the stress 

resultants   Eqs. (5)   and into the strain-displacement relations JEqs. (12)1. 

Reference 13 applied the thin shell approximation to Eqs. (15) and, as a result, 

neglected the underlined terms in Eqs. (15).   For example, in Eq. (15b), the 

term v ~-  was neglected in comparison with v .   However, in the present 
rl 

analysis, v/r. is interpreted as being a part ^i the rotation 

;w - v 

and, as such, is not neglected.   Therefore, the underlined terms in Eqs. (15) 

are not neglected in the present analysis. 

17 



f 

r 

( 

6.   Elastic Law 

From Eqs. (13) and (14), we obtain the strains ea ,   e   and y n   at a distance 
Ö 0 0Ü 

z from the middle surface in terms of the displacements u , v , and w at the 

middle surface and their derivatives: 

€0 =  ?p " ZK0 <16a) 

€d = ?0 " ZKe (16b) 

I«*   =   y*a>   =   \o   -  Z(2Krtfl)     , (16C) 00  "   '00 '00       ^**00 

where 

e0 = 
V + w 

ri 

f _    — u' + v cos 0 + w sin0 
e0 - r 

7 00 
U        U COS 0   - v* 

rl 

KA = 
1   • 

(17a) 

(17b) 

(17c) 

(17d) 

2K00  = ' F &0 ' F wb + "F we cos 0   • (17f) 

and, from Eqs. (8)and(9), 

w - v 
8     v ri 

. w' - u sino 
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The strains  €   ,   e0 , and Y00 from Eqs. (16) are now entered on the right- 

hand side of Eqs. (7) to give the stresses <r   ,  c^ , and   T^ in terms of u , 

v , and w .  We now introduce these stresses into the integrals   Eqs. (5) , 

which define the stress resultants, and finally obtain the elastic law for a shell 

of revolution: 

Nft =  D(?ö +  *fl) = 0 

N„  = 

N. 

0 "   "*0J 

T#e   + V€9) 

2       r00 

T> v + w ,    /u' + v cos0  + w sin0 \ =   PT"    % F ' 

4 u
1 + v cos0 + w sin0 

♦ ^) 

D(l - v) 
2 

u_  _ U COS 0   - v' 
r    " r 

MA = K(Kft+ wcÄ) = K 0     "9' 

M0 =  K(V  vV 

(18a) 

(18b) 

(18c) 

M00  
= K<x " *>*, 00 

K(-i^-i^oQ.»)+»(.i^ j 

1   -   V)   K-7-^0   -7^   ^7^CO80)I 
t 

1   /w* - u sinp\      1 /w - v\ 
2rA    r    / 2r\ ri / 

(18d) 

(18e) 

= K( 

=  K(l - 1/) 

1 /w' - u sin0 \ 
(18f) 
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c where the extensional and bending stiffnesses are given by 

C 

i 

Eh 
D =      *" 2        , (19) 

1 - / 

and 

K  =  ^-5-    , (20) 
12(1 - /) 

respectively. 

(Note that in a Donnell-type analysis,   u and v are discarded from the 

formulas for K^ ,   K   , and K^J . 
0 0 09 

The elastic law given by Eqs. (18) is the same as that derived by 

Reissner (Ref. 12) and Gravina (Ref. 20) who used the methods of differential 

geometry. 

The elastic law gives six equations for nine unknowns (N   , N   , N     , 

M   , M~  , M . , u , v , w) and therefore are not sufficient to determine the 

unknowns.   The additional equations needed are, of course, found from the 

conditions of equilibrium which will be derived in the next chapter. 



IV 

EQUATIONS OF EQUILIBRIUM 

In deriving the equations of equilibrium for the linear bending analysis of 

shells it is irrelevant as to whether the forces and moments are assumed to act 

on a deformed or on an undeformed element of the shell.   In shell stability 

problems, however, the equations oi equilibrium must be written for an element 

of the deformed (buckled) shell.   These equations will be derived for a general 

shell of revolution in this chapter. 

1.   Equilibrium Equations for the Stability of a Shell of Revolution 

In this section, equations of equilibrium are derived based on the classical 

assumption that the effects of prebuckling rotations may be neglected. 

Figure 1 shows the middle surface of a differential element of the shell in 

the prebuckled state.   At the center of the element, point P , there is shown an 

orthogonal right-handed system of axes X , Y , and Z with the X axis in the 

direction of the tangent to the meridian at P , the Y axis in the direction of the 

tangent to the parallel circle at P , and the Z axis in the direction of the outward 

normal at P .   The force and moment equations of equilibrium for a differential 

element of the buckled shell will be written with respect to the X , Y , and Z 

directions.   The terms that contribute to the equilibrium equations may be divided 

into four groups denoted as Group 0, Group 1, etc.   Group 0 contains only the 

prebuckling quantities (N0Q , N0() , N^ , N0?>0 , P?>   , p0   ,  pz) .   Due to 

prebuckling equilibrium, the net contribution of these terms to the equilibrium 

equations for the buckled shell must be zero.   Group 1 contains only the incre- 

mental quantities which develop as the shell passes from the prebuckled state to 

the buckled state.   It. a linear stability analysis, only terms which are linear in 

the (infinitesimal) incremental quantities are retained.     These terms are the 
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Fig. 1  Element of Prebuckled Shell 
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same as those present in the linear bending analysis of shells.   The Group LI 

terms arise because, in the buckled state, the prebuckling quantities 

N N N N 
^00 '     00 *     </>0O '     0<t>0 

P0 ' P0 » Pz 
act on a deformed element.   These terms con- 

sist of products of a (finite) prebuckling quantity and an (infinitesimal) incre- 

mental displacement or its derivative.   The contributions to the equilibrium 

equations of terms which are linear in the incremental quantities, i.e., the 

terms in Group 1, 2, and 3, are given in the next three subsections. 

1.1  Group 1:  Incremental Stress Resultants 

In the determination of the contributions of the .incremental stress resultants 

N,  ..... 'Qfl .... ,   Mfl,   to the equations of equilibrium for the buckled shell, 

it is irrelevant as to whether the stress resultants are assumed to act on a 

buckled or on an unbuckled element.   This is because the equilibrium equations 

for the buckled element differ from those for the unbuckled element only in terms 

which are nonlinear in the incremental quantities, and, since the incremental 

quantities are infinitesimals, these nonlinear terms vanish.   Thus, the contri- 

butions of the incremental stress resultants may be obtained from a consideration 

of equilibrium for an undeformed element.   The results of such a consideration 

follow (Ref. 13): 

£Fi =  <r*y" + rxN^  - riNfl cos©  - rQp (la) 

2F2 =  <rV" + rlN0 + Tl\o COS*   ■ rl Q0 8in * (lb) 

^3 =  ■ rlN0 sin * " rN0 " rl % ' <rQo)* <lc> 

2M1 =  <rÄV" + rlMo + rlMep cos * - rrl % <ld> 

£M2  =  " <rM/  " rlM00 + riM0 cos *  +  ni%   ■ <le> 

_23_ 



Note that a common factor do dp has been omitted in Eqs. (1).   This factor 

will also be omitted in the sequel when other contributions to the equilibrium 

equations are obtained. 

1.2  Group 2:  Prebuckling Stress Resultants 

When the sKll buckles, the prebuckling stress resultants rotate and thereby 

develop components which contribute to the equilibrium equations.   These compo- 

nents, which consist of products of a prebuckling stress resultant and an incre- 

mental rotation, will now be determined for each of the prebuckling stress 

resultants N0„ , N90 , N^ , and N^ . 

When the shell passes from the prebuckled state to the buckled state, the 

meridional force N rdö , acting at point M , of the section p = p. (Fig. 1 

and Fig. 2?), participates in the incremental rotation  u>   and therefore develops 
a 

a component 

Kl   =  T\o^6d0 

which points in the direction of the outward normal (to the prebuckled shell) at 

M. . Similarly, the meridional force N .rde + (N -rd0)*dv> , acting at point 

M_ of the section 0 = 0Q + dp , develops a normal (or radial) component 

K+i -1 vds + ^ord9)"d0l K+ w'<H= rNeow0d0 + <rN0o^de)d0 

which points toward the center of curvature of the meridian at point M2 .   The 

contributions of the components K    and K    to the equilibrium equations can 

easily be seen from Fig. 2b.   Thus, due to the difference in their directions, 

K. and K. contribute an amount -rN ^. to the equilibrium of forces in the 
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direction of the tangent to the meridian at P , i.e., in the X direction; and due 

to a difference in the magnitudes of K   and K    , there is a contribution 

-(rN nuO   to the equilibrium of forces in the direction of the normal at P , 

i.e., in the Z direction. 

Due to the incremental rotation ^ _ ,the meridional force N Qrd0 , at the 

section p = ?>0 , develops a component 

K„  =  rN nu.-d0 

which points in the negative Y direction (see Fig. 2c), and the meridional force 

rN.de + (rN   do) dp , at the section p  - p_ + dp , develops t component 

K2  =  [rNpOd° + <rN*Od0>'Hk2 
+  "z2<H =   rNpo"z2d° + <rNoO-z2d0)d?> 

/* + 
f which points in the positive Y direction.   Since both K_ and K„ act in the Y 

direction, there is a contribution ^(rN nu; „)    to equilibrium of forces in the 

Y direction as a result in the difference in magnitudes of K_ and K    . 

The stress resultant N     does not develop any components due to the 

rotation u,    since the direction of N _ is parallel to that of   u.   . 
p \>0 y 

Thus, the contributions of the prebuckling stress resultant N     to the 

equations of equilibrium of forces in the X ,  Y , and Z directions are 

~rNoo^0* +(rNoou;z2)   * and "^OO^   ' resPectively- 

1.2.2   N^ 

The hoop force N'   r.dd , acting at point C. of the section 0 - 0p (Fig. 

3a), participates in the incremental rotation u;,,  and develops a component 

K3   =   rlN»0%* 

( 
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Fig. 3 Contribution of N 
00 

27 



r 

( 

which points in the direction of the outward normal at C. . Similarly, the hoop 

force N 0r-dp + (N .r.dffy'do , acting at point C2 of the section 0 = QQ + de , 

develops a normal component 

K3  =  [rlN0Od* + <rlN0Od*HK + Wid0 

= riN0oV0+(riNeoV0),de 

which points toward the center of curvature of the meridian at point CL .   From 

Fig. 3a we see that due to a difference in their directions, the forces K_ and 

K_ contribute an amount 

"<riNeoVinp) 

to the equilibrium of forces in the Y direction, and that due to a difference in 

/~~ the magnitudes of K_ and Kg there is a contribution 

-ri<N9o%>' 

to the equilibrium, of forces in the Z direction. 

Due to the incremental rotation u> .  , the hoop force NflAr.dp , at 0 = CA , 
zi. j yu l u 

develops a component 

K4  =  rlN0O"zld* 

which acts along the tangent to the meridian at 0 = 0O and which points in the 

direction of increasing 0 (Fig. 3b), and the hoop force N-.r.d^ + (Noor.d0),d0 , 

at the section 0 = 0    + dö , develops a component 

K4= KN0odp + <riN«o*Hki+ wzide 

=
  rlN*Ow*l* + (riN0Owzld0)'dO 



which acts along the tangent to the meridian at 0 = 0Q + d$ and which points in 

the direction of decreasing q> .   From Fig. 3b we see that the components K^ 
+ 

and K- contribute an amount 4 

-rl<N80^1> 

to the equilibrium of forces in the X direction and an amount 

-^öO^zl008* 

to the equilibrium of forces in the Y direction. 

The stress resultant N - does not develop any components due to the rota- 

tion   Ufy . 

Thus, the contributions of the prebuckling stress resultant N     to the 

equations of equilibrium of forces with respect to the X , Y , and Z directions 

are -r^^',  -r^^sin* - rfl^co.»   , and -^(N^)* , 

respectively. 

1.2.3  N, - andN an 000 ^00 

The contributions of the prebuckling stress resultants N    .  and N   0 to the 

equations of equilibrium for an element of the deformed shell can be obtained in 

the same way as the contributions of N . and NÖQ .   Thus, according to Figs. 

4 and 5, we obtain for equilibrium of forces in the X , Y , and Z directions 

the contributions 

-rl*V>*z2COS*   -rNp0Ow0   -<rN*0Owzl>'   ' 

-riNo*o^sinp + 'V'Wz/ 'and 

•rl<Vo>'  " rlN0QOU'z2sin0 " <r%oV'   + rWz.l  '  resPectively- 



r 
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\ 

(a) 

f 

( 
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Fig. 4  Contribution of N 
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rN^0wz1d«+(rN^0wz1dö),d^ 

Fig. 5  Contribution of N  „0 
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1.2.4 Summary of Group 2 Contributions 

The contributions of the prebuckling stress resultants N Q , NgQ , N0      , 

and N   0 to the equations of equilibrium for an element of the deformed shell 

are 

=*? = -rN,«"» - ri<Neowzi>' " riNe0O^2co8" " '"♦«)"♦ 

■<*,IIV (2a) 

ff2  =  +<rN»0uZ2»'  " rlN
9fl"»8ta» - rlN«S"*lao8* 

-rlN
M0u98in»+rl<N9,0^2>' (2b> 

£F3  "   -<rN,0<V'   " rl<N
9oV'  " rl(N90O^>' " 'iW*""» 

-<"WV + rNwo"zi • (2C) 

1.3 Group 3:  Applied Loads 

The contributions of the applied loads to the equilibrium equations will 

now be determined.   These contributions arise because, in the buckled shell, 

the applied loads act on an element which has been deformed by the incremental 

displacements. 

Let the components of the applied load per unit area of the middle surface 

of the prebuckled shell be denoted by pk   ,  p.   , and p„ as shown in Fig. 1. 
ip u Z 

The loads p    and p    are taken positive in the direction of increasing q> and 

0 , respectively; p    is positive when it points away from the center of curvature 

of the meridian.   New the statical approach used here to obtain the buckling 

loads is applicable only to conservative systems (Ref. 21).   Hence, the load 

components are assumed to be conservative; for example, constant directional 

loads (dead weight loads) or hydrostatic pressure loads. 



Since all stability problems involve considerations of the deformed struc- 

ture, it is necessary to specify precisely the character of the applied loads; i.e., 

the way the applied loads behave as the shell deforms.   Thus, for example, the 

stability equations for a constant directional pressure loading will differ from 

those for a hydrostatic pressure loading.   It is conceivable that small changes 

in the nature of the applied loads might have an appreciable effect on the magni- 

tude of the buckling load; indeed, for buckling of a ring the difference amounts 

to 33% (Ref. 22).   Two types of pressure loadings will be considered here: con- 

stant directional pressure loading (dead weight loading) and hydrostatic pressure 

loading.   A constant directional pressure loading is such that the total force 

acting on a shell element does not vary in magnitude or in direction as the ele- 

ment deforms.   Thus, a constant directional force does not contribute (explicitly) 

to the equilibrium equations.   A hydrostatic pressure loading is such that the 

total force acting on an element of the shell is always proportional to the actual 

size of the element and is always directed normal to the element.   Then, due to 

the incremental rotations UQ   and u   , the hydrostatic pressure force rr.p d0d$ 

acting on an element of the shell develops the components rr.p w0d0dp and 

rr.p üji dödp which point in the positive X and Y directions, respectively.   In 

addition, due to the stretching of the middle surface during buckling, there is a 

component, +rr.p (?   + 7 )ded0 which points in the positive Z direction. 
1   Z     a (ft 

Thus, the explicit contributions of the applied loads to the equations of 

equilibrium for an element of the deformed shell may be written as 

2Fi • +Vrrip^> (ia» 

2F2 ■ ♦wrrip»V (3b) 

£F3 = +6ph "Pf'e * V <3c> 



f where 

II, for hydrostatic pressure loading .. 
ph      10, for constant directional pressure ' ' 

1.4 Summary of Results 

By adding the contributions given by Eqs. (1) through (3), we arrive at the 

following equations of equlibrium for an element of the buckled shell: 

2F1 =  <rN/ + r^ - r^ cos0 + |-r^  - rN^   - rN QQ%\ 

+ K^zl*' ' ^OO^zS  - rlN0^z2COS?)l 

^2 = <rV + riNe + ri% cos* + |"riQö sin» " Ti™o<»o"e sin* 

"rlVB0u9 Sin0|  + KN0Owzl COS0  + ^oV* 

* H   rl<%0"z2>] + WrlPz% =  ° (5b) 

2F3 =  -r^ sin* - rN0  - r^   - <rQ/  - (rNp0*/ - r^«,)' 

-rl(N0OwP)' " (rNO60V    + KöO^zl ' rlN0 0Owz2sin<9| 

+ 6ph rrlP2
(?p + V = ° (5c) 

2M.  = (rM J*  + i-M'  + r.M     coso  - rr,Q    =  0 (5d) 

ZM2 =  -(rM0)*  - rjMJ0+ r^ cos 0  + r^Q     =  0 (5e) 

If effects of rotations around the normal are negligible, then the terms in the 

straight brackets in Eqs. (5) are omitted.   In a Donnell type analysis, the terms 

in the braces and brackets in Eqs. (5) are neglected. 

( 



2.   Nonlinear Equations of Equilibrium for a Shell of Revolution 

The stability equations presented in the preceding section were based on 

the classical assumption that the prebuckling rotations could be neglected.   In 

this section, we present stability equations which include the effects of prebuckling 

rotations.   These equations are obtained through specialization of the nonlinear 

equations of equilibrium which will be derived here.   To obtain the stability 

equations, we replace each unknown quantity (*~) in the nonlinear equations of 

equilibrium by (  )0 
+ (  ) . where ( )fl represents the prebuckling value of the 

quantity and (  ) represents the incremental value of the quantity which develops 

during buckling.   Then in the resulting equations, the terms containing only 

prebuckling quantities may be subtracted out by virtue of prebuckling equilibrium, 

and nonlinear terms in the (infinitesimal) incremental quantities may be dis- 

regarded.   The result is, of course, the linear stability equations.   Actually, 

only the nonlinear force equilibrium equations will be presented here.   The 

nonlinear moment equilibrium equations can be obtained from considerations 

identical to those used in arriving at the nonlinear force equilibrium equations. 

