DYNAMIC PROGRAMMING,
SYSTEM IDENTIFICATION,
AND SUBOPTIMIZATION

Richard Bellman

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

The RAND Corporation
SANTA MONICA - CALIFORNIA

ARCHIVE COPY
MEMORANDUM
RM-4593-PR
JUNE 1965

DYNAMIC PROGRAMMING,
SYSTEM IDENTIFICATION,
AND SUBOPTIMIZATION
Richard Bellman

This research is sponsored by the United States Air Force under Project RAND—Con-
tract No. AF 19(600)-700, monitored by the Directorate of Operational Requirements
and Development Plans, Deputy Chief of Staff, Research and Development, Hq USAF.
Views or conclusions contained in this Memorandum should not be interpreted as
representing the official opinion or policy of the United States Air Force.

DDC AVAILABILITY NOTICE
Qualified requesters may obtain copies of this report from the Defense Documentation
Center (DDC).

Approved for OTS release

The RAND Corporation
PREFACE

In this Memorandum the author employs the mathematical technique of dynamic programming to obtain a best-fit approximation to a function that is defined over some given interval. He then describes how this method offers an approach to the handling of a certain type of pattern-recognition problem and to the approximation of optimal control policies.
The problem we start with appears to be quite specialized. Given a function \(u(t) \) defined over the interval \([0,a]\), we wish to find a polygonal approximation which is a best fit in a mean-square sense. The analytic problem for \(N \) is that of minimizing the function

\[
R_N = \sum_{i=0}^{N-1} \int_{t_i}^{t_{i+1}} (u(t) - a_i - b_i t)^2 dt
\]

over the quantities \(a_i, b_i, \) and \(t_i \). Here \(t_0 = 0 \), \(t_N = a \).

This can be treated in a number of direct fashions, using search and gradient techniques. We wish, however, to employ dynamic programming, which appears to be superior even in this case, and then gradually to enlarge the scope of the problem until it covers a question in the identification of systems and a version of the general problem of considering suboptimal policies in control processes.
CONTENTS

PREFACE .. iii
SUMMARY ... v

Section
1. INTRODUCTION .. 1
2. ADAPTIVE CURVE FITTING 3
3. DISCUSSION .. 5
4. IDENTIFICATION OF SYSTEMS 7
5. SUBOPTIMIZATION ... 9
6. REDUCTION OF DIMENSIONALITY 11

REFERENCES .. 13
1. INTRODUCTION

The problem we start with appears to be quite specialized. Given a function \(u(t) \) defined over the interval \([0,a]\), we wish to find a polygonal approximation which is a best fit in a mean-square sense. (See Fig. 1.) The analytic problem for \(N \) is that of minimizing the function

\[
R_N = \sum_{i=0}^{N-1} \int_{t_i}^{t_{i+1}} (u(t) - a_i - b_i t)^2 dt
\]

over the quantities \(a_i, b_i, \) and \(t_i \). Here \(t_0 = 0, \ t_N = a \).

This can be treated in a number of direct fashions, using search and gradient techniques. We wish, however, to employ dynamic programming, which appears to be superior even in this case, and then gradually to enlarge the scope of the problem until it covers a question in the identification of systems and a version of the general problem of considering suboptimal policies in control processes. Results related to what follows have been presented in \([1,2,3]\).
2. **ADAPTIVE CURVE FITTING**

The foregoing problem can be considered to fall within the new area of sequential computation. In place of choosing the t_i in advance, we allow the structure of the function $u(t)$ to determine their positions. Similar techniques can be applied in connection with the numerical integration of ordinary and partial differential equations. Write

\[
(2.1) \quad \min_{(a_i, b_i, t_i)} R_N = f_N(a),
\]

defined for $N = 0, 1, 2, \ldots$, and $a \geq 0$. Introduce the function of two variables,

\[
\begin{align*}
(2.2) \quad \Delta(s_1, s_2) &= \min_{a, b, s_i} \int_{s_1}^{s_2} (u(t) - a - bt)^2 dt, \\
& \text{for } 0 \leq s_1 \leq s_2 < \infty.
\end{align*}
\]

That this happens in this case to be explicitly calculable is of no particular significance at the moment. In general, this function will be obtained via numerical methods.

Then

\[
(2.3) \quad f_0(a) = \Delta(0, a),
\]

and the principle of optimality yields the recurrence relation
(2.4) \[f_N(a) = \min_{0 \leq t_N \leq a} [\Delta(t_N, a) + f_{N-1}(t_N)], \]

for \(N \geq 1. \)

This leads to a quite simple and efficient computational algorithm.
3. DISCUSSION

Perhaps the first point to note in connection with what has been given above is that the computational feasibility of the algorithm inherent in (2.4) is not strongly dependent upon the mean-square norm in (2.2). We could just as easily use

\[\Delta(s_1, s_2) = \min_{a, b} \max_{s_1 \leq t \leq s_2} |u(t) - a - bt|, \]

or allow approximation by polynomials of higher degree. This brings us into contact with the theory of spline approximations, but we shall not pursue that here; see [4] for an extensive set of references.

