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ABSTRACT

The gyration operator whi:h generates a matrix
from a given matrix is defined. It is shown that
the gyration is related to the concept of combina-
torial equivalence. 7The hybrid matrices of net-
work theory are gyration matrices., The ABCD and
hybrid matrices are combinatorially equivalent to
their impedance and admittance matrices.

All combinatorially equivalent matrices have
the same deéree. The gyration operator also pre-
serves the PR property as well as the rank of the
hermifian part.

The gyration operators form an involutary
Abelian group. The PR property is shown to ex-
tend beyoné the impedance and admittance matrices
of a passive network, and a complete set of PR
matrices is given for the description of the net-
work., The relationships between the scattering
and gyration operators are detailed.

A complete synthesis procedure, based on the
gyration operator is given. Any PR immittance
matrix can be synthesized. Three worked examples

are included.
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Of special significance is a novel concep.:
of énumerating the degree of a rational matrix

function.
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CHAPTER I
The Gyration Operator

1.1 INTRODUCTION. In this first chapter, we de-
fine an operator termed the gyration. The gyra-
tion operates on a given matrix to produce another

matrix and is symbolized by the equation
r@a) =B

where A is ¢ given matrix, I the gyration oper-
ator and B i: the resultant matrix, termed the
gyration of A.

This relationship is sufficient to make the
matrices A and B combinatorially equivalent, a
term that was coined by A.W. Tucker [11] . The im-
pedance, admittance chain and hybrid matrices of
network theory are all combinétorially equivalent.
The work of A.W. Tucker emerged from the linear
programming field and is applied here to network
theory.

It is shown that the gyration operator pre-
serves the passivity property (PR). It is also

shown that all combinatorially equivalent matrices




have the same degree. (The degree measures the
complexity of a network,) A third invariant of
the gyration operator is the rank of the hermitian
part, a property of some significance in network
theory.

Of speclal inportance in this chapter is a
novel method of enumerating the degree of a ration-
al matrix function.

The relations between the scattering operator
and the gyration operator are investigated, and

various theorems are detailed.

1.2 POLE MULTIPLICITY OF A RATIONAL MATRIX

FUNCTION,

In a previous paper Duffin and Hazony (5]
studied the properties of the degree of a rational
matrix function F(s). It was brought out that the
degree may be defined in several equivalent ways.
One of these ways concerned the poles of the minors
of F(s).

Definition, Let F(s) be a matrix whose ele-

ments are rational functions of the complex vari-

able s. Let k be the number of distinct poles

that occur in the matrix elemenis (the pole at




infinity is counted). Then the degree may be de-

fined to be

(1) SF(s) = hl + h2 + ... + hk.

Here hj is the maximum multiplicity with

which the jth pole appears in the minors of F(s).

By "minor" is meant the determinant of F or
the determinant of ény square submatrix of F.
(In addition if the submatrix has no rows or col-
umns we define the empty minor to have the value
1. This convention will be employed in a lemma
to follow.) F need not necessarily be square.

It is convenient to have a notation for the
multiplicity of a poie at a given point. Thus, if
¢ denotes a complex number o the point at in-

finity let §,F(s) be defined as the maximum multi-

g
plicity of the pole at s = { of any minor of the

matrix F(s). We term 6CF the multiplicity of F(s)
at {. With this notation we can describe Relation

l so as to define the degree of F in the form

(2) 6F(s) = X §.F(s).
1; 5

Here the summation is over all pcints of the com-~




plex plans including the point at infinity. When

the operator §, is applied to a scalar function,

g
it will not conflict with the usual meaning of
multiplicity.

To derive properties of the multiplicity

operator ac, the following lemma is very useful.

Lemma 1. Let M and N be n_by n matrices. Then

the determinant of their sum is

i
R R

™M =

(3) IM + N| =

Here the sum is over all minors [M|; of M multi-

plied by the algebraic complementary minor [N[l

of N. also [M| =1, [N|® =|n|, |mM, = [n],

and |N|k = 1, where k is the total number of minor

determinants in an n by n matrix. The proof of

this result is given in a previous paper [5].

Lemma 2. f §,6 =0, then 6§, (F + G) = §_F.

== L g g
Proof. Let H = F + G; and suppose H', F', and G'

denote square submatrices of H, F, and G. Let

5CiF'| = 6C(F); but 6ClF"|<:6C(F) if the submatrix

F" has fewer rows than F'. Lemma 1 is now applied

with M = F' ard 3 = G'. Then it follows

W{W— -

A = e
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that one term on the right side of Relation 3 is
|[F'| alone whiie all other terms contain minors
of F with fewer rows than F'. Thus the term [F']|
has a greater multiplicity than any other term.

Hence,
F' + G') = ' 4 G| = F'| = F
6c( ) 6C|F | 6C| [ 65

This shows that 6CH = 6CF' But F = H - G, so by

5CF = 6CH.

H, and the proof is complete.

a symmetrical argument it follows thi

Thus §,F = §

g 4

Lemma 3 to follow is stated here for complete-
ness; it will be used in a later paper.

Lemma 3., Let ¢(s) be a scalar function and F(s)

Proof. Let H = ¢F, and suppose that §

be an n by n matrix function. Then

6C(¢F) = 6cF + nét‘b .

(H = 818

for some m by m mincr H'. Then

— ™ = m $ - m ]
6CH = 6§|¢F | 6c(¢ [F*]) ac¢ + 6C|F I

but §,6" = me, 6 < nd.o and o, [F'| = &,F, so the

g

proof is complete.

4
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1.3 GYRATION OF A MATRIX.

Given a square matrix A with matrix elements

aij' If ay # 0, we define a matrix B with matrix
elements
by = 33y,
b = -3a /a €=2,3,...
1 1 11
Pu1 = 3/ b= 2.3...

b = a

we = fueTu1%1e/f1

The matrix B is termed the gyration of A about

ivot a,,. This operation of forming a gyration
BIVo- 931

may be denoted by I'. Thus,
B =T1(A) .

It is clear then from the above definition that
A =T (B). In other words I'TT" = I. The term
gyration was suggested by the fact that a gyrator
transforms an impedance matrix A into B.

Let xi be an arbitrary column vector. Then
A defines a transformation y}{= Ax{. In a three

dimensional case this stands for

T a .




Yl\ a1 212 %13\ [*1
Yo | T | 222 222 823 | | X2
Y3 / 331 232 %33/ \*3
Clearly,
R T e Rl

so we can eliminate Xy from the right side of

these equations and obtain

a a

%, 1 %12 %13 Yl\
41 a1 a11

golel 22, 2wtz Z;fasg| o

2 all 22 all 23 all 2

231 231%12 431213

Y3 a 432 ~ T3 333 T~ Ta X3
11 11 11 f |

Note that the last matrix is precisely B, the gyra-
tion of A. It follows that I' be defined as a trans-

position of X, and Y, and symbolized as




(5) Tlxy %, %3 v, v, ¥3) = (y; X%, X3 X} ¥y ¥3)

A similar definition applies to a gyration of A
about any other diagonal element a;; as pivot.
This gyration may be denoted as Fi. Then it is
seen from the transposition property of Fi that
if i, j, k be a permutation of the integers

l, 2, 3,

-1

This gives a rapid way (closely related to
Gaussian elimination) of computing the inverse

of a matrix. For example, if

1 2 1
A=12 5 3

l 3 3

1l -2 -1

Pl(A) = 2 1 1

rpry@y=1|-2 1 -1

e o CHEE Y




6 -3 1
F3(F2[F1(A)]) = -i i —i

and the last matrix is A—l. Then it may be said
that the gyration of a matrix is a partial in-
verse of a matrix.

It will be recognized that the gyration
operation is precisely that of forming the hybrid
ma;rix, well known in network theory from the
analysis of series parallel configurations{7].

A transformation more general than gyration
has been introduced by A.wW. Tucker [1ll]. Tucker

calls his relation between matrices combinatorial

equivalence, It follows from his Theorem 7 that

two matrices are combinatorially equivalent if

and only if it is possible to pass from one to

the other by a finite succession of elementary

operations of the following three types:

1. Interchanging of any two rows

2. Interchanging of any two columns

3. A gyration

It is clear from this characterization and

the transposition property of gyrations that a
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combinatorial equivalence can be described as a
permutation of the sequence (xl X, X3 Yy Y, y3)
such as (yl X3 Xy Yo ¥y xl).

A basic property of combinatorial equi-
valence is given in Tucker's Theorem 3 which
fellows:

Let {a] denote the set of square submatrices

of A of all orders (including an empty submatrix

¢ of order zero). Let (g} denote the like set for

B where B is combinatorially equivalent to A. Then

there is a one-to-one correspondence PB<—0 between

(B} and (q) such that corresponding subdeterminants

L

|B] and |a| are proportional within sign. Speci-

fically
Bl = tial/la*] ,
where a = a* corresponds to B = ¢ (Efking o] = 1).

The nonsingular matrix q* is called the pivot of

the transformation of A into B.

Tucker says that his work on combinatorial
equivalence was suggested by the well known simplex
method devised by G. B. Dantzig for the solution

of linear program problems. We wish to show in

T
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this chapter that combinatorial equivalence has
application in the entirely different field of
network synthesis. It is worth noting that ideas
similar to combinatorial equivalence have been
applied to network algebra problems by Bott and
puffin [2] .

We now apply our results on the degree of
rational matrix functions together with Tucker's
Theorem 2.

Theorem 1. Let A be a rational matrix function of

the complex variable s and suppose B is combina-

torially equivalent to A. Then B is a rational

matrix function of the same degree as A.

pProof. Let p denote |a*|, the pivot. Then accord-
ing to Tucker's theorem |B| = |a|p-l. Let x be
neither a pole of p or p—l, and apply the multi-
plicity operator 6x. It follows that

= -1,
6,08l =68 (lalp ) =6 |a|. Then

8 A = 6XB

Let y be a pole of p. Then it follows that

£ - . and so by the definition of
6y| Bl 6y| al 5P N

T . o - = e




il

¢

12~

the multiplicity operator

B = A -~ .
6y 6y 6. P

y
Let z be a pole of p—l. 1f 8,A> 0, let 0 be the
submatrix so that 6zk1| = 5ZA. But if 6ZA = 0, let
a be the empty matrix, so |@| = 1. Then in either
case

1 1

6,0pl =6, lal +6,p " =6,A+5,p "

It follows that

- -1

The degree of B is defined as 6B = 2 6B .
s
where the summation is over all finite values and
also the point at infinity. Clearly the points
X, Y, and z are distinct but together include all
s points. Thus
5B= 2 6 B+ Z 5B+ X6 B.

x = z 2 y y

Substituting the relations just found for 6 B+

6YB, and 6,B gives

-1
5B Z6A+ Zo6 A+ ZHA~- ZH6p+ 26P .
x X y ¥ , 2 y yE , Z

o

——
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The last two sums cancel since §p = 6p_l. Thus
it follows that §B = §A. But combinatorial
equivalence is a symmetric relationship so

6A = §B. This proves that §A = §B.