However, for the case of a thin shell, the nonlinear terms in the moment equi- 

librium equations are negligible. 

The stress resultants, rotations, and strains which develop as the shell 

deforms due to the applied loads  p.  , P„ , and p    are denoted by N,  , 
<P ö Z q> 

*e % % • % • °e • "zi • K2 ■ V Md !0 ' These 

quantities are zero when the shell is unloaded.   Linearized relations between 

these quantities and the displacement components of the middle surface can 

be obtained from Eqs. (III-8), (III-9), (III-11), and (III-18) providing the dis- 

placement components appearing in these equations are measured from the 

unloaded shell. 

Figure 6 shows the middle surface of a differential element of the unloaded 

shell.   At the center of the element, point  P* , there is shown an orthogonal 



Fig. 6  Shell Element 
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right-handed system of axes X , Y , and Z with the X axis in the direction of 

the tangent to the meridian at P* , the Y axis in the direction of the tangent to 

the parallel circle at P* , and the Z axis in the direction of the outward normal 

at P* .   The equations of equilibrium for a differential element of the deformed 

shell will be written with respect to the X ,  Y ,  and Z axes.   Let M* denote 

the point of intersection of the meridian through P* and the upper parallel 

circle (see Fig. 6).   At the point M* let the directions of the tangent to the 

meridian, the tangent to the parallel circle, and the normal be given by the X* , 

Y* , and Z* axes, respectively.   Now due to the applied loads, the line M.A , 

which is tangent to the meridian of the unloaded shell at M* , acquires the new 

direction X** as shown in Fig. 7a.   The meridional force rN.dö , at point 

M* of the section e  = 9. , is defined to act in the X** direction.   Then ac- 

cording to Fig. 7a, the components of N   along the X* , Y* , and Z* direc- 

tions are 

rN\ cos Ü-  cos ÜJ „ dö    , 
V u ZZ 

rN   cos -0 sin w    dö    , and 

rNp sin üßdd     , respectively.   These components 

are shown in Fig. 7b.   The components of the meridional force rN^dö 

+ (rFLdö)'d* , which acts at point M* of the section p = ©_ + dp , are also 

shown in Fig. 7b.   Next, with sin ÖJ.   -* w. and cos £.   —   1 , and from 

Fig. 7b, the contributions of the stress resultant Np to the equilibrium equations 

written with respect to the X , Y , and Z directions are (rN-)*  - rlLC- , 

(rN0£z2)    , and -rN0 - (rN0üJfl)    , respectively. 

The contributions of the other stress resultants may be obtained in the 

same way as the contributions of N   were obtained.   Thus, according to 

( 

i 
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Figs. 8 to 10, the nonlinear equations of equilibrium for a differential element 

of the deformed shell are 

ZFX = (riy    + (r^)' - r^cos 0 - rQ^ -rN#« fl- rN0flü0 

" <r*96*zJ   - <rlVzl>'  ' rl*MSz2 C0S * 

+ "lP0 + V^z^   =  ° (6a) 

2F2  = <riV + (rV + riK00 cos ♦- rA 8in * ' rl*wVto * 

- rA Vin 0 + (^lK00öz2), + (rVz2>' 

" riVzicos* + rripa + WrripzV = ° (6b) 

ZF3= -r\ - riFö 
sin* -<*/ - ('iV - <rfyv'" (riW' 

- <rW " (riVf>' + rVzi * ri*Vz2 sin* 
+ rrlpz + ÖphrriPz(le + V ° (6C) 

SMj = (rM00)' + (rjUg)' + r^ cos 0 - rr^ = 0 (6d) 

m2 =  "<rlV"  " ^l55^' + r A cos * + rrl%  = °      * (6e) 

The equations governing the stability of a shell of revolution may now be 

derived from the nonlinear equations of equilibrium.   In Eqs. (6), we let 

% - %o +V'*"% = %o + %  (7a) 

% = w*o + w*  (7b) 

where, for example,   N      is a prebuckling quantity and N     is the increment 

in this quantity which develops during buckling.   After insertion of Eqs. (7) into 

Eqs. (6), the terms containing only prebuckling quantities may be subtracted 
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out by virtue of prebuckling equilibrium, and nonlinear terms in the incremental 

quantities may be neglected since the incremental quantities are considered to 

be infinitesimal.   This procedure results in the replacement of the nonlinear 

equations of equilibrium by linear equations of stability.   These equations are 

SF1  =  <rNf)"  + (r^)' - r^ cos, - rQp - rd^«,* N^) 

"   r(NMOa;# + N0Ao) - (rN0ö()Wzl + rN^a,^)" 

- <rlN00wzl + rlVzlO>' 

" rl<*WoW*2 + N0^z2O) COS » + rrlfiphpzw*  =  °       W 

2F2  =  <rlV + (rNp0)'  + rlN0oCOS*  " riVmf 

" rl(IWa + N00<WSin*  " ri(NöO^ + Vl>0,8in# 

+ <rlN**0wz2 + riNO0Wz2O)' + <rNpO*Z2 + rVz20>" 

" rl<Nö0*zl + VzlO> COS0 + rri Wz"*  =   ° <8b> 

ZF3  =  -rNp - r^sino - <r<y    - (r^)' - <rN#0«fl ♦ rN^)' 

" <rlN
00%> + rlN0WpO)' + r<NoOOazl + N

90
wzl0) 

" ri<N0*0"z2 + N0pwz2O) sin» + rrl Vz iT9 + rö}  =   °        (8C) 

ZM1  =  (rM^)'  + FlM'   + r^coso - rr^   =  0 (8d) 

£M0  =   -(rM^f   - rMl     + r M   cos ö + rrO,   =  0    , (8e) 

When prebuckling rotations are neglected, these equations reduce to the 

previously derived equations of stability [Eqs. (5)]. 

Nonlinear equations of equilibrium for a general shell have been derived by 

Sanders (Ref. 23) and Kempner (Ref. 24).   In Ref. 23, the derivation was carried 

out in tensor form whereas Ref. 24 used a variational approach.   The results 
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c of the present analysis, Eqs. (6), agree with those of Refs. 23 and 24 except for 

terms which involve rotations around the normal.   Kempner did not include such 

terms whereas Sanders used an average rotation around the normal given by 

w   s a-     + w „ ,   The present analysis uses u>.. and u? 9 for t1^ rotations 

about the normal of the tangent to a parallel circle and the tangent to the meridian. 

Thus, the discrepancy between the present results and those of Sanders is due, 

in part, to the use of different expressions for the rotation around the normal. 

3.   Equations of Equilibrium for a Cylinder 

The equilibrium equations (5) will now be specialized for a circular 

cylindrical shell subjected to a uniform external pressure p , and an axial 

compression at the edges.   The axial force per unit length of circumference 

is denoted by  P .   The sign conventions for the coordinates  (x, 0) , dis- 

placements (u, v, w) , and stress resultants are shown in Fig. 11 (compare 

\ with Figs. I1I-2 and III-3).   Thus, in the equilibrium equations, we let  0 —*„ * 

T dft> —   dx   , r   —   w , r   -»   a , and r   - a   .   Also, we let w   = -^~ 
1 i £• 0        9X      , 

9       al80        ; *     zl       a   80 '     z2     8x '    0      a      a 80 '    p     8x ' 

N0O = -P , N0O = -pa ,  N0ÖO 
= ° »  and 6

Dh = 1 (assumeP is a hydrostatic 

pressure).   This yields a set of equilibrium equations which are identical to 

those derived by Flügge in 1932 (Ref. 2): 

JLN ,iiN   + pt.iA\ =0 (19. 
8x*x     a 30 ex     p\8x      a     2] {1™} 

N0 + a^Nx0 -Tai% "iMx0 - Pa4     - o («») 
Ox 

< 

a 9„2     0 9x80    x0 9 2     x 0 

-(£♦?♦*■$)♦»£       ■•■     <-> 
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(a) COORDINATES 8 DISPLACEMENTS 

(b)  STRESS RESULTANTS 

Fig.  11 Conventions for Coordinates, Displacements, and Stress 
Resultants of a Cylinder 
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4. Equations of Equilibrium for a Sphere 

The equations of equilibrium for axially symmetric buckling of a sphere 

loaded by a uniform hydrostatic pressure p are obtained from Eqs. (5) by 

letting r. = a (radius of sphere), r = a sin 0 , a«   = (w*  - v) , 

*o = iTInT(v cos * + w sin p) •% = 7<w + v*> • N*o=-pf • N0O=-P|« 

and -gj(   ) = u " N
00O = w

zl = ^2 =   % = ° •   Th*8 yields a set of equilib- 

rium equations which are identical to those derived by Flügge (Ref. 13): 

(N   sin 0)    - Ne cos 0 - Q   sin 0 + "TT(
W

    " v) sin0 =   ° (10a) 

(N. + Ng) sin 0 + (Q   sin 0)    + "o"(v* sin 0 + v cos 0 

+ 4 w sin 0 + w cos 0 + w sin 0) =0 (10b) 

(Mpsin0)"   - M0cos0 - a Q0i,in0 =  0 .               (10c) 
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SHELLS OF REVOLUTION UNDER AXIALLY SYMMETRIC LOADS 

In this chapter, and in the sequel, oaiy axisymmetrically loaded shells of 

revolution are considered.   Also, the eifects of prebuckling rotations are neglected. 

Since the loading is axially symmetric, the space variables in the partial dif- 

ferential equations governing the stability of a shell of revolution can be sepa- 

rated.   After the separation of variables, three equations in terms of the three 

displacement components are obtained through combination of the equilibrium 

equations and the elastic law. 

1.  Separation of Variables 

The stability equations for a shell of revolution are given by a system of 

partial differential equations with variable coefficients.   For the case of axially 

symmetric loading, the coefficients in these equations are independent of the 

circumferential coordinate 0 (see Fig. HI-1 for notation).   Consequently, it is 

possible to separate variables and thus replace the system of partial differential 

equations by a system of ordinary diiTerential equations.   Such a separation of 

variables is effected by means v.f the following Fourier series representation 

for the incremental quantities: 
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r v =   )   vn (p) cos ne 
n=0 

00 

u =   2, un (0) sin no 
n=l 

W =  Z wn(0)cos n0 
n=0 

N00  =  %   =   I *W*>"1» nö 
n=l 

N0 =   2, N0n *0) cos n0 

n=0 
M. 

NU 

= %   =   2 M0on <♦> Sin n0 

n=l 

00 

Ne  =   S N0n (0) cos nö 

n=0 
Qe =   2 Qfci <*> sin »« 

n=l 

M<f> =  2  % <*> cos  n0 
n=0 

CO 

eo 

n=l 
%n *0) sin nö 

r M 0 =   Z M0n^^cos  nö 

n=0 
Wzl =   I wzln <*> sin no 

n=l 

(1) 

%  =  2 <V*>cos ne 
n=0 

a'z2 =   2 Wz2n <♦> 8in ne 
n=l 

C 

%   =   2  wen^>cos  nÖ 
n=0 

?*  =  2  %n(*)cos nö 
n=0 

*0 = 2 €en (0) cos n0 

n=0 
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These expressions represent the general solution of the stability equations for 

the cases in which 

(i)   the shell is complete in the circumferential direction, i.e., 0< 0 <  2ir 

(ii) the boundary conditions on the edges 0 = - r- , -=- f or a partial 

toroidal shell are 

w = M0   = v = Nö   =  0    . (2) 

For the first case, the requirement that the incremental quantities should be 

periodic functions of 0 is satisfied by each term of the Fourier series in Eqs. (1). 

For the second case, the boundary conditions Eq. (2)1 are satisfied by each 

term of the Fourier series obtained by assigning values to  n in Eqs. (1) as follows: 

n = n*Tj~ , n*  =  1, 3, 5  (3) 
0 

2. Equilibrium Equations 

Insertion of the Fourier series representations of the incremental quantities 

Eqs. (1)1 into the equations of equilibrium  Eqs. (IV-5) results in the following 

equations of equilibrium for each value of n : 

£F.     = (rN   )   + nr.N..A„ - r.N.   cos0  - rQ     - rNAAwfl In       %    0n 1 Opn       1 $n 0n 00 ön 

-nrlN0Owzln + rrl6phPzw0n       =0 <4a> 

2F2n  = <rlW'  " nrlN0n + riN«*n«»*  - r^ sin 9 

" rlN0O^n sin * " rlN0Owzln cos * 

+ <rlN
0O cos * + r V Wz2n + <r V *z2n 

+ rrl* phPz V = ° <4b> 
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r 2F 3n 

ZM In 

2M 2n 

rN*n + rlN0n8in* + n'l%n   '«'V 

+ (Wo C0S*  + rVWÖn + 'No"» 
+ n'lNo% ~ "l^z (%n + %> 

<r*W  - nrlM0n + rJM*0nCOS* " "An 

<rV' + nrlM0ön - rlMOn C0S* - "l%n 

=  0 (4c) 

=  0 (4d) 

=  0 (4e) 

3.   Elastic Law 

The following relations, which are obtained from the elastic law   Eqs. (in-18)|, 

can be used to express the equilibrium equations in terms of the displacement 

components u   , v„ , and w„ n      n n 

r 

5<rl%n> 

R<riM<m> " 

(5a) 

(5b) 

vn(5c) 

•M)-'P-3h-Kh (5d) 

K (r 1M
«^B) 

[w-i 

1 
rlxlyl            /l - 

t1-"»       2      V "    2 r     J         L 

VX1 

Ü n 

v   + n 
rlyll 

(l-i/)n-Y  % + 

r   J 
-(1- 

.     1 ")n- 
■ 

w n 

(5c) 
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where, for brevity, we have introduced the notation: 

x.  =  sin^ ; y.   =  cosp   ;  and y2  = cos  20 (6) 

4.   Rotation and Strain Components 

By substitution of Eqs. (1) into Eqs. (IH-8), (UI-9), (III-ll), and (111-17), we 

obtain the following expressions for the rotation and strain components: 

a,      =  --L w   + — v (7a) 0n r.    n     r1   n 

(7b) 

(7c) 

<7d) 

(fin r   n 
xl + —=-u r    n 

zln 
n 

= 7vn 

z2n 
1   • = — u 
rl   n 

—-u r    n 

<t>n 

• 
V 

= -2- + 
rl 

w n (7e) 

n       .yl       . xl 
0n       r   n     r    n      r    n 

5.   Stability Equations for the Axially Symmetric Loaded Shell of Revolution 

For a thin shell, the effect of the transverse shear forces Q.     and QA    in 
<pn On 

the first two equations of equilibrium [Eqs. (4)] may be omitted.   [Also we note 

that Steele (Ref. 25) has pointed out that the retention of these terms in the first 

two equations of equilibrium is inconsistent with the use of an uncoupled elastic 

law. ]   The mrment equations of equilibrium [Eqs. (4d-e)l may be used to elimi- 

nate Q.     and Q^ from Eq. (4c), and the stress resultants, rotations, and 
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r strains may be eliminated from the equilibrium equations through insertion of 

Eqs. (5 and 7) into Eqs. (4).   In this way, we finally obtain a set of three ordinary 

differential equations for the three displacement components uft(0) , vn(*) , and 

w
n(*} * 

(h1 + Cl) un ♦ (h2 ♦ c2) un + (h3 + c,) ün + (h4 + c4) vn + (h5 + c5) vn 

+ <h6 + C6> Vn + <h7 + C7> % + (h8 + C8> Wn + (h9 + C9> *n 

+ <h10 + C10> \ + (hll + Cll> "a + (h12 + C12> *n     =   ° (8a) 

<fl + al) Un + (f2 + a2> \ + <f3 + a3> Un + (f4 + a4> vn + <f5 + V *n 

+ <*« + M'v„ + (f, + a,)vn + <ffl + afl)wn + (f_ + aQ)w '6       6'   n V n     **8       8'   n     **9     "97   n 

+ <f10 + a10' *n + <fll + all> *n + (f12 + a12> wn    "   ° <8b> 

(«1 + bl>un + <*2 + b2>"n + («3 + V Ün + <*4 + b4> Vn + <*5 + V \ 

+ <*6 + b6)Vn " (g7 + V;'n + <*8 + V Wn + (g9 + b9> Wn 

+ <KlO + b10)Wn + <«ll+bll>'Wn+(812+b12)^ii     =   ° <8c> 

where the coefficients a,b,c,f,g,h, which depend on * , are given 

by the following formulas: 

c 

h,   =  K 
xi     ri*i nr7T +c — 1 rr„ 

+ (1 + v)n—+ (2 - 
y2 

r 

+ n 3
rlxl + D vn + n 

rlxl 

*— - 4n j- 
r r 

(9a) 

h2 =  K -^.n^. -Vl h 
rr. rr 2 + 3n   ^ 

i r   J 
(9b) 
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,.i   iiiii. mearn 

h.  =  K -^] (9c) 

h.  -  K -2 
¥1 
rt\ 

Vi 2   rl 
" n  2 2~"+ n     2 

rrx       rrr r 

2yl     yl yyl rlyl 

r2 +2r3 rl rl 

(r/y,     r? rrr r(rf 

*i* rl rl rl 

rlxl 

1    J 

+ D wx 
+ 

r
ixiyi 

h    =   K 
2    1 Jl +n
Z — + _i_ + (1 + v) 

rr,      rr,     * 

rlyl 

V       ri 
- 15 

r(r/ 

+ D 
rl X 

<9d) 

(9e) 

y rr 
h„  =   K|-2-^ + 6 — 

rl rl 

(9f) 

h„  =   K — (9g) 

h„  =  K _(3 . u)n^- 4n2^ + n4^]+ Jf+'lV2«J <9h) 
r r r J        »■   1 J 

K =  K +2 Vw_X+!£L-+aA+
y»      "yi r

i"i 

rr. 2 2 
"l        rrl 

2 2 
r        r 

^ + (1 + 2*/)—j 

2^ + 6!!Ä.üi + 1o^-15^
31 

1 1 J 

(9i) 

hl0 =   K 2 2-L      -i n   rr.  " rrx 

x r y rr r(r ) 

r. r. r 

21 

1 
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<9j) 



r rr. 