As soon as we start pursuing the idea of approximating to \(u(t) \) over the interval \([s_1, s_2]\) by a function of simple analytic form, we enter the domain of differential approximation [5]. We recognize that a polynomial of degree \(M \) satisfies the differential equation

\[\frac{d^{(M+1)} v}{dt^{M+1}} = 0, \]

that the exponential polynomial \(\sum_{k=1}^{M} a_k e^{\lambda_k t} \) satisfies the differential equation

\[\frac{d^{(M)} v}{dt^{(M)}} + b_1 \frac{d^{(M-1)} v}{dt^{(M-1)}} + \cdots + b_M v = 0, \]
and that $\sum_{k=1}^{M} a_k \cos(\lambda_k + \phi_k)$ satisfies a similar equation of degree $2M$. It follows that a substantial extension of straight-line approximation is the following. Determine the parameters a_i and initial conditions c_i so that

\begin{equation}
(3.4) \quad \|u - v\|
\end{equation}

is minimized, where u is given and v is determined by the ordinary differential equation

\begin{equation}
(3.5) \quad \frac{d^{(M)}}{dt^{(M)}} v = \left(t, v, \ldots, \frac{d^{(M-1)}}{dt^{(M-1)}} v, a_1, \ldots, a_M \right),
\end{equation}

$v^{(i)}(0) = c_i$, $i = 0, 1, \ldots, M - 1$. Here, we can use a mean-square norm, or some other convenient norm.

Problems of this nature can be attacked by means of quasilinearization and other techniques [5].
4. IDENTIFICATION OF SYSTEMS

The foregoing remarks and techniques allow us to approach an interesting problem in the identification of systems. Suppose that we know that a function \(u(t) \) is generated in the following manner. In the interval \(t_i \leq t \leq t_{i+1}, \ t_0 \leq t_1 \leq \cdots \leq t_{n+1}, \ t_0 = 0, \ t_{n+1} = a_0 \), it satisfies the equation

\[
\frac{d^N v}{dt^{M+1}} = g(t, v, \ldots, \frac{d^{(M-1)} v}{dt^{(M-1)}}, a_i),
\]

\(v(j)(t_i) = c_{ij}, \ j = 0, 1, \ldots, M - 1. \)

Given the values of \(u(t) \) in \([0, a]\), we wish to determine the vector parameters \(a_i \), the parameters \(c_{ij} \), and the switching points \(t_i \), and occasionally \(N \) itself. This is a particular type of pattern recognition problem.

We begin by introducing the function

\[
\Delta(s_1, s_2) = \min_{a, c_j} \int_{s_1}^{s_2} (u - v)^2 dt,
\]

where \(v(t) \) satisfies (4.1), \(0 \leq s_1 \leq s_2 \leq a \). Our assumption is that we can compute this function of two variables. This will in general, however, be a nontrivial task. If then we introduce the function
\[(4.3) \quad f_N(a) = \min_{\{a_i, c_{ij}\}} \int_0^a (u - v)^2 \, dt, \]

Let \(a \geq 0 \), allowing \(N \) switch points, or transition points, we obtain exactly the same recurrence relation as in (2.4). If \(u(t) \) is actually determined by (4.1), we will have \(f_N(a_0) = 0 \) for the correct choice of \(t_N \).
5. SUBOPTIMIZATION

For analytic, economic, and engineering convenience, it is often useful to consider the approximation of optimal control policies by simple, feasible control policies.

Thus, for example, in the minimization of

\[(5.1) \quad J(u) = \int_0^T g(u,u')dt, \quad u(0) = c,\]

we may wish to consider as admissible functions only those for which

\[(5.2) \quad u'(t) = b_i, \quad s_i \leq t \leq s_{i+1},\]

with \(s_0 = 0, s_{N+1} = T\), where the \(b_i\) and \(s_i\) are to be chosen.

Let us define

\[(5.3) \quad f_N(T,c) = \min J(u),\]

where the minimum is now over the class of suboptimal policies defined above. Then, as before, the principle of optimality yields the relation

\[(5.4) \quad f_N(T,c) = \min_{b_0,s_1} \left[\int_0^{s_1} g(u(b_0,t),b_0)dt + f_{N-1}(T - s_1,u(b_0,s_1)) \right],\]
for \(N \geq 1 \), with

\[
f_0(T,c) = \min_{b_0} \int_0^T g(u(b_0,t),b_0)dt.
\]

Here \(u(b_0,t) \) denotes the function over the relevant \(t \)-interval determined by the nature of the suboptimal policy and the initial state \(c \). In this case, \(u(b_0,t) = c + b_0t \).
6. REDUCTION OF DIMENSIONALITY

One of the purposes of using suboptimal policies is to bypass some of the analytic and computational difficulties of the original optimization problem. This is particularly the case when we have a control process involving either a high-dimensional state vector, or an infinite-dimensional vector.

In this situation, we can often replace the actual state vector at time \(t \) by a record of the control policies used, and thus obtain a more manageable computational algorithm. Furthermore, we can use new types of approximation methods. For a detailed discussion of this technique, see [6].
REFERENCES