1.4 CHARACTERIZATION OF GYRATION MATRICES.

Let A be an n by n matrix of real numbers,
let X} be a vector, and let y} = Ax{. The scalar
product of the vectors x{ and y} is denoted by

X y} and defined as
n

Xyl = 2 x.¥. .
1

If XAx| is positive for every real vector ¥ # 9,

then A is said to be positive de’inite. This

differs from the standard definition in that we
are not requiring A to be symmetric. We propose
to extend this definition in a natural way when
A has complex matrix elements. Let X be an arbi-
trary complex vector and let X* be the complex

conjugate. Then if X*Ax} is in the right half-

plane or on the j-axis, we shall say that A is

is right definite. This condition may be stated

as an inequality

Re X*Ax{ = 0 .

s
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Note that this condition is less restrictive than
the condition X*Ax} ™ 0, which is one of the de-
fining conditions for non-negative definite her-

mitian matrices.

Theorem 2. The gyration of a right definite matrix

A is a right definite matrix B.

Proof. It is assumed, of course, that the pivot,

say a does not vanish. Let u} be an arbitrary

11’
vector and let vi = Bul. Let the vector x| be

defined as follows:

If y} = Ax{ , then by the property of a gyration

Yl = ull Y2 = V2' yn = Vn. ThuS

U*vf = xX*y} - X *Y) + Xy,
Taking the real part gives

Re ud Re X*y} or

e
*

£
I

Re U*Bu} = Re X*Ax} = 0 .

This completes the proof.

AT
.

3
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Definition., A matrix function F(s) of the complex

variable s is said to be positive real (PR) if I

and II are satisfied:

I. The matrix elements fij(s) are rational

functions of s with real coefficients.

II. Fox any choice of complex numbers

x LA N ) x
1’ " Tn

n n
Re % % fijxjxi* 2 0 for Res =0 .

Condition II states that F is a right definite
matrix for s in the right half plane, Of oourse
Condition II is not meaningful at a pole.

Let £(s) = x*Fx| . Then, as is shown in
Appendix 1, cCondition II is equivalent to the con-
dition:

IT a, Re f(s) 20 for Res =0

II b. £(s) has no poles for Re s> 0,

II c. For Re s = 0 poles of f(s) are simple

and have non-negative residues.

The impedance (or admittance) matrix of a
passive network is shown Appendix 1 to be positive
real, If the network has no gyrators it is re-

ciprocal; i.e., the matrix F satisfies the
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symmetry conditions:

III. £, = £.. for i, 3 =1, 2, ...,
i3 ji ==

We are concerned in this chapter mainly with
reciprocal networks. Thus, let G be the gyration
of a matrix F, which satisfies I, II, and III and
fll does not vanish identically., Then G may be
regarded as the hybriAd matrix of a reciprocal
network. G satisfies I, By Theorem 2, G satis-
fies II, and by Equation 4 which defines a

gyration, the symmetry Condition III is replaced

by
1
III . g = P
ue ~ e
= - I} = 2' 3’ e e o n
9,1 = "9, Weg

Condition IIIl may be termed (first) hybrid
symmetry.

Note that if G has hybrid symmetry and gll(s)
does not vanish identically, then I (G) has regular
symmetry. Thus we may state the following:

Theorem 3., Conditions I, II, and IIIl are neces-

sary and sufficient that G be the (first) gyra-

tion of the impedance matrix of a passive net-

work without gyrators, provided gll(s) does not
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vanish identically.

Proof. This is & oconsequence of Theorem 2 and the
above definitions.

A positive real matrix F will be said to be

IPR if
n n
IVv. Re 2 X f£f..x.%x.* = 0 for Re s =0
1 1 I -

As is well known, an L C network (i.e., a net-
work without resistors or gyrators) is character-
ized by having an impedance (or admittance) matrix
F satisfying I, II, III, 1IV.

Theorem 4. cConditions I, II, IIIl, and IV are

necessary and sufficient that G be the (first)

gyration of the impedance matrix of an L C nhet-

work, provided g,,(s) does not vanish identically.
1]

Proof. Let F =T (G) and let Re s = 0. Then given
a vector u we have shown in the proof of Theorem 2,
that there is a vector X so that Re X*Fx} = Re u*Gul
Conversely, given an arbitrary X there exists a q,
which satisfies this equation. Then Re u*Gu} = 0
for all U if and only if Re X*Fx{ = 0 for all X,

But the latter condition characterizes I, C networks,

o T
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so the proof is complete.

It is known that matrix elements of an IPR
impedance matrix are odd functions of s, Likewise
it can be seen from Equation 4 that if G is a

hybrid IPR matrix, and gug are odd functions

911
while gp‘l and glﬁ are even functions.

If a matrix G satisfies Conditions I, II,
and IIIl, then G is a positive real matrix
function with hybrid symmetry. However, if g;,(s)
vanishes identically, then it is not the gyration

about the first pivot of a symmetric positive real

matrix.

1.5 REMOVAL OF IMAGINARY AXIS POLES.

Let G(s) be the hybrid matrix of a passive
reciprocal network, and suppose that G has poles
on the j axis. According to Condition II ¢, the
function

g(s) = g..(s)xixj*

1]

HMDS
=MD

can have only simple poles on the j axis. Since

the numbers X, are arbitrary, it is seen that

gij(s) can have at most simple poles on the j axis.

FRe———

N N N e

e
M
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The proof goes as follows:

First take x; = 6ih where 6ih is the
Kronecker delta. Then we see that g(s) = ghh(s)
and so ghh(s) can have only simple poles (by II c).

Next, take X, = éil + ]éih and so

g(S) = 911(8) + ghh(s) - j[gih(s) - ghl(S)]
Making use of the hybrid symmetry gives
g(s) = gqq(s) + g, (s) + 29,4 (s)

Since g, gy and Y4h have at most first-order
poles on the j axis, it follows that Ihi has a
first order pole at most.

Next take X, = o} + 6ih for k =2 2, h = 2,

ik
Then similar considerations show that I%h has a

first-order pole at most and the proof is complete.

Thus consider a pole at the point s = s jw

Q @)

on the j-axis and suppose S # 0. Then

a,.
. = i1 '
913(8) =g T * 9508

where aij is the residue constant and g'ij(s) is

—— o -
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bounded at s = S - Let s ~ s, = ¢ be a number in
the right half plane. Then for ¢ of small absolute
value, it is seen the first term on the right is
dominant. Consequently by Condition IIIl it is

seen that the matrix A has hybrid symmetry.

Then for arbitrary X

-

-, X* —

X*Gx’ = ._.-...__AEL. 4+ X*G* x‘
s - So

The first term on the right is dominant
for Ig] small. Hence, it follows from Condition
II c that x*Ax} = 0. 1In particular, x*Ax} is real,.
By Condition I it follows that there is a

= * = =9
pole at s S, jwg and

alj aij*
= 11}
935(8) = g5 * s e t iy

where g"ij(s) is bounded at s ==fj¢b . Let

a,. a,.*
(s) = —= 21

i T s st s _*
J o o)

P

Of course, A* satisfies the same condition as A.

Thus P satisfies Conditions I and IIIl. However,

‘;’ 4 @. ) ) o - i
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since x*Ax{ and x*A*x} are both real non-negative
it follows that the quadratic form x*px{ is a sum
of poles on the j axis with real non-negative
residues. Thus P satisfies both II and IV, and so

P is hybrid IPR. The matrix G" = G - P, so

clearly I and IIIl are satisfied. II a is satisfied
— — .

because Re x*G"x{ = Re x*Gx; on the j axis. II b

is satisfied because neither G nor P has poles in

the right half plane. Note that G" has no poles

at s =:fjwo so at any other j-axis point, residue

residue (x*G"x}) = residue(X*Gx}). Hence, G" satis-

fies II ¢. This rroves that G" is a hybrid PR

matrix,

Theorem 5. If G is a hybrid PR matrix then

G=P+Q

where P is a hybrid I PR matrix and Q is a hybrid

PR matrix without poles on the j-axis.

proof. If the only poles of G are at:tjmo, then

the above argument gives the proof with Q = G".
Otherwise the process is repeated on G", etec, It
is seen that a pole at zero or infinity can be re-

moved by a similar method.
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1.6 SCATTERING MATRICES AND HYBRID MATRICES| 3]
Let A be a matrix such that (A + I)“l exists.

Then the scattering operator S is defined as
-1
S(a) = (A - 1)(A + I)

Theorem 6. A is a right definite matrix if and

only if T =1 - St*S is a non-negative definite

hermitian matrix (where S _* is the conjugate

t
transpose of S, and S stands for s(a)).

Proof. Given x{ let vi = (A + I)-lxl =To)

x{ = (A + I)yl{ . Then

x*Tx|] = x*x| - E;St* sx}

?*(At*ﬂ) (A+I)y} - ;/;(At*—l) (A-1)y|

= 2y*Ay| + 2yA*y¥|

Then X*Tx{ = 4 Re (§;Ay}) and the proof is complete.

It is desired to find the scattering matrix
S(B) of the gyration matrix B = T (A). It is
sufficient to consider the case of three-by-three

matrices, First it is clear that
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B ==

t "l "l -l
1 0 0 a1 312211 —313%11
3y} 2y, 353 0 1 0
a a a 0 0 1

31 32 33

This can be written in the form (omitting zeros)

(6) B =
/ -
0 1l X 0 1
1l A + 0o 0 A + 1l
1 0 0 1
Moreover B + I =
1 1 1 0 -1
1 A + 1 0 A+ 1
1l 1l 0 1
and B-1I=
-1 -1 1 0 -1

|
o
§
=
o
b
+
ft

Since (A + I)-'l is assumed to exist, it follows

that (B + I)-l exists. This shows that
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S(B) = (B - I)(B + 1)’1

1 (A - 1)(A + I)-l. This proves

the following:

Theorem 7. Let A be a matrix such that 3y, # O

and (A + I)"l exists. Let B be the gyration of A.

Then S(B) = Js(A), where S(A) is the scattering

matrix of A, S(B) is the scattering matrix of B,

and J is the identity except jll = - 1,

Now it is noted that J2 = I so we have

Corollary: T(B) = T(A) so B is PR if and only if

A is PR.
Now suppose that A is a rational matrix
function,

Theorem 8. If A is a rational matrix function and

(A + I)"l exists, then the degree of A and the

degree of the scattering matrix S(A) are equal,

Proof., Since S(A) =1 - 2(a + I)-l, we see that
5S = 6(A + 1) T =5(a + 1) = 8A.

corollary: The deqree of A is equal to the

degree of B.

P
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Proof, S(B) = JS(A) and since J is a nonsingular
constant matrix, 6S(B) = §S(A). Thus §B = ¢A.

Theorem 9. Let p, q be any two complex numoers

for which B(p), B(q) are defined, and where

B =T (A). Then
B(p) + B(q)T = M(q)T[A(p) + A(q)T]M(p),

1 _alz (p) "als (P)
a;; (P} a;;(P)  a;,(p)

where M(p) = 0 1 0

0 0 1

Proof. By Equation 6 above,

B = C:D-'l where

C = 1 A + 0 and

Hence

B(p) + B(@)y = c(®)D M (p) + [cl@p @],




= 07 (@) [D(9) (€ (p) + C(a@) P (P)]) D7 (p)

Now
D(q)TC(p) + C(q)TD(p) = A(p) + A(q),l,
also
a () ap, (e am \
D-l(P) = 0 1 0
0 0 1
1 "alz(P) -313(p)
a;; Py Ta;; (P a;; (P) |
= 0 1 0
0 0 1

Expanding D_l(q) in a similar fashion completes
the proof of the theorem.