W 
6 

h12       K 

(9k) 

(91) 

f 

i.        D 

f2   - 
D 

1 riyi 

fo 0 

f„        D 

f5       D 

f6        D 

f7        ° 

/l  -i*\   2 ri      riyl 

rr 

(9m) 

(9n) 

(So) 

(9p) 

(9q) 

(9r) 

(9s) 

f8       D *1  ~      r 
Vlyl      rrl 

1   J 

(9t) 

f9       D 
r    , 

77 +"xi 

f10   -    fli        f12 -   ° 

(9u) 

(9v> 

gx       D 

g2  =   D 

r,y, (H^-V-M^ 
-W^HH*. 

(9w) 

(9x) 
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*3   = 

h = 

h = 

«6   = 

g7  = 

gfi  = 
riXl 

g 10 

Dl-i/n - n 

0 

«11   =  «12   =  ° 

F1X1 n Nflrt - nr,6   ,p r       90 1   ph*z 

c3   =0 

4      Jl  00     r.    \ 

rr 

Ho " Vl* phPz 

Oy) 

(9z) 

<9a') 

(9b') 

<9C) 

(9d') 

(9e«) 

Of) 

(9g') 

(9h') 

(9i') 

5       r.    00 plr z 

c„  = c,  -   0 

2rl 
c8 =  n"-N»0-rlXl5phPz-r<>phPz 

-9 = -^>-T:N»otr-TN, c„ - 

(9j') 

(9k«) 

(91') 

(9m') 
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r 10 

11 

£> 
C12=  ° 

ai = h = h =   0 

4 

h 

art = 

F7> + röphPz 

%  '   a7   =   a8  =  ° 

77 %0 " rö phPz 

2rl a,.  =- —N^ + rö_.p    - n —= N 
r    eo 

a10 " all =   al2 = ° 

(9n') 

<9o») 

<9p«) 

(9q') 

<9r') 

(9s') 

<9f) 

r 
r x 

bl  = '-V-NÖ0 + rlxlöphPz + xlNpO " 71*00 

rr. 
b„ =- 

b„  = 

b, = 

bP  = 

ri x 

rx   00 

riyl -n -^ Nfl„ r    eo 

b6 = b?  =  0 

"n   rlN
ö0 + nrlÖ

t AP 

b10  =  bll   =  b12  =   ° 

(9u«) 

<9v«) 

(9W) 

<9x') 

(9y') 

<9z») 

(9a") 

C 
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For convenience, a subscript  n was omitted in the expressions for the coeffi- 

cients   a , b , c , f , g , and  h  in Eqs. (8) and (9).   We note that the functions 

a(0) , b(<f>) , and c{#)   in Eqs. (8) depenu on the prebuckling quantities  N ,fl , 

N 0 , and p    whereas  f(0) , g(<fc) , h(<|>)  do not. 
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VI 

TOROIDAL SHELL UNDER EXTERNAL 
PRESSURE-THEORETICAL ANALYSIS 

1.   Stability Equations for a Toroidal Shell Under External Pressure 

As an application of the theory developed in the preced- og chapters, the 

equations governing the stability of a general shell of revolution will now be 

specialized for a toroidal shell subject to a uniform hydrostatic pressure p . 

The notation for a toroidal shell with a circular meridian is shown in Fig. 1. 

The radius of curvature of the meridian r. is denoted by a , and the distance 

between the center of the circular cross section and the axis of revolution is 

denoted by b .  Note that the shell geometry and the applied loading are sym- 

metric about the plane A-A (see Fig. 1).   Hence, it is expected that the buckling 

pattern will be either syn metric or antimetric about this plane.   Accordingly, 

it is convenient to use instead of <£  the coordinate  ip measured from the 

plane A-A as shown in Fig. 1.   The independent variable  ip is related to the 

colatitude  </>  used in Chapter V by 

0 « * + —    . (1) 
2 

From Eqs. (1) and (III-4) we find 

£( ]= t( >= ( y • (2) 
of oQ 

For brevity, we introduce the notations 

#*" Sm  =  sin m#, m  =   1,2,.. (3a) 

C     =  cos  m$ , m  =  0,1,2,... (3b) 



Fig. l  Notation for a Toroidal Shell 
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Therefore, the notations x.      sin d> . y.      cos <t> , and y„ - cos  20 

used in the preceding chapter are replaced by 

xl  ~  Cl  =  COS ^ ^4a^ 

yx  =  -Sj  =   -sin tf (4b) 

y2  =  "C2  =  "C0S  2i      * (4c) 

From Fig. 1, we find that 

r   - b + a cos i     , 

which can be rewritten as 

f =   * ^ C2 (5) 

where o   is a nondemensional geometric parameter 

a-ir <6> 

The prebuckling stress resultants N ft and N     may be obtained from 

Ref. (13): 

N«rt  -   - K   
Pa   •   A (b + 4-sin 0) 00 b + a sin 0 x       2 ' 

N -JE2. 
00 2 

We introduce a nondimensional load parameter 

C x.ft 
GO 

(7) 



where E is Young's modulus and h is the shell thickness.   Then the prebuckling 

stress resultants may be written as 

^N*0 = -!<l-*2>f<2a+Cl)X (8a) 

DNeO =  "2(1 ' v )X     ' (8b) 

where O is the extensional stiffness of the shell see Eq. (HI-19) . 

We may now obtain the stability equations for a toroidal shell through 

specialization of the equations for a general shell of revolution Eqs. (V-8) . 

We multiply Eq. (V-8a) by (^)   , Eq. (V-8b) by j , and Eq. (V-8c) by 

/r\2 
i—j   in order to remove any dependence on # in the denominators of the coef- 

ficients in the stability equations.  Next, we divide the resulting equations by 

O and introduce the nondimensional geometric parameter 

k = ^2 = 12(a)      ' 0) 

Finally, we substitute :qs. (i) through (9) into Eqs. (V-8) and (V-9J an*4 obtain 

the following stability equations for a toroidal shell subject to a uniform 

external pressure: 

(hj + c,X)unW) + (h2 + c2A)ub(f) + (h3 + c3X)ünW 

+ (h4 + c4»vn(W + (h5 + c5x)vn(^) 

+ (h6 + c6A)vn(*) + (1^ + c7A) vn(W 

+ (h8 + cgA)wnW) + (h9 + c9X)wn(*) 

+ <h10 +   C10X) V*> + (hll + cliX>*n(#) 

+ (h12 +   C12X)%(*)     =     ° (10a) 
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{- (*! + axX) un W + (f2 + a2X) un ty) + (fg + a3X)un (*) + (f4 + a4X) vn<tf) 

+ (f5 + a5x) vn ty) + (f6 + a6\) *vn (tf) + (f? + a?X) vn ty) 

+ <f8 * a8X) Wn <*> + <f9 + a9X) *n <*> + <f10 + a10X) *n <*> 

+ tfn + anX) Wn (tf) + (f12 + a12X) w'n (V)    =     0 (10b) 

<gx + bxX) un (*) + (g2 + b2X) un (*) + (g3 + b3X) un (i) 

+ <g4 
+ b4X) vn (*) + (g5 + b5X) vn (ip) + (g6 + b6X) Vn <*) 

+ (g? + b?X) v'n (*») + (g8 + b8X) wn <*) + (gg + b9X) wn (it>) 

+ <«10 + b10X) *n <*> + <*U + bllX> *n <*> + <*12 + b12X) "n (*>  =  ° 

(10c) 
In Eqs. (10) the coefficients  a , b , c , f , g , and h , which are now different 

from those defined in Eqs. (V-9),are given by 

X hx = nk[n2C1 - 4C^y- <<* + Cj) C* - (2 -y)<or+ C^ Cg 

+ (1 +i/)(o+ CJJSJ
2
 + (a+ c/cj 

+ n[(a+ C^Cj + Ma+ C^3] (11) 

h2 = nk|-3(a+ CpCjSj + 2(c + C^sJ 

h3 =  -nk(«^ CJ^CJ 

h4 = k[+(o+ C.JSj3 - n2(a + C^Sj + 2(o+ Cj)2 C^ 

-  V(a + Cr)3 sj - (a + Cj)2 CJSJ -   *(a + Cj)3 Sj 

h5  -  k[n2(a + Cj)2 + (Q + Ci)2S1
2 M»*")(°+ ci>3cJ 

* 

M(O + c/Cj * (a * Cj)4 

h6  -   +2k(rv* C1)3S] 
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^  - -k (a + C2)4 (11 cont'd) 

h8  = n2k[n2 - 4SX
2 - (3 - i>) <<* + C^cJ* <<* + c/ Cj2 

+ 2v(a + C1)3C1 + (a+ C^4 

hg  = k[-2n2 (or + Cx) S2 - (a + C^ S^ - 2 (a + c/ C1S1 

+   „(a + c/sj 

h10 = k[-2n2 (a + Cp2 - (a + Cj)2 B^ - (1 + u) (a + c/ Cj ] 

hn = -2k (a + c/ S2 

h12 = +k (a + Cx)4 

fx = +I(3 - r) nS1 

f2 = +|-(1 +i/)n(o+ Cp 

f3 = 0 

f4 = -i/(a + C1)C1 -1(1 -v)n2 -Sj2 

fB - -(ö+cl)Sl 

f6  = (a + Cj)2 

f7   = 0 

f8   = " aSl 

f9   = (a * Cj)2 + v(a+ C^Cj 

f10  = fll  =  f12  =  ° 
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*2 

-n2(o+C1)-}(l-i')(ff+C1)S1
24i(l-v)(flf + C1)

2C 

-±(1  -»/)(<*+ C1)2S1 

1 
(11 cont'd) 

g3 = +|-(1 - v) <« + C^3 

g4 = +|-(3 -y)n<a + C1)S1 

g5 =  -|"(1 + ") n (a + Cx)2 

K 6 g?  - o 

*8  = 
-n(a + Cx) Cx -i/n(a + C^)' 

gg       g10      Sn      g12       ° 

= (1 - A n[ -|-(a + Cx)2 Cx + (a + cp3] 

c„ = 

c. = 

C3  =  0 

-|"(1 - *2) (a + Cx)3 Sj 

=  (1 - "2)[-|-(2a + CjXa* Cj)3 + (or + C^4] 

c?   =  0 

= (1 - »>2)[-|-n2(a + Cx)2 > (ar + Cj)8 Cf * (<*+ Cj)4 | 

c«  = ±-(1 - P2)(a+ C1)3S1 

10 +J-U - "2)(2a+ C1)(a+ Cj)3 

i 

'11 

al 

a. 

c12 * ° 

a2  *  a3  =   ° 

=  (1 - ^2)[y(2a + Cx) (a + Cp - (a + c/ + ~n2 ] 
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a    = a    - a?  = a    = 0 (11 concl'd) 

a9 =  (1 - p2)[-|"(2a+ 0^(0+ CJ + (a + c/] 

a10 = all  ~  a12       ° 

b2 = -|-(1 - M2) [(a + Cj)2 Sx - (2a + C^ (a + Cx) Sx | 

b3  =  -|-(1 - *2) (2a + Cx) (a + c/ 

b4 =  -|-<1 - v2) n (a - Cx) Sx 

b5  = b6  - b7  =  ° 

b8  = (1 - v2) [4n (a + Cx) Cy - n (a + Cj)2 ] 

bS  = b10 = bll  = b12 =  ° 

2.   Solution of the Stability Equations 

2.1  Outline of Method of Solution 

The stability equations for a toroidal shell [Eqs. (10)1 consist of three 

linear homogeneous ordinary differential equations with variable coefficients. 

The unknowns in these equations are the three displacement components u ») , 

v (tp) , and w (4>) .   For a complete toroidal shell, the boundary conditions are 

simply conditions of periodicity on the displacement components; hence, u (#) , 

v ti>) , and w (4>) may be represented by Fourier series in the meridional 

coordinate # .   Next, in order to pave the way for a Fourier series analysis, 

the coefficients in the stability equations are expressed as linear combinations 

of trigonomet ic functions.   Then, with the aid of some identities which will be 
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derived, it is possible to write each of the three stability equations in the 

following form: 

00 oo 

1     I   L00,<m*)+ 1     I  I    Bin(m*)  =  0    . (12) 
m=0 m=l 

The braced expressions in Eqs. (12) represent homogeneous linear combinations 

of the Fourier coefficients used in the expansions for u    , v    , and w    .   The 

trigonometric functions in Eqs. (12) are linearly independent for 0 £ 4> £ 2 it ; 

hence, each of the braced expressions must vanish.   Thus the problem of 

solving a system of ordinary differential equation! with variable coefficients is 

reduced to that of solving an infinite system of linear homogeneous algebraic 

equations.   A matrix iteration technique is used to get the lowest eigenvalue of 

a finite system of equations which is obtained through truncation of the infinite 

system of equations.    The size of the finite system of equations is then succes- 

sively increased until no significant change occurs in the computed eigenvalue. 

2.2 The Solution 

In order to facilitate the subsequent Fourier series analysis, we now 

express the coefficients in the stability equations as linear combinations of trig- 

onometric functions.    This is effected by employing the well known trigonometric 

identities 

CaSb   = i"[Sa+b " Sa-b 

CaCb = ?lCa+b + Ca-b 

SaSb   = TlCa-b " Ca+b 
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from which it follows that 

<aiCi>ci =T+oCi+TC2 

<°+Cl>C2 = TCl+atWC3 

<a+ci>si2=f+Tci-fC2-TC3 

(a + Cx, Sl
3 . A*, ♦ |s2 - iaS3 - |s4 

(o.c/Cj = a+(3.+ 02)ciTaC2+-i-C3 

,„♦ cf c> - j-4 +f*1 +(i^
2)c2 +^c3 +i-c4 

(a* C/ ClSl = -2-Sj +(±+4)S2 *TS3 +TS4 

(a + C/   = |«+ a
3 +(-£ + 30?) Cj + f«C2 -jpC,, 

<a+ Cl>3ci " f+ f"2 +(f ° + «3)Cl ♦(T + f )«i 

3    „       1 (13j) 

«" + ci>3 si " (T tt+ °3)si + ( T + ^)S2 + T aS3 + Ts4 <13k) 

(0+ Cj)4 = |-+ 3a2 + a4 + (3or+ 4a3) Cj +(-j-+ So2)^ 

+ "C3 + TC4 <131> 

(a + Cj) Sj = aSj + -i-S2 (13in) 

<0+ci>ci2-ytTci+TC2+TC3 <13n> 

(«♦CJJCJSJ =ABI+|S2+-1«3 (13o) 
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(13b) 

(13c) 

(13d) 

(13e) 

(13f) 
'■ 

(13g) ? 

(13h) ;J 

(13i) 
i 
i 
i 

i 

t 



C («+ Cx)2 = -i-+ a2 + 2aC1 + j-C2 <13p) 

(o+ c/Sj  =(j+«2)si +«S„ +|«3 (13q) 

Insertion of Eqs. (13) into Eqs. (10) and (11) yields the following form of the 

stability equations: 

[<h10 + C10X) + (hll + C11X) Cl + (h12 + C12X) C2 + <h13 + C13X) C
3I Un<*> 

' [ h21 Sl + h22 S2 + h23 S31 »n<*> " I <h30 + h31 Cl + h32 C2 

+ h33 CslUB<*> + I ^41 + C41X> Sl + <h42 + C42X> S2 + <h43 + C43X) S3 

+ (»»44 + c44X) sjvn(0 +[ (h50 + c50X) + (h51 + c51X) Cx 

+ <h52 + C52X> C2 + <h53 + C53X> C3 + <h54 + C54X> C
4] V*> 

" Kl Sl + h62 S2 + h63 S3 + h64 84IVn^ " Ko + Nl Cl + ^2 C2 

+ *73 C3 + *74 C4] V*> + [(h80 + W> + <h81 + C81X) Cl 

+ <h82 + C82X) C2 + <h83 + C83X) C3 + <h84 + C84X> ^K^ 

" Kl + C91X) Sl + <h92 + C92X> S2 + (h93 + C93X> S3 

+ <h94 + «W^JV* -1*10,0 + C10,0X> + h10,l + C10,1X>C1 
+ <h10,2 + C10,2X> C2 + <h10,3 + C10,3X) S + <h10,4 + C10,4X>C4.I*n<* 

+ |hll,lSl + hll,2S2 + hll,3S3 + hll,4SJ^> +[h12,0 

+ h12,lCl + h12,2C2 + h12,3C3 + h12f4
C

4l^n^      =      ° <14a> 

| fll Sl |Un<*> - [f20 + f21 Cl!*„<*> + |<f40 + a40X> + <f41 + a41X> Cl 

+ <f424  a42X>C2l
Vn^ + [f51Sl + f52S2lV^ 

-|f60 + f61Cl  * f62C2IV*> +If81Sl|Wn<^> ' \ho + a9QX> 

' Mf91  ♦  a91x) Cj   >  (f92 + a92X) C2|wn«) 0 (14b) 
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[<«10 + b10X) + <«11 + bllA>Cl + <«12 + b12X>C2 * <«13 + b13X>C3|
unM 

- |(g21 + b21x) sx ♦ (g22 + b22x> s2 + (g23 + b23x) s3] un(^) 

" [<«30 + b30X) + («3l + b31X) Cl + <«32 + b32X) C2 

+ <«33 + b33X>C3r%^> + l<«41 * b41X>Sl + <«42 + b42X> S21V« > 
+ I «50 + «51 Cl + «52 C2 IV* + l(«80 + b80X) + <«81 + b81X) Cl 
+ <«82+b82X>C2l

