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FOREWORD

This is the final report on a study entitled "An Investigation of Thick
Shell Behavior,”" sponsored by the Air Force Weapons Laboratory, Kirtland Air
Force Base, Nev Mexico, under Contract AF 29(601)-5836, Project 5710, Program
Element 7.60.06.01.5, and performed by the Engineering Mechanics Department,
Louisiana State University, Baton Rouge, Louisiana. This research was funded
by the Defense Atomic Support Agency under Subtask 13.158. Inclusive dates of
research vere 4 February 1963 to 4 February 1964. The report was submitted for
publication 11 March 1965 by the project officer, Lt Joe E. Johnson, AFWL (WLDC).

Section I, an analysis of the static and dynamic behavior of thick rings
or long cylindrical shells based upon the Winkler theory of curved beams, is
primarily the work of Dr. Dale R. Carver, Professor and Head of Engineering
Mechanics, and Project Director.

Section II, an analysis of and computer program for the computation of
stresses and displacemen“s in statically loaded thick rings based upon the
complex variable technique of the theory of elasticity, is the work of Dr.
Edwin R. Chubbuck, Professor of Engineering Mechanics.

Dr. Robert L. Thoms, Associate Professor of Engineering Mechanics, pre-
sents in Section III an analysis of capped thick cylindrical shells under
radially symmetrical static loads using finite-difference methods and South-
wvell stress functions.

Mr. David McGill served as checker and did a major portion of the pro-
gramming.

The cooperation of members of the L.S.U. Computer Center, particularly
that of Larry Morton, Jerry Malone, and Byron Haas, is gratefully acknowledged.

This technical report has been reviewed and is approved.
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Lt USAF
Project Officer
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Chief, Civil Engineering Chief, Development Division
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ABSTRACT

This report describes three approaches to the problem of predicting stresses
and displacements in thick cylindrical shells. 8Section I is an analysis of

a ring or segment of an infinitely long thick cylindrical shell based upon

the simplifying assumptions of the Winkler curved beam theory. Dynamic loading
of thick rings is treated in Chapter 2 of Section I. 8Section 1I consists of

a static analysis of the thick-walled circular cylinder (or ring) by the elas-
ticity approach developed by N. I. Muskhelisvili. Shear and radial stresses

on the inner boundary, outer boundary, or both boundaries constitute the
loading. A rather complete theoretical development is followed by a computer
program and instructions for its use. Section III preseats an analysis of
static stresses in axially loaded thick-wvalled cylinders vith end caps. 1This
axisymmetric elasticity problem is solve by finite difference techniques and
Southvell stress functions. Cylinders v._.h one end closed by either a flat

or a hemispherical cap are analyzed and . example vorked for each case. Cylin-
ders with both ends capped are analyzed in the final portion of the report.
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SYMBOLS

Section 1

area of ring cross section

an angle

radius of the centroidal surface
an angle

distance from the centroidal surface to the outer

surface

an infinitesimal quantity
Young's modulus
tangential strain
kinetic energy
generalized forces
thickness of ring

integer subscript

moment of inertia of cross section with respect to

the centroidal axis
I’ = 1/a%a

the third moment of the cross section with respect

to the centroidal axis
J!' = g/ A

bending moment



&°

B

©

T,t(9)

v(z)

w(z)

X,Y.2

integer denoting mode of vibration
a virtual displacement
force normal to a cross section

dimensionless circular frequency; w, the circular

fre(;uency equals 'E- e/p
generalized coordinates
radial force
outer radius
inner radius
mass per unit volume
tangential loads
time
Poisson's ratio
tangential displacement of centroidal surface

tangential displacement of particle a distance z from

centroidal surface
strain energy
radial displacement of centroidal surface

radial displacement of a particle z distance from

the centroidal surface. w(z) assumed equal to w.
circular frequency

rectangular coordinates

xi



Section 11

A, real constants

A/ =n, +i(, = complex Fourier coefficient determined
by loading an inner boundary

Al =p,+iv, = complex Fourier coefficient determined
by loading on outer boundary

A/ = A/ for negative k

Ay = A/ for negative k

a, =a, +iB, complex constants

a/=y, +i6, complex constants

al, complex conjugate of a_,

a, a, for negative k = q,+iB,

Qg ay for negative k = y,+i8,

Qy real part of a,

Oy 1, for negative k

B\ imaginary part of a,

By B8, for negative k

v biharmonic operator

8 imaginary part of a/

Oy 8, for negative k

Y real part of A,

The n, for negative k

e base for natural logarithms

xii



Yt'Y:

<1

Yk

Y

Im

Ly

$(z2),vY(2)

% (2)

$’' (2)

complex constants
complex conjugate of vy’
real part of a/

Yy for negative k

1

imaginary part of

a Lame' constant = 3-40 for plane stress or
%f%-for plane strain

inner boundary

outer boundary

number of interior holes

one less than number of equal subdivisions of
circle for theoretical part; for computer part

M = number equal subdivisions

a Lame' constant = shear modulus; same as G
in engineering usage

division point number

imaginary part of A/

v, for negative k

undetermined stress functions of complex

variavle 2

complex conjugate of § (2)

ds§ (z)

dz

xiii



e (2)
v’ (2)
v’ (2)

v(2)

o*(2),¥y*(z)

Ox
Px

Ry

&

2]

SQ (z) dz

Ba g

complex conjugate of o’ (z)

Sv (z) az

holomorphic (analytic) functions of 2

real part of A/

py for negative k

radius of inner boundary

radius of outer boundary

distance from origin; a polar coordinate

real part of

region between outer and inner boundaries

radial stress

tangential stress

radial stress on outer boundary (L;) for "far"
point at division point n

linearly distributed radial stress on outer

(L;) boundary between §, and 6,4,
shear stress
angle from base line; a polar coordinate
@ at division point n

radial displacement; + outward



[u+iv],_,

N1

Q. ¥
(r,z,0)

c..0 ,T
g_. lzl 2r

pPr

o}/
(u,v)

(R,0,80)

tangential displacement; + in direction of in-

creasing 8
increase in (u+iv) from one traverse

= Xx+iy = complex variagle in Cartesian coordinates

reie = complex variable in polar coordinates

= x-iy = complex conjugate of z in Cartesian
coordinates

-ie= complex conjugate of z in polar

coordinates

|
"
(1]

complex coordinates of any point in kth hole
imaginary part of A/

Cx for negative k

Section III
Southwell stress functions
cylindrical coordinates
stresses for cylindrical coordinates
Poisson's ratio
Young's modulus of elasticity
direction normal to the boundary
arc length along the boundary
angle between n and the r axis
grid spacing
boundary stress component in r direction
boundary stress component in z direction
displacement in (r,z) directions respectively
spherical coordinates

Xv



OR'OG'OB normal stresses for spherical coordinates

n incremental angle

h grid spacing along R axis

( )N.S,E,w,p values of functions at nodal points defined by
subscript

xvi



SECTION I

A STUDY OF THE BEHAVIOR
OF THICK CYLINDRICAL SHELLS
USING WINKLER CURVED-BEAM THEORY

CHAPTER 1

STATIC LOADING OF
THICK CIRCULAR ARCHES AND SHELLS

Note: The analysis which follows is written to pertain
directly to a circular arch with a plane of symme-
try and loaded symmetrically such that it deforms
in its original plane. The analysis is immediately
adaptable to a unit length of a long cylindrical
shell undergoing plane strain.

General

In the analysis of curved beams or segments of long cylin-
drical shells, simplifying assumptions as to the geometry of
deformation are ordinarily made. These assumptions allow one to
obtain relatively simple expressions for the stresses and de-
formations resulting from loads. For design purposes the theory
has the advantage that the significant quantities, normal force,
shearing force and bending moment are easily computed.

The theory, commonly referred to as the Winkler curved-beam
theory, is well known. It predicts tangential stresses with
remarkable accuracy except in the neighborhoods of concentrated
loads! . There the more powerful methods of the theory of elas-
ticity are necessary to determine the stresses. The advantages
in the use of the theory are its simplicity and immediate appli-
cability to design; one disadvantage is that, as in straight-
beam theory, radial stresses are completely disregarded.

It is the purpose of this discussion to develope and present
in a usable form the portions of the theory of interest to the
designer.

We cor.aider first a segment of a ring with constant curvature

which is symmetrical with respect to its center plane (x = 0) in
Fig. 1).



A
|

Centroid

L axis of curvature

Figure 1. Section of civrved beam showing
coordinates and dimensions.

The usual assumptions of beam theory are made. Referring
to Fig. 1, these are:

(a) Hooke's law is valid.
(b) 0, is negligible.

(c) The effect of radial strain upon the strain due to
bending is negligible.

(d) Sections normal to the original centroidal surface before
deformation are normal to the new centroidal surface
after deformation.

(e) Displacements are small and in the plane of the arch.

The Tangential Strain

The tangential and radial displacement components of particles
on the centroidal surface are denoted by v and w respectively. w



is positive in the direction of positive z (outward) and v is
positive in the direction of increasing 6. It can be shown® that
the assumptions lead to the following expressions for v(z) and

e, the tangential displacement of a particle and the tangential

strain of an element at a distance z from the centroidal surface:

a 8
(1-1)
e =18V __ 2 dPw + =
5  ade  a(a+z) d8° = a+z

The radial displacement, w(z), of a particle a distance z from
the centroidal surface is taken equal to the radial displacement
of the corresponding particle on the centroidal surface; i.e.
w(z) = w.

The Strain Enerqgy Expression

The strain energy per unit volume is %0 e, , or, for the arch,

Eea 9 9
—3-ﬂ-in which E is Young's modulus. (For the plane strain prob-

0.e Ee?
lem, the strain energy density is —%—ﬂ-or 2(1-17) in which u is

Poisson's ratio. The strain energy, V, of a portion of the arch
which subtends the angle a is

a
V= %g S e, (a+z) dAde (1-2)

Substituting the expression for e, from Eq.(l-1) into Eq. (1-2)

8
and integrating over the area,

A—::- S: [(:i1 + w)? + Z2(w + ﬂ- a]de (1-3)

In this expression A is the area of the beam cross section and
Z, the section constant of curved beam theory, is defined by the

equivalent expressions

1 22 da a da
A A2t P " nha ) arz ¢ 2= A S a+z 1 (1-4)



The section constant Z is dimensionless and very small. For
rings with geometry such that a >> z, the 2z in the denominator
of the second of equation (1-4) can be disregarded in comparison
to a and

2~ I/a%A,

in which I is the moment of inertia of the cross section with
respect to the x axis. Evaluation of 2 for a curved beam of rec-
tangular cross section and a mean radius to thickness ratio of 3
reveals that Z2 ~ .009. As the mean radius to thickness ratio
increases Z approaches zero.

Equation (1-3) gives the strain energy of a curved beam seg-
ment as a function of its configuration as defined by the dis-
placement components v and w of particles on the centroidal
surface. These displacements are of course functions of §; i.e.,
v = v(8) and w = w(8).

For complete rings and statically indeterminate arches it
is convenient to have the strain energy expressed as an integral
in terms of the normal force N(8) and the bending moment M(8).
In this form Castigliano's theorem may be used to evaluate re-
dundant forces and moments and to compute deflections.

The normal force N(8)is defined to be positive when it is
tensile and the bending moment M(6) is taken as positive when it
tends to straighten the arch. Thus

N(g) = SAcedA = E SAe dA = [ W+ Z(w o+ dea)] (1-5)
Pw
M(8) = -SAoesz = - E S eesz = AEZ(w + EE;) (1-6)

Expressing Eq. (1-3) in terms of N(6) and M(8) by means of Egs. (1-5)
and (1-6),

a
1 Mgez , M(8)
V = 2Ea So{°[N(9) ]+ Sz e (1-7)
As the radius, a, becomes infinite this expression becomes
L
1¢° N M
V=3 S QE * BT 9%

0




the usual strain energy expression for a loaded straight beam.
The straight beam energy expression is commonly used in

arch analysis; equation (1-7) is unquestionably more accurate.

Its use is simplified by the fact that the quantity K(§) - ﬁéﬁ-’-

is independent of 9§ in regions where there are no distributed

tangential loads. In the regions between concentrated tangential

loads the quantity N(8) - !éil is a constant. This fact may be
verified by statics.