Corollary. Let B = [ (A) be defined. Then the

rank of the hermitian part of B is the same as

the rank of the hermitian part of A,

Proof. Set p = s and q = s* in the above thecoremn,

The invariance of rank under a gyration extends

»
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also to the parahermitian part of the matrix A;
i.e., %[A(s) + A(-s)T], subject to a similar set

of assumptions as in the above corollary.




CHAPTER IX

The Gyration Operator in Networks,

2.1 INTRODUCTICN. In this chapter, the I' operator

is applied to network synthesis and a complete pro-

cedure is given for the realization of symmetric

PR impedance (or admittance) matrices.

2.2 HYBRID MATRICES IN NETWORK ANALYSIS.
Sunpose we are given a network whose imped-
ance matrix is zZ{s). Then the currents and volt-

ages are related by

vi =2 1

Let H = I"'(2) where it is assumed for the moment
that 1 (2) is defined. Partitioning vi and 1!

as follows

1

vi= ——-
vzl

iy
I = fe---
I !l
2y

-28-
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we have by Eguation 5,
rivy v2§ i Li)=[4, vzi vy 121]

l1.e, 1.1 Vl

- b ey = = H - . - o=

v, Il

Consider the impedance Z' and Z" connected as

shown in Figure 1 with ports 1 in parallel and
*

ports 2 through n in series.

By definition

z' 1|

vl
vl = gervf

Letting H' =T (2') and H" =T (2") we have

*It is assumed that this connection does not
change the immittance properties of either net-
work. This can always be ensured by the appropri-
ate use of isolation transformers.

e — »
- al - R air oot d d
a2 Fa
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11' vl'
- e - = H ==
vz'l I,'
il" v."
- - = H" -
v2"1 Izn‘
But vl' = vl" and 124 = Iz"l .
Hence,
i,to+ 10" v.!
1 1 1l
___________ - (Hl 4 H") - -
v'h o+ vy 1"

We have thus proved the following:

Theorem 10, Let two networks be connected with

ports 1 in parallel and ports 2 through n in

series. Then the hybrid matrix for the over-all

network equals the sum of the hybrid matrices

for the individual networks.

2.3 SYNTHESIS PROCEDURE.
The network synthesis problem consists of
associating a passive electrical network with a

prescribed PR matrix function. The basic approach
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is to extract simple sections from the matrix

that can be realized by inspection, thereby re-
ducing the degree of the matrix., When the degree
is reduced to zero, the process terminates. These
simple sections are extracted in such a way as to
ensure that what remains is still PR and hence
realizable.

Assume that we are given a symmetric PR
impedance matrix Z to be synthesized. As a first
step, all obvious imaginary axis poles are re-
moved, These are readily synthesized. Once this
is completed, various schemes are used to induce
further imaginary axis poles, which are removed
and synthesized. One of the methods cf inducing
these further poles in the scalar case is due to
Brune [12].

In what follows, we shall use the I operator
to give a new externsion of the Brune synthesis to
n port. Such extensions already have been made
by a number of people. . Brockway McMillan [8] pro-
ceeded with the removal of a certéin amount of
resistance from each port of 2 until the even-

part matrix Ev ﬁ(s) = %[ﬁ(s) + ﬁ(—s)] becomes
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singular at some point on the j axis, say jwo.
B.D.H. Tellegen [10] has shown in his method that
Ev Z can be made singular by the removal of re-
sistance from just one port.

Oonce Ev ﬁ(s) is singular, the odd part then
is appropriately modified at jwo resulting in
ﬁ(jwo) being singular. Hence, ﬁ(jwo)—l has a
pole that can be removed. V., Belevitch [1] con-
siders the Brune methods of the above two and
extends their results to nonreciprocal networks.
R.W. Newcomb [9] considers the nonreciprocal case
with additional detail. (The methods of Gewertz
and Oono [6, p. 276], both non-Brune, consist of
removal of j-axis poles accompanied by successive
matrix inversions. A similar method given by
puffin [4] shows that network synthesis can be
viewed as a purely algebraic process).

Our extension of the Brune method differs
from the above in that it is not necessary at any
stage to invert a matrix. As will be shown, the
method is minimal in the sense of the following

theorem, stated by Tellegen [10]:

WS e




Minimal Theorem. A positive real symmetric matrix

function of degree d can be synthesized as the

impedance matrix of a network having a total of d

reactive elements. By a reactive element we mean

either an inductor or a capacitor. An ideal trans-
former is not regarded as a reactive element.

One of the results of the work to follow is
a new proof of the Minimal Theorem.

Following the abave procedures, we assume
that Ev ﬁ(jmo) is singular. It is shown in [6]
that there exists a real constant matrix A such

that

S
i
)
N>
>

has Re Ell(jwo) = 0, !
(In order to compensate for the application

of this congruence transformation, we alsoc apply

the inverse congruence transformation, which may

be realized by ideal transformers as shown in [6]).
If Ell is identically zero then it is shown

in [6] that the entire first row and first column

of Z is identically zero. Syr*hesis then resumes

on the rest of Z. We can thus assume without loss
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of generality that 511 is not identically zero.
Suppose Re 511 is identically zero on the
j-axis. Then Ell is IPR, and since it cannot
have j-axis poles (these have all been removed)
it must be that Ell is identically zero. Since
this has already been ruled out, we may take it
that Re Ell

Finally, suppose Z is identically singular.

is not identically zero on the j-axis.

Then it is shown in [6] that there exists a con-~
gruence transformation such that CT Z C has its
entire first row and first column identically zero.
As before, we may assume without loss of generality
that this is not the case, i.e., Z is not identi-
cally singular.

Assume then that Z is an n x n PR impedance
matrix without j-axis poles, not identically
11 1®
not identically zero on the j-axis and Re §11 =0

singular, Ell is not identically zero, Re 2

at ja)o.
Following the classical Brune tradition [12]

we now add a scalar b = sL or 1/sC to Z,, so that

11

2.9 ¥ b is zero at Jag- If Wy = 0 or oo then

Re Ell(jwb) = 0 implies that Ell(jwo) = 0 and no
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impedance b is required.

Let 2 = Z +

Then zll(ij) = 0 but 24y is not identically
zerxo. Since Z has no j-axis poles, it follows
that z has only the j-axis pole possibly due to
b. Hence if 0 < W, < @, then 2 has at most one
j-axis pole in only 25y and this pole is either
at 0 or w, depending on b, If w, = 0 or o, Z
has no j-axis poles,

We are now in a position to reduce the degree
of 2 by the removal of a lossless section.

Theorem 11. ZLet Z(s) be an n x n PR impedance

matrix a) not identically singular, b) with-

out j-axis poles, <c) with Re Ell not identically

zero on the j-axis and d) Re Ell = 0 at Jjo_.

Let Z =% + [b ) where the IPR
I
1
t
l

o]

scalar b is so chosen that zll(jwb) = 0,

Then Z may be decomposed in the series para-

llel mannex shown in Figure 1, where
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1. 2' is PR and 6Z' = 862 ~ 82".

2, 2" is 1PR and _.of degree 1l or 2, and

3. 2" contains at most 1 inductoxr, 1 capac-

itor and 1 n-port ideal transformer (1

core, n windings).

(These are referred tc as propositions 1,2, and 3
respectively). Proof is deferred.

This theorem is the basis of the procedure. By
repeated application of this threorem together
with Theorem 12 to follow we eventually reduce
the degree of % co zero at .hich point the iter-
ation terminates,

To apply this theorem at each cycle, we may
have to add a reactance to le. At the comple-~
tion of the cycle we therefore have to subtract
this reactance, It turns out, just as in the
scalar case, that this subsequent negative ele-
ment can be incorporated in a perfectly coupled

transformer.

Theorem 12. Let Z, Z and b be as defined in

Theorem 11. Then after the application of that

theorem to split 2, it is always possible to in-

corporate the compensating negative reactor into
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a perfectly coupled transformer,

The proof is again deferred. The entire
synthesis procedure is displayed in flow chart
form in Figure 2.

Example 1

For the sake of clarity, we choose an example

that is already tailored appropriately for direct

application of Theorem 1l. Let Z(s) be given by

s 4+ 1 1
52 + 8 + 1 52 + 5 4+ 1
Z =
1 2(s + 1)
2 2
s 4+ s + 1 s” + s + 1
Then "' (2) =
sz+s+L -1 ‘
s+ 1 s+ 1
1 2(s+1 _ 1l
2 2 2
\s + 1 s + s + 1 (s™+ 1) (s"+ s + 1)
T T ~ WA |




s -1 1 0
- 1 s 0 5 + 1
p) + p)
s + 1 s + s + 1
= P 4+ Q
1 1
s +3 s
r(e) = = 2
1 1
S
1 0
r{Q) = N = 2'
0 7
8 + 331

Hence, Z is realized by the network of Figure 3.

Example 2, Consider a problem given in [6, p. 275].

2s% + 4s + 5 s 4+ 25 4+ 2

292 + s + 1 252 + 8 4+ 1
Z(s) =

52 + 28 + 2 52 + 5 + 1

292 + s + 1 252 + 8 4+ 1
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484 + 832 + 5 284 + 352 + 2
N 294 + 3s2 + 2 254 + 252 + 1
Ev Z2 =
494 + 382 + 1
and

2 2
s2 4+ 1) (282 + 1) .
3

2

det Ev ﬁ = (

(as? + 352 4+ 1)

Thus det Ev 2 is already zero at ty, +3V2y2,

Choosing w, = 1 we have

1l 1
) 2

Re Z(j) =
1 P
2 2

Thus, using

-1 1l

A =
1l 0

e &
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we have Re(ATZ(J)A)ll = 0, Hence

52 + 8 + 2 —(s2 + 28 + 3)
a ~(82 + 28 + 3) 282 + 45 + 5
2 = ATZA =
2s2 + s 4+ 1
and at s = j, 23y < -J.
Thus
8 o)
7 =7 +
(o o
2 2
23(s” + 1)(s + 1) ~(s” + 2s + 3)
- —(52 + 28 + 3) 252 4 45 + 5

252 + 5 + 1

has a j-axis zero in Zyy-

Forming 1" (Z), we obtain

w—ﬁz-ww .
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232 + s + 1 52 + 2s + 3
2 2
—(52 + 25 + 3) -(s2 + 25 + 3)
28" + s + 1
r(z) =
2(s® + 1) (s + 1)
0 0
+
0 252 + 45 + 5
252 +s +1
Since zy, was zero at s = j, r(2) has a pole at
s = j.
The pole matrix is
s 2
-2 4s
P =
2(s” + 1)

which is of degree 2.

give

P can be removed from T'(Z) to
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2 2
2s+'s' -3

-2 2
s s

Note that the degree of Z" is also 2,

Removing P from [ (2) leaves Q =T (2) - P.

Then

2
-1 4s” + s + 2

4;?7+ 25 + 2

Since we added s to port 1 of %, we must now
subtract it. Also, to get Z we require the in-
verse congruence transformer at the input. Note
that Z2' and Z'" posses series inductors in ports
1, which can be combined with -s as shown in
Figure 4.

The final realization of Z(s) is given in
Figure 5.
Note: The Brune transformer could be regarded as

an ideal transformer and one inductor. Thus four
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reactive elements are required, which is in ac-
cord with the fact that 62 = 4,

The dots on the transformers have the follow-
ing significance. When progressing along the
winding from the dotted terminal, each winding
encircles the core in the same sense, Thus, if
dots are at the same ends of the windings, the
coupling term in the matrix is positive; if at
opposite ends, negative.