W#)      =      ° (14c) 

where 

•10 

'11 -T+TV)+(*2 + n2]k +f(1 + "> + <2 + 3v)a2)ii 

S2-[h+i> + (i+i») an 

h13  = ["4(1 "">k + T(1+">In 

h21 =(-T+2o?)nk 

h22 = +ionk 

h23  =  ~4~nk 

h30 *  -ank 

h3i = -(i+*2)nk 

h32 =  -ank 

h33  =   "T1* 
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r 

s^** 

*41 

'42 

'43 

|[G4")-»2-4-i-K fa a (15 cont'd) 

k -{•(! + v)~±{l + 3V)a2 

'44       8 *(1 - v)k --1(1 + i/) 

'50 k+yd + f) 

451 

*52 

'53 

> 

+ (3 + |* + a2)«2 

|i(ll + 9f) + (1 + v) a2 + 2n2 k + (3 + -~ v) 

+ (4 + v) a 

1(1 + v) + (l + f *)a2 + |n2 k + \(l + f) + (3 + ffjo2 

h54 •|rtc4 f(l + "> 

h6X = 4+ 2a2) ak 

h62 ■4* 30^ 

h63 = ♦£<* 

h64 ■4* 
So ■■ft* 

302 + a4)k 

Si =   -(3 + 4a2) ak 

S2 = 4+ 3a2) k 
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^3 

»74 

h80 

h31 

=  -ok 

4" 

(15 cont'd) 

2\_2 i-(-7 + v) + n2|A + -|(1 + v) + (|- + 3i> + a2)o 

-(3 - v) A + -|(1 + v) + <4 + 2v) a2 ] a 

y (1 + i/) A + (1 + v) +(-|- + 3 p)a 

*83 f(l + »'Jo 

±<1 + v) 

|-i(-7 + 3i/) + »»a2 - 2n2]ak 

-|-(-3 +y) + (-1 +4")a2"n* 

"84 

h91 

^2 

h^ = -f(l-,)ak 

-fd-v)k 

'10,0 

10,1 

'10,2 

'10,3 

'10,4 

'11,1 

'11,2 

•1 
I -^-(11 + 9i$ - (1 + v)«2 - 4n2] ok 

-g-«1 * ") - (l + f^ - n2 

-t<l + 3i^ak 

-Apk 

(-*♦ 
2a2) ak 

4* Sa^k 
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f* hll,3 =  "lak (15 cont'd) 

c 

c 

hn.4 = "Tk 

"l2,0=(!-+30,2+«4)k 

h12.1  =  (3 + 4t*2)ak 

h12,2=(l+3<»2)k 

h12,3 — ak 

h12,4 
= h 

C10 
= +<1 - 2             2 v )(l + a)on 

cll 
= +<1 - 2,/3 ^ 5   2\ 

c12 
= +(i - 2, 1/ )an 

c13 
s 
> 

- u2)n 

c41 
= 

-2-0 -,
2)(|+«2)« 

c42 
= 4<> 2v/l ^ 3   2\ 

C43 
= -f<» - M2)<* 

C44 
= 
> -

2) 

C50 
= (i - i 

2v/   3     A   3  J\ 

C51 
= (i - , 2,/9 ^   1    2\ 

c52 
= (i - i 2»/1 . 3/v2\ 
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«      -3/i        2. 
C53  "  8(1 " v)a 

. +±ci - *2> 
'54 16 

'80 

'81 

'82 

'83 

'84 

'91 

'92 

(1 " *2) 
3     /9  ,     2      1  2\   2 
4+(r+°    "2nja 

/i        2\/i j. 9J2      1  2\ (1 - * )(1 +To   -Tn J 

1   2 
4n 

'93 

7 2 -4a - Act 

+j(i - *2> 

3/i        2. -g-(l - v )a 

"94 

10,0 

10,1 

'10,2 

1  /i        2. 
"16<1 " "> 

10,3        T8 +f (1 - i'2) a 

'10,4 

f 11 

f 20 

4«1-"2) 
+ 2<3 -">n 

+ 2"(1 + >>>na 
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(15 cont'd) 



f~ f21 = +2{1 + v) n <15 cont'd) 

f40 =  -||d^)+(l^)n2) 

r 

f41 =  - ./or 

f42 = 4(1-"> 

f51  =  " a 

f      =  -± 52 2 

'«o Hi-2) 
f61 = +2a 

X 
£62  =  + 2~ 

f81  =  ~a 

f90  =  4<1+l'> + 0? 

f
91  = +<2 + ">° 

f92  =  +2 (1 + "> 

a^  „  „      .2, /   1  .   1 „2 u-^(-i+ln2) 

a41  =  "f <X " ")° 

»42 =  "I*1 " "2> 

a90 = }d - A 
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1 2 
a91 = +F(1-~ " )a (15 cont'd) 

a92 " +?(1 " "2> 

KlQ -fid -")-**]* 

«12  = l(1 ~p)ß 

g13  = |(1 - v) 

■u-<1-">(i+f) 

«32 - Id-»')« 

«33 = ¥(1 " "> 

g41 = "2(3 " ")na 

*42 =i<3-")« 

«80 =   "[I*1 + "> + "a2Jn 

«81 =   "(1 + 2v)<m 

«82 =   4(1 + ")n 

«2i - -<1-")(i+T) 

«22  =   "(1 " ">7 

«23   =   'I"*1 • "> 
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g51  =  -(1 + v) nor 

c 

( 

«52 =  -?<1+">n 

bio= 'h1 - "2>a 

bu  =   -<l-„2)(£+2a2) 

b12  =   -ft1-"2)« 

b13  =   "T^1 " ^ 

b2i = -h1 - *v 

b22 "   ~4(1 " v )a 

b23  '  ° 

1 2 
b41  =  "2(1 ~ * >na 

b42  "   ~4(1 ' " )n 

b80  =   -<X " "2>(£+o2)n 

b81  "  "2 (1 " " )an 

K      -      2/i        2. b82 "  "4(1 " ">n 

b30 =  ~(1 " "2> I1 + °2> a 

b3i - -<* - *2>(i+ h2) 

(15 cont'd) 
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b32 =  -(1 - v2)a (15concl'd) 

b33 "   "8 (1 " v } 

For each value of n , the displacement components u (ip) , v (il>) , and 

w (#) may be represented by the Fourier series: 

u (f) =   V Um cos m|  +  Y   Um sin m# (16a) 

m=0 m=l 

00 

m=l m=0 
nw = y v

m
sin m^+ y ^mcos m^        <i6b) 

00 

w (#) =   y  W_ cos m^>  +  y  W_ sin mtf     . (16c) n ^     m ^     m 
m=0 m=l 

The series with the Fourier coefficients U     . V     , W    represent a buckling m       m        m 

mode which is symmetric about the plane # = 0, * (plane A-A in Fig. 1), 
******* 

whereas the series with the Fourier coefficients U     , V     , W    represent a mm        m 

buckling mode which is antimetric about the plane 4> = 0, ir.   After insertion of 

Eqs. (16) into Eqs. (14), it can be shown that the resulting stability equations 

may be put in the form: 

2 A
m c<>8 m*+ y A

m sin m^ = °     (i7*) 
m=0 m=l 

00 00 

y  Bm sin mtf»   +   S Bm cos m#    =   0 (17b) 

m=l m=0 

00 «0 

y  Cm cos m*  +  y   Cm sin m#    =   0 (17c) 

m=0 m=l 
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where 

Am *   Ar* <U™' Vm' WJ »        <18*> Am   =   Am <Um« Vm« Wm>      <18d> m m ' m     m      m m mmmm 

Bm =   Bm <U™' Vm» Wn»> »        <18b> 5m   =   5m <Gn>«  V.  W    )      (I8e) m m    m     mm mmmm      m 

Cm =   Cm <U™'  V™'  W*n> •        <18d> £m   =   £m $m»  ^ ^m)   .  (18f) m mmmm m mmmm 

Since the functions sin (m$) and cos {m4>) in Eqs. (17) are linearly independent 

for 0 < ^ S. 2JT , we conclude that 

Am  = Bm  = C     = 0 (19a) m m m 

A
m    =    Bm    =    Cm    =    °        • (19b> m m m 

From Eqs. (18 and 19) we see that the Fourier coefficients U     , V     , W_ m       m        m 
may be determined from a set of equations which do not contain U     ,  V     , mm 
W     .   This means that a toroidal shell under uniform external pressure can m 
buckle into a mode which is either symmetric or antimetric about the plane 

$ = 0, it, and thus these modes can be investigated separately.   For convenience, 

the buckling mode which is symmetric about the plane # = 0, * is called Mode A 

and the buckling mode which is antimetric about the plane $> = 0, * is called 

Mode B.   These two modes are considered in the next two subsections. 

2.2.1     Mode A 

For the buckling mode which is symmetric about the plane $ = 0, *, we 

let 
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u   ty) a   Y  U    cos ntf   =   y U    C (20a) n t-t     m t—t     m   m 
m=0 m=0 

oo 

v   <ty =    )   Vm sin m*   =   V  VmSM (20b) n L*     m ^     m   m 
m=l m=l 

\ <*> -   2  Wm cos  m*   =   £   Wm Cm (200) 
m=0 m=0 

where, for brevity, we have used the notations given by Eqe. (3).   Substitution 

of the Fourier series expansions for the displacement components jEqs. (20)1 

into the stability equations for a toroidal shell jEqs. (14) yields 

Ko +  C10X> + <hll +  C11X) Cl + <h12 +  C12X> C2 

oo 

<h13 + "iS^sl 2  UmCm-[h
2l

Sl + h22Si 
m=0 

II mü. + h23 Ssl 1   m Um Sm " |h30 + h31 Cl + h32 C2 

+ h33 C
3I I   m2 Um Cm + I <h41 + C41X> Sl + <h42 + C42X> Si 

m=0 

+ <h43 + C43X> S3 + <h44 + C44X> S4] I  Vm Sm 
m=l 

+ [<h50 v C50X> + <h51 + C51X) Cl + (h52 + C52X> C2 

00 

+ <h53 * C53X> C3 + (h54 + C54X> CJ I. m Vm Cm 
m-0 

(cont'd) 
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r 

r 

- I h61 Sl + »62 S2 + h63S3 + h64S
4| I »'2 Vm Sm 

m=l 

- Kl) + "71 Cl + "72 C2 + "73 C3 + "74 Ct\  I  »* Vm C, 
m=0 

+ [<h80 + C80X> + <h81 + C81X)C1 + <h82 + C82X>C2 + <h83 + C83X>C 
83"' ~3 

(KA + C0AX) CA\ y  W    C     - [(h-, + c«,X)S, + (h     + c    XlS 84       84 '    41  L*      mm      |*T1       91 '   1     l 92       92 '   2 
m=0 

+ %3 + c93*> S3 + <"94 + °94*> S4! I m Wm Sm 
m=l 

" |<h10.0 + ««y» + <h10,l + C10.1»» Cl + <h10,2 + «HU*' C2 

+ <h10.3 * C10.3X» C3 + <h10,4 + eio.4* CJ I m2 wm cm 
m=0 

Hhll,lSl + hll,2S2 + h11.3S3 + hU,4S4l2 
m=l 

+ [h12,0 + h12.1Cl + h12,2C2 + h12,3C3 

na  W    S m   m 

h19 ,cj  Y m4W    C     =  0 12,4   41  ^ mm (21a) 
m=0 

c 
80 



fll Sl  1   Um Cm - If20 + f21 Ci| 2   mVm\ + [<f40 + V> 
m=0 m=l 

00 

+ (f41 + a41X, cx + (f42 + a42X, C2]    £   Vm Sm 

m=l 
00 

+ [f51 S! + f52 S
2]   I   » V

m C
m 

m=0 

" [f60 + f61 Cl + £62 C
2]    I   »* Vm S

m 
ID-1 

00 

+ f81S 1   I   Wm Cm  " («90 + So*' + <«91 + »91X> Cl 
m=0 

+ <fc - a^A) C2]   J   mWmSm   =0 (21b) 
m=l 

[(g10 + b1QX) + (gn + bnX) C, + (g12 + b12x} c2 + (g13 + b13x) c3j   J üm cm 

m=0 

" Kl + b21X> Sl + <*22 + b22X> S2 + «23 S3]   I   m Um Si 

' K<> + b30X> + <*31 + b31X> Cl + <*32 + b32X> C2 
00 

♦ (g33 + b33X) c3]   £ -2 «a cm * [<*41 + b4lX) Sj 
m=0 

00 

+ (S42 + b42X> S
2J   1 Vn> Sm + («50 + «51 Cl + «52 C2]   I » Vn, C

m 
m=0 m=0 

00 

+ [<*B0 + b80X> + «M + \l* Cl + <%2 + b82X> C
2|  I   Wn, Cm  " ° 

m=0 

(21c) 
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f 

The terms in Eqs. (21) consist of products of trigonometric functions and 

Fourier series.   These terms can be put into the form 

Z  I   jm   m '      '    Z   I   Im   m 
m=0 m=l 

by use of some transformation equations which we will now derive.   As an 

example, let us consider a term of the form 

P  = Sr ^   m3 Wm Sm ,  (£r<4)    . (22) 

m=l 

We use the trigonometric identity 

a D ~    a-b       a+b 

to write P as the sum 

2P -  A-B (22a) 

where 

OO 

A  =    Y m3 Wm C     . (22b) £_, m   m-r 
m=l 

00 

B  =    y   m3WmC   +r    . (22c) ^ m   m+r 
m=l 
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In Eq. (22b), we let q = m-r .   Then 

A =      Y     (q + r)3 W L   C    , Li '      q+r   q 
q^-r+1 

or, 

-1 
A =   2 (q + r)3 Wq+r Cq +     £     (q + r)3 Wq+r Cq     . (22d) 

q=0 q=-r+l 

We let q = -p in the second term on the right-hand side of Eq. (22d).   Thus 

-1 1 

1     <« + r>3VrCq=    I    <r-P>3wr-pCp' 
q=-r+l p-r-1 

or, 

-1 r-1 

2     (q + r)3 Wq+r Cq  =   I <r " *>* Wr^ Cq    ■ <**> 
q=-r+l q=l 

The upper limit for q on the right-hand side of Eq. (22e) can be changed to  °° 

if we make the agreement that Fourier coefficients W        with negative subscripts 

vanish.   Hence 

-1 
V   (q + r)3 W A   C    =   Y (r - q)3 Wrji C £   yH        '      q+r   q        £ r-q   q 

q=-r+l q=l 

(22f) 
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r 

c 

( 

Insertion of Eq. (22f) into Eq. (22d) results in the following expression for A 

w oo 

A   =   Y  (m + r)3W   .   C     + V  (r - m)3W       C Z*  x '     m+r   m      <£,  v '     r-m   i 
m=0 m=l 

+ r3W C    - r3W C (22g) r   o r   o \   */ 

3 3 where the terms +r W C    and  -r W C    were added to the right-hand side 

ofEq. (22d). 

But 

OO °0 

y (r - m)3W       C     + r3W C    =   S (r - m)3W       C 
JL, '     r-m   m r   o        LA * '     r-m   i 

m=l m=0 

and 

oo 

-r3W C    = - y Ö     (m + r)3W   _, C r   o £,    mo* '     m+r   i m 
m=0 

where  Ö       is the Kronecker delta: mo 

1, m  = 0 

mo       , _ „ 0 , m  *  0 

Hence, Eq. (22g) may be written as 

00 

A  ■   I I«1 - V»™ + r>3wm+r 
+ <r - m)3wr-m)Cm  • <22h> 

m=0 
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By proceeding in the same way, we can write B in Eq. (22c) as: 

SO 

B  =   £ (q - r)3 Wq_r Cq    . (22i) 
q=0 

We now insert the expressions for A and B given by Eqs. (22h and i) into 

Eq. (22a) to get 

00 

2P =   £   |-<m - r)3 Wm.r + (1 - ömo) (m + r)3W 
m=0 

m+r 

+ (r - m)3 W       |c       . (22j) x '      r-mj   m *   J/ 

Then, with the notation 

c 
mr 

+1, m<r 
0, m=r 

-1, m>r 

we can write 

-0» - *>* Wm.r 
+ C - ">* Wr-m ■ <mr !"> - *' W|B . r| (22k) 

Then from Eqs. (22j and 22k) we obtain, finally, 

SO 00 

m=l m=0 

+ 0 - d~J <m + r)3 W   L   ic (23) 1 mo7 * '      m+r I   m *   ' 
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00 

{ Thus, the term S     >   m   W    S     has been expressed in the form V r ^ m   m 
m=l 

00 

y        I    C     .By proceeding in the same way, identities may be obtained 

m=0 

which enable us to write each term in Eqs. (21) in the form 

00 00 

2L,      I   Im   m *      '    Z*       I   Jn»   m 
m=0,1 m=l,2 

These identities are: 

00 CO 

2 Cr 1 Wm Cm    "   2 W + *mr> Wlm-rl + <J " 6mo>Wm+rlCm <2*» 
m=0 m=0 

00 00 

C2SyvS=y[ + eV,       ,+(l-ö      )V       |c (24b) r Li     m   m        Z, I     mr    Im-rl      *        mo'   m+r|   m *     ' 
m=l m=0 

( 

00 

2SywC      =    y [(l+o       )W.        ,-W        Is (24c) r  £,,     mm        Z* I mr    !m-rl m+rJ   m l     ' 
m=0 m=«l 

2CyvS     =yi-e      V.       ,+V        Is (24d) 
r  LJ     m   m        L, I     mr    Im-rl        m+r|  m *     ' 

m=l m=l 

oo oo 

2C    y m V    C      -    y I im-ri V.       . + (1 - 6     ) (m + r)V       |c r   Z-, mm £, I Im-rl      * moM '   m+r I   m 
m^O m=0 

(24e) 

00 

2 S    y  m Wm S     =    y I +e       Im - rl W.       , XL* mm        Z-j I     mr Im-rl 
m=l m=0 

, (24f) 

mo m+rJ   m 
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2S 
oo oo 

1  m Vm Cm =   1   Ilm " rl Vlm-ri  ' <m + r) Vm+rlSn, <2*> r 
m=0 m-1 

2C    V   mW    S_ =    S l-€mr Im - rl W,       , + (m + r) Wm+_|s r   /. m   m        ^  I    mr Im-rl m+rJ   m 
m=l m-1 (24h) 

2C     V m2W    C     -     >|lm-rl2W.       . r   /, mm        ^ I Im-rl 
m=0 m-0 

+ (l-ömJ(m + r)2 Wmlc (24i) mo m+rj   m 

00^ oo 

2S      >m2V    S     =    Y I r   LJ mm        Z-» I 
m=l m^O 

00 

+ W,m-r,2v.m-rl 

+ (1 - d     ) (m + r)2 V   ^  lc (24j) * mo7 x '     m+rJ   m x   J/ 

oo oo 

2C    y   m2V    S     =    y [-€       Im - rl2V.     „, + (m + r)2 vis r  Z- mm        Z* I     mr Im-rl m+r J m 
m=l m-1 

(24k) 

00 oo 

2 Sr I m2 W» Cm   -   I Ilm " r|2 W|m-rl " <m + '>' Wm+rl Sm        <M» 
m=0 m=l 

!CrI»3 Vm Cm "   I Ilra " r|3 Vlm-rl + <l " «mo» <m + r>3v
m+r |Cm 

m=0 m=0 
(24m) 

oo 

2 S     y m3 W    S       =    y I + €      Im - rl3 W, r  /, mm LI     mr lm-i 
m-1 m~0 

+ (1 -Ö     ) (m + r)3 W   A   lc (24n) *        mo7 x '      m+r I   m 

87 



C 2CrI  m3wmSm   "   I I "V lm " r'3 Wl 

f 

m-r! 
m=l m=l 

+ <m + r>3wm+rl
Sm (2"0) 

oo oo 

2 S    Y  m3 V    C      =   S \ lm - rl3 V.       .  - (m + r)3 V       I Sm       (24p) r L mm L* 1 Im-rl m+rj  m T' 
m=0 m-1 

8CrI»\SM=   I [ -£mr '« " "* Vlm-rl + <«" + '>* Vo,+r| 
Sm 

m=1 m-1 (24q) 

00 00 

2 Cr I ">4 Wm Cm   =   I \lm ' rl" W!m-rl + <* " *mo> <M + *>4w»J0 

m=0 m=0 
m 

(24r) 

where 

_ I 1, m=r 
mr I 0, m#r   ,   r =   1, ... 4    , (25) 

. I 1, ro=0 
mo 10, m#)   , (26) 

c 
mr 

1, m<r 
0, m=r (27) 

-1, m>r   ,   r  =   1, .. , 4 

We note that identities involving U     may be obtained by replacing W_   in m m 

Eqs. (24) by  Um . 