The Equations of Equilibrium

We con:ider now the portion of a curved beam shown below in
Fig. 2. It is loaded at its outer surface by a radial load q(8),
a tangential load t(8) and by the concentrated forces and moment
Ne' Qe and Me at its free end. The distributed loads are expressed

in units of force per unit of arc. The strain energy V and the
potential energy of the external loads, (1, are given below. The
total potential energy of the system is designated by U and U =
Vv + 1. The equilibrium equations are obtained from the principle
of stationary potential energy, 6U = O.

Figure 2. Loaded curved beam section.



AE dv d

V = Exo {(£+ w)? + Z(w + -—er)’}de
a
c dw
o= - (s B - S S -, vio) - 0, v
l dw

n g

U=V +Q

The tangential displacement v is given a virtual displace-
ment v = ¢n(g), consistent with the geometrical boundary cond.-
tions, and the corresponding increment in U is computed.

U+ AU = %g-x:{§§+en'+w)= + z(w+g%¥-°}de- S:{qw*glt(v+cn)

c dw 1l dw
T a Et}&de - Ne(v‘.":?")e-a-qe w(c")-"e a do L_a

AU = 8U + 0(¢?)
a . a
5U = ;“ES (& +w)n‘ds - eS Rotnds - N enla)
a de a e
0 0
In this expression and what follows differentiation of n with

respect to 9 is denoted by n’.

In order for 8U to vanish

AE ,d®v dw g
a de’+de +al = 0 (1-8)
AE ,dv
and Ne iy a9 + w)le’a (1-9)

The radial displacement w is now varied by &éw = ¢n(9)



da
U+AU=—S { —+wW+ en)?+ Z(w+e:n+dea +¢ecn )3}d9

Ro¥t _£E (¥ en) }Roas

a
- So{q (w+en) +

M
e ,dw ”
- Ne via) - Qe(w+en) le:a- 2 (de + ¢en’)

8=a

AEe QAqw 42
65U = S {( +w)n+Z(W+dea)n+Z(W+de;’)n”}de

M
S {qen - -c—en J'R"de - Q en(a) - -;gen'(a)

For 8U to vanish

dw dw 1 8V 9Roa cR, dt
M = AEZ(w + daw) (1-11)
e - dea e=a B

_ CtR, _AEZ dw Aw _
Qe a =Q a 'de + ae? 8=a (1-12)

Equations (1-8) through (1-12) are thus the equilibrium equa-
tions and the boundary conditions for the loaded arch.

Equation (1-8) states that

AE d_ dv .. Kt
. de( + W) = - s

If t = 0 in a recion then g—‘e’- + w is a constant in that region.
From equations (1-5) and (1-6)
A EA d
N(g) - Be) ( -

Thus N(§) - P_4_a(_9_)_ is a constant in regions where there is no

tangential load.



Equation (1-9) simply states that the normal force at the
end, Ne, equals AE times the strain of the centroidal surface.

The solution to any equilibrium problem of a ring or arch
so loaded thus may be obtained by solving for the functions v
and v from equations (1-8) and (1-10) subject to the geometrical
boundary conditions and the natural boundary conditions given by
equations (1-9), (1-11), and (1-12).

The Tangential Stress

Once v and w are known, oe may be computed from oe = Eee
with ee given by equation (1-1). It is convenient, however, to
have an expression for g in terms of the normal force and bend-
ing moment at any section. Oy = Eee or

5 = gévl __ =z d?w .

8 Lde a a(a+z) dp® ~ a+z
- gldv ___z d*w . v Zw__ | __ 2w
= "3 e a(a+z) do> a+2z a(a+2z) a(a+z)
gl w __z o, Ly
- [a de  a a(a+z) de?® ]
From equations (1-5) and (1-6)

| M(6) M(8)z

%% = a [N(e) T a az(a+z)] UL

The Complete Ring with Radial Loads

We consider now a complete ring loaded at its outer surface
by radial and tangential loads whose resultant is zero. Castig-
liano's theorem and the principle of superposition permit one to
determine the normal and shear forces and the bending moment at
any section and to analyze deflections.

We consider first the ring shown below loaded by only a con-
centrated force P at the angle a. P is positive in vhat follows
when as shown.



Figure 3. Complete ring fixed at § = 0 and
with radial load at 6 = a

The ring is, of course, not in equilibrium under the action
of P and, for convenience, we imagine a cross section at 8§ = 0
to be fixed by external supports. The first problem considered
ig that of determining the redundant forces and moment N, Q and
M at § = 40 due to 2 at a. Having these quantities due to a
concentrated load at a, they may be determined for any system of
concentrated radial loads by superposition. A distributed radial
load may be treated by replacing it with an equivalent system of
concentrated loads. If the loading system is self equilibrating
the external supports required at § = 0 to maintain equilibrium
vanish.

The expressions for N(6) and M(8) at any angle 6 due to P
at a are given below.
N(§) = NCos 8 -Q Sin g for 0 < 8 < a
M(g) = M - Na(l-Cos 3§)
N(B) = NCos 6 - Q Sin § - P Sin(6-a) for a < § s 2n

M(6) = M - Na(l-Cos §) Qa Sin 8 - Pa Sin(s-a)
for a < 8§ < 2n

Qa Sin § for 0 < § < a



The strain energy from equation (1-7) is thus

a
S M2 1 . .
vV = ER So{a(N-a) + A7 [M-Na(l-Cos 6)~-Qa Sin 6] }de

1 (2T M2 1 3

— g - - o 1 - : - 3
* 2EA ga {a(N a)+-XE1M Na(l-Cos 68)-Qa Sin §-Pa Sin(da-a)] }de
Since there is no displacement or rotation of the cross section

upon which M, N and Q act, it follows that

Setting these derivatives of V equal to zero and simplifying, one
obtains the three influence functions for M, N and Q given below.

M_o_ oo . (1-Cos a)

pa - (n - LISin o+ 5E3)

N a :

5 = (2TT - 1)Sin a (1-14)
Q _ __sirfa _ _a _ Sin 2, Cos a

P 2n (m-3+=3 ) q

It is to be noted that N and Q are completely independent of
the thickness of the ring. Since Z is very small, M also is
essentially unaffected by the thickness to radius ratio. This
fact is important since many solutions based on ordinary arch
theory exist. They can be used with great accuracy for determin-
ing the redundant reactions due to radial loads.

Knowing M, N and Q one may draw complete shear and bending
moment diagrams for the ring. Equation (1-13) will give g at
any cross section. Elementary theory is ordinarily used for comput-
ing shearing stresses.

To facilitate computation, the table of influence coefficients
is presented in Table 1 which follows.

- 10 -



TABLE I*

M, N, and Q at 8 = +0 Due to

P at a
a® Q/P N/P M/Pa
0 -1.00000 .000000 .000000
10 -.985089 -.168825 -.166407
20 -.941922 -.323019 -.313421
30 -.873434 -.458333 -.437011
40 -.783231 -.571367 -.534132
50 -.675431 -.659649 -.602797
60 -.554499 -.721688 -.642110
70 -.425073 -.756975 -.652254
80 -.291797 -.765962 -.634444
90 -.159155 -.750000 -.590845
100 -.031324 -.711250 -.524458
110 .087957 -.652564 -.438975
120 .195501 -.577350 -.338618
130 .288750 -.489417 -.227960
140 .365836 -.392815 -.111740
150 .425604 -.291667 .005320
160 .467617 -.190011 .118700
170 .492123 -.091648 .224 244
180 .500000 .000000 .318310
190 .492685 .082001 .397892
200 .472075 .152009 .460721
210 .440421 .208333 .505321
220 .400209 .249973 .531048
230 .354038 .276627 .538085
240 .304499 .288675 .527408
250 .254063 .287128 .500717
260 .204973 .273558 .460350
270 .159155 .250000 .409155
280 .118148 .218846 .350364
290 .083053 .182718 .287439
300 .054499 .144338 .223915
310 .032644 .106395 .163247
320 .017187 .071421 .108656
330 .007409 .041667 .062989
340 .002229 .019001 .028599
350 .000281 .004824 .007241
360 .000000 .000000 .000000

*This table was computed from equations (1-14) with Z set
equal to zero.

- 11 -



In the computation of this table, Z was set equal to zero
since it is always small in comparison to unity. Unfortunately,
when tangential loads are considered, the thickness to radius ratio
is of significance and influence tables are necessary for each
thickness to radius ratio.

The Complete Ring with Tangential Loads

Referring to Figure (3) and replacing the radial load P at

a with a concentrated tangential load T (positive in the direction
of increasing 8) at a then

N(B) = NCos 6 - QSin B8 for 0 <9 < a

M(6) = M-Na(l-Cos 6) - Qa Sin 6 for 0 < 8 <a

N(8) = NCos § - Q Sin 8§ - T Cos(8-a) for a < 6 < 2n

M(g) = M-Na(l-Cos §) - Qa Sin 8 + Tc + Ta[l1l-Cos(8-a)]

for a < 8 s 2nm

The strain energy by equation (1-7) is thus

2EAV = x {a(Na—)2 + = [M Na(l-Cos 8)-Qa Sin 8]? }de

2
+ Sai [N-—uT(l+c/a)] [M-Na(l-Cos 8)=-Qa Sin §
+ Tc + Ta - Ta Cos(e-a)] }de

Again, since there is no displacement or rotation of the
cross section upon which M, N and Q act

3V _ 3V v
3M ~ AN  3Q
Setting these derivatives of V equal to zero and simplif .ng

= 0.

M 1rzZsinag 6B ¢ ..
Ta ~ 7 -ETIIET—-+ a Sina + nm Cos a

Xy - c ca
+ 2(l Cos n) n(1+;) + 3. ]

(1-15)
% = % [(% + -:-)Sin a + (n-a/2)Cos G]

s 12 =



Q. _ 1.5 1. (1%
T TT(l-f—a-) 1-Cos a) (1 2TT)Sin a

The influence tables presented below were computed using

c = 3‘;&. = % Tables are presented for thickness, h, to mean

) . l1 1 1 1 . . .
radius, a, ratios of 32 5 and re Linear interpolation may
be used with accuracy for intermediate values.
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TABLE 11I

M, N, and Q at 68 = +0 Due to
T at a. h/a = 1/3

a° Q/T N/T M/Ta
0 .000000 1.000000 -.166667
10 ~-.174466 . 994301 -.167337
20 -.345415 . 960066 -.195712
30 -.508086 .899960 -.248320
40 -.658249 .817332 -.321053
50 -.792304 .716071 -.409341
60 -.907369 .600443 -.508326
70 -1.001323 .474925 -.613051
80 -1.072837 .344042 -.718640
90 -1.121362 .212207 -.820464
100 -1.147098 .083570 -.914297
110 -1.150939 -.038105 -.996452
120 -1.134393 -.149557 -1.063881
130 -1.099485 -.248110 -1.114263
140 -1.048656 -.331735 -1.146046
150 -.984637 -.399078 -1.158469
160 -.910338 -.449473 -1.151547
170 -.828729 -.482910 -1.126030
180 -.742723 -.500000 -1.083333
190 -.655081 -.501897 -1.025444
200 -.568318 -.490220 -.954812
210 -.484637 -.466947 -.874223
220 -.405868 -.434310 -.786665
230 -.333441 -.394677 -.695191
240 -.268367 -.350443 -.602785
250 -.211246 -.303915 -.512235
260 -.162290 -.257218 -.426017
270 -.121361 -.212207 -.346203
280 -.088029 -.170394 -.274379
290 -.061630 -.132905 -.211595
300 -.041343 -.100443 -.158341
310 -.026260 -.073284 -.114538
320 -.015461 -.051288 ~-.079569
330 -.008086 -.033934 -.052322
340 -.003395 -.020374 -.031262
350 -.000818 -.009493 -.014522
360 .00000Q .000000 .000000
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10

20

30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

TABLE III

M, N, and Q at 8 = +0 Due to
h/a = 1/4

T at a.