Proof of Theorems 1l and 12, Before ccmmencing

with the proof of Theorem 11, it is necessary to
make some comments concerning notation. While
the operator I' was completely defined by Equations
4, it will be convenient in what foll ws to em-
ploy the following approach.

Let Z be partitioned into

[} —
211 : 2y
]

]
‘o--——-——l-———_ - o -
]
|

Z, . 299

where
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z .
11 1s a scalar,

Elq is a row-vector of n - 1 elements,
L

Zzﬁ is a column-vector of n - 1 elements,
and
259 isann -1 xn - 1 matrix,

Regarding two n-vectors as n x 1 matrices,

we have

XYy X ¥y X ¥so.oo.o. ... L XY

which is a rank 1, n x n matrix. Letting ¢ be
a null row-vector and ¢ a null matrix it can be

verified that

re) = (2 (1@ i -2, + [o

r— e -

is consistent with the definition of I'(Z) given in

w’n
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Equation 4.

Proof of Theorem 1ll.

Proposition 1.

Form I"'{Z). Since zy4 has discrete zeros at

tiog I (z) has poles there, By Theorem 2 oxr

the corollary to Theorem 7, 1" (2) is hybrid PR.
Hence by Theorem 5, ' (.2) can be decomposed into

a hybrid IPR matrix P, formed by the removal of
the poles at jjmo frem 1 (2Z) and a matrix Q ==
r(z) - p, which is hybrid PR without j-axis poles,

It is shown in the proof of ?&oposition 3
below that Pyy is not identically zero. Hence

Z" =T (P) exists.

Suppose q,, is identically zero. Since Py
is IPR, it follows that Re(pll + qll) = 0 every-
where on the j-axis. Hence by the corollary to
Theorem 9, Zyy = r(pll + qll) is also IPR. But
this contradicts assumption ¢) of the statement
of this theorem. Hence dy, is not identically
zero and so Z' = I"(Q) exists,

P and Q share no common poles. Hence it
follows by Equation 1 that 6(P + Q) = 6P + 50Q.

(For a detailed proof, see Theorem 7 of [5]).

o - o o —— ——— - o e — = —— ? = 44
Al adain ks Wl gy | A
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But by Theorem 1, the degree is invariant under

a gyration, so

0Z = 6P + 6Q = 6Z' + 62"

(It will be shown below that 6P is 1 or 2). Hence
62' = 62 -~ 62Z". Moreover Z' is symmetric PR
since Q is hybrid PR. This completes the proof

of Proposition 1,

Propositions 2 and 3.

By the PR property II, Re Z is non-negative
definite for Re B8 = 0, Hence, (Re zll)(Re zkk) -
(Re zlk)2 2 0ons=3jon fork= 2, ... n,

But at jw, Re z; = 0. Hence zlk(on) is pure

imaginary and we write at s = ju _,

(o}
(7) le = ja= (ZZI‘ )T .
Next define
(8) ezt 1\t -7
11 L
Zy b

Assume first that wg # o or .o, Then the hybrid

IPR pole matrix removable from I' (Z) is given by
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(s - jwo)U .
s = Jjwog
(9) P = _
8 = Jwg
(s + jwo)U _
8 = =jo,
+
s + jwo
v V¥
= + say.
s =~ Jwg s + jo,

Now by Equation 8, U is of Rank 1, Hence the
residue matrices V and Vv* are likewise of Rank 1,
and so, by Equation 1, P is of degre:= 2.

Let V = M + iN. Then

2 —
. sM ZwON
T2
wo
. —
myy o My
- 28 | E ________
s + w ,
o \Myl 1+ My
n ! N,
Y HE
8 + wo :
Nojh | No
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] —tp
Vin ¢+ V12
Writing v = -----% ..... -| we have by Equation 9,
:
Vart 1 Va2
S-j(no
v L = D
11
%11
s = Jjwg

say, which is real and positive since Zy4 is PR.

2%
Vi, = -(s - on) EII = -jbao by Equation 7
s = Jo,
= -jB say.
%1 _
Vle = (s - on) EII = jba} by Equation 7
8 = Jw,
= jBl .
Finally

<
]

22 = ~(8 = Jug)

= bal T.
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Hence
! -
b | ¢
I
'
L}
(10) P = —s—28 i
s + w :
of ! baid
| ——
0 : B
|
2(1)0 L _: -
© \-Bl 1 o
Define 2" = I (P), then
2 2 |
s” + W, | -wOB
2sb ' sb
!
!
|
Z" = __......-___..__..-.....:_-.._-_._.. - ——— - -
]
]
|
]
-w_ B} | -
o . 2Bl B
sb N sb

2" can be realized by Figure 6.

When Wy = 0 or o, the above analysis leads

te z" being a matrix of degree 1 and consisting
solely of a shunt reactor across port 1, with
short circuits at the remaining ports.

This completes the proof of Theorem 11.

i




-50-

Proof of Theorem 12,

First we require the follcwing:

Lemma 4, Let w, ¥ 0 or co. Then the matrix z"

0f Theorem ll can be realized either by a series

inductor and an ideal capacitive transformer (as

proved previously) or by a series capacitor and an

ideal inductive transformer.

Proof: Observe that for 6 a real constant vector,

both G =| =~~~

-6}

and -G are hybrid PR by Definition I, II, and IIIl.

It is worth noting that they are realizable with
one transformer and one gyrator,

We recall that in the proof of Theorem 11,
the matrix 1(z) was split into P and ¢. The
situation is not changed if we realize instead
P + G and Q - G, Both are hybiid PR and hence
realizable., Moreover, 6(P + G) = 6P and &6(Q ~ G)

6Q by Lemma 2,
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Now, if we let EB 2.5/(1)0, then using P defined in

Equation 10,

28b | -28° B
ss2 + woz : (s + o 2)0)
|
!
{
i
P+ G=|] “——--———=------- T """""""""
H
2 ' —
283 : 2sp| B
' 3
(s2 + W 2)(1) : (32 + woz)b
and
2 2 !
1
28b : mo b
'
F(P+G) = e R e T pup——
[}
] —lt
s_gl ! 2s_plB
wo b i o 2 b

which is realized in Figure 7. This proves the
lemma.

We proceed with the proof of Theorem 12.

(A scalar version is found in [12]).
Consider first the case where for s = jwo,

then

Mqhn—ﬂ;

~ %

F1p (o) = ~gyo,

{(y=0) .
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Then we form Z with elements
239 S 24 F Y80430430
where § means the Kronecker delta.
But z,, = le + vs has a zero at +jo_ and a pole
8~ oo. ‘The pole matrix P has a one-pne element
Zsb/(s2 + woz), which was removed from l/(%'ll + v8),

leaving as the one-one element of Q the PR function:

s + 11)02 - 2'ybs2 - 2bsZ

(s2 + woz)(ill + vs)

£(s) = 1l

Recall that gll(s) is PR and has no pole at .

The inverse of f(s) is the one-one element
of 2' which yields a series pole of value
svy/(L - 2yb). Note that v/(1 - 2yb) is real and
positive since it is the residue at a j-axis pole
removed from a2 PR functior:., The first realiza-
tion of this cycle is given in Figure 8.

The element -vys compensates for the s
added to 511- The above realization can be
giver the equivalent network shown in Figure 9.

In case Ell(jwo) = jly/w_) we add y/s.

Then taking account of Lemma 4 above, the final




% % st‘rmm Pl

~53-

realization of the Brune cycle becomes that of
Figure 10,

The upper part of the diagram shows a "capaci-
tive transformer". A two-port capacitive trans-
former is equivalent to a capacitor and an ideal
transformer (see [6, p. 114]).

This completes the proof of Theorem 12.




CHAPTER 11X

Generalizing the Gyration

3.1 INTRODUCTION. In this chapter the definition
and properties of the gyration are extended. It

is shown tha£ sets of gyrations can be specified
which form Abeliarn groups of order 2", The general-
ized gyration provides an extended basis for the

description of network parameters,

3.2 EXTENSTON OF THE I' OPERATOR
Suppose Y} = A X} where A& is an n x n matrix,
x| and Y} are n-vectors.

Partitioning as follows

3y X

11 § are

r-vectors, we find by solving for xf that if

where A is n x n, A,, is r x r, Xf and Y

All exists:

~54-
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X, r \a7l -A /<

}
"~
[
=

L an
(2]

) : |
Y?_,‘ \ A?_ . ¢ 1&22 le/

This interchange of xf and Yﬂ is precisely

R e

the ' operator when applied simultaneously to the

first r pivots of A. We say then that

-1
Q1) Ty 5, .. @) =11 Ay (2. | -Ay,)
Ay
Y
1
)
AR N S
i
l
¢ o Py
L] -1 s L3 .
defined whenever Al exists. Fl,2,...r(A) is I

texrmed an x-fold gyration of A,

Suppose we wish to perform an r-fold gyra-
tion on an arbitrary set of diagonal members of
A, not necessarily the first r,

If Yi

A X} and M is a permutation matrix,
then
Moyl = M A M MTxi

AP
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I

Let MTY!

Y4 o, MTX!' = X', and MTAM= a'.
Then Y'} = A'X'l will be a rearrangement of the
equation Y{ = AX{ , in which any r pivots can
be made to be the first r by an appropriate choice
of M. The r-fold gyration on the selected set
can now be performed according to the definition
given in Equation (11) which is thus completely
general,

Without loss of generality let r = 2, n = 3,

Then from the standpoint of the vectors X} and Y} ,

Equation (1ll) is equivalent to:
Ty,20% %3 X3 ¥y ¥y ¥3) = (¥) ¥y X3 X) X, v3)
and it is thus clear that

(12) Fl,?.(A) =T,[T,(A)) =T,[TA)] .

Of course for r = 1, Equation (ll) is consistent
with the definition of rl given in Equations (4).
It follows from Equation (12) that Theorens
1l and 2 are true for the r-fold gyration opera-
tion.
Suppose F is a PR matrix and let G be an

r-fold gyration of F. Then Theorem 3 generalizes
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to the following:

Theorem 13. Conditions I and II are necessary

and sufficient that G be the r-fold gyration of

the impedance matrix of a passive netwoxk, pro-

vided that in tLhe parcitioning of G, the ¥ x r

submatrix Gll is not identically singulax.

Theorem 4 can likewise be generalized as follows.

Theorem 14. ConditionsI, II and IV are necessary

and sufficient that G be the r-fold gyration of

the impedance matrix of a network without resistors

provided that in the partitioning of G, G,, is not

11

identically sinqgular,

It is important to note that in the above
generalizaticns and in the gener=zlizations to
follcew all symmetxry conditions have been completely
relaxed., The theorems will thus be fully appli-
cable to PR matrices in general, and will not be

restricted to the symmetric case.

3.3 REMOVAL OF IMAGINARY AXIS POLES FROM NON-
RECIPROCAL MATRICES
Suppose F is a PR matrix, not necessarily

symmetric. If fll or det fll flé\ls zero at

! ’522/
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some discrete point on the j-axis then it is clear
that the gyration matrices ', (F) or rl,2(F) will
have poles on the j-axis. Let these gyration
matrices be called G. Then by reasoning as in
section 1.5, we have the following generalization.

Theorem l5. Let G be the r-fold gyration of a

PR matrix. Then

G=P+ Q

where P is IPR and Q is PR without poles on the

j-axis.