We now apply the transformations given by Eqs. (24) to the stability equa- 

tions  Eqs. (21) .   As a result, we find that all terms in each of Eqs. (21) may 

be written as an infinite summation over the same trigonometric function and 

over the same range for m .   Hence, in each of Eqs. (21), we may collect all 
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terms under the same summation sign and arrive at the following form of the 

stability equations for buckling Mode A: 

oo 3 

I     2 (h10 ♦ c10X) Um + £ ,hlr ♦ clrX)[(l + 6mr) Ulm.r| 

m=0 r=l 

3 
(1-6     ) U      1 - Y h„  [ €       Im - rl U. v mo7   m+rj      ZL    2r|   mr Im-i 

r=l 

+ (1 - 6     ) (m + r) U        1 - 2m2 hort U v mo7 v '   m+rJ 30   m 

3 

"  I h3rl,m - r|2uim-rl + <* ' 6mo> <m + '>* Vrl 
r=l 

Y (h,    + c, X)U       V.       ,+(1-6      )V        I /, ^ 4r       4r '[   mr    Im-rl      x mo7   m+r J 
r=l 

2m <h50 + C50X> Vm +  I <h5r + V*7 [lm ' rl Vlm-rl 
r=l 

4 
♦ (1 - 6mo, ,m ♦ r) Vm+r| - £ h6r [cmr fa. - rl2 V|m., 

r=l 

+ (1 - 6      ) (in + r)2 V        I - 2m3 h_A V x mo7 * '     m+r I 70   m 

4 

-  I Vi1™ " r|3vim-rl + <» -'„o><» + ^ Vm+r I 
r=l 

+ 2 ("80 + C80X> Wm + 1 %r ' V*»!«1 * amr)wim-ri 
r=l 

+ v - 6
mJ w«.+. 1 mo     m+r I 
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r 

i 

- I %r + V> kr lm " rl Wlm-ri + (1 ' 6J (m + r) Vr I 
r»l 

- 2m2<h10,0 + c10,0*>Wm " 1 <h10,r + c10,r*> l,m " ^ Wlm-rl 
r=l 

4 
(1 - «mo)(m «■ r)2Wm+r]+ £ hllr[,mr lm - rl3 W|m.r| 

r=l 

(1 -6mo)(m + r)3Wm+r]+ 2m4h120Wm + £ h12r[ir. - rl4W|m-r| 

r=l 

Ml-6mo)(m + r)4Wm+r) cos (mtf)     =     0 (28a) 

m=l 
I | 'ill«1 + *ml>Ulm-l. " Um+ll- 

2m f20 Um " f2lhml,m " l! U«m-ll 

+ <m+1>Um+ll
+2(f40 + a40X)Vm 

2 
+  I<f4r + a4rX>hmrVlm-rl + Vm+rl 

r-1 

2 
+  I f5r |,ro " rl Vlm-rl ' <m + r> VmJ- 2m2 f60 Vm 

r-1 

2 
e_rlm-rl2V|m.rl + (n. + r)2Vm+r " I <6r I" 

r=i 

+ f8lf(1 + •■!> Wlm-H  - Wm J- 2m <£90 +  V» W, 

-  S (L    + aft X) f - €      lm - rl £ l 9r       9r 7|     mr W Im-rl 
r-1 

+ <m + r>Wm+r|! sin (m4>)   =    0 (28b) 



00 3 

1 2<*10 + b10X> Um + I «Ur + blrX> I*1 + V^m-« + <J ' «mo> Um*r ] 
m=0l r=l 

3 

-I<S2r + b2rX>hmrlm-r,Ulm-rl 
r=l 

+ <X - ömo> <m + r> Um+rl " ^ <*30 + b3QX> Um 

3 

' I <*3r + b3rX> |lm " rl' Ulm-rl + <X " ömo> <m + ^ Um+r I 
r=l 

2 

Y (g„    + b. X) | e      V,       . + (1 - 6      ) V   A   1 Z, XB4r       4r ' l  rar    lm-rl      v mo'   m+r I + 

r=l 

2m gCA V    + V g.  I Im - rl V,      , + (1 - 5 ) (m + r) V   _,_   ] s50   m     Z* B5r l lm-rl    *        mo7 * '   m+r I 
r=l 

2 

+ 2 <*80 + b80X> Wm + 1 <*8r + b8r*> I*1 + 6mr> W.m-rl 

+ (1 •«    JW       1 mo     m+ri 

r=l 

cos (m#)     =     0 (28c) 

In order for Eqs. (28) to be identically satisfied for all values of # , each 

of the braced expressions in Eqs. (28) must vanish.   This yields 

3 3 4 

z<m>u + y «Nu.   , + y zim)u   +2<m>v +y z<m)v,   , 10     m      L.    2r      lm-rl      Z,    2r     m+r        40     m   Z-    5r      lm-rl 
r=l r=l r= 1 

+ 

r=l r=l 

4 
+ 

r=l 
S Z9?>Wm+r   =   °    *    m  =  (0'1,2 > <29a> 
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( 

( 

(m) TT           (m) TT (m) TT              (m) v 
x10   Um +  «21    Ulm-ll +  «31   Um+1 +  x40  Vm 

2 2^ 

Z   x5r   v!m-rl      Z x6r     m+r      x70      m 
r=l r=l 

2 2 

+ I Xsf W.m»rl +  2 X9r' "m+r     =     °  •   m = <1'2»'") 
r-1 r=l                                                                    (29b) 

3 3 2 

y(m)U    +  Y y(m)U, +  Y y(m)U        +  y(m)V    + Y   v(m) V y10     m      Z *2r   u|m-rl Z y3r     m+r      y40     m      Z   y5r   vlm-rl 
r=^ r=l                                             r=l 

2 2 
+ V    (m) (m)             V    <m) 

Z y6r     m+r y70      m      Z y8r   wlm-rl 
r=l r=l 

2 

Iy9?>Wm+r   =    °  •    m  =  ^1.2.--) 
r=l 

where 

and 

W = l=       1 
X      pa/Eh 

(29c) 

„(m)        «(m) -(m) 
ij ij ij 

(m)       -(m)        -(m) /om x.. = x\     - wx\ (30) lj IJ ij 

(m)       ~(m)        -(m) v.. - y..      - coy\  '    , JiJ Jij JiJ 

(31) 
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The coefficients on the right-hand sides of Eqs. (30) are given by 

*£] =   -|2h10-2m2h3(>] (3?) 

^ =  "i*1 + 6mr>hlr "  ,m " rl *mr h2r " lm " *»* h3rl« <r =   X.2'3> 

4f =   -<X -ömo>[hlr ~ <m + r>h2r " <m + r>2h3r]* <r  =   1»2'3> 

*£=  -hh50-2m3h7ol 

z£?) =  -Um„h.    + Im - rl h.    - Im - rl2 c      h. 5r I mr   4r or mr   6r 

- Im - ri3!^], (r -   1,2,3,4) 

4r) =  -<X "ömo)(h4r f <m + r> h5r " <m + r>'h6r 

- (m + r)3h?rJ , (r =   1,2,3,4) 

4^=   -|2h80-2m2h10,042m4h12,o] 

4f =  "h + 6mr>h8r " '»-" *mr h9r " ,m " r|2h10,r 

+ Im - rl3 emrhn>r + Im - rl4h12r]  ,   (r =   1,2,3,4) 

"<1-6mo)[h8r-<m + r>h9r-<m + ^hl0,r 
r<m) 
z9r 

+ (m + r)3hUr + (m + r)4 hJ2 fj  ,   (r  =   1,2,3,4) 

z(m)  =   2 c Z10 ' C10 

S<m)  =   (1 +«     )c,   , (r =  1,2,3) 2r * mr'   lr' 

&' ^'^V (r = 1'2'3) 
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;<n» _ 
40 =  2m c 50 (32 cont'd) 

z5r 

z6r 

*(m) 
z70 

=  €mrc4r + ,m " rl c5r   <r =  1'2'3'4> 

=  (1-6mo)[c4r + (m + r>c5rl    <r =  1'2'3'4> 

2c80"2m   C10,0 

;(m) _ 
M8r =  (1 +6mr)c8r " lm " rl €mr c9r " lm " *   c10,r   <r =  1'2»3'4> 

5(m) 
z9r =  (1 " Ömo>|c8r " <m + r>c9r " <m + r>* c10,r Ur =  1»2'3'4> 

f 

x10 

x21 

-(m) = x40 

;(m) 
x5r 

r<m) 
x6r 

-<m) 
*70 

n<m) 
x8r 

5E<m) = 

-«-tof2ol 

-[<1+6ml>fll+,m-lUmlf2ll 

"Kl-<m+1)f2ll 

-[-€mrf4r + ,m " rl f5r + lm " rl' Snr f6rl«   <r =  X'2> 

-(fte - (m * P) f6r - (m + r)2 f6r j .    (r  =  1,2) 

|2f'0-2m2f6ol 

-!-2m fgo j 

-^mr^rl^1*-* C
mrf9rl»       <r = *' 2> 

-Klf8r"<m + r>f9rl»        <r = 1»2> 
*(m) 
X10 

x21 

=  0 

=  0 
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XSJ ^1 =  0 (32 cont'd) c 
t(m) - 

k40 
=  2a 40 

*(m) x6r a4r    (r =  1,2) 

A(m) 
*70 =  -2m a, 90 

c8r lm"rl emra9r   <r =   l'2) 

A(m) 
*9r =  -(m + r)agr   (r =  1,2) 

-(m) 
y10 

-(m) 
y2r 

"I2 «10 " 2m   g30l 

-[(l*6mr)glr- lm-rlcmrg2r 
Im - rl2g3rJ ,   (i   =  1,2,3) 

f 
5s? =  -(1 -6mo>|sir " <m + r)g2r " <m + r)* g3rl« <r =  1'2'3) 

y40 
=  -2mg, 50 

y5r 
€     gA   + Im - rl g,.     ,   (r =  1,2) mr 64r °5r • 

-(m) 
yer   = "  -<1-a«o>[«4r+(m + r)g6rl'   (r =  M' 
-(m) 
y70 -2ia 80 

-<m) 
-<1 + 6mr)g8r<r = 1'2) 

-<m) 
y9r =  -<* " *mo> g8r <r  =   X'2> 

*(m) 
y10 2b10'2m   b30 
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r y£° ■ <X +6mr>blr " ,m " rl Snr b2r " ,m " r,2b3r  •   <r =  1'2'3> 

(32 concl'd) 

y™ =  <X -6mo>[blr " <m + r>b2r ' <m + r>2fe3rl <r =  1'2'3> 

y40 u 

»6?-  <1-aWb*.   <r =  X-2> 

"70    "  2b80 

»P* <1+6mr>b8r    <r "  »•*> 

| The coefficients a , b , c , f , g , and h in Eqs. (32) are given by Eqs. (15). 

By letting m take on the values m = 0,1,2.... in Eqa. (29), we obtain an 

infinite system of algebraic equations in which the unknowns are the Fourier 

coefficients U     , V        and W    .   The coefficients in this system of equa- m        m m 
tions are shown in Table 1.   Hence, the system of ordinary differential equations 

with variable coefficients  Eqs. (10 and 11) has been replaced by an infinite 

system of linear homogeneous algebraic equations  Eqs. (29), or, see Table 1 

for U     ,  v     , and W    . mm m 
Using matrix notation, we rewrite Eqs. (29) as: 

[R||V|-  «|S|{V|  = |o| (33) 

where   R   and   S   are square matrices formed by the coefficients 

(x{m) , y<m) .  2<m)) and (xjm> , yjm> ,  zjm>) , respectively; jv| is a 

I 
96 



column vector formed by the unknown Fourier coefficients  U     , V     , W 
m       m       m 

The elements r,   -   and s,   .   of [R] and [S] can be obtained from Table 1 and 

Eqs. (30, 32, and 15).   For example, the diagonal element s_ K  in the 5    row o, o 

of [S] may be expressed in terms of the geometric parameters — and - , and 

the number of circumferential waves n , as follows: 

s5 5    Table 1 & Eqs. (30) zffi + z^ 

mjm " 2 h80 - h82 + h92 + 2h10, 0 + h10, 2 " V 2 " 2h12,0 " h12s 2 

Eqs. (15) ^ 

--2®2te)2-i<'-)-fi+-)a2-c-)4 

where the reference above the long equal sign indicates the means by which the 

right-hand side was obtained.   Similarly the element  r5 5 = z^J + 2g^ . 
2 

For fixed values of the geometric parameters  a = - and k = — (H   ,  and 

for a fixed value of the number of circumferential waves n, the coefficients 

zf.     , x!.m' , and y:.      in Eqs. (33) depend only on the load parameter X. 

The objective of the stability analysis is to determine the lowest value of X (or 

equivalently, the highest value of u> = l/X) for which Eqs. (33) admit a non- 

trivial solution.   This value of X is called an eigenvalue of the system of equa- 

tions and the associated nontrivial solution is called an eigenvector.   The 

components of the eigenvector are the Fourier coefficients  U     , V     , and W m       m m 

These components are only determined up to a scalar factor.   The displacement 

functions 

u   (ip)  =   >   U    cos   imp (34a) 
n {mg     m 

m=0 
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Coefficients of:   U W W, V3 W3 
U4 

10 11 12 13 14 

m = 0    ' 

4    m = 1 

JO)      10)    „(0) 
10 '70 '21 

,(0)    ,<0)    7(0) 
S10     Z70 

7    m = 2 

8 

9 

10    m = 3 

11 

12 

13    m = 4 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

x(1) 

*21 

V(D 
■ 2! 

z(1> Z21 

y(2) 
y22 

21 

X(1)    X(1) x81       10 

y51 

Z51 

,(0) 
'81 

Z81 

,«0) 
*22 

C22 

x(,) + x(1) 

40      52 
(1)     (1)      (1) 

x70      82      31 

..(0) 

z(0) Z52 

*61 

y82 

V(D      yM+JD      V
(1) + V(1) 

y81    y10   y22    y40    y52 

z81     z10    z22    z40      52 

(2)      (2) (2) 
82       21 x51 

y(2) y<2)+y<2) v<2> 
■>*•> *o\  *9i y* 

V(D+V(1)       yW+M)       V<    ) y70    y82     y23    y31     y61 

(0) 
82 

,(0) 
82 

91 

,(D 
91 

v(0) 
'23 

,(0)      JO) 
"23 '53 

*62 

„(J)     J» 
'32 '62 

z(0> z83 

X92 

(1) 
y92 

,(0)       (0) 
z54      z84 

> 33 

JD + Z(1)    2(1) + Z(D    ,(D + Z(1)    z^W1)    zd) 
Z70    Z82       23      31     z53    Z61     z83    Z91     Z32 

z(l) + zd)    7(D + 7(1)    ,(D     ,(D     ,d) 
Z54      62       84    Z92       33 

'82    ■'21    •'23 '51 

x(2) 

81 

y(2) 
y81 

x(2> 
10 

J2) 
yio 

x<2> 
40 

y(2) 
y40 

,(2) 
70 

,(2) 
*70 

K<
2

>      x<2> 
*31      *61 

„(2)      „(2) 
'31 '61 

z*2>   z(2)    z(2) + /(2)   z<2) + z(2> z22    z82    z21    z23    z51    z53 
z(2)     (2)      (2) 
Z81    Z83     Z10 

z(2)     (2)      (2)     (2)      (2)        (2) 
Z40      54     Z70    Z84     Z31      Z61 

„(3) 
'23 

z(3> z23 

y(3) 
y22 

z(3)    z<3) 
z83       22 

(4) 
J23 

z84       23 

x(3) 
x52 

y<3) 
y52 

z<3> + z(3) 
z52      54 

x(3) 