Q/T

.000000
--.174265
-.344615
-.506310
-.655146
-.787567
-.900737
-.992596
-1.061877
-1.108099
-1.131532
-1.133140
-1.114498
-1.077697
-1.025233
-.959888
-.884612
-.802405
-.716197
-.628756
-.542592
-.459888
-.382445
-.311653
~-.248473
-.193447
-.146724
-.108099
-.077069
-.052904
-.034712
-.021522
-.012358
-.006309
-.002595
-.000617
.000000

N/T
1.000000
.991998
.955530
.893328
.808807
.705911
.588957
.462462
.330981
.198944
.070509
-.050568
-.161043
-.258270
-.340260
-.405710
-.454009
-.485213
-.500000
-.499594
-.485684
-.460316
-.425785
-.384517
-.338957
-.291452
-.244157
-.198944
-.157333
-.120442
-.088957
-.063124
-.042762
-.027303
-.015838
-.007190
.000000
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M/Ta
-.125000
.129244

-.161119
-.217083
-.292961
-.384121
-.485654
-.592562
-.699936
-.803129
-.897909
-.980593
-1.048154
-1.098302
-1,129528
-1.141121
-1.133158
-1.106456
-1.062500
-1.003352
-.931534
-.849904
-.761517
-.669485
-.276846
-.486427
-.400740
-.321871
-.251415
-.190417
-.139346
-.098091
-.065995
-.041892
-.024188
-.010948
.000000
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40

5C

60

70

80

9n
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
200
270
280
290
300
310
320
330
340
350
360

TABLE IV

M, N, and Q at 9 = +0 Due to
T at a. h/a = 1/5

Q/T N/T M/Ta
.000000 1.000000 -.100000
-.174144 .990616 -.106373
-.344135 .952809 -.140333
-.505243 .889350 -.198295
-.653284 .803692 -.276047
-.784724 .699815 -.368919
-.896758 . 582065 -.471973
-.987360 .454984 -.580184
-1.055301 .323144 -.688625
-1.100141 .190986 -.792637
-1.122192 .062672 -.887986
-1.122460 -.058046 -.970992
-1.102562 -.167935 -1.038640
-1.0€64624 -.264366 -1.088656
-1.011179 -.345375 -1.119558
-.94503¢€ -.409689 -1.130667
-.869177 -.456730 ~-1.122094
-.786610 -.486595 -1.094695
-.700282 -.500000 -1.050000
-.512962 -.498213 -.990112
-.527157 -.482962 -.917599
-.445038 -.456337 -.835359
-.368391 -.420670 -.746486
-.298580 -.378422 -.654131
-.236536 -.332065 -.561360
-.182768 -.283974 -.471028
-.137384 -.236320 -.385662
-.100141 -.190986 -.307363
-.070493 -.149496 -.237727
-.047668 -.112964 -.177796
-.030733 -.082065 -.128027
-.018680 -.057028 -.088293
-.010496 -.037647 -.057909
-.005243 -.023324 -.035679
-.002115 -.013116 -.019975
-.000496 -.005809 -.008829
.000000 . 000000 .000000
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30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

TABLE V

M, N, and Q at 8 = +0 Due to

T at .

Q/T

.000000
-.173963
-.343415
-.503644
-.650492
-.780460
-.890790
-.979506
-1.045437
-1.088204
-1.108183
-1.106441
-1.084657
-1.045015
-.990098
-.9227¢4
-.846023
-.762918
-.676408
-.589270
-.504003
-.422764
-.347311
-.278970
-.218631
-.166749
-.123375
-.088204
-.060629
-.039814
-.024765
-.014416
-.007704
-.003644
-.001395
-.000315
.000000

h/a = 1/8

N/T
1.000000
.988544
.948726
.883381
.796019
.690671
.571728
.443768
.311389
.179049
.05C917
-.069263
-.178272
.273510
.353048
.415657
.460813
.488668
.500000
.496140
.478880
-.450369
.412997
.369278
.321728
.272757
. 224565
.179049
137741
.101747
.071728
-.047884
-.029975
-.017356
-.009033
-.003736
.000000

17 -

M/Ta
-.062500
-.072044
-.109110
-.170051
-.250595
-.346020
-.451341
-.561497
-.671533
-.776773
-.872977
-.956472

-1.024258
-1.074090
-1.104523
-1.114922
-1.105454
-1.077033
-1.031250
«-.970275
-.896739
-.813603
-.724022
-.631197
-.538242
-.448048
-.363171
-.285727
-.217319
-.158983
-.111159
-.073692
-.045861
-.026424
-.013698
-.005649
.000000



Example Problems

A. As the first example let us determine the value of M, N
and Q at § = 0 in a ring loaded as shown below:

P

W=
1]

2T

Ring with concentrated loads

Referring to Table I, M, N and Q due to the load P at 90° are
M= -.,5908 Pa
N = -,7500 P
Q= -.1592 P

The values due to 2T at 180° are
M= 2(.3183) Ta
N = 2(.0000) T
Q = 2(.5000) T

The values due to P at 270° are
M = +.4092 Pa
N = +.2500 P
Q= +.1592 P
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Due to T at 90° from Table II
M = -,8205 Ta
N=+.2122 T
Q -1.1214 T

Due to -T at 270° from Table II,
M = -.3462 (-Ta)
N = ~-.2122 (-T)
Q = -.1214 (-T)

By superposition

-.1816 Pa +.1623 Ta
N=-.5P + .4144 T

0.

B. As a second example, we consider the ring loaded as shown
below.

Sin a R, da

W Sin a

= =W Sin a

Ring with distributed radial load.
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This distributed radial load could be replaced by an equivalent
set of concentrated loads and Table I could be used. 1In this case,
however, tlre loading function is simple and M, N and Q may be
easily computed from equations (1-14) by integration. For example,
from equation (l1-14), neglecting Z,

M = Pa Pl— - 1)Sin a + l;ggg_g_]
2 2

Replacing P by W Sin a R, da from O to m and by =W Sin ¢ R, da
from nm to 2n

dM = W Sina R, da a[(%—ﬂ—- 1)Sin a +1—‘C—‘2’n‘*"—-°i]

Thus n 1-Cos
M = WR,a g B%;-- 1)Sin o + ———?;:Jl]sin a da
b e
2n
a . 1-Cos a ..
- WR,a &n an - 1)Sin a + o JSln a da
Integrating

2
M = -WR,a(n/4 - ;ﬁ-
N and Q may be computed in a similar fashion.

Radial Displacements due to Radial Loads

We consider the complete ring shown below, Fig. 4, with a
radial load P, taken positive inward as shown, at a, and a concen-
trated radial load R at 8.

P

Figure 4. Ring with radial loads at 6=a and 6=8.




M, N and Q are, as before, the redundant reactions at § = +0.
Then for B < a

N(s) = NCos 9§ - QSin § for 0 < 9 < B
M(6) = M - Na(l-Cos 8) - Qa Sin 9 for 0 < 8 < B
N(8) = N Cos 8 - Q Sin 8 - R Sin(g-B8) for 8 < 8 < g
M(g) = M - Na(l-Cos §) - Qa Sin g - Ra Sin(g-8) for
B <86 sa
N(8) = NCos g - Q Sin 8 - R Sin(s-B) - P Sin(s-a) for
a < 8 s 2m
M(p) = M - Na(l-Cos §) - Qa Sin § - Ra Sin(g-8) - Pa Sin(49-a)

for a < 8§ s 2n
The strain energy is then given by

2EAV = &Z{a(u-go + %E-[M-Na(l-Cos §)-Qa Sin e]a}de

a

+ Se{a(N-%)a+%E-[M-Na(l-Cos 8)-Qa Sin 9-Ra Sin(e—B)]a}de

an M 1
+ S {a(N -;)3+ a7 [M-Na(l-Cos §)-Qa Sin o-Ra Sin(6-8)
a

- Pa Sin(e-a)]a}de

The radial deflection, w, at B due to P at a equals %%) ;
AV R=0
w(g, a) = SE)
R=0

Performing this differentiation and integration and solving

for %%-with R set equal to zero,
EAZ w(B8,a) = (M-Na) (Cos B-1l) + (n-B/2)Na Sin B
+ (m=-B/2) Qa Cos B +-%2 Sin B8

+ (m-a/2) Pa Cos(B-a) +-§3 Cos 8 Sin q.
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Substituting for M, N and Q their values from equations (1-14)
and simplifying

EAZ (Cos a-1) (1-Cos B) B, &
pa W(B.2) = 21 (142) + 2 (n=3) Cos(g-a)

Sin B Sin a (- Sin B Cos a

B : - 2
+ e Cos B Sin a an 2

2

(1-16)

Equation (1-16) is valid for the radial deflection at B due

to a radial load, P, at a with B < a. The computations were re-
peated for the case in which B 2 a and in this case

EAZ _ (cos g-1) (1-Cos a) Q& _
= w(g,a) = 3 (142) + 2n(" g8/2)Cos (B-a)

Q . Sin B Sin a Sin a Cos a
+ z;'Cos a Sin B - an - (n=-8/2) -

(1-17)

Equations (1-16) and (1-17) are the complete influence function
for the radial displacement due to radial loads for the entire ring.
It is to be noted that w(B,a) = w(a,B8);: i.e., if ¢ and B are inter-
changed in either equation (1-16) or (1-17) the equations become
identical. Also, from Fig. 4 it is obvious that w(B8,a) =
w(2m=8,2m-a) .

From equation (1-17) a complete set of influence coefficients
with 10° increments and with 2 on the right hand side set equal to
zero has been computed. By omitting 0° and 360°, this set is a
35 x 35 array, symmetrical with respect to both diagonals.

The following program, written in Fortran II, will generate
this matrix. The deflection due to any radial loading may be com-
puted by constructing a column loading matrix and multiplying it by

the influence matrix.
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—

N o bW

DIMENSION P (35,35),JJ(35)
DO 1 1I=10,180,10

K=1/10

ALPHA=I
ALPHA=ALPHA*.017453293
SA=SINF (ALPHA)

CA=COSF (ALPHA)

I1J=360-1

DO 1 J=I,1J,10

L=J/10

BETA=J
BETA=BETA*.017453293
SB=SINF (BETA)

C3=COSF (BETA)

COSAB=COSF (ALPHA-BETA)
OP (K,L)=-(CB-1.)*(CA-1.)*,15915494+ (.5-BETA*.079577471) * (ALPHA*
1COSAB-SA*CB)+ (ALPHA*CA-SA) *SB*.079577471
DO 2 I=1,17

IJ=35-1

K=36-1

DO 2 J=I,1J0

M=36-J

P(M,K)=P(I,J)

DO 3 1I=2,35

IJ=I-1

DO 3 J=1,1J
P(1,J)=P(J,1)

FORMAT (I3, 1HO, 6X,7F10.6)
FORMAT (5H.....)

FORMAT (15HBETA . ALPHA ,6(13,7X),13)
FORMAT (12H SRS Bl )
Ml=1

M2=7

DO 9 N=1,5

PUNCH 5

DO 8 I=M1l,6M2

JJ(I)=I*10

PUNCH 6, (JJ(I),I=M1,6M2)
PUNCH 7

PUNCH 4, (J, (P(1,J),I=M1,M2) ,J=1, 35)
Ml=M2+1

M2=M2+7

END
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Radial Displacements due to Tangential Loads

We now consider the complete ring loaded as shown below in
Fig. 5. It carries a concentrated tangential load, T, at the
angle a and a concentrated radial load, R, at the angle g8 with
a 2 B. The radial deflection at B due to T at a equals 3V/3R
with R set equal to 0.

Figure 5. Ring with radial load at g and
tangential load at q.

The values of M(6) and N(6) at any angle § are as given below.

N(6) = NCos § - QSinp for 0 < 8 < B

M(6) = M - Na(l-Cos §) - Qa Sin § for 0 < § < 8B
N(6) = NCos § - Q Sin § - R Sin(e-pB) for 8 < § < a
Qa Sin 6§ - Ra Sin(e-B8) for

M(8) = M - Na(l-Cos §)
B <8 sa
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NCos 6 - Q Sin 6§ - R Sin(8-B) - T Cos(6-a) for
a < 8§ s 2m

M(6) = M - Na(l-Cos8) - Qa Sin 8 - Ra Sin(86-8) + Tc

N(8)

+ Ta[l-Cos(6-a))] for a < 6 s 2m.