3.4 GROUP PROPERTIES

For the case n = 2, let

Yy a1 232 213 1
Yo [T 132 252 233 X,
Y3 \a31 a3 a- 3 X3

Subject to an appropriate gyration, each of the
pairs (yl.fl), (y2 xz), (y3 x3) can be made to
lie in the state (yi xi) as in the above equation
or in the dgyrated state (xi yi). Thus there are

precisely 23 or 8 distinct gyrations which can be
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defined for a 3 x 3 matrix. 1In case of an n x n
matrix there are 2". The existence of all of the
2" gyration matrices depends on the principal sub-
matrices of the matrix .A. The existence of a
given yyration matrix follows only when a corres}
ponding principal submatrix of A is non-singular.

Definitioh. The operation of following one

gyration by a second is called a cascade.
rm[rn(AH generates a cascaded pair of operators
I-‘m r‘n‘

Theorem 16. Let A be an n x n matrix for which

all of the 2" possible distinct gyration matrices

exist., Then the gyration operators form an in-

volutary Abelian group of order 2" over the cas-

cade operation.

Proof.

ry(r (@) =1, )

and so the set is closed over the cascade opera-
tion.

Let 1 j k be integers which lie between 0 and
n. Define Fo as the gyration which interchanges

none of t%e (yi xi). Then
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Fi(I‘j[l"k(A)]) =I"i[I‘jk(A)] =rij[rk(A)].
anc so the set is associative over the cascade
operation.

Let m bs any sequence of integers between
0 and n, without repeating.

Then Fo[rm(A)] = Fm(A) and so Fo is the
identity element of the set.

Since Fm[rm(A)] = A it follows that every
element is its own inverse and so the set forms a
group with the involutary property.

Finally Fm[rn(A)] = Fn[rm(A)] and soc the
group is Abelian.

This completes the proof.

The group can be symbolically displayed by
the use of a hypercube of dimension n,

Let n = 3; then the cube is 3-dimensicnal
and can be thought of as Iying in the first
hyper~-octant of an orthogonal triplet of axes
a,b,c. (See Figure 34 ),

The gyration matrices can be associated with
the corners of the cube as follows,

Suppose m is an ordered string of integers

without repeats chosen from 1,2,3 or n = 0.
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Then Fm(A) is a gyration matrix which is one
of possibly 8 distinct matrices. If m includes i,
then the i~th pair (yi xi) is interchanged and so
the i-th coérdi;ate is given the value 1 in the
a,b,c space. The following table shows the re-
lationship between rm(A) and its coordinates in

the a,b,c system.

TABLE I
GYRATION MATRIX COORDINATES
a b c
FO(A) 0 0 0
Fl(A) 1 0 0
F2(A) e 1 0
F3(A) 0 0 1
Tl’z(A) 1 1 0
Fl'3(A) 1 0 1
r2'3(A) 0 1 1
F112,3(A) 1 1 1

Figure :34 shows the location of 1r_(Aa)
m

and its coordinates.
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The operators themselves can be associated

with spatial dixections in the a,b, c space.

ry will change any matrix from its given

form to a new form along an edge parallel to the

a-axis,

T, operates parallel tc the b-axis and Ty

parallel to the c-axis.

As an example F3(A) has position coordinates

(0,0,1). rThe ry operation gives
Fl[r:.;(A)] = Fl,3(A)

which has coordinates (1,0,1l) and is given by a
,ove along the "a* direction,

Crossing the diagonal of a cube face 1is

associated with a 2-fold gyration, There are

three 2-fold gyrations associated with the three

planar senses of the cube faces. Crossing a major

diagonal of the cube is associated with the 3-fold

gyration. The 3-fold gyration is equivalent to

matrix inversion in this case, and so each of the

gyration matrices is faced by its inverse at the

opposite end of its corresponding major diagonal.
Starting with a given matrix A, we may or may

not be able to perform a’l of the 2" gyrations
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possible, depending on the &xistence of Azi. Thus
the group may or may not be complete.

Theorem 17. For a given matrix A the grcup of

operators is complete if and only if every princi-

pal submatrix of A is non-singular.

Proof. Suppose the group of operators is complete.
Then it is possible starting from A, to move either
along an edge, across the diagonal of a face oxr
across a major diagonal of the cubu and therxeby to
arrive at any other corner of the cube.

Hence, every principal submatrix of A must
be non-singular.

Conversly suppose every principal submatrix
of A is non-singular. Then by Equation 11 every
olie of the 2" operators is defined.

This completes the proof.

3.5 APPLICATION TO NETWORK THEORY

Suppose a passive network gives rise to an
impedance matrix Z{s). Then Z is PR. Let it be
0of degree d and suppose that at s = S84 the rank of
its hermitian part is r, 1If all of the principal
minors of Z(so) are non-zero, then from Theorem

17, every dyration matrix is defined at 54e it

__ __ _ o _
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follows that a complete hypercube can be drawn
whose corners are associated with Z(so), its in-
verse Y(so) and all of the gyration matrices
Fnlz(so)] . Each of these matrices is PR, of
degree d and has a hermitian part of rank m, a
result which follows from Theorems 1,2 and the
corellary to Theorem 9,

If any of the principal submatrices are
singular at By but not identically so, then the
appropriate gyration matrix has 2 pole at 8. (1t
is this propexty which underlies all of the syn-
thesis theory developed in Chapters 2 and 4).

If any of the principal submatrices are
identically singular, then that gyration matrix is
not defined and the cube is incompiets,

Consider the following examples,

Example 1
A scalar z = 82 + 1 .

s
The hypercube is l-dimensional and has two

corners, one at the orgin and one at the point 1,
together with the joining edge. It is complete.

(see Figure 35)

e e it e
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At the origin is z with poles at s = 0 and
s = oo, zeroes at +j and a hermitian part which
is zero on the j-~axis. 2z is PR and of degree 2,
At the point 1 lies y = 2~! which has poles
at +j, zeros at 0 and oco. y has a zero hermitian

part on the j-axis, is PR and of degree 2,

Example 2,

% is IPR, degree 1, and the 2 x 2 matrix 2

is identically singular but its 1 x 1 principal sub-

matrices are non-~singular, although zero at s = 0,
The 2-dimensional hypercube is thLus degenerate

and is shown in Figure 36, It contains only two

edges and the three points (0,0), (1,0) and (0,1).

At (0,0) lies 2. At (1,0) lies
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which has a pole at s = 0, is IPR and of degree 1,

At (0,1) lies

r,(z) =

with the same properties as Z.

z7t = r (z) is not defined.
1,2

Example 3.
A unity turns ratio, ideal transformer is certainly
PR but has no impedance or admittance matrix. It

is defined instead by the hybrid aquation

The inverse of the hybrid matrix exists,
but its 1 x 1 principal submatrices are both
gingular and so a l-fold gyration is never
possible., Hence only two corners and the con-
necting diagonal of the 2-dimensicnal hypercube

exist., The degenerate cube is depicted in

——
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Figure 37 . The impedanre and admittance matrices
are undefined. Both existing corners are associ-
ated with an IPR matrix of degree 0 with a null
liermitian part.

Example 4.
Consider the null matrix [0 0\, IPR of degree O.

0 0
If this is regarded as an impedance matrix then it
is realizable by two short circuits, No gyrations
are possible a2nd s0 the two-dimensional cube de-
generates into a single point at (0,0).

As an admittance matrix it is realizable by
two open circuits, and has a degenerate cube con-
sisting of a single point at (1,1).

As a hybrid matrix rl(z) it is realizable as
a short across port 2 and an open circuit in port 1.

This follows from Lhe fact that in this case

[
0 0 vl vl

= r,(2)
Vo o g/ i2 i2

As the hybrid FZ(Z) it is likewise realized by a

i

short and open circuit, In the last two cases as

in the first two the cube degenerates into the

e ]
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single points (1,0) and (0,1l) respectively.




CHAPTER IV
General PR Immittance Matrix Synthesis

4.1 INTRODUCTION In this final chapter the
gyration operator is used as the basis for a
general synthesis procedure for PR immittance
matrices. The synthesis procedure derived in
Chapter II is a special case of this general pro-
cedure. In this chapter the symmetry condition
is not however, required and both non-symmetric
and symmetric matrices can be realized by this

general procedure.

4,2 COMMENTS ON THE DEFINITION OF A PR MATRIX

Let F(s) be a matrix function of thecomplex
variable s all of whose elements fij AXe rational
with real coefficients.

F can be split into the sum of two matwcices

F = FH + FSH

where FH is hermitian and FSH i.s skew~hermitian.

This follows immediately from the identity

—'ng.
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F + F_* F - F,*
F = I £
2 2
Letting
*
_ F+FT
FH-—
2
we see that Py = FH* and is thus hermitian.
T
Similarly if
- %*
. F - F,
= - * i S SW - itian.
then FSH FSHT and is thus skew-hermitian

Condition IX of the definition of the PR property
for matrices requires that Re x*Fx| 2 0 for

Re s = 0 and arbitrary X. Now

—** = '_‘% _..*
xX*Fxi X FHxl + X FSHxl
= Q + JjB

where o and jpB are real and pure imaginary since
they are hermitian and skew-hermi* ian forms re-

spectively. Hence II may be restated as
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II- The hermitian part of F is non-negative

definite for Re s = 0,

IXa, IIb and IIc can ke restated as

II F.. is non~-negative definite for Re 8 = 0

H

II f.. has no poles for Re s> 0

1)
i,j=1,2, . . . n.

Ot

IIé For Re s = Q,fij has simple poles and

the matrix of residues is hermitian non-

negative definite.

Likewise IV is equivalent to:

v A positive real matrix F 1is said to

be IPR if on the line Re s = C, F is

evervywhere skew-hermitian.

Thus the rank of the hermitian part of an IPR
matrix is zero everywhere on the j-axis.

As will be seen later, this restatement of
the PR property in matrix terms rather than the
scalar terms previously used will be advantageous

under certain conditions,

- PR e
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4,3 SYNTHESIS PROCEDURE

In what follows we develop a synthesis pro-
cedure, using the I' operator, vhich is capable
of handling any PR immittance matrix. As will be
shown, any such matrix falls into precisely one
of two classes and accordingly the procedure will
have two variants, termed Case A and Case B. Case
A will be shown to be a generalization of the pro-
cedure already given in Chapter II for symmetric
matrices and will handle all symmetric PR as
well as some non-symmetric PR matrices. Case B
will cover all remaining PR matrices.

Suppose we are given a PR impedance matrix
2 which is to be realized. As a first step, all
imaginary axis poles are removed by splitting the
matrix into the sum of pole matrices and a re-
mainder which has no j-axis poles. All of these
matrices are PR and the pole matrices being IPR,
can be readily synthesized by inspection using
inductors, capacitors and possibly gyrators to-~
gether with ideal transformers.

Assume now a PR impedance matrix 7 without

j-axis poles. As discussed in section 2.3, by

R
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removal of resistance from each port or from just
one port a situation is reached where the herm-
itian part %H becomes singular at some point on
the j-axis say jwo. In Lemma 5 below it is shown
that there exists a congruence transformation
which, at s = jmo, places a zero in the 1,1

position of 2. or else places a singular 2 x 2

H
submatrix in the first principal pJusition of %H'
Lemma 5. Let F be an n x n matrix which is not

identically sinqular and has no j-axis poles.