82 

(3) 
y82 

z<3> + 2<3> z82    z84 

*(3) 
21 

.,(3) 
y21 

Z21 

y22 

z<4) z53 183 

22 

£22 

xi3> 
ol 

..(3) 
V51 

z(3) 
z51 

J4) 
x52 

y<4) 
y52 

<4) 
o2 

x<3> 
81 

v(3) 
•81 

z(3) Z81 

x(4) 

82 

y(4) 

2<4) 
82 

.(3)      x(3) 
40 10 

..(3) 
'10 

y(3) 
y4C 

.(3)      ,(3) 
10 40 

*<4>      x<4' 
"21        ol 

,(4)     ..(4) 
y51 

(4) 
ol 

'21 

Z21 

x(2) 

91 

y(2) y91 

z<2> Z91 

X70 

v(3) 
v70 

z(3> 
70 

x81 

y(4) 
y81 

z<4> Z81 

'63 

X62 

93 

J2) 
*92 

J2)     ,.<2)     v<2) 
'32 '62 '92 

,(2)       12)       12) 
32 

x(3> 31 

y(3) 
y31 

62 

x(3> 
61 

y61 

92 

x(3) 
x91 

y<3> 
y91 

J3)        (3)        (3) 
'31 

*<4> 
10 

61 

<4) 
v40 

v<4>      J4) 
10 

z<4> 
10 

'40 

z<4> 
40 

91 

x(4> x70 

(4) 
•70 

z<4) 

70 

z8 

z<« ztl 

x(m) 
52 

m = 5      | 

I z!m> 
54 

,(m) 
Z84 

Jm) 
'23 

Am) 
z23 

7(m) 
z53 

7(m) 
83 

,(m) 
'22 

7(m) 
Z22 

>52 
(m) 
52 

7(m) 
J52 

_<M) 
82 

,.(m) 
'82 

7(m) 
82 

„(m) 
"21 

x<™> 
ol 

„<m) 
*81 

x5 
(m)      (m)      (m) 

'21 

,(m) 
Z21 

'51 81 

,(m)     lm) 
51 81 

(THIS PATTERN REPEATS 
FOR  m  - 5 

m = 6  • 

„(m)      lm) 

54 
,(m) 
ZS4 

,(m) 
-23 

,(m)      (m) 
23      453 

y(m) 
83 

Jm) 
54 84 

V22 

,(m) 
Z22 

(m) 
'23 

(m) 
'23 

"52 

,|m) 
J52 

z(m) 
52 

«2 

<m) 
v82 

,<m) 
82 

>t 

_< 

Jm)      (m)      (m 
z53        83      ': 
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Table 1 
MODE A STABILITY EQUATIONS 

w, "s 
v„ v6 L', W. vv\ W9      U10 V1U      WK 11 

vu   wn 
14 15 16 17 18 19 20 22 23 24 25 2C 27 2b 29 30 31 32 33 34 35 

(0) 
L 84 

Z
(1> 93 Z64 '94 

*92 

„(2)     „(2) 
'92 

,(2) 
92 

'33 

Z33 
J2)      ,(2) 
'63 93 

.(2)      „(2) 
64 94 

,(ra)    ,<m) 
64 94 

(m)      (m) 
'63 "93 

,(m) 
64 

(ni) 
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00 

f" vn(^ =   2  Vmsin m^ (34b) 

m=l 

wr (V)  =   V  Wm cos  u# (34c) 
i» ^^      in 

m=0 
i I 

corresponding to the eigenvalue X are called the eigenfunctions or mode shapes. 

In order to effect a solution, we truncate the infinite set of equations I Eqs. (33) 

and employ a matrix iteration technique [Ref. (26)) to determine, from Rayleigh's 

quotient, the lowest eigenvalue X of the resulting finite equation system.   Next, 

the size of the equation system is increased and the lowest eigenvalue of the new 

system is determined.   This procedure is repeated until the successive values 

of X have stabilized to the value X    .    Then by varying n , we obtain a set of or 
these values of X    , one for each n , and the solution to the buckling problem 

is given by the minimum value of X     in this set.   This procedure was pro- 

grammed for the IBM 7094 digital computer and the numerical results are 

presented in the next chapter.   At this point we may remark that, although a 

mathematical proof of convergence has not been presented here, the numerical 

results indicate convergence of the eigenvalues within a wide range of values of 

geometric parameters. 

2.2.2  ModeB 

For the buckling mode which is antimetric about the plane  4> = 0, » 

(plane A-A in Fig. 1), the displacement components u   (4) , v   (4>) , and w ($) n n n 
are represented by the Fourier series: 

00 CO 

m=l m=l 
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Vn <*> =    I Vm cos  m*   ^   ^  Vffl Cm (35b) 
m=0 m=0 

00 

wn »> " I *m Bin m*   =   S *m Sm    • <35c> 
m=l m=l 

A detailed analysis of buckling in the mode which is symmetric about the plane 

tp = 0, ir has been given in the preceding subsection.   Corresponding equations 

for the antimetric mode can be obtained in the same way and therefore a detailed 

analysis for this buckling mode will not be presented here. 

The stability equations for the buckling mode which is antimetric about the 

plane 4> = 0, T are 

3 3 4 

2<m) U     +  V  z<m) Ü +  V $m) U        + 2<m> V     +  V ^m) V z10   um      L    2r   ulm-rl      2   3r   um+r     z40   vm      2   5r   vlm-rl 
r=l r=l r=l 

Z,   6r     m+r     ^70      m      Z,   8r      Im-rl 
r=l r=l 

4 

"•" J ^r^m+r   =   °    •    m = (1'2 > <36a> 
r=l 

10     m       21      lm-11     A31     m+1 x40   vm      2 ^r   Vlm-rl 
r--l 

2 2 

Z, ^r     m+r     *70      m Z,   8r      Im-rl 
r=l r=l 

2 

+  2*9r   Wm+r   =    °    •    m =  (0.1.2...)                                  (36b) 
r=l 
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r3 3 2 

Vm) U     +  V v(m) U +  V ^m) U + ?(m) V     +  Y V{m) ? y10   um      Z y2r   ulm-rl      Z y3r     m+r     y40     m      Z y5r   vlm-i 
r=l r=I r=l 

r=l r=l 

2 

+ 2 ^Sr^rn+r   =   ° •    m = t1»2'*-') <36c> 

where 

«J»> = ? J" - «f<,m> (37a) 

(*- ~(m)       *(m)       _(m) .„_ . 
yij        ^ij      W7?ij ( 7c) 

The coefficients on the right-hand sides of Eqs. (37) are given by 

?<io> " "I2 hio - 2v? "so] <38> 

**? ' -|"V hlr * "" - rl h2r + f mr "» " ^ h3rl    <r "  »•»•» 

T3?) =  "Kr ' {m * r)h2r * (m + r)2h3r]  (r =  ll2'3) 

^S?}- -|-2mh50 + 2n>3h7ol 

T5r} '  "I«1 + Smr> h4r + EM lm " rl h5r " '"> " "* h6r 

•fmr Im - rl3 li^^ j (r -  1,2,3.4) 

|C *£?' = "Kr ' (m + r) bSr 4 (m + r)2 h6r + <m + r>3 hr I  (r =  1,2'3-*> 



T(m) 

Tim) 
*8r 

-"2No-2m2b10,0+2m4h12,0 
(38 cont'd) 

T(m) 
fc9r 

-hmr h8r + lm " rl \r + emr lm " r|2 h10,r " ,m " r,S hll,r 

"  fmrlm-r|4h12,rl  <r =  1'2»3»4> 

"Kr " (m + r) h9r " (m + r)2 h10,r + <m + r)3 hll,r 

+ (m + r)4h12r]  (r =  1,2,3,4) 

t{m) =  2 c fc10 10 

^2r) =  "Wclr      <r -  1»2'3> 

Urn) 
&3r = o (r =  1,2,3) 

(m) _ 
40 =  -2m c 50 

?<m) _ 
5r ~ 

£<m) _ 

?(m) _ 
s70 

?<m) _ 
fc8r " 

(1 + I     )c.   + €       lm - rl c_       (r =  1,2,3,4) * mr'   4r        mr 5r     x »  »  »  / 

-c^ - (m + r)c5r     (r =  1,2,3,4) 

2c80-2m   c10,0 

'Snr c8r + ,m " rl c9r + €mr ,m " rl   c10,r   <r =  1'2'3'4> 

?(m) 
*9r Cfl^ "(» + r)c0« - (m + r)   c.-.    (r =   1,2,3,4) '8r '9r lOr 

T(m) = no 

7<m> = 
21 

-12m f20] 

-,emlfll+ lm-llf2l 

*S?U  -V-'moAhl + ^+Vhll 
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f 
r(m) 

*5r 

=  -12 f40 - 2m   f6Q 

=  - (1 + *   J*A~ - *„„ '*» - rl '«„ " '™ - rl- fß„     (r =   1,2) 

(38 cont'd) 

mr   4r        mr 5r '6r 

f 

*i»- 

W 

*6r 

j(m) 
*70 

T(m) 
s8r 

T(m) 
s9r 

no 
Mm) 
*21 

;(m) 
531 

|(m) 
*40 

|(m) 
5r 

|(m) 
s6r 

|(m) 
*70 

|(m) 

9r 

4m) 
10 

a<m) 
2r 

= ^ * ömo>[f4r " <m + r>f5r " <m + r>2f6r|   <r =  X'2> 

[2m fgo 

-Kl  Wf8r+'m-r|f9r|   <r =  X»2> 

-<1-ömo>Klf8r+<m + r>f9rI   (r =  X<2) 

=  0 

=  0 

=  0 

= 2a 40 

<1 + 6mr>a4r     <r =  l-*> 

^Ua4r     <r -  X'2> 

= 2m a, 90 

Im - rl a9r     (r =   1,2) 

(1 - 5mo) (m + r) a9r     (r  =   1,2) 

-[2g10-2m2g30| 

"I" W«lr + ,m " rl «2r +  <mr lm " r,2*3rl    (r =   l'2'3> 
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\3r 

r<m> = - 
'40 

Tf(m)  = 
5r 

6r 

'70 

8r 

><m>  =  - 

glr - (m + r) g2r - (m + r)2 g3r]   (r  =  1,2,3) 

'9r 

'10 

i(m) 
'2r 

i(m) 
3r 

*<m) 
'40 

(38 concPd) 

-2m g 50 I 
<1+6

mr>*4r + fmrlm-rlg5rl    (r  =   X*2) 

*4r" <ra + r)g5r]    <r  =   1>2) 

2*8o] 

-fmr«8rl     <r =  *'2> 

g8J    (r =  1,2) 

2b10-2m  b30 

-€     b.,. + Im - rlb9t. + e   _ Im - rl   bq      (r mr   lr 2r        mx or 
1.2,3) 

= h     - (m + r)b9„ - <m + r)   b.     (r =   1,2,3) 
lr 2r 3r 

}(m)  _ 
5r 

'6r 

■  <1 + ömr>b4r     <r =  X'2> 

-b4r     (r =  1,2) 

C - "-b 

Ä(m) 
8r 

(m) 

80 

-mrV     <r =  l-*> 

n 9r b8r Cr-1.» 

The coefficients a , b , c , f , g , and h in Eqs. (38) are given by Eqs. (15). 
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unknowns are the Fourier coefficients U     , V     , and W mm m 

By letting m take on the values m - 0,1,2   in Eqs. (36), we obtain 

an infinite system of linear homogeneous algebraic equations in which the 

The coefficients 

in this system of equations are shown in Table 2.   Using matrix notation, we 

rewrite Eqs. (36) as: 

[R]|V| - cü [s]jv| =|oj (39) 

where   R   and   S   are square matrices formed by the coefficients 

(if . «5° .  £j,,)«*(fj'> . W™ , t«). respectively; | v|ls a 

column vector formed by the unknown Fourier coefficients U     , V     , and \V     . * m        m m 

The buckling load is obtained by the method discussed in the preceding 

subsection and numerical results are presented in the next chapter. 

3.   Stability Equations for a Sphere 

The stability equations for axially symmetric buckling of a sphere subject 

to gas pressure are ootained by setting u = n - a - 0  in the stability equa- 

tions for a torus JEqs. (10)1 .   As a result, Eq. (10c) which corresponds to 

equilibrium in the circumferential direction is identically satisfied.   And, with 

the aid of the trigonometric identities given in Eqs. (13).the non-zero coefficients 

in Eqs. (10a and 10b) are: 

h4   - kli(3 - "> S2 + h1 - V)h\- <X * ">[?S2 + 8 SJ =   Cl4 k|<2 ' V) Tl 

+ Tx
3] ~ ()   *-v)Tl 

hs = k(l+1v + h1 + *>S < ic4.|+ <J + *>(!+ ici2 + FCJ 

k[(l + v) + Tj2j + (1 +P) 

(40a) 

(40b) 
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Coefficients of:   VQ Ul Vl W> U2 V2 W2 U3 V3 W3 U4 V4 W4 U5 
\' 

v4 
i 2 3 4 5 6 7 f 9 10 11 12 13 14 1.. 

12 

1 m = 0 i 
;(0) 

40 
;«0) 

21 
-(0) 
*5J XS1 

-<0) 
X52 

4(0) 
82 

- 

2 x<J> 
51 

x(1> 
10 *40    *52 

5d)+5d) 
x70      82 «iV jd> 

X61 91 
5d) 
X62 x(1) x92 

3 m =  1 -(1) 
oi 

yd> + yio 
yd>   y(D + yW 
322   J40    y52 

yd> + 
*70 v(1) v82 

yd>+yd 
y23    y31 

Ml) 
'61 

yd) 
y91 

yd) 
y32 

y(D 
*62 

yd) 
y92 

yd) 
y33 

4 
! « 

;d) + 
^lO £(1)  £(1) + £(1) z22    z40    z52 z70      82 z(1)+£(1 z23    *3J 

>      Z(1)4 z53 
?d) 

61 
£(1> + z(1) z83    z91 £(1) z32 

£<J) + £(1) 
Z54    Z62 £(1) + £(1) z84    z92 £(1) E33 z(1) z63 

£(1) z93 •4, 
63 

5 5(2) 
X52 

j(2) 
21 

X(2) 
x51 

5(2) 
x81 

X<2> X10 X40 
s(2» 
X70 

5<2) 
31 

j(2) 
x61 

x<2) 

91 x(2> x62 
x<2> 92 x<2) x62 

„(2) 
y62 

j(2) 
62 

7 

m = 2 ■ 

j,(2) 
y52 

;(2) 
52 

y<2> + y21 

-(2) 
Z?l 

„(2)   ?(2) 
y23   y51 

£«2)   E(2) + i(2) 
Z23    z51    Z53 

y(2) y81 

£<2> + £<2> 
81    Z83 

c.<2) 
• 10 

z(2) 
Z10 

a(2) y40 

Z<2> + z40 
j(2) 
Z54 

y<2) 
y70 

£<2> + z(2) Z70    Z84 

y(2) 
V31 

Z31 

y(2) 
y61 

£(2> Z61 

y(2) y91 

£(2) 
Z91 

y(2) 
y32 

£(2> Z32 

y(2) 
y62 

£<2> Z62 

y(2) 
y92 

£<2> z92 

y(2) 
y33 

E(2) 
z33 t 

8 x<3> 
52 

x<3) x82 
5(3) 

21 
5(3> 

51 
-(3) 
x81 

S(3) 
10 «2? 40 

x<3> 
70 

-(3) 
31 

;(3) 
x61 

X(3) 
X91 t j(3) 

x61 

-(3) 9 m = 3 ■ v<3> y22 
y(3) 
y52 y(-,) y82 

?(3) 
*21 

y(3) 
y51 

y<3> y81 
y(3) 
y10 

y(3) 
y40 

y(3) 
y70 y31 

v<3> 
yCl 

y(3) 
y91 

j.(3) 
>32 y

6
:: 

10 z<3> z53 
-0) 

22 
£(3) + j«3) 
Z52    z54 

j(3) + z(3) 
z82      84 

j(3) 
z21 

2(3> 
z51 

£<3> Z81 
j<3> 
Z10 

j(3) 
Z40 

r(3) 
"70 

j(3) 
z31 

j(3) 
z61 

j(3) 
z91 

j(3) 
32 C 

bl 

2(3) 
61 

11 x<4> x52 x<4> 82 x(4> 21 x(4> 
ol x(4) 

81 x(4) 

10 x<4) X40 sSSf 70 
x(4> 31 t x(4) X40 

y40 

£(4i 

40 

12 m = 4 yd) 
y23 v(4) y22 v(4) V52 y(4) 

>82 
yd> 
y21 v(4> v51 y<4) J81 

yd) 
y10 

yd) 
y40 

yd) 
y70 y31 « 

13 £<4) 
54 I(4> z23 

j(4) 
753 £(4> z83 £(4) z22 £(4) 

52 
£(4) z82 £(4> z21 ii 

i<4> 
81 

z(4) Z10 £(4> Z40 Z70 
£d) 
Z31 z^; 

14 ;<m) 
x52 

:(m) 
x82 

;(m) 
21 

.(m) 
51 

;(") 
81 

;(m) 
10 

xt "xTnD 

15 m = 5 y23 y22      *52 
c.<m) }82 

r.(m) 
y2i *51 

C(m) 
YB1 

v<«n) 
MO 

yl!. 
ol 

5(m 

16 z84 z23 Z53 z83 
z(m)    -(m) 
z22      z52 z82 

j(m) 
z21 

;<n>> 
z51 

j(m) 
81 

j(m) 
z10 

£', 

17 

16 

Ü 
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m - 6 y23 •22 

52 

c.(m) 
y52 

82 

c,(m) 
*82 

;(m) 
21 

y21 

x(; 

y5 

5^ 

x52 

19 :(m) 
Z54 

;(m) 
Z84 z23 

)    ;(m) 
z53 

;<m) 
z83 

;(m) 
z22 z52 

j(m) 
S2 

;(m) 
z21 £<. 

