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ABSTRACT 

A straightforward and general program of spectral analysis has been written in 

FORTRAN II for the IBM 7090 and is described in this report.   The analysis is valid 

for sequences of equidistant  data sampled from realizations of second order stationary 

stochastic processes.   Alternatively, the program may be used to estimate the transfer 

function gain characteristic of a linear system on the basis of its sampled output. 

The Inputs to the program consist of the data sequence to be analyzed and FOUR 

control parameters. 

The Output consists of listings of the estimated values and of three CALCOMP 

plots of 

(i)      The sample auto covariance (ACV) functions, 

(ii)     The power spectral density (PSD), 

(iii)    A log-log plot of the PSD. 

The estimated PSD is consistent, being a periodogram smoothed with Hanning weights. 

After a brief introductory discussion in Section I, Section II proceeds with a 

sketch of the analytic background, and a discussion of the parameters critical to a 

power spectral analysis.   Section III is a description of the program and has some 

sample estimates.   Operating instructions are given in Section IV as well as a complete 

description of the outputs.   Section V describes an alternate use of the program. 

Section VI points to possible modifications to tailor the program more nearly to the 

individual requirements of a prospective user. 

References are listed in the back of the report and are noted in the text by 

indicating the reference number in square brackets.   For someone anxious to use the 

program it may be best to read the section on operating instructions (Section IV) first 

along with Section II C which described the significance of the program parameters. 

Accepted for the Air Force 
Stanley J. Wisniewski 
Lt Colonel,   USAF 
Chief,   Lincoln Laboratory Office 
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I.        INTRODUCTION 

The last 15 years have seen a renewed interest in the estimation of power spectra 

as a tool in the periodic analysis of data.   One of the primary concerns has been to find 

suitable modifications of periodogram analysis to render consistent (in the statistical 

sense) the estimates of power spectra (or power spectral density), and the principal 

device used to obtain consistency has been smoothing of the periodogram.'    A multitude 

of smoothing sequences (or equivalently lag windows) have made their appearance and 

are treated in varying detail in Refs. [2, 3, 4].   There still is a good deal of controversy 

over the problem of choosing the parameters of the smoothing process (bandwidth or 

equivalently the truncation point in the corellogram) to insure an optimal estimate, let 

alone over initial agreement on a criterion of optimality. 

The basic dilemma is that given only a sample of data, and no background 

information on either the process generating the data or the recording device used in 

gathering the data, there exists no unambiguous method of obtaining an estimate of the 

Power Spectrum which may be regarded as best, see Ref. [5]. 

In the absence of clearcut guide lines, we have settled on a moderately simple and 

practical procedure (periodogram smoothing with Hanning Weights) and have incorporated 

it into a program in such a way that, should another smoothing sequence appear over- 

whelmingly preferable, the modification to the program can be made most trivially. 

The key note of the program (the AMPSDE Program:   Any Man's Power Spectral 

Density Estimator) is its simplicity and ease of use.   The number of available options 

has been reduced to a minimum without curtailing the program's general usefulness as 

an exploratory device.   As previously mentioned, and as described more  fully below, 

minor modifications are easy to make by an interested user in the light of his own personal 

requirements, principally in the areas of input, output and choice of smoothing windows. 

t An introductory exposition of the general problems encountered in the analysis of data 
from the point of view of its frequency content can be found in Ref. [ 1]. 



In a similar vein, the outputs of the program are provided without option, to 

insure a minimum of complexity in use and maximum ease in interpretation of results. 

For each set of data to be analyzed, three plots ' are invariably provided: 

(i)      A normalized Auto-Covariance (ACV) plot, 

(ii)     A Power Spectral Density(PSD) plot on linear scale, 

(iii)    A Power Spectral Density(PSD) plot on a log-log scale. 

Along with the graphical outputs, the program prints a number of lists of the estimated 

values which are more fully detailed later in the report. 

The inputs to the program consist of four constants, in addition to the data 

sequence to be analyzed.   Several cases may be stacked in a single run. 

The next section proceeds with the analytic background of the report, starting with 

a brief outline of the continuous case, its adaptation to discrete data and ending with a 

discussion of the parameters which were selected to control the program and their 

interpretation. 

Section III is a detailed description of the program, with flow charts included 

wherever they clarify the presentation. 

Operating instructions are given in complete detail in Section IV and a complete 

sample of annotated outputs in included. 

An application of the program to the estimation of transfer functions is discussed 

in Section V. 

Finally Section VI points out the ease with which the program may be modified. 

Appendix A contains a brief note on discrete Fourier Cosine Transforms. A 

complete program listing is given in Appendix B. Appendix C exhibits a sample of 

listed outputs, while graphical outputs are illustrated in Figs. 3,4 and 5. 

II.      ANALYTIC BACKGROUND 

The estimation procedure  used in the program follows the simplest lines 

suggested in Ref. [3], but there, this simplicity is somehow imbedded in such a wealth 

of information that the clarity of the procedure is all but apparent. 

t   The graphical outputs are produced on a CALCOMP plotter. 



The basic theorem states that if a process x   has a summable     auto covariance 

sequence y(k), k = 0,  ±1, ±2, ..., then its power spectral density exists and is given by 

oo 

f((j)= 2n  L,  r(k)cos(kü;). 

k=-°° 

All estimates f(cü) of f(w) which have been devised so far are ultimately of the form 

N-l 

?(")=   ~    \        hT(k)(^T(k)cos(ka;), 

k=-N+l 

where (p   (k) is an estimate of y(k) based on the sample (dependence on sample size has 

been shown by the subscripted T = NAt) where n = 0, 1, 2,..., N and is generally taken 

as: 

N-|k| 

N-|k|      L,    (VX)(V|k|-x)' k = 0,±l.±2,...,N-l 

n=0 

|k|>N 

and where h   (k) is some convariance averaging kernel depending on the lag index k 

and possibly a sample size as well.   Many different forms of {h   (k)} have been suggested, 

but no clearcut method exists for choosing an optimal sequence in the absence of addi- 

tional information on either the process or the sampling procedure. 

t Summable y(k) means  y     \ y(k) | < °° . 

k=0 



Nor can an optimality criterion be chosen in vacuo, see Ref. [6]; for example, if 

we wanted to estimate the PSD at a single point Cü     we might seek to minimize 

(f[f(ü>0)-f("0)]2   . 