Let F be PR and let F,(Jw,) be singular,

Then there exists a real, ronstant non-

singular matrix D such that either

i) (jwo)D has a zero in the 1,1

Dpfy
posicion (Case A).

ii) DTFH(ij)D has a 2 x 2 submatrix in the

first principal position which is

singular (Case B).

Proof. FH(jmo) is singular by assumption. Two

cases arise., Either Re FH(jwo) is singular (Case A)

or it is not (Case B).
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Case A FH and Re FH are singular at jwo. There
exists D, real and non-singular such that

DTRe FH(jwo)D is diagonal and has a zero in the
1,1 position. But FH = Re FH + J Im FH and Im FH
is skew-symmetric, a property which is presexved
under congruence.

Hence DTFH(ij)D has a zero in the 1,1 posi-

tion. This proves Case A.

Case B Re FH(jwo) is non-singular. By the PR
property of F, FH(jwo) is non-negative definite

(Condition IIl, section 4.2). Hence
X3 3 = X* 3 Xk T 31 =
X*Fy (Jo ) xi = X*Re Fr Qo ) xi + 3x*Im FH(on)xl 0

for all X,
In particular, for all real ¥ since Im FH(qu

is skew-symmetric,

XIm FH(JwO)xl = Q
giving

- " -
XRe FH(JmO)x& 20

Hence Re FH(jwb) is non-negative definite and
since Re FH(jwo) is non-singular by assumption, it

is in fact positive definite. Thus there exists
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a matrix Q which is real and non-singular such

that

|
-

QTRe FH(JwO)Q =
Let

QTIm FH(jwo)Q = N, say

where N is real skew-symmetric. It is shown in
Appendix 2 that there exists an orthogonal matrix
V such that if the real skew-symmetric matrix N

is of even order then V.N V =

T
V) ul=
;
Hy O
_________ T_—-__"--}
BLENCY °
: !
[}
w0
l_....____...___t__
{
)
|
aat SEEEEEES
0 1o w
E n
.~
Hn 0

and if N is of odd order, then VTN vV =
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(assuming that n is even), which has ones in
every diagonal position,

But FH(jwo) is singular., Hence for some Kk,
1 Iy
-Juk 1

is singular. Without loss of generality, let this

 be true for k = 1, Then DTFH(JwO)D =

1
1 i
|
'
|
-3 1 :
__________ |~~-~_-_—-7
{ 1 : ! 0
; M3
| :
' )
s [ 1PN 1 !
L m e e bow -
l
[}
]
1
[}
___" ........ ' -
0 bl Iy |
3
'
s T

which proves Case B, and completes the proof of

Lemma 5,
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Thus after ﬁH has been made singular at jwo
by the removal of resistance the matrix is found
to fall into Class A (all thdse for which Re ’z‘H
is also singular at jwo) or Class B (those for
which Re QH is positive definite). We observe
that all symmetric matrices immediately fall into
Class A since for them the hermitian part is real.
We now apply the appropriate congruence
transformation, as given by Lemma 5 and we can

thus assume without loss of generality that

2D=7%
Dy, =

has either a .hermitian part whose 1,1 element
is zero or else it has a hermitian part whose
first principal 2 x 2 submatrix is singular at
Jwg-

This congruence transformation by D, can be
compensated for by also applying the inverse
congruence transformation, the latter being real-
ized by the appropriate use of ideal transformers
as discussed in [6].

Thus far, the synthesis procedure has re~-

sulted in the network of Figure 12

g
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4.4 CASE A SYNTHESIS

Assume Z to be an n Xx n PR impedance matrix,

~

without j-axis poles, with Zy (jwo) = 0.

11
1f ?11 iz identically zerxro, we have the following

Lemma 6. Let F be an n x n PR matrix with fll =0

identically. Then

hitad 13
where o is a real constant row-vector, and F

22

is PR.

22 is PR sinée it is a principal submatrix
of a PR matrix. Fu is hermitian non-negative
definite for Re s = 0, Since fll = 0, we must

have
F S = Tt >0
Flz + (FZl;)T - ¢ or Re s = .

Let s be real and positive, Then (FZII)* =
Hence Fp, + (Fy14)q = ¢ for s> 0, and so
Fi, = —(let)T for all s.

We then have, Fi, - El§ = ¢ for Re s = O,
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Let s be on the j-axis.
Then Fio - F15 = ¢ implies that 12 1S resl on
the entire j-axis.

Hence F12 = 0 a real constant n-1l vector,

This completes the proof of the lemma.

1€ gll is identically zero, we may by Lemma

6, split Z into

o ! q o | ¥
1 |
m———mbloeoo + 1 --=-- E _____
l ”~
"a}v : ) (b‘ : 222

The first of these two matrices can be realized
by a gyrator and ideal transformers (see later)
and we then resume synthesis on §22. Thus we may
assume without loss of ¢enerality that Ell is

net identically zero.

Suppose next that & is identically zero

11
on the j-axis. Then Ell is IPR, and since it

H

cannot have polas on thej-axis, (these have all
been removed), 211 must be identically zero. But
this has already been ruled out., Thus we mey

assume that 2H is not identically zero on the
11

»

j~axis.




~-81l~

Suppose finally that Z or one of its princi-
pal rinors is identically singular. We then have

Lemna 7, Let E(s) be 3 PR matrix which is identi-

cally singular. Then F is congruent to

where W is a PR matrix and @ is a real, constant

row-~-vector,

Proof. Take s = 1, Let F(l) = M + N where M is
real symmetric and N real skew-symmetric., Let
C be a real constant, non-singular matrix.

Then CTF(l)C = CTM C.

But CTF(l)C is singular. Hence so is M. Choose

C so that

Then [CTF(s)C]ll has a zero in Re s>0, But
this implies that [CTF(s)C]ll = 0 identically
since it is PR.

Hence by Lemma 6

o
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T
i
_l

- v ——

CTF(s)C :
]
-a} !

where W is PR and @ is a real and constant row

vector, This completes the proof of the lemma.

Corollary. 1If F is PR and _identically sinqular,

then F. is identically singular.

Proof. There exists a non-singular C such that

0 § a
N R
CTFC-— 'E
-al ' W
Hence

o I ¢

]
_ 2 N R -1
FH- CT “={ C

1

o Wy

which proves the assertion,

Thus we may assume that none of the principal
submatrices of Z is identically singular, since
if this were the case, we can apply a cpngruence
transformation, remove a gyrator section and

resume synthesis of the remainder.

sy
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Without loss of generality, then, Z is an
n x n PR impedance matrix, without j-axis poles,
no principal submatrices identically singular,

Z is not identically zero on the j-axis and
pA = 0 at juw .

By Theorem 17, every one of the possible 2"
gyration matrices is defined for 2.

Following the classical Brune tradition [12]

1 A
we now add a scalar b = s, or el to zll so that

]

zll 0 or o then
ZHll(on) = 0 implies zll(on) = 0 and so b =0

in these two cases.

+ b is zero at jwo. If W,

Define b

Then le(jwb) = 0 but Z1q is not identically zero.
7 has nofj—axis poles; it follows that Z has

only the j-axis pole possibly due to b. If

0 <Tw, < oo , then 2 has at most one j-axis pole

in only zy, and this pole is either at 0 or oo,

depending on b, On the other hand if W, = 0 or

oo then b = 0 and so Z then has no j-axis poles,

g w— mem—o
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We are now in a position to reduce the degree
of 2 by the removal of a lossless section.

4.5 STATEMENT AND PROOF OF CASE A THEOREMS

Theorem 18. Let Z(s) be an n x n PR

impedance matrix,

a) with no identically singular principal

submatrices,

b) without j-axis poles,

c) with EH not identically zero on the
11

j-axis, and

a %, =0 at jo_.
Hll o]

1
]
l
Let 2 = 2 +| ~---4---- |w -e the IPR scalar b is
I
i

so chosen that zll(jwo) = 0, Then Z may be de-

composed in the series parallel manner of Figure

1 where
1, 2*' is PR and 62' = &2 - 52"
2, 2" is IPR and 62" is 1 or 2

3. 2" contains at most 2 reactors and 1

gyrator plus ideal t{ransformers,
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Since 1, has zeros at jjwo, Fl(z) has poles there,
rl(Z) is PR. Hence by 'Theorem 15, Fl(Z) can be
split into an IPR matrix P, formed by the re-~
moval of the poles at tjwo from rl(z), plus a
matrix Q = rl(Z) - P which is PR without poles

at _fjwo.

As will be shown under the proof of Pro-
position 3, P11 is not identically zero and so
Zn = rl(P) exists,

Suppose qy, is identically zero. Since P
is IPR, it has a real part which is identically
zero on the j-axis. It follows from the corollary
to Theorem 9 that 2y, = I‘l(pll + qll) als« has a
real part which is identically zero on the j-axis.

But this contrary to assumption c in the
statement of this theorem. Hence dyq cannot be
identically zero and so 2Z' = rl(Q) exists,

By Theorem 2, both 2' and Z" are PR. Since
P and Q share no poles it follows from Equation 1,
that &6(P + Q) = 6P + 6Q. By Theorem 1, the degrre

is invariant under a gyration, so

52 = 6(P + Q) = 82" + 62",

Herice 62t = 62 -~ Ha"
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We shall refer to these as propositions 1, 2,
and 3 respectively.

This theorem is the basis of the Case A pro-
cedure, In order to compensate for the addition

of b(s) we must also add -b(s) to z It turns

11°
out, analagously to the scalar case, that this
subsequent negative element can be incorporated
into a perfectly coupled transformer. This is

proved in

Theorem 19. Let Z, %_and b be as defined in

Theorem 18, Then after the application of that

theorem to split Z, it is always possible to in-

ccrporate the compensating negative reactor into

a perfectly coupled transformer,

Proof of Theorem 18.

Proposition 1,

~1 1 —_—
Form 'y (2) = (2y,) 1 (L —le)
Zy3 .
0 : )
I
R R S
!
]
]
¢l vz,

U
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This completes the proof of Proposition 1.

Prior to proceeding with the proofs of the re-
maining propositions we make the following ob-
servation.
Let G be a real skew-symmetric n x n matrix.
Then both G and - G have a non-negative definite
hermitian part and so they are PR. Thus P + G
and Q - G are also PR and it is thus permissible
to split rl(z) into P + G and Q - G. Since
6G = 0 it follows then that all the arguments
given in the above proof of Proposition 1 are
equally valid if 2" = Fl(P + G) and Z2' = Pl(Q - G).
G will be used to a definite advantage in the
proof of Theorem 19 to follow.

Proposition 2.

-1 —_
Let U = (zll) 1 1 -le)

Zyil

First let O <w, < 00

Then the role matrix removable from rl(z) is
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(s - Jw ) U (s + ij)UI
s=jw s==jw
P = S 4+ =
s - jwo s + jwo
\Y/ V¥
= —e + ——em ay.
s - ja)o s + ]u)o say

Now U is of rank 1. Hence the residue matrices
V and vV* are of rank 1. Thus by Equation 1, P 1s
of degree 2, which means that by Theorem 1,
Z" = Fl(P) is of degree 2, P is IPR, and so the
rank of the hermitian part of P is zero on the
j-axis (Condition IVl, section 4.2)

Thus by Theorem 2, Z" is PR and by the corol-
lary to Theorem §, Z" is IPR. Hence 2" is of de-
gree 2 and IPR.

Let W = 0 or @

Suppose for definiteness that w, = 0.