-(: 

■'52 

-(m 
ZS2 

20 

21 m = 7 *23 
c.(m) 
>22 

xl 

2? =(m) 
z54 z84 z23 

j(T-) 
63 22 zl; 

7<T ''53 
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Table 2 
MODE B STABILITY EQUATIONS 

V4 W4 U5 V5 WS ü6 V6 W6 U7 V7 W7 U8 V8 W8 U9 V9 W9 U10 V10 wio Ull Vll Wll- ■• 

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 23 2y 30 31 32 33 34    . •• 

'63        93 z64        94 

*62        92 

y<2> 
y62 

j(2> 
y92 

j(2) 
y33 

j(2) 
Z62 

z(2) z92 
-(2) 
z33 

j(2) 
Z63 

,(2) 
z93 

-0) 
*61 

xi3) 
"91 

x<3> 
62 

x(3) 

*92 

y(2) 
y61 

,<3) 
y91 y32 

?(3) 
y62 

y(3) 
y92 

j(3) 
y33 

z(3) 
61 

j(3) 
z91 

z<3> Z32 
j(3) 
Z62 

j(3) 
Z92 

j(3) 
z33 

x<4> 
40 

S<4> 
70 

x(4> 31 x(4> *61 x<4) 

*91 

y(4) y40 y(4) 
»70 y<4) y31 y61 y(4) y91 y(4) y32 

i<4> Z40 
£(4) z70 z<4) Z31 i(4> Z61 z(4) Z91 i(4) 

*32 

'52 

i<2) Z64 

z(3) 
Z63 

"62 

'62 

z(4) Z62 

j(2) 
Z94 

j(3) 
z93 

;(4)     =C») 
92 

-<4)     5(4)     -(4) 
'92 

z<4) z92 

'33 

z<4) z33 

=(3)     .(3) 
z64      z94 

z<4) z63 i(4) z93 

;(m) -(m) -(m) -(m) 
x51 81 10 *40 

-(m) -(m) -(m) -(m) 
'51 -81 y10 '40 

-(m)    -(m)    -(m)    -(m) 
70        31        61        91 

=to) 
62 

jto) 
*92 

;(4)     j<4) 
64      z94 

-(m)    -<m) 
'70     y31 

to)    -to)    -to)    -<m)    -(m)    -(m> 
'61 

-(m)    -<m)    -<m)    -<m)    -to)    -<m>    -(m) 
Z51 81       Z10      Z40      Z70      z31       z61 

'91 

;to> 
z91 

y32 '62 '92 '33 

-<m)    -(m)    -(m)    -(m)    -(m)    .(m) 
z32      z62      z92        33      z63        93 

;to)    -(ro)    -(m)    -to)    -to)    -to)    -to)    -(m)    -to)    -<m)    -(m) 
x52        82      X21      X51       *81 10        40        70      *31      *61      *91 

-(m)    -to)    5to)    -<m)    -to)   -<m)    c(m)    -<m)    -(in)    -to)    -(m) 

»to)    -to) 
64     '■• 94 j 

V82 '21 '51 '81 10 '40 '70 '31 '«1 

:(m) -<m) 
62 92 

.(m)    -(m) .(m)    .(m) 
y32      y62 y92      y33 

-(m)    -(m)    -(m)    -(m)    -(m)    -(m)    -(m)    -(m)    -(m)    -<m)    -<m)    -(m)    -<m)    -(m)    -(m>    jto)    -<m> 
z52        82      Z21      Z51      Z81 10        40 70        31      Z61      Z91      Z32      ZS2      Z92      Z33        63      *93 

-<m)    -(m) 
64      z94 

6 

-(m)    -(m)    -<m)    -(m)    -(m)    -(m) 
52 "82 v21 51 8i 10 

-(m)    -<m)    -(m>    -(m)    -(m) 
40        70        31      *61        91 

;(m)    -(m) 
62        92 

j(n>) 
'33 

-to) -(m> cto) -to) -(m) -(m) -(m) -<m) -<m) -<m) .(m) ,(m) -(m) -<ra) -(m> -( 
y22 y52 y82 y21 V51 y81 * 10 y40 y70 y31 J61 y91 y32 y62 y92 y3 

(m)    -(m)    ,<m) .(m) -<ra) 5to) ^to) -(in) -<m) 5to) ?(m) -(m) (m) ,(m) »to) -(m) .(m) -(m)    :to)    ;<m) 
53       Z83       Z2^ Z52 Z82 Z2) \,1 Z81 10 Z40 z70 Z31 z61 z91 32 *62 z92 z33      Z63       z93 

-(m)   ;to) 
Z64 94 
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(k + isJ = ci4lk<2'Vl-h7 - kI4- h6   ■  "IK + TS4 ic   - lc 
2C2      7C4 

c/l-k (40c) 

h8  = (l+")(!+C2
+iC4)=  Ci4|2<1+")|. \  - k4<3-.)S5 

(40d) 

'10 

12 

-f(l-^)S4]=  Cx
4 k[-(2-,)Tl -T^j 

k|-ß+T")-i<1 + ">C3-?C4|-Cl4h1+")-Tl2|' 
hn = kKs2 -is

4)= ci4k2Ti>l <40e> 
k|l + IC2+?C4]=   Cl4|k|'C4^i4S2-JS4]=Cl4h<"Tl>| 

(40f) 

c„  ~ 

«I!4c2+ic4l= ci4|o|- cs ■ «If ♦*ci*£cJ-c1
4M 

(40g) 

"|-4-S2-?S4]=   ClVTl>|-  C10  *  «If+ £C«+TC4l-CI4H 

1.   = -|(1+")+i<l-">C2  =   Cl2 "(- V) 
(40h) 

' f5  ~  "*2S2 " (V|"Tl| 

<40i) 

f6  = 

a. = «l-i-icil- °i'hl- a9 ■ "!i+T
C
II- 

ci2M      <«"■> 

where 

q  = 1(1 -P2)X     , (41) 

and 

T    = tan  i   . (42) 
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With a trivial change in the independent variable 

wh"*" 

0 = i ■ + 2  • 

we arrive at the following form of the stability equations for symmetric buckling 

of a sphere under hydrostatic pressure: 

(1 + v ) I v cot 0 + v + 2w   + k I -v (2 - v + *ot 0) cot 0 + v (1 + v + cot 0) 

- 2 cot 0 v - v + w (2 - v •*  cot 0) cot 0 - w (1 + v + cot 0) (43a) 

+ 2 cot 0 w + w   + q I v cot 0 + v + 4w + w cot 0 + w     =    0 

2 • ••       • -(u + cot 0) v + v cot 0 + V + w (1 + v) - q (v - w)    =    0      . (43b) 

These equations are identical to Eqs. (VII-76a) and (VII-76b) of Ref. (13) 

provided that, as was done here, the transverse shear force Q^   is omitted 

from the equation of equilibrium in the meridional diiection [Eq. (VII-76a) 

of Ref. (13)]. 
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VII 

TOROIDAL SHELL UNDER EXTERNAL PRESSURE - 
NUMERICAL RESULTS 

Numerical results for the buckling of a complete toroidal shell under 

uniform external pressure are presented in this chapter.   All numerical 

results are for a value of Poisson's ratio,   v = 0.3 . 

1.   Numerical Results 

The procedure used to obtain the lowest eigenvalue will now be illus- 

trated by means of a typical example    Let us consider a toroidal shell 

whose geometric parameters are  a/h = 100  and b/a = 4, and which 

buckles in Mode A with n = 2 circumferential waves.   From these values, 

all of the coefficients  r.   . , s,   .  in the infinite system of stability equations 

[Eqs. (VI - 33)] may be determined.   A matrix iteration technique is then 

used to get the lowest eigenvalue  Ä of a finite system of equations which is 

obtained through truncation of the infinite system of equations.   The size of 

the finite system of equations is determined from the number of harmonics M 

used in the series expansions for the displacement components u ($) , v (#), 

and w ($).   That is, in Eqs. (VI - 20), the Fourier index  m takes on the 

values m=G,l,2,...,M.   The results obtained from the matrix iteration 

method are shown in Table lfor a system of equations corresponding to M = 14. 

From Table 1, we see that four place accuracy in the eigenvalue  X = pa/Eh 

was achieved after eight iterations.   Next, by assigning a sequence of values 

to  M , we successively increase the size of the system of equations until no 

significant change occurs in the computed eigenvalue  X.   The results so 

109 



obtained are shown in Table 2.   We see from Table 2 that the sequence of eigen- 
_3 

values   X converged to the value X     = 0.1746 x 10     .     By proceeding in this 
VcX 

way, we can determine the eigenvalues   X       corresponding to different integer 

values of the number of circumferential waves  n.   Such results are given in 

Table 3 which shows that the lowest eigenvalue occurred at   n ~~ 2 .   To com- 

plete the analysis of the toroidal shell with  a/h -  100   and  b/a -- 4 ,  it is 

necessary to consider also buckling of the shell in Mode B and in the axially 

symmetric mode (n = 0).   The eigenvalues for these modes can be obtained 

by the same procedure used for Mode A. 

Table 1 

RESULTS OF MATRIX ITERATION 

Mode A: a/h = 100, b/a = 4, n = 2,  M = 14 

Iteration IK*'»3 Iteration i*'°3 

1 7.6551 9 0.1746 

2 1.0454 10 0.1746 

3 0.1973 11 0. 1746 

4 0.1763 12 0.1746 

5 0.1752 13 0. 1746 

6 0.1747 14 0. 1746 

7 0.1746 15 0.1746 

8 0.1746 

©' 
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Table 2 

EFFECT OF SIZE OF MATRIX ON COMPUTED 
BUCKLING PRESSURE 

Mode A: a/h = 100, b/a = 4, n= 2 

M 1R*><>3 M t*1«3 

1 5.0164 13 0. 1746 

2 1. 1389 14 0. 3746 

3 0.4549 15 0.1746 

4 0.2762 16 0. 1746 

5 0.2136 17 0. 1746 

6 0.1840 18 0. 1746 

7 0. 1773 19 0. 1746 

8 0. 1749 20 0. 1746 

9 0. 1746 21 0. 1746 

10 0.1746 22 0. 1746 

11 0. 1746 23 0. 1746 

12 0. 1746 24 0. 1746 

Table 3 

VARIATION OF BUCKLING PRESSURE WITH 
NUMBER OF CIRCUMFERENTIAL WAVES 

n 

1 

2 

Mode A:  a/h = 100, b/a = 4 

IF*1"3 

0. 6978 

0. 1746 

3 0.1923 

4 0.2179 

5 0.2494 

n 

6 

8 

10 

12 

18 

ft-1'3 

0. 2878 

0.3873 

0.5167 

0.6714 

1. 2427 
J 
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The effect of the size of the system of equations on the computed eigen- 

value is illustrated in Table 4 for other values of the geometric parameters 

a/h and b/a.   Inspection of Table 4 reveals that the number of harmonics M 

required for the same degree of accuracy in th^ eigenvalue increases with 

increasing a/h and decreases wiih increasing b/a. 

For all cases considered, the eigenvalues for the axially symmetric buck- 

ling mode were higher than the eigenvalues for the asymmetric buckling modes. 

For the same value of n ,  the eigenvalues corresponding to the two asymmetric 

buckling modes (i. e. , Modes A and B) were always close to each other, and, as 

can be seen from Table 5, the eigenvalues for Mode A were sometimes higher 

and sometimes lower than the eigenvalues for Mode B.   In all cases investi- 

gated, the lowest eigenvalue occurred at n = 2 for both asymmetric buckling 

modes.   Some mode shapes for n = 2  are given in Figs. 1 and 2. 

For the limiting case of a sphere (b/a — 0) under external pressure, the 

2    2 
classical solution p = 1.21 Eh /a    was here reproduced numerically for both 

the asymmetric and axially symmetric buckling modes.   Results for the limit- 

ing case of axially symmetric buckling (b/a — °°)  can be compared to the 

critical load for an infinitely long cylinder under external pressure.   However, 

in order to make the analyses comparable, we first have to modify the cylinder 

analysis through deletion of the transverse shear force from the in-surface 

equilibrium equation.   Once this has been done, the results from the two 

analyses are identical. 

112 



Table 4 

EFFECT OF SIZE OF MATRK ON COMPUTED BUCKLING PRESSURE 

M 

Mode A, n 

a/h=500, b/a=2 

£*«>' 
a/h=100, b/a=2 

IK*1»3 

a/h=500, b/a=8 

Eh      1U 

a/h=100, b/a=8 

pa .   „nc 
Eh*  10 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

30 

3.9804 

2.3602 

1.5499 

1.0051 

0.7757 

0.5824 

0.4828 

0.4072 

0.3652 

0.3367 

0.3201 

0.3108 

0.3052 

0.3029 

0.3015 

0.3010 

0.3008 

0.3007 

0.3007 

0.3007 

0.5176 

0.3886 

0.3203 

0.2949 

0.2848 

0.2824 

0. 2813 

0.2812 

0.2811 

0.2811 

0.2811 

0.2811 

0.2811 

0.2811 

0.2811 

0.2811 

0.2811 

0.2811 

0.2811 

0. 3104 

0.2195 

0.1626 

0. 1403 

0. 1283 

0. 1239 

0. 1222 

0. 1217 

0. 1216 

0. 1216 

0. 1216 

0. 1216 

0.1216 

0.1216 

0.1216 

0. 1216 

0. 1216 

0.1216 

0.1216 

0.1157 

0.1134 

0.1132 

0.1132 

0.1132 

0.1132 

0.1132 

0.1132 

0.1132 

0.1132 

0.1132 

0.1132 

0.1132 

0.1132 

0.1132 

0.1132 

0. 1132 

0.1132 

0.1132 
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( Table 5 

COMPARISON OF RESULTS FOR 
MODE A AND MODE B 

(a) a/h = 100, n = 2 

b/a 
ft*"3 

Mode A Mode B 

1.2 

2 

4 

8 

20 

0.520 

0.281 

0. 175 

0.113 

0.066 

0.516 

0.281 

0. 176 

0.115 

0.067 

(b)  a/h = 500, n = 2 

b/a 
fR*"4 

Mode A Mode B 

1.2 

2 

4 

8 

20 

0.441 

0.301 

0.191 

0. 121 

0.068 

0.440 

0.301 

0. 192 

0. 122 

0.069 

i 
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AXIS OF ROTATION 

b/a = 1.2 

>o^"^ ^*A 

\ 

\ 

\^ ̂ ^ \ 

/ 

b/a = 4 m                h             to 

Fig.  1  Mode Shapes, a/h - 100 , n = 2 . Mode A 
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\   i 

r 

b/o = l.2 

r r 1 
K^ 

b/a = 4 m                  h                 hi b/a = 8 

Fig. 2 Mode Shapes, a/h = 100, n = 2 , Mode B 

<: 
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1-1 Buckling Curves 

The accuracy of the numerical results, of course, depends on the use of 

a sufficient number of terms in the Fourier series expansions for the displace- 

ment components.   On the other hand, the computer time increases rapidly 

with an increasing number of terms.   The convergence of the method, there- 

fore, was explored through calculation of buckling loads for fixed shell param- 

eters and a successively increasing number of terms.   By use of these 

exploratory calculations it was possible to establish, as a function of the 

geometrical parameters, the number of terms needed for 1%, or better, 

accuracy in the final results. 

The computed critical values of the external pressures are shown in 

Fig. 3.   From Fig. 3 we see, as expected, that the critical pressure p de- 

creases with increasing a/h and increases with increasing a/b. 

1.2 Rigid Body Modes 

Let us denote the coefficients of the unknowns U  , V , U., V.,  and Vf^ 

in the  i     row of   [S]   or  [§]   by a.,b    c , d.,  and e.,  respectively. 

Then, from Eqs. (VI - 15, 29, 30, and 32) or Eqs. (VI - 15, 36 through 38). 

we can obtain, for each value of i,  the following relations: 

(i) Mode A, n = 0 

(1) ai 
= 1 

"äci 

(ii) Mode A, -   = 1 

ai 
= ei "di 

iii) Mode B, n = 0 

dt 
= 

"ei 

(2) 

(3) 
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(iv) Mode Bt n = 1 

bt = -or(d.+ e.) - c. . (4) 

With these relations, we can show that the equations which govern the stability 

of a toroidal shell [£os. (VI - 29) for Mode A or Eqs. (VI - 36) for Mode B] 

admit the following nontrivial solutions: 

(i) Mode A, n = 0 

X =  0 (5a) 

u = r  = a(o + cos ij>) (5b) 

v  = 0 (5c) 

w  = 0 (5d) 

(ii) Mode A, n = 1 

X = 0 (6a) 

u  - sin 9 (6b) 

v  = sin $ cos 0 (6c) 

w  = - cos 4> cos 0 (6d) 

(iii) Mode B, n = 0 

X = 0 (7a) 

u = 0 (7b) 

v  = cos 4» (7c) 

w = sin # (7d) 

(iv)  Mode B, n = 1 

X = 0 (8a) 

u  =  sin ip Pin 9 (8b) 

v  = (1 + or cos tf>) cos 0 (8c) 

w  = or sin ip cos 0 . (8d) 

119 



i*~ No* these solutions. which occur at a zero value of the eigenvalue  X,  are 

recognized as being the following rigid body modes for a toroidal shell: 

Case (i)    Rotation about the axis of revolution (Mode A, n = 0) 

Case (ii)  Translation in a plane normal ta the axis of revolution 

(Mode A, n = 1). 

Case (iii) Translation along the axis of revolution (Mode B, n = 0) 

Case (iv) Rotation about an axis normal to the axis of revolution 

(Mode B, n ^ 1) 

[Two more rigid body motions are obtained from Eqs. (6 and 8) through re- 

placement of 9 by  6 + ir/z  ] 

Since the proposal here is to obtain buckling loads, it is necessary in each 

of these cases to determine the lowest non-zero value of X for which the 

stability equations admit a nontrivial solution and, of course, this value of X 

was used to arrive at the numerical results already presented. 