Then

ga{a (N-%)a-o- 1 [M-Na(l-Cos 8) - Qa Sin e]a}de
"0

2EAV az

8
m (a{a(m- by, ;—z [M-Na(l-Cos 8)- Qa Sin § - Ra sm(e-e)]a}de

+ Szn{a[n- %--T(1+ %)] + i—z- [M-Na(l-Cos 8) - Qa Sin 8
a

2
- Ra Sin(8-B) + Tc + Ta - Ta Cos(e-a)] }de

Differentiating the above expression for V with respect to
R, setting R = 0, substituting the values of M, N and Q from
equations (1-15), and simplifying, there results,

EAZ 9V, _ EAZ | B i oo i

Ta aR)R=0— Ta " (8.0) = (1+7) (1-a/2m) (1-Cos B)
Sina Sin B Sin a 1

* 2n(leg) (1-Cos B)+("'B/2)[ = (7 + c/a)

+ (l-a/2n)Sin(B-a)-(l+c/a) (1-Cos a)ggf—ﬁl
(1-18)
- (l+c/a) §§%—Q(I-Cos a)+Cos(B-a) - Cos B]

- (m-a/2)Sin(g-a) + ‘:—n sin B Sin a.

Equation (1-18) is valid for computation of radial deflections
at the angle B resulting from a tangential load, T. at the angle a
with a 2 B. The problem was reworked with the loading given in
Fig. 5 but with 8 2 a. The final result only is presented here.
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PAZ a (1,S _ Sina
71\? w(B,a) = (COB B-l)[2"(1+ a) - 2 (1+2)

- (n -%) [E‘ls—i(uc/a) (1-Cos o) - &= sin(a-3)

_ Sin G"Sin B(-%‘---rc/a)]- §%%—E(l-o-c/a)(l-Cos a)

Qe .
+ 27 Sin B Sin a (1-19)

Equations (1-18) and (1-19) represent the entire influence
function for a complete ring carrying tangential loads on its
outer surface. In this case w(B,a) # w(a,8) since the radial
displacement at B due to a tangential load at a is not equal to
the radial displacement at a due to a tangential load at 8.
There is, however, a different type of symmetry. Consideration
of Fig. 5 reveals that w(g,a) = -w(2n-B, 2n-a).

The following program, written in Fortran II, will generate
a complete set of influence coefficients for radial displacements
due to tangential loads for 10° increments. In the program, c was
set equal to h/2 and h/a may be assigned any value. The matrix
is antisymmetrical with respect to its center element, a fact
which was used to shorten the program. The value of the radial
deflection at each 10° interval may be obtained by constructing
a loading column matrix and multiplying it by the influence
matrix.
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~)

DIMENSION P (35,35),JJ(35)

READ 8, TOR

PUNCH 9, TOR

P(18,18)=0.
CONST=1.+.5*TOR
HALF=(1.+TOR)*.5
2=1./((1./TOR) *LOGF((2.+TOR)/(2.-TOR)))
M=1

DO 3 I=10, 340,10

IP1=I+10

GO TO 4

DO 3 J=1IP1l,350,10

GO TO 5

CONTINUE

GO TO 6

K=1/10

I1=36-K

ALPHA=I
ALPHA=ALPHA*.017453293
SA=SINF (ALPHA)
CA=1.-COSF (ALPHA)
ALPH2=ALPHA*.5

GO TO (2,5).M

L=J/10

I12=36-L

BETA=J

BETA=BETA*.017453293

SB=SINF (BETA)

CB=COSF (BETA)
CBl=1.-CB
CBCA=CB*CA*CONST

SBSA=SB*SA

SBMA=SINF (BETA-ALPHA)
PMB=3.1415927-BETA*.5
OP(K,L)=((SA*,5%Z-ALPH2*CONST) *CBl1+ (HALF*SBSA-ALPH2*SBMA-CBCA) *
1PMB- (CONST*CA-ALPH2*SA) *SB*,5) *, 31830989

P(I1,I12)=-P(K,L)

GO TO (3,7) M

M=2

DO 7 1I=10,170,10

J=I

GO TO 4

CONTINUZE

FORMAT (E15.8)
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10
11
12
13

14

15

FORMAT (37HRATIO OF THICKNESS TO MEAN RADIUS IS ,Fl2.8)

FORMAT (SH.....)

FOURMAT (15SHBETA . ALPHA ,6(I3,7X),13)
FORMAT(12H @ ...... )

FORMAT (I3, 1HO,6X,7F10.6)

Ml=1

M2=7

DO 15 N=1,5

PUNCH 10

DO 14 I=M1,M2

JJ(I)=I*1l0

PUNCH 11, (JJ(I),I=M1,M2)

PUNCH 12 .

PUNCH 13, (J, (P(I,J),I=M1,M2),J0=1, 35)
M1l=M2+1

M2=M2+7

GOTO 1

END
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Summar

Deep underground blast-resistant cylindrical structures can
be most easily designed by considering static loads which are
adjusted by a factor to compensate for dynamic effects. The
analysis presented permits one to compute stresses and radial
displacements in thick cylindrical shells resulting from any
exterior static loading.
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CHAPTER 2

DYNAMIC LOADING OF
THICK CIRCULAR ARCHES AND SHELLS

Kinetic Energy Expression

The expression for the kinetic energy of an arch ‘egment
deforming in its plane is readily obtained by integration. De-

noting the kinetic energy by E,,

n =300 PUEAT PR o o

in which a is the subtended angle, p is the mass per unit volume,
and w and v are now functions of time as well as of z.

Subsiituting for v(z,t) from equation (1-1), letting w(z,t) =
w(t) and integrating with respect to z over the area,

Q ? -]
- £ W, 3 AV, IM3QYa_ 43V 28w "W 3
E, = So{Bat) + 3¢ ]‘A = [“a«:’ 45t * 203t T Baat)

[ )2~ 2':? 383t (%at') ]}de (1-20)

In this expression I is the moment of inertia of the cross
section with respect to the x axis (Fig. 1), and J is the third
moment of the area with respect to the same axis; i.e.,

I = SAz°dA: J = SAz'dA-

J will be zero for cross se_tions having two axes of symmetry.

Free Vibrations

The equations of motion of a thick circular ring segment de-
forming in its plane may be obtained readily from Familton's

principle,
t
GSO(E, -v) dt = 0.
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With E, from equation (1-20) and V from equation (1-3) this becomes

' pahA aw 2, (V3 4y 3w 3w .,
68 S {8 g2+ 6o ]+ [3( Gt 2ot * Gooo)” )
pd v 3°w .. AE Qv 2 AEZ 2 -
* 52 Bt ~ 3500 " 2a Gg *W7- 22 W+ gge) Jasat (1-21)

With the notation
I’ = I/a°A and J’' = J/a%A

the Euler equations of this integral are

E 3% AW, _ _
(1431'+3’ )at= - (2143’ )aeata 5557 tae =0 (1-22)

and
3w_pa? pa® w 1, lav
>0 EZ (I'+J’' )ae°at° + aea + - sz;-+ w(1-+z) + Z 36
. 2—(21 +3")3 = 0. (1-23)

aeat° -
It should be noted that a solution of equations (1-22) and
(1-23) is

v 0o

ot E .E E
w=C8in 2 J(1+z)p + C,Cos aJ(1+2)p (1-24)

in which C;, and C; are arbitrary constants. This solution repre-
sents a motion such that the ring remains circular and deforms with

time with a circular frequency of

We = %—J(1+2) E/p.

Thus when §‘4(1+Z) E/p increases by an amount of 2m, the ring

undergoes one cycle of this motion. The period of this mot?on is

2n 2na
To % TR 55 o)

The duration of a transient load may be conveniently expressed
in units of T,.
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In what follows we will be interested in the complete ring and
in motion which is symmetrical at all times to the axis § = 0; thus
we assume the following solution to equations (1-22) and (1-23).

w = Cos nf Sin EE-VE7p
(1-26)

v = r Sin ng Sin EE-VE/Q

In equations (1-26) n must be an integer to satisfy the periodicity
requirements on v and w,'E-VE/p is the circular frequency w, and r
is the ratio of the amplitude of the displacement v to that of w.
Substituting equations (1-26) into (1-22) and (1-23)

[(21'+ J')np’-n] + r[p’(1+3I'+J')—n3] =0 (1-27)

3
[Z(n’-l) -p°+1 - (I’+J')p°n°] + rrn-(21’+J')p'n1 =0
. J
(1-28)
For equations (1-26) to be a solution tbs.equations (1-22) and (1-23),
it is necessary that the determinant of the homogeneous equations
(1-27) and (1-28) vanish. Setting this determinant equal to zero
yields

_’f ’ ’ Iz ’ ’ .l
p‘{z(I +J'=1'3) + (1431'+J3’') Z

I'+J’
2

-p’{(1+3I'+J')En°_1)=+‘%] +

nt - -;-(21’+J’- %—)n’}

+ n’(n’-l)a =0 (1-29)

Equation (1-29) may be used to compute the natural fre-
quencies of vibrations of complete thick rings for each mode,
n=0,1,2,...,»., For n=0 it yields

p: =1+ 2

the motion described by equations (1-24). For n=1l it yields but
one value of p?,

p? = 2
1441’42 '-1"'2
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For n>2, equation (1-29) yields two values of p? for each integer
n. The higher value represents the dimensionless circular fre-
quency of a deformation which is primarily extensional and the
lesser value of p? is that of a deformation which is primarily
flexural.

Equation (1-29) is rigorously consistent with the Winkler
assumptions; it thus includes the effect of "rotary inertia" but
not the effect of shearing deform:tion. Barcn® derived a similar
equation for the frequencies of thin rings which accounts for
the coupling between the extensional and flexural motions. For
thin rings Love* cites the formulas

w? = -@3 (1+n®)
ma

and 2

B EI n?(n®-1)

w -
ma* n?+1

for extensional and flexural vibrations respectively. Here w, A,
E, I and n denote the same quantities as in this paper and m is
the mass per unit length of centerline. Equation (1-29) includes
that of Baron and those cited by Love as special cases.

A review and survey of the implications of the analysis pre-

~ted is in order. Equ~tions (1-22) and (1-23) are the equations
of motion. Solutions of the form of equations (1-26) exist pro-
vided equations (1-27) and (1-28) are satisfied. Nontrivial
solutions to equations (1-27) and (1-28) exist for each integer
value of n provided equation (1-29) is satisfied. For both n = 0
and n = 1 there is a value of p? which satisfies equation (1-29).
For n > 1 there are two values of p? which are roots of equation
(1-29) . In what follows these two values will be designated as
p? and p? where, arbitrarily, p? is the lesser and p? is the
greater. For each value of p® either of equations (1-27) or
(1-28) will yield a value of r. For p? = p? the value of r will
be designated as r,; for p? = p? the value of r will be called r,.
For computational purposes the simpler equation for r, will be
used.

- 4 ’ 3
_n (21'+3')n p3 . (1-30)
p? (1431'+J')-n?

In the following analysis, which is meant to pertain to a
segment of a long thick cylindrical shell, J’ will be set equal
to zero and r will be given by

n(l-21'p?)

BT e
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Since the differential equations of motion are linear, solu-
tions may be summed and the resultant normalized expressions for
w and v may be written as

o]
- - r‘ » 3 -
w = Sinw,t + Cosf Sinw,; t + ZFosne(anw.t+slnwnt)
2

©
v =r, Sing Sinw, t + E:Sin ne (r, Sinw, t-r, Sinw, t) .
2

The w's in these equations are related to the p's, of course,
by

o = B N5

and w, and w, are written as w, and w, so that consistently the
w, 's are the frequencies of the motions which are primarily ex-
tensional.

GENERALIZED COORDINATES AND THE LAGRANGIAN FUNCTION

Knowing the modes of vibration and their associated frequen-
cies it is now possible to proceed with the problem of the response
of the ring to the time-dependent loads. The generalized coordi-
nates will be designated, following Baron®, by q, (t) and g, (t) in
solutions of the form

w = i [qﬂ (t) + q, (t) ]Cos no

n=0
(1-31)

v = Z&[rnqn(t) + Enan(t)]sin ng
n=

in which it is understood that g, (t) = q, (t) = 0.

Substitutiry the expressions for w and v, equations (1-31),
into equation (1-20), letting a = 2nm, and utilizing the orthogon-
ality of the sine cosine set
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= 2
E, = -sz'&z {[ 1+r3+31'r3+4nr, 1'+1'n?] 2 )
n=0 at

+ 2[l4r,r +3r, £ I'+2(r,+r )nI’ + I'n"'](%%)(%%‘)

= = - aq 2
+ [1+r§+31'r’;’+4nrn1’+1’n3](-g-%') } (1-32)
Similarly, from equation (1-3),

. EAT T 3 3 —n3 a]
V=3 L‘o{[l+n r2+2nr, +2(1-n?) |3

o - 3 -
+ 2[l+n3rnrn+(rn+rn)n + 2(1-n?) ]q‘,qﬂ

My4n2p2 ay°
+ 14077 +2nr, +2 (1-n°) ]aj} (1-33)

In equation (1-32) the coefficient of %% %is identically zero.