(The case w, = 00 can be analyzed as the dual).

sU
d

0

Then P U is of rank 1, and so

P is of degree 1. P is IPR. Hence 2" = Fl(P)

is of degree 1 and IPR.
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Thus for 0 = p_ = o, Z" is IPR and of degree 1l or

2.

This completes the proof of Proposition 2,

Before proving proposition 3, we prove

Lemma 8. Let F be partitioned as follows

' S

f11 1 Fp2
!

F = _u___: _____ where £ is a scalar.

, —== i
i
|

Foid 1 Fa

Let F be PR with fH (jwo) = 0, but not identi-

11
cally zero, Then
F1,{0w) = @ + 3B
Fopldo )} = -of + 3Bl

where I and B are real (n - 1) vectors.

Proof. Fo is non-negative definite on s = jw and

since fH (on) = 0, we have at jw,

11

f =0, f£ = 0, k=2,3 .. .n

3
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Thus the entire first row and column of F(jwo)
have skew-hermitian symmetry which proves the
lemma.

Proposition 3

As before U = (z 1 (1 -2

-1
11)

Zy

Assume 0 < (uo < O

Then the pole matrix removable from Fl(Z) is

(s - on)U (s + ]wo)U
s=jw s=-Jjw
P = 2 4+ 2
s - jwo s + jwo
= -v_ + v*
s - jwo s + jwo

Let V=M + JN

2sM - ZwON
Then P = ) )

s” +
wo




2s
=72

s” +

Let V =
Then vll
which is
i.e. my,y
Vi2

M9
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| et | —
™1 ; Myo M1 0 Ny
! 20 :
R o P T
2 1 2 2 \
W, ' 7+ wg |
]
Myl My, Nogt 1+ Ny
Vit V12
i
]
_____ deeme
|
'
Vo bV,
. 1 _
= (s - jw_ ) — = Y say,
° Zn ) .
S=J(DO

real and positive since zy, is PR.

= 7Y and = 0.

i1

-Y(g+ jB) by Lemma 8, and so

= -Ya, N, = -YB.

Similarly vzﬂ = y(-a} + 3jpl) by Lemma 8,
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= My} + 3N,

and finally

z..l 2,
Voy = =(s - jo ) _2r 12
22 o) Z1,
sS=3jw
o

= =Y(-a} + jg}) (@ + B
=Y (1@ + BLB) + 3B - BIT))

= My, + Ny,

1 &
5
Hence P = —5253;—5 ~—-—: ___________
s+ W !
o 1
. , - _
\—odn da + AP
] —
O: -B
1
I
20 Y I
- o S
2 2 ;
S+ Wy !
t
Bl } df - pa
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Then Z" = Fl(P)

|

B

w
=_ .0
S

|
1
i
1
1
1

- - — =

@

w

|

- BT+ = BB
S

+ @O

o

],/
fa
a
Fa B8
@ ot
+
+
i3 _
B to t
' g 3
o~ (9] (9]
g° g° _ g°
>~ > > 1
| + wnl + ol +
o~ o~ 3
N (9]
_s . S,
+ + !
M_w. el
o
g%la

fa P
mo“ [
1 " ﬂ
]
[}
————g———
i
o1
20w.._ wO
é-—\
—|wn
+
~To | o>
|
U DU -
]
)

|

+
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Thus 2" has been dplit into the three matrices
given in the preceeding equation. The first of
the three matrices of 2" may be realized as shown
in Figure 13, The second term ol 2" can be real-
ized as shown in Figure 14.

The third part of Z" namely

can be realized by one gyrator and a cangruence
transformer. This follows from the fact that is
skew symmetric, real, of rank 2. Hence there
exists a non-singular matrix V (see Appendix 2)

such that

o
=

=2

1
~
o

!
o

- — ———

!
=

<
<

!
1
!
1]
<
!
'
|
{
1
!
————m————
|
l
1
< !
<

which is realized in Figure 15. The overall net-

work for 2" is shown in Figure 16.
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An alternate realization for 2" is possible.

Let 6 be a real n-1 vector. Observe that both

o | -8
G =| —---a----
|

o« 6

and -G are real skew-symmetric and hence they are
PR. 1Instead of splitting Pl(Z) into P and Q we
split it into P + G and Q - G as was anticipated

in the comments after the proof of Proposition 1.

Let
-’=—2-1
6 == B
o
Then
1 : -a
i
I
P+ G 225Y 5 |77 o= oo mmm o -
s” +w i
i -
-al ae + BIB
0 5 _slg
] w
[ fo)
+ 22y 2 !
—————— T-————-—--—-—“-‘--
s + wo I
!
.2 : _
S T -
o Bi ! wo(alB Bl a)
1
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Hence 2" = Fl(P + G)

— ———
) f
! s
.
".nmw o wo ta ig
! .wo + A [y
) W
oy o + i
] [ead
o mm TN o ta
s_wo Loy + 3 3
_/lll\\
+ 1 o~
o) o)
o 3° 3 AL
13 I %@l + 3| +
b~ I ]
! 'a']
I /)] w w
\ + |
i
)
s S -
lllll e
]
]
]
|
e “ @
3411 o
+ n.m“ lnM “i3
o~ ! ] +
n |
/ Il‘ll\.\.\

¢

e
1
!

o
2sY
o}

|

=

—
a

- - - -
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Z" of the alternate realization, has been split
into three matrices., The first of these terms
is a capacitor in series with port 1 of the net-
work of the remaining terms.

The second term is a single perfectly coupled
transformer shown in Figure 17,

The third term can be realized by a single
gyrator and a congruence transformer, since it

is congruent to

1 P w0 1 E\i 1 2rs
t ! ! w
! | i C
SRR SO | PUPIUT RPN | BN .-
2 3 { '
Sl SRR A RT-1 B N AT U z
(1.)0 {

The overall network for Z" is given in Figure 18.

Ifw =0 or o
o

For definiteness assume w, = 0 (wo = 00 can be

analyzed as the dual).

-1 1 —_—
Then U = (zll) 1 (1 ! -le)

Zyy
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sU[
The pole matrix P = ——lﬁfg = % say.
s
Vi = = = Y which is real
1l V4
11
s=0
and positive.
G‘ _ -8212
12 zll
s=0

But 212(0) is real., Hence by Lemma 8, le(O)

and zzl(o)l = -0{. Thus
V12 = -Ya
v,,} = -Yal
Finally
Vy, = Ydd
1l ! -0
i
. 4
Hence P = 74 eluta i _______
[}
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Then zZ" = Fl(P)

o4

1
1
I
'
!
= ------: ----- + m———qm -
! 1
! '
{ |

) -a)

Thus 2" can be realized by a single inductor, a
single gyrator and a congruence transformer, as
shown in Figure 19,

Hence 2" contains at most two reactors, one
gyrator and ideal transformers.

This proves Proposition 3 and completes

the proof of Theorem 13.

Proof of Theorem 19.

We recall that Z was partitioned as follows

B d ‘ band
10 1 %12
~~ )
7 = __._.._g..._.._...--
¢
507
21 . 22
L4 .
where zll is a scalar.
Then since Eh (jw ) = 0, we have

11

—— o
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zll(on) = jn

where 7 is a real constant.

< <
Let O wo @

1, ¢
o '
If n>0 let B = —— |~""=r—=-
]
s b 1 ¢
' —
sn 1 ! o
If n < 0 let B = - > —--T---
© \ol | o
If n =0 let B = ¢.
If wo = 0 or o

Then nn = 0. Let B = ¢.
In each of the above cases the matrix B is PR,

Recall that Z =2 + B. Then 2 is PR and

zll(on) = 0.

case 1 1z, (jw,) = in n > 0.
11
~ W N

Then 2 =2z o

11 11 + = has a zero at wo and a

pole at the origin,

Recall that Pyy = —3251;~3 ., which is subtracted

8 w
+ o

Rsasiine v il
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from Ei* leaving
11

]

. oy - 1 _ __2sY
‘L[r‘l(“) P]ll

3 2 2 .~
B s + swo - 2s Yzll - 2ston

2 2 ~
(s + Wy )(szll + won)

! 1 .
Hence 2y, = [Fl(z) - p]ll Yields a pnle at s

o 2
oM

S((DO - 277'Y)

of value

[}
Since Z11 is PR and nn > 0, we have that

3
(.l)o - 21;'Y

>0

Inverting Pyy gives

-

0
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and utilizing the alternate relization for 2"
(Figure 18) we obtain the network of Figure 20
where the series capacitor -0 N / s is the com-

pensation for adding
f -
l ¢
I
]

B =—2|-=--+----
i
(
!
!

2] ¢

to Z. Now the three capacitors of Figure 20 can

be combined into a three-terminal network

/ 2 o o 2
%o _ 27 Po_
2s8Y s 2sY
T =
2 o 2 o 2
D5 °o_ . o N
2sY 2sY s(wO - 27nY)

L B o« Gina
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Wy - 277

2 (o]
_ %
T 2sY

w

1 Qe
\ w, - 2¥n

T is PR since w, - 2Yn >0, and O <W, < @

Moreover T is of rank 1, and is therefore of de-
gree 1. Thus T may be realized as shown in Figure
21 by a single capacitor plus an ideal transformer.
This gives us the realization of Z shown in Figure
22.

Case 2.

zll(jwo) = jn n < 0

5 _Sn
Then zy1 Z11 o has a zero at @ and a pole

o
at oco.
dyq = [rl(Z) - P]ll. Henae,
-1
S 1 _ 1 ___2sY
11 T[T @ - Pl ~ _sn gz, 2
11 w
o
2 2 -
) Ss + W, ) w2y - smy)
2 3 o 2.,
S +t o, - ZsYzllwo + 2s8™Vn
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which has a pole at co given by

—=8n
o, + 27n

Since this term is Pr and n < O, we have that
‘DO + 2¥n > 0. From 2" we obtai: the pole at w

of value s/2Y (see the proof of Proposition 3

of Theorem 18). The three terminal matrix T is
now:
sn 4 S5 S
w 2Y 2Y
o)
T =
S S _ .50
2Y 2¥ T+ 2n
U)o 4+ 277) X
W
o}
= _S |
2y
1 %o
CDO + 271)

which is PR since w_ + 2¥n> 0 and 0 <w_ <.

-
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Again T is of degree 1 since it has rank 1. T is
realized by the three terminal network of Figure
23 which is a single inductive element, and 2 is

realized by Figure 24. This completes the proof

of Theorem 19,

Prior to commencing with a discussion of Case

B, we make the following observations.

1) Referring to Figures 22 and 24, either

L2 1 '3
|
7! o il ey
s{w_ - 2¥n) |
ol | ¢
or
1 7
S ——l
2"+ 3 + 2¥n :
o} ! 0]

now remain to be synthesized. If W, = 0 or oo,
then Z' remains. The cycle is now resumed by
splitting off any j-axis poles followed by a re-
moval of resistance until a new 2 is produced
for which %H is singular at some point on the
i-axis. Either a Case A or a Case B cycle now

commences.
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2) We note that a buffer of degree 1 or 2
was removed ‘rom Z resulting in a degree reduction
of 1 cxr 2. Thus the Case A cycle is minimal in
the sense of Tellegen's Minimal Theorem stated in
section 2.3. As will be shown later, the Case B
cycle reduces the degree of Z by 2 with the re-
moval of a buffer of degree 2 and so it is also
minimal. Thus a given matrix of degree d will be
synthesized, by this method, by a network cortain-
ing precisely d reactive elements.