If, on the other hand, one is interested in estimating the spectrum over an interval 

a <w <b, one might seek to minimize 

Jb(f|f-f|2d". 

It is perhaps simplest to begin with a brief exposition of the continuous case and proceed 

to specialize to the situation which generally arises in practice: 

A.       Continuous Case 

The simplest situation obtains when x(t) is a zero mean, stationary, ergodic, 

stochastic process whose auto covariance function (ACV) 

T/2 
(1)      y(T) = lim     -   (     x(t)x(t+r) dt =   y(-T) 

T— °°        J 
-T/2 

admits a spectral representation in terms of f(cu>), where 

OO 

(2)      f^^jV'^y^dT 

f(cü) is called the power spectral density of the process and can be written as 

T/2 

(3)      f(w)=   lim    - \      x(t)e~ia*dt 

-T/2 

Equations (1) and (2) express the Wiener-Khinchin theorem, while Eq.(3) shows why the 

periodogram apprears to be a natural estimate of the PSD, (Ref. [ 1] ). 



It may be worth placing the ACV function and the PSD of x(t) in evidence as a 

Fourier pair: 

or 

(4) 

1 C iCJT 
7(T) = Ji    ) f(cj)e      d0J 

f(w)=     \   y(T)e~1Ü)TdT      . 

Since both y(T) and f(cü) are even functions, we may rewrite (4) as 

oo oo 

7(T)=—    \    f(w)cos(o;T)dcJ = _L \  f(a;)cos(cüT)dw 

• oo 

(5) v    ' oo oo 

f(cj) = \     y(T)cos(o))dT = 2   \   y(T)cos(cüT)dr   , 

-oo 0 

where the second equality expresses y(r) and f(w) as one-sided integrals. 

B.       Discrete Case 

In order to apply digital methods we must sample x(t) at equidistant intervals 

At over a finite length of time T, to obtain a sequence 

xQ,x1,...,xn, •••>X
N 

where 

x   = x(nAt) and N = T/At. 

As a first step, in practice, it is necessary to remove the DC component (nonzero 

mean) from the data before computing the sample autocovariance, C  .   This is readily 

accomplished by replacing the original   {x } by {x   - x}, where 



N 

X= FwZ Xn    ' 
n=0 

One proceeds next to estimate the process auto covariance by the sample auto covariances, 

N-|k| 

(6>     Vr^ZVn+W W=0,1,...,K 
N " |k| n=0 

where K is the maximum lag index (necessarily  <N). 

The obtained sequence of sample ACV's is normalized to 

, = r   - £12)        r   - 9Ü) r    - £SZ) 
U0     C(0)   '      S~ C(0)   ,•••,     K" C(0)   , 

and a discrete finite cosine transform of the resulting sequence is taken, as shown in 

the following relations 

K-l 

P0 = At^C0+2Z    Ck+CK> 
k=l 

K-l 
V k7T 

Pt = At{C_ + 2   >   C.  cos —  + Cv cos TT} 
1 U LJ     JC K K 

k=l 

K-l 

V*,«I    S,„f *CK-2't 
k=l 

(7)      . 

K-l 

P   = At{C„+ 2 )     C   cos ^ + C    COSTTT} 
r L   0        L       k K K 

k=l 



K-l 

P^ = At{C_ + 2 )   C    cos k?r + C    cos K?r}      . 
K U LJ      K K 

k=l 

Finally, the results may be smoothed by Hanning weights 

uo = f<po + pi> 

(8)      Uk = 4 Pk-l+2"Pk+ 4 Pk+1 k = l,2,...,K-l 

UK=I<PK-1+PK>     ' 

C.      Choice of Parameters 

A cursory examination of the previous section (II, B) reveals that three 

parameters govern the process of generating PSD estimates. These are: 

(i)      The number of data points in the sample (N+l). 

(ii)     The sampling rate or the inter-sample time interval, (DT). 

(iii)    The maximum lag index for calculation of auto covariances, (K). 

For purposes of plotting and improved resolution in the vertical scale a fourth parameter 

has been included in the program: 

(iv)    A scale factor by which all PSD estimates are multiplied. 

We will discuss the significance of the scale factor in Section III where the calculations 

and output scaling performed by the program are described.   We now turn to a discussion 

of the parameters which have analytical significance. 

The most important single parameter of the program is the sampling rate as it 

controls the highest frequency component of the data which can be meaningfully identified. 

The maximum lag index determines the resolution in PSD obtainable by the program. 



The number of data points determines the quality of the estimates, depending on the 

signal-to-noise ratio in the data and the data collection scheme. 

1. DT and the Sampling Theorem - The sampling theorem states, in one of its 

forms, that if At seconds is the sampling interval in a sequence of data, then the 

frequency components of the process generating the data witfi frequency oo > j- 
71" 

radians /second cannot be distinguished from these with frequency in the range (0, —) 

on the sole basis of the sampled values, see Ref.[7]. 

As a consequence it is best to choose At small enough, in practical situations, to 

insure that negligible power is contained by the process beyond the frequency 

cd      = — (CJ      = Nyquist frequency). A high sampling rate, however, (small At) means 

large quantities of data; to avoid unmanageable quantities of data it may be worthwhile 

passing the process through a low pass filter before sampling, if it is felt that there 

exist high frequency components in the process which are of no interest to the analyst. 

In most situations, however, the analyst is presented with a collection of data 

where the sampling interval has already been determined.   In this case, one must set 

the parameter DT equal to At and there is no way of determining whether there has been 

any aliasing of high frequencies, see Ref. [ 1]. 

The program automatically restricts itself to the basic interval from 0 to — 

in the calculation of estimated PSD. 

2. K and PSD Resolution - Equation (7) of Section II. B can be rewritten in matrix 

form as 

P = M C 

where P is a (K+l) vector of estimate PSD values,   M is the coefficient matrix of cosines, 

and C is the (K+l) vector of normalized sample ACV's. 