Likewise in equation (1-33), the coefficient of q,q  is zero.
(The proof that these quantities vanish is extremely tedious and
is not presented). Thus, in final form,

o
- pUmaA 2 13 torina (2%
E, > nZo{[l+r“+31 r2+4nr, I'4I'n ](at )

- - - ~ 3
+ [l+rf+31'rf+4nrnI’+I’n3](§%‘) } (1-34)
e 2
vV = g;—; [1+n3 r? +2nr, +2(1-n?) ]qf
n=
- - 2 -
+ !-l+n’r§+2nrn + 2(1-n%) ]qi (1-35)

and L, the Lagrangian function, equals E, - V.
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There remains the task gf determining the generalized forces
corresponding to each q,and q,. Once this is accomplished, La-
grange's equations may be used to deduce the differential equations

which describe each q, and q,.

GENERALIZED FORCES

The ring shown in Fig. 6 below is considered.

Figur< 6. Ring with time-dependent loads.

It is loaded at its outer surface by a radial load, X(6,t) and a
tangential load Y(6.,t).

To determine the generalized forces corresponding to q, and
X and Y will first be expanded in even and odd Fourier series,

’
e.,

el
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x(s,t) = 2fE T x (t) cos ng

n=1l
(1-36)

Y(6,t)

ZY" (t) Sin ng
n=1

The virtual work of the external forces X and Y will be desig-
nated by 6We and

bWe = Soﬂ[xaw + Yév)zzc]Rode (1-36)

When q, is varied by 6q,, from the first of equations (1-31),
bw = 6q,Cos nd

From equation (1-1) and equations (1-31)

_ R _Ccw
V)z=c SR a 38
- R _L (v
6v)z=c a e a 6(66)
- & en, ..
6v)z=c = (a r, +3 )Sin n9bq,
Thus R, on
sWe = nao[x, (£) + ¥, (£) (X1, + =) ]aq,
and

F, = nno[xn (t) + ¥, (t) (l:"rn + :—n)] (1-37)
in which F, is the generalized force corresponding to q .
Similarly the generalized force corresponding to a. is

F, = nR{X, (8) + ¥, (1) (F, + 29} (1-38)

The Lagrangian function, L, is now known from equations (1-34)
and (1-35)

L=E -V

and the generalized forces from equations (1-37) and (1-38). The
Lagrange's equations of motion are thus
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3L _d 3L _ _
3q, dt 3q, 3

3L d aL._F.
3g, dt aq,

Application

Two significant problems have been workedt.

The first problem considered was that of the thick ring, initially
at rest, loaded by a uniform external pressure which varied with
time as shown below. '

-9

This loading produces, of course, only radial motion. Figure 7
shows_the radial displacement w as a function of dimensionless
time r for various values of the dimensionless decay time T4

7 is the ratio of actual time to the period of the n = 0 mode of
vibration (equation (1-25)).

The second loading chosen was such as to excite the funda-
mental bending mode of vibration (n = 2), and produce large
bending stresses. A radial prersure which varies as Cos 29 and

linearly with time from P, at T = 0 to 0 at 7 = ;d was chosen.

The dynamic response of a ring with a thickness to mean radius
ratio of one to three to this loading is given in Figures 8, 9,
and 10.
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Conclusions

The analysis presented allows one to predict the response of
thick rings to dynamic loads. The theory can be used to determine
stresses and displacements in long cylindrical shells imbedded in
acoustic or elastic media.

Since experiments in dynamic loading are difficult to perform
one can judge a theory only by comparing its predictions with the
results of other theories.

Experiments show that the formulas cited by Love (page 37),
the work of Baron®, and equation (1-29) all predict the lower
flexural natural frequencies of thick and thin rings very ac-
curately.® Since the largest displacements, strains and stresses
occur with the lower modes, the work of Baron, though admittedly
applicable to thin shells, should yield results applicable with
engineering accuracy to thick shells.
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SECTION II

STRESSES AND DISPLACEMENTS
IN A
CIRCULAR CYLINDER
FOR
DISTRIBUTED STATIC LOADS APPLIED
PERPENDICULARLY TO CYLINDER AXIS

INTRODUCTION

The basic theory of the method of solution used here is de-
scribed by N. I. Muskhelishvilil!, though he does not claim
originality for some of the background work. The procedure is
restricted to the solution of plane problems of elasticity and
for static cases. The governing differential equaticn for the
plane, static elasticity problem is known as the biharmonic
equation, v*¢g = 0, where 9 is a stress function. It can be
shown readily'’ ? that an equivalent solution for stresses and
displacements can be accomplished by making use of two stress
functions of a complex variable. Ultimately these two stress
functions are written as Laurent series' for the particular
problem of the circular cylinder. Then, with the applied loads
expressed as complex Fourier series', coefficients of like terms
are matched at the two boundaries, providing sufficient equations
to solve for all coefficients.

Figurell illustrates a cross section of the circular cylin-
der with an indication of the loads applied. Both radial and
tangential loads may be applied to either or both boundaries; to
avoid confusion, only representative separated sections of the
distributed loads are shown. The total loading must of course
be self-equilibrating in order to have a static problem, but there
is no necessity that the loads in each individual boundary have
zero resultant. In a later section, a test for force resultant
and another for moment resultant are presented; these tests are
included in the computer program to ensure that no attempt will
be made to solve an improper problem by this procedure.

One precaution regarding loading should be made here; con-
centrated loads cannot be handled by the computer program as
developed; however, a concentrated load can be approximated by a
statically equivalent distributed load applied over an arc as
small as one subdivision of the ring.

The input to the procedure is in the form of shear ard normal
stresses on each boundary at any desired number (this number must
be divisible by four) of equally spaced (angular spacing) points.
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The output produces radial (or), tangential (oe), and shear (Tre)

stresses as well as radial (u) and tangential (v) displacements
at any desired point of the ring.

‘Y

Sign Convention for Stresses

Figure 1ll. Cross section of circular cylinder with
portions of distributed loading indicated.
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CHAPTER 1
THEORETICAL DEVELOPMENT

FUNDAMENTAL EQUATIONS

Since it is well known that the expression of stresses and
displacements for the plane static elasticity problem can be
accomplished in terms of two stress functions of a complex vari-
able, we shall not repeat that development but will start with
such expressions.

Stresses

For polar coordinates, the three stress components are in-
volved in two equations.

o, + 0y = 4 Re §$(z2) = Z[Q(z) + o(z)] (2-1)
= i = 2|z’ 216 -
0y = 0  + 20T 2[z¢ (z) + Y(z)]e (2-2)
where
i=4-1
r,8 = polar coordinates (Fig. 1l1l)
z = x+iy (complex variable in rectangular coordi-
nates)
_ = re'® (complex variable in polar coordinates)
z = X-iy (complex conjugate of z in rectangular
coordinates)
= re~!8 (complex conjugate of z in polar coordi-
nates)
Re = re:' part of
$(z) ,¥Y(z) = undetermined stress functions of complex vari-
_ able 2z
$ (z) = complex conjugate of & (z)
’ _ d3(2)
Q (z) - dz

By subtracting Eq. (2-2) from Eq. (2-1) we obtain a very useful

relation which does not contain oe.

- i = Y - %19z & &
0, - i1, =8(2) + ¥z - 2 #M2) +¥(2)]  (2-3)
Relation Eq. (2-3) is precisely the desired one for expressing
the boundary stresses because we see that the radial stress is
the real part and the shear stress is the negative of the imagi-
nary part of the right side of Eq. (2-3).
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Displacements
Again in polar coordinates, the displacements can be ex-
pressed in complex form.

2y (utiv) = e-*e[n p(z) - z ¢(z) - 'i(z)] (2-4)

where
u = radial displacement (+ outward)
v = tangential displacement (+ in direction of increasing

9)
4 = one of the Lame' constants = shear modulus

c = Poisson's ratio
p(z) = 36 (z) dz

"z) = S2{2)
?(z) dz
9'(z) = complex conjngate of ¢'(2)

y(z) = Sv (z) dz
» = the other Lame' constant. x = 3-40 for plane stress,

3-0 .
®o= 700 for plane strain.
We see that, once we have ¢ (2) and y(2), the radial displacement
is the real part and the tangential displacement is the imaginary

part of the right side of Eq. (2-4) after division by 2u.

Two_Relations from Unique Displacements

Since the cross section of the hollow circular cylinder is
a multiply connected region, the requirement that displacements
be single valued upon traversing a closed contour containing the
inner boundary results in two essential relations. In general,
it has been demonstrated® for multiply connected regions that the
functions ¢ (2) and y(z) used in Eq. (2-4) can be expressed as

p(z2) = 2 i A, ln(z-2,) + zyk In(z-2,) + o*(2) (a)
k=1 k=
v(z) = i vy 1n(z-z, ) + y*(z) (b)
k=1

where
m = number of interior holes

z, = any point inside the kth hole
A, = real constants
Yy Yy = complex constants
o*(z),¥*(z) = holomorphic (single valued) functions of z
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If ¢ (2z) and ¥ (z) from Egs.(a) and (b) are substituted into Eq. (2-4),
we obtain
Zu[u+iv] = 2nie'*9[(n+1)A,z+ny.+§{] (c)
L¢

where [u+iv] = the increase in (u+iv) obtained during one tra-
L, verse around a closed curve containing the kth

hole.

Since we must have single valued displacements, the right side of
Eq. (c) must vanish; therefore, it is obviously necessary and suf-
ficient that the two relations of Eq.(d) must hold.

A, =0, ny, +y, =0 (@)
for k =1, 2, ..., m

In our particular case of the hollow circular cylinder, m = 1 '
(one hole), and we obtain the equations (2-5).

A=0,xy +y =0 (2-5)
where y'’ = complex conjugate of y’

Since $(2) = 9%£EL and Y(z) = Q%g&L} we can obtain Eqs.(e) and (f)

for our case (m=l, z, =0+i0, z=re!®) from Egs.(a) and (b).

A(l+ln 2) + X, S (z)
z dz

$ (2)
z dz

= A ln 2 + $*(2)

*
in which A + §-+ Qﬂaﬁil is single valued.

v(z) =L 20212) (£)

’
in which £-+ Q!%gl is single valued.
Two important observations should be made from Eqgs.(e) and (f):
(1) $(z) and Y (z) are single valued (since A # 0), and (2) y and
y’' are the coefficients of z7! in the series expressions for

$(z) and Y (2).

Equation (2-5) expresses the two relations referred to in
the heading of this paragraph. Actually, since the second rela-
tion is in te:ms of complex constants, Eq. (2-5) gives us three
scalar relations.
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SERIES SOLUTION FOR STRESSES AND DISPLACEMENTS

Fourier Representation of Loads

Referring to Fig. 11, we will label the inner boundary of
radius R, as L, and the outer boundary of radius R, as L,. The
region between L, and L, will be called S. It is assumed that
the loading for this problem will be given in the form of values
of o, and Tre OR Ly and L,, either as functions or § of as values

at discrete points. Of course, as mentioned earlier, the ring
must be in equilibrium from these loads and the wieght of the
ring itself is ignored.

We shall represent the stresses acting on L, and L, by com-
plex Fourier series.

-3 = ratk b — ; 1tk
(or 1‘rre)Ll -Z?ke _é(nk+1gk)e

18

(2-6)
2 2 .
i = Ya7e'*8 = V(o +i tk
- QO -0
where

A/ = n +i(, = complex Fourier coefficient determined by

loading on inner boundary.
A = p,+iv, = complex Fourier coefficient determined by

loading on outer boundary.