2.   Comparison With Test Results 

A comparison of the results of the present theory for complete toroidal 

shells and available results from tests conducted at Lockheed Missiles & Space 

Company is given in Table 6a.   From Table 6a, we see that test and theory 

agreed to within 10%. 

We note that the present results for complete toroidal shells can be used 

to predict buckling pressures for partial toroidal shells which are simply 

supported on the meridional edges 0 = 0 , e - ß .   For example, the solution 

for a simply supported shell with ß = rr , 2 ir/Z , ir/2 t ...   can be obtained 

c 
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r from the solution of a complete toroidal shell wMch-buckles in n = 2,3,4,... 

circumferential waves.   A 180° toroidal shell was tested at LMSC.   A com- 

parison between test and theory is shown in Table 6b.   Again, the agreement 

was within 10%. 

The infinitely long cylinder (b/a = •»)  and the sphere (b/a = 0)  repre- 

sent limiting cases of a toroidal shell.   For external pressure loading, it is 

well known that the correlation between theory and experimental results is 

reasonably good for the cylinder and quite poor for the sphere.   Now the cor- 

relation between the present theoretical results and the few available test 

results shown in Table 6a was quite good.   However, the test results were 

for a slender torus (b/a = 8) , and it should be pointed out that the correla- 

tion might not be as satisfactory for smaller values of b/a . 

3.   Comparison with Previous Investigation 

f The only previous investigation of the stability of a toroidal shell under 

external pressure was performed by Machnig (Refs. 9 and 10).   In the first of 

his papers (Ref. 9), Machnig studied both axially symmetric and as}rmmetric 

buckling modes and concluded, contrary to the present results, that the former 

buckling mode gives the smallest critical pressure.   In his more recent paper 

(Ref. 10), Machnig considers only the axially symmetric mode.   A comparison 

between Machnig's results and the results of the present analysis is given in 

Fig. 4. 
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Fig. 4 Comparison With Previous Investigation 
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VIII 

FREE VIBRATIONS OF PRESTRESSED SHELLS OF REVOLUTION 

The components of the applied leads per unit area of the shell's middle sur- 

face are denoted by p,(0,0), pJ0,4>), and p (d,<(>)  as shown in Fig. IV-1. 

The shell is in a state of equilibrium, called the prestressed state of equilibrium, 

under the action of the applied loads and the resulting membrane stress resultants 

N o(0,0), N0O(0,#), N      (0,0), and N      (0,0).   The effects of deformation 

of the prestressed shell will be neglected.   The additional quantities that develop 

as the shell vibrates about its prestressed state of equilibrium are denoted by 

(see Figs, m-2 and 3) N (0,0,t),. . ,Q0(0,0,t), . . ,M    (0,0,t), . . ,w(0,0,t). 

These additional or incremental quantities are considered to be infinitesimal. 

The mass per unit area of the shell's middle surface is denoted by n . 

1.   Basic Equations for Shells of Revolution 

The equations of motion for a differential element of the vibrating shell are 
2       2 2       2 obtained by addition of the inertia terms  -rr-pd v/8t   ,  -rr.jza u/8t   , and 

2        2 -TT-fid w/dt   to the left-hand sides of the equations of force equilibrium 

derived for the stability problem of a shell of revolution [Eqs. (IV - 5)]: 

2*1= <riy'+riN00 - riN0cos *+<-rQ0 - rN0ow0 - rN00oV 

+ l-'l^VW " (rN00OWzl>' " rlN00OWz2 COS « 

a2v 
+ Vripzu,ö-rri'i^2- = ° <la> 
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2F2  = (rV' + rlN0 + riN00 C0S * + {"rlQö Sin * - rl%OW0 8in * 

• riN?ow0sin *> + {-riNöow=icos * + <rN0owz2>' *ri<NwM«a>,J 

+ VriVV - rpi" 3 = ° <lb) 

^P3  =   "rlN« Sin * " rN* " rlQ9 " «*/ • «"WV" " 'ifWV' 

"rl< W' " <rN*8<>V' + IrN
W0Wzl " rlN9*0ü,z2 Sln *' 

4 Wi'WV - "l* ^T = ° <1C» 

2M1 = <rM^)' + riM». + riM^ cos 0 - rr^  = 0 (Id) 

IM2  = -<rjy - rxM^ + r^ cos 0 + rr^  = 0 vie) 

The rotations w . , wfl , w . , and cu „ are defined in Eqs. (Ill - 8) through 

Eq. (HI - 10) and ö .   is defined in Eq. (IV - 4). 

The elastic laws which relate the incremental stress resultants  N , , . . , 

Q., . . , M ,. to the incremental displacement components are given by 

Eqs. (in - 18). 

2.   Shells of Revolution Under Axially Symmetric Loads 

From Eqs. (1), we see that the vibrations of a shell of revolution are 

governed by a system of partial differential equations with variable coeffi- 

cients.   For the case of axially symmetric loading  the coefficients in these 

equations are independent of the circumferential coordinate  0  and the time t. 

Consequently, it is possible to separate the space and time variables and thus 

replace the system of partial differential equations by a system of ordinary 
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differential equations. Such a separation of variables is effected by means of 

the following Fourier series representation for the incremental displacement 

components: 

tot 
u(0,<M)   =    >  uj<f>) sin (no) e   n (2a) 

n=l 

V ^ t 
>,<M)   =   \  un(</>) sin (nö) e 

v(6,<t>,t)   =   S vn(4>) COB (n9) e   n (2b) 

n = 0 

^-» tot 
w(0,<f>,t)  =   \ wn(<f>) cos (n0) e   n (2c) 

n = 0 

Then by proceeding in the same way as in Chapter V, we obtain a set of three 

ordinary differential equations for the three displacement components u (#), 

v (0), and w (0).   For a given value of n, these equations are 

<hl + Cl>un + ^2 + c2>ün + (h3 + C3>Ün + <h4 + C4> Vn + (h5 + c5>*n 

+ <h6 + c6> Vn + <h7 + c7>Vn + <h8 + c8 + 58> wn + <h9 + c9>*n 

+ <h10 + c10> *n + <hll + Cll>*n + <h12 + c12> "wn  = ° (3a) 

<fl + ai)Un + <f2 + a2)Ün + <f3 + a3>Ün + <f4 + a4 + ä4> Vn + <f5 + a5> Vn 

+ (f6 * a6> vn + (f7 + a?) vn + (fg 4 aQ) WR + (f9 + ag) wn + (f w ♦ a10) wn 

+ <fll+all>V<f12 + a12>"n = ° (3b) 
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<«1 + bl + bl>un + <g2 + b2>ün + <g3 + b3>ün + (*4 + V Vn + <«5 + b5>*n 

+ <«6 + b6> \ + (g7 + V Vn + (g8 + b8> wn + <*9 + V *n + <*10 + V *n 

+ <*ll+bll>V<*12 + b12>\ = ° <3c> 

where 

*4  =  61  =   "®8  =  +rrl*,w <4> 

and all other coefficients in Eqs. (3) are given by Eqs. (V - 9).  For convenience, 

a subscript n was deleted from a,.. , h , a. , 6. , c   , and u> in Eqs. (3) 

and (4).   We note that the functions &(<j>), b(<j>), and c(0) in Eqs. (3) depend 

on the prestress quantities N,_ , N.A , and p  , whereas the coefficients in 
<p\)        ÖU z 

Eq. (4) depend on the frequency u>. 

3.   Free Vibrations of a Prestressed Toroidal Shell 

The equations governing the free vibrations of a prestressed toroidal shell 

are obtained through specialization of the equations for a general shell of revo- 

lution [Eqs. (3)].   We consider the case in which the prestress is due to a 

uniform pressure p; p is positive for external pressure and negative for 

internal pressure.   The notation for a toroidal shell with a circular meridian 

is shown in Fig. VI-1. 

It can be shown that a toroidal shell under an initial uniform pressure 

can vibrate in a mode which is either symmetric or antimetric about the 

I plane  ti = 0 , ir (Plane A-A in Fig. VI -1).   The symmetric mode is called 
! 

Mode A, and the antimetric mode is called Mode B.   These two modes are 
I 

considered separately in the next two subsections. 
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c 3.1  Mode A 

C 

^*t» 

For the vibration mode which is symmetric about the plane  tp = 0 , n , 

we let 
CO «O 

un<*>  =    £   UmCOS m*  =    ^   UmCm <5a) 

m = 0 m=0 

v_W)  =    V   Vmsinm^=    £   V   S (5b) n *■*      m ,    mm ' m = l m = l 

00 00 

wn(W  -    £  W    cosm«  =    X  W   C (5c) 
m=0 m=0 

where, for brevity, we have used the notations given by Eqs. (VI - 3).   Then 

by inserting Eqs. (5) into Eqs. (3) and proceeding in the same way as in 

Chapter VI, we obtain the following form of the vibration equations: 

r=l r=l 

+ z(m)V    + Y z(m)V z40     m     L    5r  v| +   Y z(m)V m-rl       Z,    6r     m+r 
r=l r=l 

r = l r = l (6a) 

„(m)., (m) (m)n (m)„        V    (m)v V    (m „ 
x10 Um + X21 U| m-ll + x31 Um+1 + x40 Vm + L X5r Vl m-r I + 2 X6r V 

1        ' r=l '        '    r=l 

r=l '        '    r=l (6b) 
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3 3 2 
v(m)U    + \ y(m)U + Y v(m)U       + v(m)V    + S v(m)V y10 um    2* y2r u| m-r I     Z y3r um+r    *40    m    Z Y5r    I m-rj 

r=l '        '    r=l r=l ' 

2 2 2 
+ V y(m)V       + v(m)W    + V v(m)W + V v(m)W L y6r vm+r    y70    m    L y8r w| m-r |     L y9r W im+r " ° 

r=l r=l r=l 

m = (0,1,2,...)     (6c) 

where 

and 

x - s m 
and 

2  2 ua d) fl = *V <9> 
The coefficients  z{m), x{m) , yjm) , z<m) , x<m> , and y<m) in Eqs. (7) are 

given by Eqs. (VI - 32).   The remaining nonzero coefficients in Eqs. (7) are 

z?
m) =  2c80 (lüa) 

*£? =  (1 + ömr)58r      '      (r -  1,2,3 ,4) (10b) 

*9r *  = (1 " ömO)S6r       '       (r =  1 ' 2 '3 '4) (10c) 

iff  -  2i.n dOd) 40 40 
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c 

where 

C 

^  = 'emrä4r •      (r  =  1.2) (lOe) 

«£}  - *4r •       (r  =  1, 2) (10f) 

^  = <2 + ömr)Blr      •       <r  =  X • 2' 3> <10h> 

y3r    = (1"ömO)blr       •       <r  =  l •2 • 3> <10i> 

580 = -a-^d+^+o4) (lla) 

c81 =  -(1 -i>2)(3a +4a3) (lib) 

582 =  "<1-**>(§ +3 a2) <llc> 

583 =  -i1'*2)01 (Hd) 

*84 =  ■(1 " p2) 8 <lle> 

Bio = <x " "Ml a + a3) <11£) 

5n = <J - "Ml+ 3«2) («Ö 

ßi2= (1 ■ "Ml a) <Hh> 

513  = (1 " p2) 4 <U1> 
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ä40  =  (1 " Ml + a2) <U» 

ä41 = (1 - v2)2a (11k) 

ä42 = l1 - ^ I <1U> 

In Eqs. (10) and (11), we have used the notations given by Eqs. (VI - 6), (VI - 25), 

(VI-26), and (VI-27). 

By letting m take on the values m = 0,1,2,..., in Eqs. KZ), we obtain 

an infinite system of algebraic equations in which the unknowns are the Fourier 

coefficients U   , V   , and VV   .   The coefficients in this system of equations m     m m 

are shown in Table VI-1.   Using matrix notation, we rewrite Eiis. (6) as 

IR1 {V} - (£)[S - XT] {V}  = {0} (12) 

where  [R]  and  [S - XT]  are square matrices formed by the coefficients 

[J(m)   *(m)   *(m)l       .  l-(m) _ ^(m)   -(m)    .*(m)   -(m) _ ^(m)] 
lxij    »yij    *zij  J   ana  lxij       ^ij    »yij       ^ij    »zij       ^ij   J» 
respectively; {V} is a column vector formed by the unknown Fourier coef- 

ficients U   , V   , and W   .   The elements of the  [R] , [S] , and [T] 

matrices can be obtained from Table VI-1 and Eqs. (7), (10), (11), and (VI -15). 

3.2 Mode B 

For the vibration mode which is anümetric about the plane ^ = 0 , w 

(plane A-A in Fig. VI-1), the displacement components are represented by the 

Fourier series: 

«„(*>   -    I*m1»"*  -    L   ÖmSm (13.) 
m = l m = l 
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c 

( 

00 00 

V» ■    £*«"•"■♦ -    £/mCm <13b> m=u m = 0 

00 «0 

m = i m = 1 

The vibration equations for Mode B are 

*rv2*£,ö,»-r, + 24?ö, m+r 
r=l '        '     r=l 

4 4 
s<m>\ 

m+r ♦^V2 4?<wi + I4?\ 
r=l '        '     r=l 

+ 2<m)W    + V 2(
fi
m)W, , + S 2<m)W x    = 0,m  = (1,2,...) (14a) 70     m     •£*    8r      m-r       Z*    9r    m+r * x ' *     ' 

r=l '        "     r=l 

2 ,£ 
x(m)Ö   +x(m)U +x(m)U        + x(m)V    +Yx(m)V +Yx(m)V x10 Um   X21 u|m-l|      31 um+l    x40 vm    Z    5r v|m-r|    Z x6r vm+r 

11 r=l "        '   r=l 

y 4m)w,  , - y L,    8r       m-r      Z- 
r=l ' r=l 

+c*-+s w-^r i «s?**r= o-m = c1-2--) <«■» 
3 3 2 

v(m)U    * Y v(m)U + Y v(m)U        + y(m)V    + Y y(m)V y10 Um     Z y2r U|m-r|      Z y3r    ;n+r    y40    m     Z y5r    |m-r| 
r=l '        '     r=l r=l '        ' 

2 2 
V y<m>V        + y(m)W   + 5 Z y6r vm+r    y70     m    Z 

r=l r=l '        '   r = l 

V v<m)y        + n(m)^       V ~(m)^ V ,(m)^ = 
Z_ y6r    m+r      ™     m    Z y8r w| m-r |    Z. y9r wm+r 

m  = (1,2,...) (14c) 
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where 

The coefficients  £<m), £<m), TJ<m), £<m), $<">, and i}{m)  in Eqs. (15) are 

given by Eqs. (VI -38).   The remaining nonzero coefficients in Eqs. (15) are: 

*C   '  2580 <16a> 

*8?  = "cmr°8r •     (r = 1, 2 , 3 , 4) (16b) 

^m)  = cgr ,     (r = 1,2,3,4) (16c) 

Iff  "  2ä40 (16d) 

«8?  =  (1 + ömr)ä4r     •     (r = 1'2) (16e) 

«to    =(1"öm0>ä4r     •     <r = 1'2> (16f) 

(16g) 

(16h) 

(16i) 

«<m)   =  2 b ^10        ^bio 

V  =  -emrblr ,     (r = 1, 2 , 3) 

*(m)            K 
%    = blr ,     (r = 1, 2 , 3) 
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Using matrix notation, we rewrite Eqs. (14) as: 

[RlW -(^)lS - XT]{V}  = {0} (17) 

where  {ft]  and   [§ - XT]  are square matrices formed by the coefficients 

f*(m)   *(m)   *(m)l       .   fr(m) _ ^(m)   -(m)      *(m)   p(m) _ ^(m)| 
Pij    ,T?ij    *£ij   I   and  |«lj       **ij    ,T?ij       AT?ij    *£ij       ViJ   I' 

respectively;  {V}  is a column vector formed by the unknown Fourier coef- 

ficients Ü    , V    , and W   .   The elements of the   [R] , [S] , and  [f] mm m 

matrices can be obtained from Table VI-2 and Eqs. (11), (15), (16), and 

(Vi -15). 

3.3  Eigenvalues and Eigenfunctions 

The eigenvalues and corresponding eigenfunctions for Modes A and B can 

be obtained from Eq. (12) and Eq. (17), respectively.   For a given value of 

the pressure parameter  X, the lowest eigenvalue  $2 for which these equa- 

i tions admit a nontrivial solution may be obtained by the same method as v.as 

used in Chapter VII for the stability analysis of a toroidal shell. The corre- 

sponding eigenfunctions or mode shapes can be determined after substitution 

of the computed eigenvalue in Eqs. (12) and (17). 
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IX 

CONCLUPING REMARKS 

This work presents a theoretical investigation of the stability of thin shells 

of revolution.   Stability equations are derived for a shell of revolution under 

general loading conditions.   These equations are specialized for a toroidal shell 

loaded by uniform external pressure.   The resulting equations are solved by use 

of series expansions in the circumferential and meridional directions for the 

displacement components that develop during buckling.   The analysis shows that 

a toroidal shell can. buckle in a mode which is either symmetric or antimetric 

about the equatorial plane and that the corresponding buckling pressures are 

always close to each other.   Axially symmetric as well as asymmetric buckling 

modes are considered.   The numerical results show that the asymmetric modes 

give lower buckling pressures.   Design curves which give nondimensional buck- 

ling pressures for a wide range of the toroidal shell's geometric parameters 

are presented.   In addition, the variation of the mode shapes with the geometric 

parameters is illustrated.   In a comparison between the results of the present 

theory and tlv few available tests on toroidal shells, it is shown that test and 

theory agree to within 10%.   For the limiting case of a sphere under external 

pressure, the well-known classical result (p = 1.21 Eh /a")  is obtained 

numerically for both the asymmetric and axially symmetric buckling modes. 

Finally, equations governing the free vibrations of a prestressed shell of revo- 

lution are presented and specialized for a toroidal shell subject to external or 

internal pressure. 
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