These K+l values of PSD are equally spaced over the interval [0,CU     ], so that if 

ACü is the angular frequency resolution desired, the analyst must set K such that 

-^ ~ Aw ; fNy » Af 
K 



or 

(9)   K*^ = ^       ;      r-^- Acj      Aw(At) ' Af      2Af(At) 

3. Sample size and S/N Ratio - The accuracy of estimation is directly dependent 

on sample size.   If the signal-to-noise ratio does not render the sampled values useless, 

a larger sample will in general yield better estimates.   It is also advisable not to run 

the maximum lag at which ACV's are calculated too close to the sample size;   indeed, 

Eq.(6) shows that as the lag index grows, the number of terms in the estimate of C, 

becomes smaller and hence the sample ACV's become poorer estimates of the process 

autocovariance for large lags.   As a rule of thumb, a reasonable choice for maximum 

lag index might be 20% of the sample, so that, if K is determined on the basis of 

resolution requirements, one would let 

N~ 5K. 

4. Summary - In recapitulation, after the sampling interval DT is set, the 

maximum frequency content of the sample is determined by 

7T 1 
a; T   = -— radians/second or    1,   = r-r- cycles/second 

Ny     At Ny     2At    J 

The analyst then, as a first approximation, may choose a resolution level by setting 

the maximum lag index K according to Eq. (9), and the sample size (N+l) to exceed 5 

times the maximum lag.   For high S/N ratios, K may go as high as 50% of sample 

length.   In threshold situations, one may set K to be only 5% of the sample length in 

order to stabilize the autocovariance estimate. 

III.     PROGRAM DESCRIPTION 

A flow chart of the program is shown in Fig. 1.   A number in parentheses next to 

a box refers to the equation in the text relevant to the process described in the box.   An 

encircled number corresponds to the output described in Section IV. D.   Flow of control 

is marked in solid lines; flow of data is shown in dotted lines. 



i 
INITIALIZE PLOTTING ROUTINES 

N,K,DT,ST  ]- — 

i 
READ CONTROL PARAMETERS 

N<0 ? 

(6) 

o 

(7) 
(8) 

TAPE A6    v5j— 
l(to Calcomp))   (§) 

i 
YES 

NO 

CALCULATE CONSTANTS 
READ DATA 

PRINT 200 VALUES OF DATA 

CALCULATE AND REMOVE DC COMPONENT 
PRINT VALUE OF DC COMPONENT 

CALCULATE  AUTOVARIANCE 
PRINT VARIANCE 

CALCULATE AUTOCORRELATION  FUNCTION 
PRINT TABLE OF 

NORMALIZED AUTOCORRELATION   FUNCTION 

GENERATE COSINE TABLE 
CALCULATE COSINE TRANSFORM 

SMOOTH PERIODOGRAM 
APPLY SCALE  FACTOR 
PRINT ESTIMATED PSD 

PLOT AUTOCORRELATION 
PLOT PSD 

CONVERT TO LOG SCALE 
PLOT LOG LOG PLOT 

NEXT CASE 

© 
© \ 

END PROGRAM 

TEXIT 

Fig.  1   Program Flow Chart 



The program is written in FORTRAN II and makes use, for its graphical outputs, 

of a set of CALCOMP plotting subroutines which are documented in Ref. [ 8].   Apart 

from these subroutines, the program is completely straightforward as can be seen from 

the flow chart, or by consulting the listing given in Appendix B. 

As has already been noted, the program is designed to spare the user from the 

necessity of choosing one out of an elaborate list of options. Instead, he will have to 

make judicious choices of the four parameters controlling the program. 

We will now proceed to describe briefly several aspects of the program which 

warrant amplification. 

A. Inputs 

Four constants completely determined the course of the program.   These 

are 

(i)      The maximum sample index N equal to one less than sample size, 

(ii)     The maximum lag index K for which sample autocovariances are 

calculated, 

(iii)    The sampling interval DT, 

(iv)    A scaling factor SF. 

The significance of these parameters (except for the 4th) has been examined in 

Section II. C. 

B. Computations 

The computations follow closely the procedure outlined in Section II. B.   The 

dc. component is removed from the data before the frequency content of the data is 

examined.   Autocovariances are calculated in the standard fashion.   The cosine 

transform of the ACV function is taken and then smoothed, and final outputs are made 

while auxiliary outputs are generated at various points of the program. 

A word is in order concerning the program's handling of Eq.(7), which can be 

rewritten as 

P = MC 

11 



where M is a (K+l) x (K+l) matrix of cosines.   A ingenious scheme avoids the necessity 
2 

of calculating and storing (K+l)   elements.   Instead, only K+l cosine values need be 

calculated.   Indeed, all the entries of matrix M are found among the K+l values 

lcTT 
mk = cos ( — )   , k — U, i, 2., .. . , K. 

These are the only values computed by the program.   The rows of matrix M are 

generated one by one by selecting the appropriate entries in the "cosine table," as 

described below.   The cosine table is a sequency of 2K+1 elements formed by continuing 

the sequence m   symmetrically, by reflection as shown in Fig. 2, for K = 8, by way of 

illustration. 

Fig. 2 Cosine Table 

The rows of matrix M are formed by continuing periodically the sequence stored 

in the cosine table, or equivalently, by assuming that the cosine table is circularly 

stored so that the value following the last entry is the value stored in the first entry - 

and by selecting elements of M by the following scheme: 

The first row of M contains K+l ones. 

The second row of M contains the first K+l elements of the cosine table. 

12 



The third row of M contains the every second element of the cosine table, 

until a row or length K+l has been completed. 

The fourth row of M contains every third element (Mod 2K+1, the length 

of the table) of the cosine table, until a row of length K+l has been generated. 

And so on, until (K+l) cosine vectors have been generated and for each, the 

inner product has been formed with the autocovariance vector (sequence) 

C, the resulting (K+l) vector of inner products being the periodogram. 

The PSD estimated by the program being a smoothed periodogram, a smoothing process 

occurs next, governed by Eq. (8). 

Since the smoothed estimate has been calculated from the normalized auto- 

covariances, the U   of Eq.(8) are estimates of a normalized spectral density PNT(f). 

This may be what is desired in that comparisons are sometimes best made upon a 

normalized spectrum, say 

(Ida) Pk=W = «Uk 

where the factor K is independent of k or of the sampled process, but may depend upon 

the possible overall frequency content ( i.e., on At).   Many times one will desire true 

levels given by 

(10b) Pk = P(y = a2PN(fk) = a2Uk 

2 
where o-    is the sample variance.   Finally, one may desire true levels for the process 

but must introduce some scaling constant due to the instrumentation and/or pickup 

sensors.   For this case, one desires 

(10c) PR= ojcr2Uk 

2 
where as before o-     is the sample variance and a is some positive constant determined 

independently of the program. 