Laurent Series Representation of Complex Stress Functions

Though a digital computer cannot work with complex numbers
other than by separation into real and imaginary parts, it will
be convenient to continue the development in complex form and
separate at the end. A later section deals in detail with the
load representation by Fourier series, so for now we will con-
sider the complex Fourier coefficients, A/ and A;, as knowns.
From Egqs. (2-3) and (2-6) we can express the boundary conditions
in terms of stress functions % (z) and v(z).

zAk'eike
_ _ - on
t(z) + F(2)- e?*6[Z(z)+v (2) | = (r=R,) (2-7)
5 " atkB
_Zb‘e on L,
(r=R,)
For reference, one form of equation (e) is repeated here.
$(2) = A ln 2 + §*(2) (repeated) (e)
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where
A = real constant
$*(z) = holomorphic function of z

Since $*(z) is holomorphic in S up to and including the boundary,
it can be represented by a Laurent series (power series in com-
plex variable).

3*(z) = Za, 2 (9)

where
a, = complex constant

Let us now consider Eq. (2-2). Since the stresses are given by
Fcurier series, they are holomorphic functions; thus, the right
side of Eq. (2-2) must be also. From Eq. (e) we obtain the
following: -

/ - A ds*(z) A k=1

3'(z) = = + 3z % +-Z?a,z

z3'(z) = A§-+ ZFakEz*“

-16 @
= A -%-e— + Zka,re-’er“"‘e‘ (k=1)8

= A e216 4 EFakrket(k-a)e

Thus, we see that z3'(z) is holomorphic and for that reason so is
vY(z). Therefore, ¥(z) also can be represented by a Laurent series.

$(z) = A ln 2 + zé,z‘
) " (2-8)
Y(z) = }f{z*

Recursion Relations

Recalling EqQs.(2-5) and noting that y and y’ are the co-
efficients of z™! in the series representation of §(z) and v (z)
respectively, we see that a_, and a!/, play the same roles in
Egqs. (2-8) as do y and v’ in Egs.(2-5). We can write Egs. (2-9)
immediately from kEgs. (2-5).

A=0, na_, +a’, =0 (2-9)
where

a/, = complex conjugate of al,
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We now substitute the expressions for §(z) and v(z) from
Egs. (2-8) into (2-7), using A = 0, to obtain Egs. (2-10), two
very important relations.

L(l-k)a rre'*b + Tﬁ,r‘ -1x0 o Z? gk =3et®

.ZA,'e“‘e for r = R,
(2-10)

_Zﬁ:etkg for r = R,

Since Egs. (2-10) must hold on L, and L, for any value of 0<g<2n,
we may equate the coefficients of like powers of e!'® for r = R,
and for r = R, to obtain recursion relations for the unknown com-
plex coefficients a, and a/ in terms of the known complex coeffi-
cients A/ and A (remember that A/ and A are the complex Fourier
coefficients representing the loading).

Comparing terms independent of 9§ (k=0), we obtain
8 + 3, - al;Ry? = A
from the first of Egs. (2-10), and
a, + a3, - al;R;? = A

from the second of Egs. (2-10). Since a, and a, are complex coii-
jugates, these two relations may be expressed as in Egs. (2-11).

2 Re a, - a_’aR;a - Ao' (2-11)

2 Re a, - al Rj? = AJ
Solving Egs. (2-11) simultaneously, we obtain Egs. (2-12).

Re a, = R%%’a- R} Ag
2(R3-RY) (2-12)
a’, . RRR] (Ag-A])
R -R}

Let us now assign symbols for the real and imaginary parts of the
various coefficients involved here:

a, = a,+i8,
a, = y,+is, where k = 0, ¥ 1 AL
A/ = n +i(, ’ '

Ay = p, +iv,
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Thus, from the first of Egs. (2-12) we write Eq. (h) which will be
used later in making a check for equilibrium,

Im(REA; - REA{) = Rv. - R{{o = O (h)

At this point we may wonder about the contribution of the imagi-
nary part of a,: that is, 8,. The addition of an imaginary
constant to %(z) in Egs. (2-1) and (2-2) leaves the stresses un-
changed:; therefore, 8, can be assigned any desired value, say
zero.

Equating coefficients of e'*% for k = 2 1, : 2, + ... : @,

onr =R and onr = R,, we obtain Eqs. (2-13).

(1-k)a, Ry + E‘-k RT* - a/_,R{~% = A/
(2-13)

(1-k)a,R; + a_,R°* - a/_,RE=? = A’

-K

be&ween Egs. (2-13) to obtain Eq. (2-14) for

e e = @D,

(1-k) (Rg-R?)ak n (R;"‘ +2_R1—2k +2)§_k = A/RS* +2_Ak'R‘-k +2

(2-14)

Now Eq. (2-14) is of the form A + iB = C + iD since a,, a_,. A/,
and A/ are all complex; therefore, A = C and B = D. Thus we can
write A - iB = C - iD; that is, we obtain a valid equation by
going to the complex conjugate form of Eq. (2-14). However, in
doing so, we obtain a relation in a, and a_, instead of one in
a, and a_,. Thus we shall replace k by -k in the conjugate of
Eq. (2-14) in order to obtain another equation in the same two
unknowns.

(R§k+2_R$k+2)ak + (1+k) (Rg.R.f);_k = Kﬁk k+a_).\_'kR|{+2
(2-15)

Equations (2-14) and (2-15) can be solved simultaneously for a,
and a_, provided the determinant of the coefficient matrix # 0.
We need consider Egs. (2-14) and (2-15) only for k = + 1, +2, +3,
... since for each of k = -1, -2, ... we obtain a pair of equa-
tions conjugate to each pair fcr positive k and thus obtain no
new information (if we know a,, we know Ek). The determinant of
the coefficient matrix is given as Eq. (2-16).
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(1-k) (R:-Rf) (R;ak +3_R‘-8k +a)
Di =

(R;“"”-R"“"") (1+k) (R?,-Rf)

= (l-k')(Rg-Rf)a - (ng-pz_n_fk-&:)(n;a:-l-a_ -3i+3)
(2-16)

From Eq. (2-16) we see that D, vanishes for k = 0, o 1l:; therefore,
Egqs. (2-14) and (2-15) must be solved specifically for these
values of k. We already have a, by the first of Eq. (2-12), so
we will need consider Egqs. (2-14) and (2-15) specially only for

k = 1. Equations (2-17) result from Eqs. (2-14) and (2-15)
respectively for k = 1.

A/R, - A/R, =0
(RA-R})a, + 2(R3-RI)a_, = AZ,R3-A/,R

(2-17)

We now solve for a, and a’/, by using the second of Eqs. (2-9)
xa_, + a’, =0 (3)
and the first of Egqs. (2-13) for k = 1.

a_, R{* - al,R* = A (k)

In order to obtain identical unknowns, we take the conjugate of
Eq. (k) to obtain Egq. (1l).

a_, - al, =Aa/y (1)

We solve Egs. (j) and (1) simultaneously for a_, and a’!, after
which we take the conjugate of a’,.

y o _ wA/Ry .
a’y e s (2-19)

’
Since a_, =~§t%k from Eq. (2-18), we can now solve for a, from

the second of Eq. (2-17).
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A <A/’ ’
a =MiR-ALR 2 AR, (2-20)
R -R (R +R)) (n+])
It can be shown that D, # 0 for |k| =2 2; and thus, for k = 2,

3, ... =, we solve Eqs. (2-14) and (2-15) simultaneously for a,
and a_, . Also notice that D, = D_, .

_ (l+k) (Rg'Rf) (A:R;k+a—A"R;k+')-(R;ak+a— -2K +3) (xlkng'ﬁ'ﬂ_iika{‘*?)

Dk
(2-21)

T . (1-k) (R:-Rf) (K_”,,R;"”-x.’!l!{"")-(R;"'"’-Rf“"ﬁ(hﬁ,R‘,?"”-A{R{'"’”)

-%
Dy

(2-21"')

Thus, Egs. (2-18), (2-20), (2-21), and the first of Egs. (2-12)
completely determine all a,, the coefficients for $*(2).

We now shall determine a/, the coefficients of the series for
¥(z). Knowing a, and Z_., either of Eqs. (2-13) may be employed
to solve for a/_;. Using the first of Egs. (2-13), we obtain
Eq. (2-22a) which can be re-indexed and expressed as Eq. (2-22b).

al-o = (L-K)Ra, + a_ Ry7**7- A/RE+s (2-22a)

fork’-l,-z, e o0

a/ = -(l+k)Ra, 4, + 3-(k+3)&-("+=) - A4 Rt (2-22b)

for k =0, ¥1, +2, X3, +...

Neither Eq. (2-22a) nor Eq. (2-22b) gives the term a’/,, but
we already have this from the second of Egs. (2-12); therefore all
coefficients for Y(z) can be computed. In order to reduce the
number of computations, it was decided to let R, = 1 and R, be the
appropriate fraction less than one; then the solution for a cylin-
der with R, # 1 (but geometrically similar) can be readily found
by dimensional analysis.

The use of Eq. (2-22a) or Eq. (2-22b) for large k resulted in
lack of precision on a/ because of small cifferences of large num-
bers. It can be seen that, since R, < 1, we have numbers less
than unity to large negative powers. Because of this precision
trouble, the second of Eqs. (2-13) instead of the first was used
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to compute a;/ since it contains only R, = 1, and therefore no
difficulties caused by small differences of large numbers. Equa-
tion (2-22c) also gives a/, but from the second of Eqs. (2-13).

a/ = -(l+k)a, 4,,R3 + a-(k+a)R;("+a) - A 4oR"
= -(l+k)a, 4, + a_ (k+2) = A 42 (2-22¢)

for k = 0O, 24 l, + 2, & 0 E e

Summary
Coefficients of & (z):

ao . L] ° . [ L] o ° o ° L] [ . . . L] . Equation (2-12)

By o ¢ ¢ o s o o o6 6 6 6 s o 4 e o " (2-20)
B_je o o o o o o o o o o o o o o o o " (2-18)
a, (forkx=22, 23 +..0.... = (2-21)

Coefficients of v (z)

Equation (2-19) or (2-22c)

4
a_l . . e o o o o . e o e e o o e o

aiz [ ] [ ] L ] * [ ] [ ) ® L J [ J ® [ L ] L] [ ] * L J L] A (2-12)
a/ (for k=0, 21, +2, 23, ..) . = (2-22c)

Equilibrium Verification

Inasmuch as the entire procedure here is restricted to the
static case, there are three relations which must be satisfied if
the hollow cylinder is to be in equilibrium. With the entire
ring as a free body in Fig. 12, we will sum moments about the
origin and also sum forces horizontally and vertically.
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Figure 12. Equilibrium of Entire Hollow Cylinder

i”°=° [ reL3 Rf("re),,‘]de

From Egs. (2-6), we may write the following relations after expand-
ing A/ and A{ into real and imaginary parts:

(or) - i('rr )

9 I

(c.) - i(r

£ z(p,u ve) (Cos ke+i Sin k@)
"L

)
b
L,
Thus, we can separate into real and imaginary parts and express

0. and Tre on each boundary.
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(°r) - Z(m Cos k8 - {, 8in k@)
Ll -

) =2)((, Cos k§ + n, Sin k@)

(o) = Z(p. Cos ko - v, Sin k@)

--y(v. Cos kf + p, Sin k@)

We now substitute ('rre) and (Tre) into the moment equilibrium
equation. L, Lg

2M° = -R%_i [T\? Sin ke- ﬁ“‘Cos ke]:n+ R.f-z [-]E* Sin ko- -E“Cos ke];n

This expression for M identically vanishes term by term except for
k = 0 which must be handled separately.

2
ZM,, = -R,S vo 49+ R "co dg = 2nm(R% (o - R3 v,) = 0 (2-23a)

"« R (o - R} vo =0 (repeated) (h)

We see that the forced condition of Eg. (h) is a consequence
of the fact that the entire ring must be in moment equilibrium.

Similarly, the entire ring must be in force equilibrium

YF=0- Sz"[(cr) Ra - (0) R, |(T cos 6 +3 sin e)as
Ly L,

2 I
" xon[hre) R, - (Tre)Ltal](-l Sin 6 + -J' Cos §)deé

Again we substitute the series expressions for stresses.

ZF - gz"{ z [(p,R,-n,R,)Cos X8 - (vyRg~C¢R,)Sin ke]

(-i' Cos 9 + 3' Sin e}de
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_ §2n{ ) [(Wg‘a_gk&)COs k6 + (pyRy-n R, )Sin ke]
l,lo -m
(-1 sin ¢ + 3 Cos 9)}d9

Now, since Sin n@ and Cos n3 comprise a set of orthogonal functions
over the range from 0 to 2n, we have only the terms for k = 1 and
of like kind survive.

Z’r" = 2m(p,Rg-mRy)T - 2m(vyRe-CyRy)T = O (2-23b)

PrRg - myR; = 0, vyRy - (4 Ry = 0 (repeated) ((2-17) first)

Thus, we see that the two forced conditions (one from real equality,
one from imaginary equality) of Eq. (2-17) are consequences of the
necessary force equilibrium of the entire ring.

In the computer program for the solution of this problem,
these three verifications are made early in the computation as
soon as (o, Vo, Py M. Vi, and ({, are available. Of course,
with loading data supplied numerically, we would not expect an
exact c.ieck; but to some tolerance, these three relations must be
satisfied before we have a valid problem for the method.

Stresses in Terms of a, 8, y, and §

Since a digital computer cannot function d: rectly in terms
of complex numbers, we will now express the three stress components
in terms of real numbers.

From Egs.(2-1) and (2-8), we obtain Eq. (2-24) after using A=0
in Eq. (2-8).

o 0, = 2[@ (z)+3(z)] = 2[ i a, z* + iak'z"‘]

8

2 )r* (a, et*8 + a e-tx9)

= 2

(g L

r*[(akuek) (Cos k9+i Sin k8)+(a, -iB, ) (Cos kg-i Sin ke)]

= 4 )r* (q,Cos k§ - B,Sin k6) (2-24)
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We obtain equation (2-25) by using Eqgs. (2-2) and (2-8).

0g=Cp * 28t .0 = 2[5 ¢/ (2) + l'(z)]o"e
= 2e“9['z' ika,‘z""1 + ia,’z"]

- 2,::9[,,_.-‘9 ikakrk-tes (x=2)64 ia;rk eue]

= 2[ ika,e“‘e + ia,’r"e' ("*")9]

-2 2}*Tka,cos k9-k8, Sin ke+y.Cos(ke+2e)-6,s1n(ke+2e)]

+ 2i)r* -kB.COB ko+ka, Sin ko +8,Cos (kf+20) +y, Sin (ke+29)]
- (2-25)

By adding Eq. (2-24) and the real part of Eq.(2-25), we obtain %y

as given by Eq. (2-26); by subtracting the real part of Eq. (2-25)
from Eq.(2-24), we obtain o, as given by Eq.(2-27); and the imagin-

ary part of Eq. (2-25) gives Tt directly in Eq. (2-28).

ro

20, = ) {4r* (a,Cos ko-, Sin kg) +2r* [ka, Cos k9—kB, Sin ko

+ y,Cos(ke+2e)-a.sin(ke+ze)] }

or ® .
oe = Zr“[(2+k) (o, Cos k8-B, Sin k6) + y,Cos(k8+20) -8, Sin(ke+2e)J
; (2-26)
20, = )r*[ (4-2K) (e, Cos k-8, 5in k) -2y, Cos (k§+28)
+ 26.sin(ke+2e)]
or

o= Zr'[(Z-k) (a, Cos kg-B, Sin k@) -y, Cos (k8+28H4+8, Sin (k6+29)]
- (2-27)
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T = Zr*[ka,cos k9+ka, Sin k§+6, Cos (k8+26) +y, Sin (ke+29)]
- (2-28)

Displacements in Terms of a, B, y, and §

We find displacements u and v from the real and imaginary
parts respectively of Eq. (2-4).

2u (u+iv) = e“e[ncp(z)-zfﬁ' (z)-;(z)] (repeated) (2-4)
where

v (2) = S@(z) dz = S[Q*(z)ﬂ\ 1n z]dz = Kia, z* dz
from-;q. (2-8) with A=0

- k+1 _a_._ k41
yk_’_lz + a_,1ln z + k+1z

v’ (2) = §(2) =Aln2+za,,z" Za,z , since A =0

o’ (2) = i‘é‘,zk = i\ikrke-ue

a‘al(z) = Zakrk+1e-i (xk=1)9

v(z) = XY (z) dz = S iak’z" dz from Eq. (2-8)

=- 3 x4+l / & 4
_Zk+lz + &, 1nz+§k+lz

v =-—§L'r+x a’ 5 Q_ék'.'k-n
v(z) -2”_1 z + a., ln z +gk+1 2

The above integrations were carried out without including any
additive constants because such constants represent rigid-body
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motion. That this is so can be seen by observing that the total
of such constants in the square brackets of Eq. (2-4) would be of
the following form:

-1 8
(u+iv) 5 e2 [a'+ib'] = e-18 (a+ib)
due to H
additive
constants
in Eq. (2-4)
= (a+ib) (Cos 8+i Sin 8)
= aCos 8 + bSin 86 + i(b Cos 8 - a Sin 8)
u=acos 8 +b Sin 6

v

-a Sin 68 + b Cos §

As seen from Fig. 13, these values of u and v are exactly the radial
and transverse components of displacement each particle would have
if the entire body were rigidly translated by an amount a in the
x-direction and an amount b in the y-direction.

Ty
v-direction
u-direction

a cos 8 ,f”:Tr

sin 8
b cos 8

—— 3 sin 8

o X
U= acos § + b sin 8

v=Dbocos 8§ - a sin §

Figure 13. Radial and transverse displacements of a particle
due to given Cartesian displacements.




Similarly, we find by Egs. (2-1) and (2-2) that an addition of
an imaginary constant (iB,) to §(z2) leaves the stresses unchanged.
This addition of iB, to ¢ (2), however, changes 9 (z) by the amount
of iB,z and changes the displacements as follows:

-1 8
(u+1iv) = i e2 wBo2Z = %ﬁp ie~18 ret®
due to adding = 2
iBy to §(2)
= ABir

u=0, v = Afr

2
where Af = %ED or Bo = -%gi

However, the displacements u = 0 and v = rAf are exactly those each
particle of a body would receive if the body underwent rigid body
rotation by the angle A§ about an axis through the origin as indicated
in Fig. 14. Actually, of course, the displacement v = rAf in the
instantaneous v-direction is valid only for small A§8. However, the
path of a particle is a circular arc of length rA6 even for large AS§.
Thus, the addition of the term if, to the series for §(z) has the
effect of a rigid body rotation of the ring about an axis through

the origin by an amount A8 = %ﬁ’.

Y
b v-dir.

rieg
\ /u-dir.

u=20

v = rAf

- X

Figure 14. Radizal and transverse displacements due to
rigid body rotation.

In programming this procedure, these rigid body displacements
were left unspecified and thus the computed displacements are
"floating." This actually enables one to obtain the displacements
in an advantageous form especially for problems of symmetrical
loading.
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Ignoring these constants of integration in Eq. (2-4) and the
term ig, in ¢ (2), we obtain a series expression for displacements
as given by Eq.(2-4').

2y (u+iv) = e"‘e[ in %H z¢*+'4 xa_,1ln z + gn -E:.-I gr 1

- Z;‘r"“e" (k-1)86 _-2%.:.{ zk 1 _ 5_’,,1:1 z

S_petigr(kh1)e xa., (ln r+ig)

2u (u+iv) = e"e[ )

+ Zu ) rrtiet (x41)8 _ Za.r"*‘e" (xk-1)8

o - O

& k=t (k+1)0 _ R/ -
ik-ﬂ rkTle al, (In r-ig)

A& k4=t (x4.)0
ok+1r etkz]

or

2u (u+iv) = HIn %’:i- rx+ietx8 4 e=t01ln r(xa_, -a’,)

- -]
&, k4110 _ k+1 -1k 0
+)u iy et e -Zékr e

ﬂl\/N o8

L k4l o=t (k48)0 _ aéu'... K+l o=1 (k+1 )6
o et ! x+1 & ©

+ ige=10 (na_, +a’,) (2-4')
where (xa_,+a’,) = 0 by Eq.(2-9).
Finally, we obtain the series solution for u from the real part of

Eq. (2-4') and the solution for v from the imaginary part.
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=2 ok 41 , : -
2uu =-ér£:I—{a,Cos k-8B, Sin ke]+ln r[(na_,-y-;)Cos 8+(nB_y-6_,)Sin GJ

+ i%i%%l{akcos k6-8,Sin ke]- i}k+1[a3008 kg-B, Sin ke]
i -

&k +1 B!
= gf [kaos(ke+26)-6,Sin(k6+26)J

L k+1
Sk +1 .
- ka+1 [YkCos(k6+29)-ékSLn(ke+26)] (2-4a)

2uv =-é‘k+1 a, Sin ke+8, Cos keJ+ln rEnB-,+6-;)Cos 8+ (y_y-na_y)Sin e]

o

o rk +1 )
+ g.ka[a“ Sin k8+8, Cos ke_‘

-§Tk+1 .
+-Q-E:T-[yksln(ke+29)+6,Cos(k9+29)]

N i}‘*‘[anSi“ k8+8, Cos ke]
-

@

x +1
+ %f [y,sin(ke+ze)+a,Cos(ke+2e)] (2-4b)

k+1

The form for Egs.(2-4a) and (2-4b) is obtained using a, = a, +iB,
and a/ = y, +is, .

Since the Fortran system cannot handle negative subscripts for
subscripted variables, we will later convert the stress equations
(2-26, 2-27, 2-28) and the displacement equations (2-4a, 2-4b) into
forms not using negative indices.

Summary
Stresses
o9 e« o o« o« « « s« « Equation (2-26)
O p o o o oo e . " (2-27)
Tre SO e (2-28)
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Displacements
u . [ L] . . . (] Eq‘lation (2-46)
Voo e e e e e " (2-4Db)

The above equations for stress and displacement are in terms
of series coefficients q,, B,, Yv,. and 6§, which are the real and
imaginary parts of coefficients a, and a/. The coefficients a,
and a/ are in turn expressed in terms of A/ and A/, the Fourier
loading coefficients; ard these loading coefficients are determined

from the distribution of o, and Teg O L, and L;. Thus, our next

task is to develop a useful procedure of determining A/ and A from
the given loading on L, and L,. The loading on the boundaries may
be in graphical or numerical form and the usual formal determina-
tion of Fourier coefficients will not suffice.
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REPRESENTATION OF 0. and Tre ON BOUNDARIES

BY COMPLEX FOURIER SERIES

discontinuity in loading

(ox,)

no
discontinuity
in loading

distribution of °r

X on outer boundary

Figure 15. Representative distribution of one of the
stresses (0_) on one boundary showing the
wdouble value" nomenclature.

Our next task is to spell out a detailed procedure for ob-
taining the complex Fourier coefficients A/ and A] in Eqs. (2-6)
which are repeated here for convenience.

- = arsiy
o Hre -ZA,, e on L,

- (repeated) (2-6)
o. --i:rre =-ZA{ e'*8 on L,

- 67 -



where

A] = n, + i{, = complex Fourier coefficients on inner
boundary.

A = p, + iv, = complex Fourier coefficients on outer
boundary.

In the usual manner, we obtain the Fourier coefficients by multi-
plying both sides of each of Eq.(2-6) by e~!®8 and integrating with
respect to § from 0 to 2.
2n @ 2n
0 L, k= 0

2n
since i et (k=n)6dg = 0 if n #k
0 = 2n ifn=k

R G 1 e .
S.oA = ET-T& (or.-]_'rre) e dg = 2_TTS (or—l'rre) (Cos k8-iSin ke)ds
0 L, 0

Ll
1 2n _ ) :
- ESO [(°rc°s kg-1_ Sin ke)Li—l(‘rreCOS kg+0_Sin ke)L’ ]de
1 2n
N = Eg'go(orCos ke - TreSin ke)Ltde
o (2-29)

¢ = -5\ (1,,Cos ko + 0 sin ke) do

0 L,

In similar fashion, we can write expressions for A/, p,, and v, .

2n

v _ 1__ - 0 R .
A = 5 x [(orCos ko Tresln kg) 1(7reCos k9+0r81n k8) ]de

0 L, L,

1 2n
Py = EF'SO(OrCos ke-7r681n ke)L de
’ 3
2 (2-30)
AN ) 1 e r Wt

v = -5 So(rmc« ®9:+ 0 8in ke)Lade
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In case the loading is given in functional form, the coefficients
can be found from Egqs. (2-29) and (2-30) and then read directly into
the computer program. A subprogram to compute these coefficients
could b2 used. 1In general, however, it is anticipated that the
loading stresses on the boundaries will be in graphical or numerical
form; the remainder of the development of this division will be
aimed at obtaining the coefficients p, v, n, ( for this situation.