13 



The AMPSDE program is general enough to include all three of these options with 

the specification of a single parameter called the scaling factor (SF).   Thus, 

(i)      if SF = 0.0, P   = /cU   where K = 1/ At 
Jv Jv 

(ii)     if SF = 1.0,P   = o-2U   where o-^ = sample variance 

9 2 (iii)    if SF = a> 0, P   = our  U   where again  or    = sample variance 
K K 

The particular choice of /c in the first (normalized) case has been made so that the 

log-log plot of the spectra will always have sufficient detail for all ranges of frequency 

content.   Also, if one desires the physical (one sided) power spectrum, one must use 

a scale factor of two (2. 0) in the second case or 2a in the third case. 

The estimated power levels usually have a wide range of variation; therefore the 

program provides for the calculation and plotting of the spectral estimate on a logarith- 

mic (db.) scale.   These db. levels being calculated from the equation 

(11) Pfe(fk) = 10 log1Q(Pk) (indb.) 

where the P,  are the scaled smoothed estimates.   The smoothed values which are 
k 

negative or which yield power levels below -35 db. are set by the program to yield 

exactly -35db.   The resulting db. power levels are also plotted on a logarithmic 

frequency scale, the plot having an overall range of 60 db. (from -35 to +25).   The 

scale factor (SF) described above may also be used to obtain a better position of the 

spectral signature on the db. plot.   The utility of this log-log plot in system studies is 

discussed in Section V. 

The remainder of the program is taken up by plot generation and output processing. 

C.       Sample Outputs 

On the following three pages, we give sample output plots for three important 

classes of inputs.   The actual input data had been previously synthesized from computer 

programs. 

14 



Cn 

N » 2099 
K ■ 200 

DT-0.005 
SF «2.0 

lO-oo .-ise «.oo ci.oo 
fflEOLENC* 

"33 So.» 

♦ 10 DB- 

0.1 

•10 DB- 

20 DB- 

30 DB 

10 100                             1000 
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Fig. 4   Estimates from White Noise 
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Fig. 5   Estimates of Colored Noise 



For Fig. 3, the input was a 23 cycle, unit amplitude sine  wave. 

For Fig. 4, the input was a set of Gaussian distributed random numbers of 

approximately unit variance.   These represent a sampled version of a white Gaussian 

noise procee.   With SF = 1/DT, the mean value of the spectral density is the zero db 

line. 

For Fig. 5, the input sequence was the above noise sample but first shaped by a 

low pass filter.   This sample is quite characteristic of real physical (colored) noise. 

IV.     OPERATING INSTRUCTIONS 

The AMPSDE program is written in FORTRAN II for the IBM 7090 computer.   To 

use the program, one needs: 

a) A program deck with CALCOMP subroutines 

b) One or more input data decks 

c) FORTRAN system tape 

d) Output tapes 

et)  CALCOMP plotter (off-line). 

A. Usage 

A usage diagram is shown in Fig. 6.   As illustrated there, it is desirable 

to prestore a run prior to operation as it may be time consuming to read in large 

quantities of data on line.   The output of a run consists of a listing, on the system 

output tape (A3), and of a BCD tape of graphical data for the CALCOMP plotter, on 

tape (A6).   Tape (A6) contains one file per data case; each file on A6 contains three 

plots.   When requesting CALCOMP outputs, it is necessary to remember how many 

cases were run, as each case occupies one file. 

B. Deck 

The composition of an AMPSDE deck, ready for operation, is illustrated 

in Fig. 7.   After the usual FORTRAN System Cards, a binary deck consisting of 

AMPSDE and the CALCOMP  Subroutines follows:  A FORTRAN System ---* DATA— 

card 

t   The program can be used without a plotter, but a buffer tape A6 must then be used. 

18 
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Fig. 7     Deck Composition 



precedes the data which may consist of several cases.   Each case is made up of one 

control card and a deck of data cards.   The last card of the composite deck should 

contain a negative fixed point integer in the first field (110), signaling to the main 

program that all cases have been completed. 

C. Card Formats 

There are three types of cards to describe.   These are: 

(i)      Control Cards:   This card contains the four control parameters of 

the case in the format: 

Format 110 110 F 10.8 F10.5 

Variable N K DT SF 

N+l is the number of data points 

K is the maximum lag index in calculating autocovariances 

DT is the data spacing 

SF is a scale factor governing the scale of the plots. 

(ii)     Data Card:   Each card contains 7 floating point values in Column 1-70 

format F 10. 7. 

(iii)    End of Run Card:   This card signals that all cases in a given run 

have been processed.   It contains a negative fixed point integer in the 

first I 10 field. 

D. Outputs 

Sample output plots have been described in Section III.C.   For completeness 

we shall give a full list of the programs output.   The numbering corresponds to the 

circled numbers on the flow chart in Fig. 1.   The first six outputs are printed outputs. 

The last three outputs are graphical. 

(i)  The four control parameters are printed as 

N =  

K =  

DT =  

SF = 
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(ii)     The first 200 values of input data are listed sequentially, 8 per line, 

(iii)    The mean and variance of the data are given in the following form: 

THE MEAN OR DC COMPONENT OF THE INPUT =   

THE VARIANCE OF THE INPUT =  

(iv)    The normalized sample covariances are listed 8 per line, starting 

with the normalized variance (autocorrelation with lag 0), which is 

identically equal to 1. 

(v)      The estimated spectral density is listed, 8 values per line, 

(vi)    The power levels in db.   corresponding to the estimated spectral 

density are listed.   These are the values plotted on the log-log 

plot, 

(vii)   A plot of the normalized sample autocovariances (autocorrelations), 

(viii) A plot of the estimated Power Spectral Density (PSD), 

(ix)    A log-log plot of the PSD. 

A complete sample printed output (i to vi) is included as Appendix C. 

E. Limitations 

The maximum number of data points that the program can handle is 

10, 000.   The maximum lag index that the program can accept is 1000.   There are no 

other restrictions apart from those imposed by Format Statements, e.g., input data is 

assumed to be of the form F 10. 7.   A trivial modification will permit values larger 

than 1000 for K to be accepted by the program. 