A representative distribution of one stress (or) on one boundary

is shown in Fig. 15. We will represent the given boundary load
stresses as segments of linear functions of § between equally spaced
divis.ons of the boundaries. These linear functions of § would be
straight lines on a rectangular stress - vs. - § plot, but do not
plot as straight lines on one such as Fig. 15. In order to allow
for discontinuities, each loaa stress on each boundary is assigned
two values, a "near" value and a "far" value. These are, of course,
the values of the considered stress just prior to and just after

the discontinuity respectively. In a symbol such as (or )F ; n re-
o

fers to the nth division point cf the boundary, L, refers to the

outside boundary, and F refers to the value of cr on the "far" side

of the discontinuity. At most division points, there will be no
discontinuity and the "near" value of the stress will be equal to
the "far" value.

Loading Coefficients for Case where Discontinuities May Exist

For each linear segment of a loading stress, we may cxpress
this stress in the form given by Eq. (m).

fo, O - (e, 07 Jte-e,)
(Or)L2 =1 g Foe 7 La Ly

n » Lg (eu+1-eu)

(m)

where (or)L= =0 between §, and 6,4, on outer
n boundary at the angle §.

To reduce writing, we shall develop the expression for p, only and
it is understood that we are working only with loading stresses on
the outer boundary. From the first of Eqs.(2-30), we express p,
by integrating over each segment, one after the other, until the
integration around the entire boundary is complete.
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drp, = i S ) [(or)La Cos ko - (Tre)L= sin ko [d8  (n)
n=0 n n

where M+l = number of equal subdivisions of the
circle.

Into Eq.(n) are now substituted the linear expressions for (or)L2
n

and (Tre)L2 in the form given by Eq.(m). For convenience, we

n
shall represent o by ¢ and U by 7; also we understand that both

7 and v are the loading stresses on L,.

N F

en
L yen

n

P N F
- [7y + (a2 Ts)(a-5,) Jsin ko}dg
A8

where 6, ., -6, = A6 since each boundary is divided into M+l equal
parts.

84 41 . N _ F N F
S { [cn - g, (2t “)]Cos ke + (-2t 2)9 Cos k@
0 Ya ge) A6

F N TF TN TF
- _ n+1 " Tn|sin ke + (12X~ Ts)g sin kpld
[ 5, ( ] in k@ ( G )8 Sin B} 8

M N 8y 41 N F A +1

= { [OF - 6, (E_il____LJ][gig—kﬁ] " + (ot T ‘\[gsln ko + 1QCos ke]

L 2 A8 AB k k J

n=0 gn gn
N F N _ n +1
+[Tf -9, ( Totr T T,)[ggg_gg] +( “+‘ ‘)[ECos k§- =, Sin ke] }
AB
ﬂ H

We now evaluate the above relation for 2np, in terms of the indicated
limits and then cancel all possible terms.
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1 N 2 F_. 1 0N+ - OF
2np, = % {o,ﬂ Sin kf,+ - 0,8in k8, -l:(_l_lAue_.l.) (Cos k8, +,
n=0

- Cos k§,)+ T§+1COS k6, 41 - Tf Cos k8§,

F
1 - . .
- 11131%6_IL4(sln k8,4, - Sin ke,)} (p)

S oS

for k =
By writing out several terms of the above series we see that we
can reassemble the terms into a more useful form as given by Eq.
(2-31p) . Notice that 0, = 0,4 and T4 = T, 4, -

1l cN + oF - oF - oN
oy = %Mi l:(oN - OF ) Sin ke,+(_r_° ul d s r"‘"‘) Cos ken]‘
kn n=1 r, r, Lg kA I%
N F F N
M+1 T + 7 - T -T
X 211< Z[‘"N - «F ) cos k6, - ( 8, r8, I8, IOyt ygin ke.]
m n=l ren renL% kAe 1%
for k= T1, ¥2, ... % (2-31p)

Since this procedure is designed for use with Fortran programming
of digital computers, we must avoid the use of subscripted variables
with negative subscripts. Therefore, we shall relabel p,, v,. 0.
and {, in Egs. (2-29) and (2-30) for negative k as Px+ Vyo Mo and
C,- If -k is substituted into Eq. (2-3lp) for k, we obtain no change

in the first 2 but we obtain a sign change for each part of the

—

second Z Therefore, we do not need to compute p, separately; if

we represent p, as

Py = z: + E:, k=1, 2, ... =)

then we will find p, by

P P
pe=) ) k=12 .0 (2-31p)

We can compute vy, and y, in a very similar manner to that
above for p, and p, to obtain Egs.(2-31lv) and (2-31y)
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N F 4 N

1 T +7 -7 -1
1 Mg, N F rd re o T re )
SR S - ( a_ a a =1 a4+l
Ve© T 2knm nél[(’re, Tre.)l‘asm B ka8 {,cos ke'-l
2
N F F N
1 o_ +o0 -0 -0
+ ?l]t.—n. [(oi -oi ) Cos ke, - (-ﬁ Ia MZE‘ r"ﬂ) Sin ke.]
n=l- " L L,
—V \Y
= - Z‘r + (2-31v)
L.b.
v -V
v --Z-L\_o k=1, 2, ... (2-31y)

The coefficients n, n, (, and {( are computed in exactly the
same way except that they are the Fourier coefficients for the
inner boundary and thus are computed from the shear and normal
loading stresses on L, .

1 oN +oF - oF -oN
= -2]]('—11 [(cg - oi ) 8in ke‘+(._r.n rftAe Tamy  Tahl) cos ke‘]
n=1 n | Ll 1.1
k=1, 2, ¢e. @ N F F N
+ - 1[('rN -TF ) Cos kg _{Tre."' Tre_' Tre"i-‘rrel-ﬁ) Sin k8 ]
a- \ -
2kn Lol re, re,L‘ ka® L, "
"N o
=L L: k=1, 2, ... = (2-317)
n n
= }; _ (2-31n)
1 N arf -
Co=- —mt Mi [(TN -1F ) sin ko, +(E8 T8 r8- Tlamiyeo ke,,]
n - re, re.Ll koo L,

N F -OF -ON
2 rn-—l rnﬂ) Sin ke,,]
n rnL1 ka® Ll

(2-31¢)

LR
&K
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¢ S@
= - - k = 1, 2, e o 0 Q) 2-31 )
S 2; Ly ( ( £

Notice that, if discontinuities are present in the loading
stresses, the coefficients diminish as %-. This is a well known
result in Fourier analysis.

Loading Coefficients for Case of No Discontinuities

At this point, it should be ncted that the first version cf
the Fortran program was based on the assumption that there were
no discontinuities in the loading stresses; for this case, the
"near" and "far" values of any loading stress are the same at
each division point and we can eliminate the superscripts N and
F. Thus, for no loading stress discontinuities we obtain from
Egs. (2-31) the following expressions for p, p, v, v, n, n., (.
and { for k =1, 2, 3, ... = - - -

1
: MS
- 2 - - Cos k
P 2nagk3 n=l( 0rn O °rn+,) & k9.

n -l L2
1 M+l
- —— 2 - - in k 2-31p) "’
21‘|’A6k2 n1=_‘l( Tre‘ Tre‘-‘ Tr9.+1)L381n 9. ( 0)
-7 -1
o T
’p "o
0 = . (2-31p) '
mT) ot o
1 %il
= - 2 - = k
Vk 2nagk? n=l( "rg, Trﬂa-x Tren+1)LbCos .

1l
1 "i :
= e (20 - ¢ -0 ) Sin k8§ (2-31y) ’
2nA6ka n=1 rn rn -1 rn +1 L? g

'V XA

=- )+l

1]
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I

" }:': l Z': (2-31y) ’

1l
1
= 20 - - Cos k
. 2ﬂA9k’ :Zl( oru orl-l or.+l)L1 o8 9,
1 l
2 L - k 2_ ]
2mA9k3 éi( Tre, Tro, . T 9|l+‘)1.1Si.n 8, (2-31m)

o T
’ ’
- z n,g¢v" (2-31n)
- o ¥ T il
1 uil
o 2mapk? nil( "re,” Tra,_, Tren+x)L‘c°' Ba
1 le
- 20 = = k 2-31¢)
2nApk? n-l( % " % _, or.+1)1nSin 8, ( ¢)
’ ’
- - E:C . ELC
T o
IC ’C '
i.--ZT-ZO (2-31¢)

Notice that, for no loading discontinuities, the coefficients
diminish as %;y this fact is also well known in regard to Fourier
series.
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Loading Coefficients for k = 0

It is readily seen from Eq. (p) that Eqgs. (2-31) and (2-31)’
are invalid for k = 0 since k appears in the denominators; this
situation was caused by the integration of Eq.(n) with tle
stresses in the form given by Eq.(m). Therefore, we must handle

the zero terms

separately beginning with expressions in the form

of Eq.(n) for x = 0.

G
{ g * (cr)L’de

n=0"g, n

nzogzzﬂ[of + (Efii-;——c’f-) (e-e,)]Lade

L A8

EI,:ofe + (EL_-_OE‘.) (%a- 9,9)]9"""
0 8.

n=
N F
F O,41= 0, [A3,4,~ 03
- - Y u+1 B - -
lr20{0,, (8,41-6, )+ (2t Zay L 6, (8,41-9,) |}

2rpy =
or Po =
Similarly,
Vo
'f'b =

1
goft\e + 3(0?..., - of)Ae

n=0
F N
(on i cl+1) A9
n=0 2 L,
F N
%% g (or o, + ) (2-71p,)
nsp °® LT M
E - Ai g F + N -
yp ==o('rreu Treﬂ"'zL, (2-31v,)
a8 S 0F + o ) (2-31n,
n n=0 r, e+ Ll
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- - A8 g " 2-31
Co = = 4m nZO(T"’- * Tre..,u,)bx (2-31¢,)

In case there are no discontinuities, the "near" and "far"
values of any loading stress are alike at each division point and
we can drop the N and F designation and obtain the following ex-
pressions for the zero terms of the loading coefficients:

Po = Az% nzo (aru)La (2-31p,) °
vo = - §2 ,,go“'re.)l,3 Bes L
o = = %f; nzohre-)x, (2-31¢,) '
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REPRESENTATION OF COEFFICIENTS FOR §(z) and Y (z)
IN TERMS OF LOADING COEFFICIENTS

Our next task is to express a, and a/, the coefficients in
the series' for ¢ (z) and Y (z) respectively, in terms of o, , p, .
Ver Vg ™ M G, and g, , which are the Fourier coefficients
representing the loading on the boundaries. Since we have found
these loading coefficients in the previous paragraph in terms of
the given loading stresses, our solution will be formally com-
plete when we obtain a, and a/ in terms of o, , p,. v, . etc.
Again, because the Fortran system cannot allow negative sub-
scripts, we shall formulate all series' and their coefficients
to avoid such use. Therefore, we shall employ the following
equivalence of symbols:

Al, = A/ =n + i(,
AL, = A = p, + iy,
a, =3 =g, + 1ig,
al, =a, = Yo + 15,

Thus, we must express a, B8, v, 6, a, B, vy, 6§ in terms of p, p., v,
ll nl -Tll Cl i'

Coefficients of & {z)

From the first of Egs.(2-12) and Eq. (h) we obtain q,.

- B (po+ivo)-Rj (p+iCo) _ R500-RiM (5 334
2(R2 - R?) 2(R§-R])

Bo = any real number. Values for B, produce rigid body
rotation (see earlier paragraph on displacements)
and will be assigned for convenience after a
specific problem is solved on the computer. During
computation, B, = 0. (2-32a)’

ao = Re a,

We obtain a, and 8, from Eq. (2-20) after changing A, to A/, etc.

T



= i -Hg- .;.\;'Q e 2A) R,
BT R TR (R + R) (x+1)
- Bp=ivy )R (y =igy) _ 2(m+i(y )Ry
KR - R (R3+R?) (x+1)
.y = Rp- Rmn 2m Ry
¢ 1 el e

Re- B (R3+R3) (x+1)
(2-32b)

B, = -Rgvé'* Rg& - 20, Ry
RS- RS (R3+RZ) (x+1)
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