V. APPLICATION:   ESTIMATION OF TRANSFER FUNCTION GAIN CHARACTERISTICS 

In this section, we describe the use of the AMPSDE program in the estimation of 

the transfer function of both real and simulated systems.   When we say transfer function, 

a linear system is usually implied, but the program may be used just as readily to 

measure the spectral transfer characteristics of nonlinear systems. 

22 



A. Linear Systems 

As is well-known, a single-input/single-output linear system is completely 

characterized by its impulse response or its transfer function   H(jco).   In general H(jct>) 

is a complex valued function and thus it is often convenient to present the gain (i. e. 

modulus    | H(jcü) |) and phase (# = arg H(JCü) separately as functions of frequency.   It is 

customary in engineering practice to present these plots in a nonparametric form called 

the Bode diagram (Ref.[9]) wherein the gain characteristic is plotted in decibels (db.) 

versus a logarithmic frequency scale, and the phase is plotted in degrees versus log 

frequency. 

In many applications (e.g., radar and sonar systems) the phase <p is not important 

and thus the principal concern is the gain characteristic |H(j#)|.   It is to the determination 

of this characteristic which the present program is particularly well suited.   If, however, 

the phase information is also required, it may be estimated independently via cross- 

correlation techniques. 

For the application at hand, the utility of the AMPSDE program hinges upon the 

relation between the inout/output spectral densities for linear systems; namely,' 

S (f)= |H(jo;)|2S (f) w = 2irf 
y x 

where S (f) is the spectral density of the input and S (f) is the output spectral density, 
x y 

Solving for log | H(jcü |, we have 

2 1og|H(j«>)| =logS (f)-logSx(f) 

t Cf. Ref. [10], Eq.9-36 
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or better, in db's, 

20 log |H(jw)| = 10 log S (f) - 10 log S (f) , 

and thus we may obtain the gain characteristic as the difference of two log spectral 

estimates. 

In the application of the program to the determination of Bode gain character- 

istic for a real physical system, one excites the system with some broad-band excitation 

(noise or possible an impulse) and records both the input and output of the system.   The 

data may be taken directly in digital form or as analogue tape recordings which are 

subsequently converted to digital form by an analog-to-digital (A/D) converter system. 

In either case, the program is then used to estimate the spectra of both the input and 

output record and the gain charcteristic is obtained by differencing the log-log estimates. 

This final differencing is not done by the program as it might not be necessary to 

calculate both estimates.   This is especially true for those applications in which the 

excitation signal is preserved and reused in many spectral determinations.   Moreover, 

(cf., next paragraph), since we are free to choose the input x(t) in the study of simulated 

systems, it may well be that S (f) is known and need not be estimated. 
-A. 

One of the principal applications of the program to date by the authors has been 

the analysis of simulated systems and the evaluation of various digital filtering  schemes. 

In these applications, the simulated system or filter is excited by a known sequence 

(deterministic or random) for which the spectrum S (f) is known or precalculated.   Two 
x 

very important excitation functions in system studies are the inpulse function and white 

noise, both of which have flat spectra (i.e., S (f) = constant).   In these cases, the Bode 

plot is determined to within a factor by the single estimation of the simulation's output 

spectra.   The program has been very successfully used in this capacity to evaluate some 

simple, yet, very efficient recursive schemes for digital filtering.   The real advantage 

of the technique is that it allows one to measure the numerical (e.g., round-off) errors 

and the stability of a filtering scheme for which a direct error and stability analysis may 

be very difficult. 
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As an example of the application of the program to the estimation of Bode gain 

characteristic, consider the simple three element linear recursive scheme 

y(n) = Ax(n) + By(n-l) + Cy(n-2) 

which is a discrete version corresponding to the continuous 2nd order system 

2 

H(s) = 
2 2 

s   + 2£w0s + ü>0 

For the particular choice of 

A = 0.00872 B = 1.97330 C = - 0. 98202 

which is the sampled continuous system corresponds to 

w   = 6?r £ = 0. 05 At = 0.005 

the gain characteristic has been calculated from both the impulse and noise response. 

The results are presented in Figs. 8 and 9.   Figure 10 gives the spectrum of the input 

noise sample used to drive the recursive scheme.   The noise sample was the same one 

as was used in the estimate given in Fig. 4, but here the resolution in frequency is 

doubled (K = 400 as opposed to K = 200).   By rights, the estimated gain characteristic 

is the difference of the curves of Figs. 9 and 10.   However, since the overall input 

spectrum is flat, the small local variations in the output spectrum (Fig. 9) do not 

detract much from a meaningful understanding of the gain characteristic. 

B. Nonlinear Systems 

For nonlinear systems, the principle of superposition does not hold and 

the spectral decompositions of a system's input and output are not in one-to-one 

correspondence.   However, many system studies do require measures of signal distortion 

and other spectral changes made by a system.   The present AMPSDE program is also 

an efficient tool in this area.   As an example, we give in Fig. 11 the output spectrum of 

a half-wave rectifier under a ten cycle sine wave excitation.   We leave it to the reader 

to verify for himself that the resulting spectral components are the correct one and have 

the correct relative magnitude. 

25 



t^ 
o 

+20 DBn 

- N * 2099 
K = 400 

DT-0.005 
SF- 10.5053 

+ 10 DB- 

1  I              I 

Ool 
i    i "i  i i i i 

-10 DB- 

-20 DB- 

-30 DB- 

\           10 

1          1       1 

100 
i     i    i   i   i  i i 

1000 

Fig, 8   Frequency Response of Difference Equation from a Unit Impulse 
c28-229 



to 

Ool 

+20 DBn 

+10 DB- 

~i      i    i   i  r~p 

-10 DB- 

-20 DB- 

-30 DBJ 

N - 2099 
K-400 

DT-0.005 
SF« 200.0 

I   I   I I I 1 1 1—I—I   I   I II 1 1 1—I—I   I   I  I I 
10 100 1000 

1 

Fig. 9   Frequency Response of Difference Equation from White Gaussian Noise 
C28-231 



oc 

+20 DBn 

+ 10  DB- 

-10  DB- 

-20 DB- 

-30 DBJ 

N = 2099 DT« 0.005 
K * 400 SF - 200. 0 

n 1—i—i   i i r l 

1000 

Fig.  10  Spectra of White Gaussian Noise C28-233 



to 

+20 DB- 

+ 10 DB- 
N = 2099                                    DT = 0. 005 
K = 400                                      SF*2.0 

Ool 
!         I       1     1    1   1   1 t         i      i    i    i   i  i i i                i         i      i    i    i   i  i i i                i        r 

10                                100 
I     1    1   1  1 1 1 

1000 

1 
-10 DB- 

-20 DB- 

-30 DB- 

C28-230 

Fig.  11   Output Spectra of Half-wave Rectifier Under Sine Wave Excitation 



VI.        GUIDELINES TO POSSIBLE MODIFICATIONS 

The four principal areas in which modifications of the program might be indi- 

cated are: 

- Input 

- Autocovariance estimation 

- Smoothing of the periodogram 

- Output 

A. Input 

It has already been noted that input is made via punched cards, and that prestoring 

a run obviates the objection of slow read in.   If, however, data is available on tape in 

either BCD or binary form, it is easy to modify the input portion of the program to handle 

the new medium. 

B. Calculation of Sample Autocovariance 

The program estimates the autocovariances of the process by the sample covari- 

ances using the formula 

N-lkl 

C —    /     XXI.I    , k — U,1,...,K. 
n n~r K 

N- |k , 

Several authors prefer to use 
N-|k| 

VNZ; 
XnV|k| 

n=0 

Other modifications are possible, amounting to weighting suitably the autocovariances, 

before taking the cosine transform (cf. Ref. [ 11], p. 59 ff.).   If one or another of the 

covariance estimates appears preferable to the estimate used in the program, it is easy 

to replace the section of the program headed "CALCULATE AUTOCORRELATION 

FUNCTION" with an alternative. 
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C. Periodogram Smoothing 

The program section which performs the smoothing of the periodogram 

consists of precisely five statements.   These can readily be replaced by another 

smoothing sequence.   Note that to each periodogram smoothing sequence, there 

corresponds an autocorrelation weighting scheme and vice versa.   It appears, however, 

simpler in digital processing to do the smoothing after the cosine transform has been 

taken, i. e., in the frequency domain, rather than in the lag domain. 

D. Output 

At user's option, minor modifications will insure the omission of any of 

the presently provided outputs.   Additional outputs, however, will entail more work, as 

required. 
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APPENDIX A 

FINITE  FOURIER COSINE TRANSFORMS 

The Fourier Cosine Transform of a function f(t) is defined as 

oo 

(Al) A( Cü) =   \  f(t) cos wt dt. 

0 

The corresponding inversion formula 

OO 

(A2) f(t) = i    \  A(w) cos wt do; 

0 

also holds.   If, instead of being defined on the whole axis, f(t) is given at only a finite 

number of equi-spaced points 

(A3) f0 = f(0), f2 = f(At), f2 = f(2At),..., fN = f(NAt), 

the Fourier transform can be naturally approximated by a numerical integration scheme 

such as the trapezoidal rule.   Equation (Al) then becomes 

N-l 

(A4) A(w) =< - f   + y    f  cosQwAt) + - fNcos NwAt [   At. 

According to the sampling theorem, the meaningful range of   CJ is the interval (0, ——), 

and since N + l values of f are available we can select N + l values of   OJ according to 

(A5) a;
k 

= i^"t      » k = 0,l,2,...,N. 

The discrete analog of (A4) now becomes 

N-l 

(A6) ^=A(^) = {±f0+  I   f.Cos( Jf )+i(-l)kfN}   At 
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Note that an ordinary Fourier cosine expansion of the sample {f.} yields 

N-l 

for the k    Fourier Cosine Coefficient of f.   Thus, if we define 

N-l 

<A8>    h-i^I y°si-w+-2^\' 

the ordinary Fourier coefficient if given by 

(A9) a,  =  ^ K k      N    k 

and the discrete Fourier cosine transform of f is given by 

(A10) Ak = AtÄk   . 
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APPENDIX B 

PROGRAM LISTING 

AMPSOE  ••  ANY MAN'S POWER SPECTRAL DENSITY ESTIMATOR  ••  C R ARNOLD 12/17/64 

C 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

CATA CARD 1 
COL. 
COL. 11-20 
COL. 21-30 
COL.   31-40 

* CONTROL PARAMETERS 
1-10 = N (FIXED INTEGER 

» K (FIXED INTEGER 
« DT (FLT. PT. NO. =■ 
• SF (FLT. PT. NO. = 

' NO. OF DATA VALUES MINUS ONE) 
= MAXIMUM LAG INDEX) 
TIME INCREMENT BETWEEN DATA POINTS) 
SCALE FACTOR FOR SPECTRAL DENSITY) 

CATA CARDS 2-  » FLT. PT. DATA VALUES, 7 PER CARD, COLS. 1-70 

PLCTS OF THE NORMALIZED AUTOCORRELATION FUNCTION, AND THE POWER SPECTRAL 
CENSITY IONE HALF OF TWO SIDED SPECTRA) ON BOTH A LINEAR AND A LOG-LOG 
SCALE ARE GENERATED ON TAPE A6 WITH ONE FILE FOR EACH SET OF DATA 

PRCGRAM WILL TAKE MULTIPLE SETS OF DATA/EACH SET HAVING A CONTROL CARD 

PROGRAM NORMALLY TERMINATED WITH A CONTROL CARD WITH A NEGATIVE 
INTEGER IN THE FIRST 10 COLUMNS 

DIMENSION X(10005),R(1001),C(2001),V(1001),P(1001),BUFFER(1024) 
CALL PLOTS(BUFFER(1024),1024) 

CALL PL0T(24.0,-24.0,-3) 
CALL PLOT(0.0,16.0,-3) 

REAO IN CONTROL PARAMETERS 

1 READ INPUT TAPE 2,2.NN,KK,DT,SF 
2 FORMAT(2I10,F10.8,F10.5) 

IF(KM150,150,3 
3 WRITE OUTPUT TAPE 3,4,NN,KK,DT,SF 
4 F0RMAT(1H1,8X,42HANY MAN'S POWER SPECTRAL DENSITY ESTIMATOR,3X,2H* 
1«,3X,10HC R ARNOLD,3X.2H»»,3X,8HGR0UP 28,////9X ,24HINPUT CONTROL P 
2ARAMETERS,34X,18HLINC0LN LABORATORY,////9X,3HN =,15,///18X,3HK =,I 
34.///27X.4HCT «,F8.5,///36X,4HSF *,F 10.5,/////) 

CALCULATE CONSTANTS 

NPl**N*l 
NP2**N*2 
NP3«KN*3 
KP1-KK+1 

KP2»KK*2 
FK»KK 
FNPl-NPl 
CELTA«0.05 
FMM»e.43429448 
CP   «2.0«FMM 
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APPENDIX   B 

AHPSCE  ••  ANY PAN'S POWER SPECTRAL DENSITY ESTIMATOR  ••  C R ARNOLD    12/17/64 

CF «3.0»FPM 

REAO IN DATA 

READ INPUT TAPE 2,6,(X(I),1=1,NP1) 
6 FCRMAT(7F10.7) 

WRITE OUTPUT TAPE 3,8 
8 FORMATCIH1,8X,30HFIRST 200 VALUES OF INPUT DATA,//) 

WRITE OUTPUT TAPE 3,10,(X(I I,I = 1,200) 
10 FCRHATI1H ,8F15.6) 

C 
C 
C CALCULATE AND REMOVE DC COMPONENT OF THE DATA 
C 

suM-e.i 
CO   12   1*1,NP1 
SUM-SUM+XU) 

12 CONTINUE 
CC-SUM/FNpl 
CO 14 I-1.NP1 
XCI)*X(I)-DC 

14 CONTINUE 
WRITE OUTPUT TAPE 3,16,DC 

16 F0RMAT(1H1,8X,39HTHE MEAN OR DC COMPONENT OF THE INPUT «,F9.6,//> 
C 
C 
C CALCULATE AUTO-CORRELATION FUNCTION 
C 

CO 20 K*1,KP1 
SUM»0.0 
LIMNP2-K 
CO 18 1*1,LIM 
KX*I*K-1 
SUH*SUM*X(I)-X(KX) 

18 CONTINUE 
FLIM=LIM 
R1K)*SUM/FLIM 

20 CONTINUE 
VAR*R(1) 
WRITE OUTPUT TAPE 3,22,VAR 

22 FORMAT(1H0,//1H0,//1H0,8X,27HTHE VARIANCE OF THE INPUT =,F12.8,//I 
C 
C CALCULATE AND PRINT NORMALIZED AUTO-CORRELATION 
C 

CO 24 K-1,KP1 
R(K)*R(K)/VAR 

24 CONTINUE 
WRITE OUTPUT TAPE 3,26 

26 F0RMAT(1H1,8X,31HTHE NORMALIZED AUTO-CORRELATION,//) 
WRITE OUTPUT TAPE 3,28,(R(K),K*l,KPl) 

28 FORMAT«IH ,8F15.6) 
C 
C GENERATE TABLE OF COSINE VALUES 
C 
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APPENDIX B 

AMPSCE  ••  ANY MAN'S POKER SPECTRAL DENSITY ESTIMATOR  ••  C R ARNOLD    12/17/6* 

KB*2«KP1 
CNST1=3.14159265/FK 
CO  40   I«1»KP1 
ALPHA*I-1 
C(I)*C0SF(ALPHA«CNST1) 

40   CONTINUE 
CO  45   I-WKK 
KX*KB-I 
CfKX)-C(I) 

45   CCNTINUE 
C 
C CALCULATE COSINE TRANSFORM 
C 

KX*f 
R(1)»0.5«R(1) 
R(KP1)«0.5«R(KP1) 
MCC*2«KK*1 

50 KB»l 
CO 55 I-1.KP1 
VU)-C(KB) 
KB-KB+KX 
IF(M0D-KB)52,55,55 

52 KB«KB*1-M0D 
55 CONTINUE 

SUM*0.0 
CO 60 I-1.KP1 
SUM*SUM*V(I»»R(I) 

60 CONTINUE 
JX*KX*1 
P(JX)-2.0»DT»SUM 
lF(KX-KK)62t65t65 

62 KX=KX*l 
GO TO 50 

65 R(1)*2.0»R(1) 
R(KP1)«2.0«R(KP1) 

C 
C SMOOTH SPECTRAL DENSITY WITH HANNING WEIGHTS 
C 

V(1)*0.S«P(1)*0.5*P(2) 
CO 66 I»2,KK 
V« I»*0.25«P(I-l)+0.5«P(I)*0.25»P(I*l) 

66 CONTINUE 
VCKP1)-0.5»P(KK)+0.5«P(KP1) 

C 
C 
C APPLY VARIANCE OR SCALE FACTOR TO ESTIMATE 
C 

IFCSF)67,67,68 
67 SF-1.0/OT 

GO TO 69 
C 

68 SF>SF«VAR 
69 CO 70 I-1.KP1 

vm»sF«vm 
P(I)»V(I) 

70 CONTINUE 
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APPENDIX B 

AMPSCE  ••  ANY MAN»S POWER SPECTRAL DENSITY ESTIMATOR  ••  C R ARNOLD    12/17/64 

C 
c 
C PRINT SPECTRAL ESTIMATE 
C 

WRITE OUTPUT TAPE 3,72 
72 FORMATtlHl,8X,30HTHE ESTIMATED SPECTRAL DENSITY,//) 

WRITE OUTPUT TAPE 3,28 . IP(I),I * 1.KP1> 
C 
C 
c 
c 
c 
C GENERATE TIME SCALE FOR CALCOMP PLOT OF AUTO-CORRELATION 
C 

TMIN*0.0 
SK»KK 
TMAX-SK«DT 
UNC»200.0«CT 
SK*SK/20.0 
SKIP-SK*4.0 

SCALE AND PLOT NORMALIZED AUTO-CORRELATION 

R(KP2I»-1.0 
CALL SCALE(R,KP2,10.0,RMIN,DR) 
CALL AX IS(0.0,0.0.15HAUTOCORRELATION,15,10.0,90.0,RMIN,DRI 
CALL AXIS(0.0,5.0,3HLAG,3,SK,0.0,TMIN,TINC) 
13=3 
T»0.0 
CO 30 I»1,KP1 
CALL PL0T(T,R(I),I3) 
I3»2 
T«T*CELTA 

30 CONTINUE 
C 
C 

CALL PLOT(0.0,-13.0,-3) 
C 
C 
c 
C GENERATE FREQUENCY SCALE FOR CALCOMP PLOT OF SPECTRAL DENSITY 
C 

QKIN*f.l 
CMAXs0.5/OT 
CQ-100.0/TMAX 

C 
C 
C SCALE AND PLOT ESTIMATED SPECTRAL DENSITY 
C 

V(KP2)«0.0 
CALL SCALE(V,KP2,10.0,PMIN,DP) 
CALL AXIS(0.0,0.0,13HPOWER DENSITY,13,10.0,90.0,PMIN.DP) 
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APPENDIX B 

AMPSOE  ••  ANY HAN'S POWER SPECTRAL DENSITY ESTIMATOR  ••  C R ARNOLD    12/17/64 

CALL AXIS(0.0,0.0,9HFREQUENCY,9,SK,0.0,QMIN,DQ) 
13*3 
T«e.e 
CO 75 I«i,KPl 
CALL PLOT(T,V(I),I3) 
13*2 
T-T+CELTA 

75 CONTINUE 
C 
c 
C CALCULATE POWER LEVELS IN DB (IE. LOG SCALE) 
C 

DO 104 I-l.KPl 
IF(P(I)-0.ee031623)102,103,103 

102 P( I)=0.00031623 
103 P(I)*CP«LOGF(P(I)) 

V( I)=5.0«P(I) 
104 CONTINUE 

WRITE OUTPUT TAPE 3.105 
105 FORKAT(1H1,8X,18HPOWER LEVELS IN DB,///) 

WRITE OUTPUT TAPE 3,28.I VI I).I-1.KP1) 
C 
C CALCULATE LOG(FREQ) VALUES 
C 

CF=1.0/(2.0»DT«FK) 
vm-f.i 
CO 106 1-2,KP1 
V( I)»V(I-l)*OF 

106 CONTINUE 
V(l)*-4.0 
CO 108 1=2,KP1 
V(I)»CF«LOGF(V(I)) 

108 CONTINUE 

CALL PLOT(SKIP,0.0,-3) 

CALL PLOT(14.0,0.0,2) 
CALL PLOTdA.0,12.0,2) 
CALL PLOT(0.0,12.0,2) 
CALL PLOT(0.e,0.0,2) 

CALL PLOTU.0,7.0,-3) 
C 
c 
c 
C PLOT ESTIMATE ON LOG-LOG PLOT (BODE PLOT) 
C 

CALL SYMBL4(V,Pt0.2,lH«,0.0,l) 
13 = 3 
CO 110 1=1,KPl 
CALL PLCKVI I ),P( I ) , 13) 

110 13*2 
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APPENDIX   B 

APPSCE  ««  ANY NAN'S PC1UER SPECTRAL DENSITY ESTIMATOR  ••  C R ARNOLO    12/17/64 

C PLCT AND LABEL PCfcER AXIS 
C 

CALL AXISAte. 0, "6. 0, l<£ . 0,90.0) 
CALL SYMBL«(-l.20,3.9,d.2i6H*2a DB,0.0,6) 
CALL SYMBL4(-1.20,1.9,0.2,6H*10 DB,0.0,6) 
CALL SYKBLA(-1.2,-2.1,^.2,6H-10 UB,0.0,6) 
CALL SYNBLM-l.2,-*.l,0.2,6H-20 08,0.0,6) 
CALL SYKBL4(-l.2,-6.1,0.2,6H-30 DB,0.0,6) 

C 
C PLCT AND LABEL FREQUENCY AXIS 
C 

V( 1)=0.1 
CC 112 1 = 2,IK 
V( I )=V( I-1M0.1 

112 CCNTINUE 
CC 114 1=11,19 
V( I )=V( 1-1 1*1.e 

114 CCNTINUE 
CC 116 I=2e,28 
v( I ) = v(i-i)«le.e 

116 CCNTINUE 
CC 118 1=29,37 
v( i )=v( i-n*iee.e 

118 CCNTINUE 
CC 120 1=1,37 
V( I )=CF«LCGF(V(I)) 

12e CCNT INUE 
CALL PLCTIVII),-0.1,3) 
CC 130 1=1,36 
CALL PICT(VI I ),Z.0,2) 
XXX = V< 1*1 ) 
CALL PLCT(XXX,0.0,2) 
CALL PLCT(XXX,-0.l,2) 

13e CCNTINUE 
CALL SYMBL4(*8.70,-0.35,0.2,4Hie00,0.0,4) 
CALL SYMBL4(*5.80,-0.35,0.2,3Hl00,0.e,3) 
CALL SYM6L4(*2.90,-0.3 5,0.2,2H10,0.0,2) 
CALL SYPBL4(-3.23,-0.35,0.2,3H0.1,0.0,3) 

C 
C 
C END PLOT ANO GO BACK FOR NEXT SAMPLE 
C 

140 CALL PLOT(20.0,6.0,-3) 
CALL PLOT(0.e,0.0,-3) 
ENC FILE 6 
CO TC 1 

C 
C 
C END PRCGRAM 
C 

15e ENC FILE 6 
ENC FILE 6 
ENC FILE 6 
CALL RUN(1,6) 
CALL EXIT 
ENC(1,1,0,0,0,0,I,1,0,0,0,0,0,0,0) 
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APPENDIX   C 

SAMPLED LISTED OUTPUTS 

ANY PAN'S PChER SPECTRAL DENSITY ESTIMATOR   ••   C R ARNOLD   ••   GROUP 28 

INPLT CONTROL PARAMETERS LINCOLN LABORATORY 

N = 2099 

K = 200 

DT = 0.00500 

SF   =        0. 

40 



APPENDIX C 

FIRST 200 VALUES OF INPUT DATA 

*> 

0.003167 
-0.023012 
0.001821 
-0.015544 
-0.005086 
-0.005054 
-0.027427 
-0.017369 
-0.023924 
0.000895 
-0.003641 
0.013763 
0.006324 
0.043818 
0.059757 
0.056577 
0.061506 
0.022936 
0.035334 
0.057114 
0.022063 
0.029074 
0.019606 
-0.023026 
0.002031 

-0.005749 
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THE PEAN OR OC COMPONENT OF THE INPUT = 0.001677 

THE VARIANCE OF THE INPUT =  0.00221946 
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