3) We note that at most 1 gyrator appears
in the buffer for a Case A cycle, whether the de-
gree of the buffer is 1 or 2. We will show that
at most one gyrator is required per unit degree

reduction.

4.6 CASE B SYNTHESIS

Assume that

- e S — —— =

—
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is an n x n PR impedance matrix. is 2 x 2.

211
Let Z have no j-axis poles, and assume as in Case

~L

A that none of the principal submatrices of Z is
identically singular. Since Z falls under Case

B, then Zy (on) is singular, but Re Zey (on)

11 11

is positive definite., This immediately means
that W, # 0 or oo since at those points Z is real

and so QH (jw ) is real and singular, which im-
11~ °

pPlies that a Case A synthesis is possible. Sim-

cannot be identically singular on the
11

j-axis since then it is singular at W, = 0 and .

ilarly §H

A case A synthesis is then also possible.

Thus we may assume without loss of generality that
for Case B, Z is an n x n PR impedance matrix,
without j-axis poles, with no identically singular

principal submatrices, %H not identically sing-
11
~F

ular on the j-axis, %H (jo_) singular, Re 2

not singular and 0 < W, < .

(3w )
11~ °
We now follow a procedure similar to the
Brune method, and add to Ell a 2 X 2 matrix B(s)
such that Ell + B is singular at jwo. The exist-

ence of such a matrix is guaranteed by
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Lemma 9. Let 2

11 be a 2 x 2 PR matrix with

%ll(jwo) =C + jD - j(E + jF) where C and E

are real symmetric, D and F are real skew-

symmetric and where C + jD is positive semi-

definite (i.e. singular) but C is non-singular.

Then there exists a 2 x 2 PR matrix B(s) such
that

i) gll(jwo) + B(jwo) is singular

ii) B(s) can be realized by at most 1 in-

ductor, 1 gyrator and 1 ideal transfurmer,

Proof. Let B(jwo) = jA(C + jD) + F(E + jF) where

A is as yet unspecified. Then
zll(on) + B(on) = (1 + jA)(C + jD)

which is singular as required by i) of the lemma.
To give B(s) the properties required by ii) of the
lemma, A is chosen as follows. C is non-singular
by assumption. Since %11 is PR, C is also non-
negative definite. Hence C is in fact positive
definite. Thus there exists a real, non-singular

N such that
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P 0
C = NTN and E = NT N.
0 q
Then
A 0 P 0
7\C+E=NT + N.
0 A 0 a
Suppose that p > q
p-q 0
Take A = -gq. Then ANC + E = NT N
C 0

vhich is positive semi-definite.

Take B(s) = i— (AC + E) - (A\D + F). Then
(@]

B(jwo) = jA(C + jD) + F(E + jF)

as required by i). Moreover B(s) is realizable
by a gyrator, a single reactor, (since MC + E
is positive semi-definite) and ideal transformers

as shown in Figure 25. Thus ii) is satisfied.

Suppose p< g
Take N = -p and follow the above argument. We

- ——— o
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again obtain a B(s) which satisfies i) and ii).

Suppose p = q.

Take A = - p. Then M + E is a null matrix. Let
B(s) = -(A\D + F).
Hence B(jwu) = JA(C + jD) + F(E + jF) as re-

gquired and B(s) is realizable by a single gyrator.
Thus in every case B(s) exists which satisfies
i) and 1ii) of the lemma.

This completes the proof.

We conclude from this lemma that B(s), a
2 x 2 PR matrix, can be found, whose addition
makes %ll(jwo) singular. This is an extension
of the Brune procedure, and following the Brune
tradition, B(s) will be compensated for at a later
stage by the addition of -B(s), which, as will be
shown, can be incorporated into a Pr network.

Let

Then le{on) is singular but le is not identi-

cally singular. Since 2 has no j-axis poles,

———




-111-

Z has only the j-axis polcs contributed by B,

and these occur only in le. Since

B =T§“(7‘C + E) - (AD + F), if A\C + E is not the
(o]

null matrix, le has a rank 1 pole at oo, and if
AC + E is null, then le has no poles. We are now
in a position to reduce the degree of Z by the

removal of a lossless section.

4.7 STATEMENT AND PROOFS OF CASE B THEOREMS

Theorem 20. Let Z be an n x n PR impedance

matrix
a) without j-axis poles

b) without identically singular principal

submatrices

~

c) 2, _ hot identically singular on the
11

entire j-axis

d) ZH11(on) singular

e) Re Z (jw ) not singular and
Hll o}

f} 0< ®, < .

«vq?%%zfp'
P




-112-

Let 2 =2 +|---+4---- | where B is IPR, 2 x 2 and

so _chosen by Lemma 9, that le(jwo) is singular.

Then Z may be deccmposed in the manner of Figure

26 where
1) 2' is PR and 62' = %2 - 2
2) 2" is IPR and 52" = 2

3) 2" consists of an inductive portion of

degree 2, at most one gyrator plus ideal

transformers.

We will refer to these as Propositicns 1, 2, and
3 respectively.

This theorem is the basis of the Case B pro-
cedure. In order to compensate for the addition
of B(s) we must also add -B(s) to Ell' It turns
out, analagously to the scalar case, that this
subsequent negative matrix can be incorporated

into a PR 6-terminal network. This is proved in

Theorem 21. Given 2, Z and B as defined in

Theorem 20 and Lemma 9. Then, after the application

of Theorem 20 to split Z, it is always possible to
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incorporate the compensating -B(s) into a PR net-

work. Proof of Theorems 20 and 21 now follow.

Proof of Theorem 20.

Proposition 1

Form rl‘z(z) = [T Z (1 L-2..)

Since le is singular at jjwo, Fl,2(z) has

poles there. By Theorem 2, (Zz) is PR,

F1,2

Hence by Theorem 15, T (2) can be decomposed in-

1,2
to an IPR matrix P, formed by the removal of the

poles at jwO from T (z), and a matrix

1,2
Q=r, 2(Z) - P which is PR without poles at
-_Fju);;).
Partition P into Pll : P12 where Pll
|
——_.__1..........
i
Po1 7 FPaa
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is 2 x 2. Do likewise for Q. As is shown below
in the proof of Propositicn 3, Pll is not identi-

cally singular and so 2" =T (P) exists. Q

1,2 11
cannot be identically singular, for suppose it is.
By the corollary to Lemma 7, Q is then identi-

Hyj

cally singular. Since Pll is IPR it follows that

the hermitian part of (Pll + Qll) is singular on
the entire j-axis. Hence by the corollary to
Thecrem 9, 2 =T

11 = T2 2Py

part which is singular on the entire j-axis. This

+ Qll) has a hermitian

contradicts assumption c¢) of this theorem. Hence

Qll
2 =T

cannot be identically singular and so
1,2(0) exists.
By Theorem 2, both Z' and 2" are PR. P and

Q share no common poles. Hence it follows by

Equation 1 that

5(P + Q) = 6P + 58Q

But by Theorem 1, the degree is invariant under a

gyration, so

6Z = dP + BQ = bZ2' + BHZ"

It will be shown below, in the proof of Proposition
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3, that 52" = 2, HEence
db2' = B2 - 2

This completes the proof of Proposition 1.

We make the following observation. Let G be
a real skew-symmetric matrix. Then both G and - G

are PR, If instead of splitting I (Z) into P

1,2
and Q, we split it into P + G and Q - G, then
both P + G and Q - G are PR.

If we choose G so that it has the form
G = (¢ : ¢\ where F is (n - 2) x (n - 2) then

——_——d
[

o | F

by the same arguments as in the proof of Prop-
osition 1, Pll and Qll are not identically sind-~
ular. Hence 2" =

(P + G) and Z2' =T Q - G)

Fy,2 1,2!
will be defined, PR and of the same degrees as

in Proposition 1. G will be useful in Proposition 3.
Prior to proving Proposition 2, we prove

Lemma 11 Let M be a 2 x 2 matrix. Let A and

B be 2 X r matrices. Then

L o
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N= [I,\ M (1, \ B) has the same rank as M.

Moreover if A = B and M is hermitian positive
semi-definite, then N is hermitian positive semi-
definite.

Proof Let M = (i} where M, and m, are

1 2
™y

2-element row vectors. Then

I M=

[\
3
3)

= K say where the §i are linear

N

A _*

H
o))
[

}

1]
N

a,
r

combinations of my and m, . Let X = (kf kzl)

where kf and kz; are column vectors of order r+2,
Then K (I2 ; B) = (k1& k24 bli . . .brl) =N
where the bil are linear combinations of kf and
kzl. Clearly the rank »f N equals the rank of K

and the rank of K equals the rank of M.

- —ra
o -~
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This proves the first part of the lemma. If A =
let Q = I, : ~-A\ . Then Q is non-singular.
I
e e - —
|
) R

[} W
e

Hence N is congruent to

* =
QT N Q M o

—-— . —

i
1
o ! e

which completes the proof of the lemma.

Proof of Proposition 2

Recall that 0 < u.)o< (oo

- -1 -
Define U = 12 zll (I2 X Z..)

- - -

le(jmo) is a singular 2 x 2 matrix. Hence its
rank is zero or 1. If its rank is zero, then
zll(jab) = 0 and a Case A synthesis is possible,
Thus we may assume that le(jwo) is of rank 1.

The residue matrix at s = jwo is

B,
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V= (s - ](DO)U

s=3jw
] o)

s - jo_ (I, \adj 2z (., + -2..)

. 2
det le o

11

Z

21 s=j'.b‘O

Since 2 is 2 x 2 rank 1, adj 2 has rank 1. It

11 11
thus follows by Lemma 11 that V is of rank 1.

The pole matrix removable from I' (2) is:

1,2

\ \Ad

(13) P=-s—"_—_—-‘jTD'— +-§Ti—u—)-—
(o] (o]

which is thus of degree 2. Moreover P is IPR
by Theorem 15. It therefore follows, by Theorems
1 and 2 and the corollary to Theorem 9 that

z" = (P) is IPR and of degree 2,

Ty.2

This proves Proposition 2.

Proposition 3.

The residue matrix at s = jwo in Fl 2(Z) is
(s - on) I adj 2

A 2
det le L

v = 11

21 S=JW
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which is rank 1, as was noted above in the proof
of Proposition 2., But V is the residue matrix
at a j-axis pole of a PR matrix. Hence V is

hermitian non-negative definite by condition

IIi , (section 4.2). Partition V into

I

Vit 1 Y1z
|

______ }_..........__
|
i

Varo o Va2

where Vll is 2 x 2. Then V11 is also hermitian

non-negative definite. Since

(s - jwo) ‘
Vi1 = "Ger z.. 2931 2

11 11

sS=jW
1%

and since le is 2 x 2 rank 1, it follows that V11

is in fact hermitian positive semi-definite and

must therefore be of the form

all a12 + jbl2
Vi1 =
2 2
a3 %12 * Py
12~ 12 a1

I
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where aj;; > 0. Moreover b12 # 0 since if

b12 = 0, then le(jwo) is symmetric and singular
and so a Case A synthesis is possible.

Having established the form which V must

11
have we now determine the form of V. Let C and

D be real 2 X n- 2 matrices. If we take

V=l I /311 ajp ¥ IRy, | (L €+ D)
C
T 2 z
a + b
—JDT a5 jblz 12 . 12
11

then V is hermitian, and by Lemma 11, it is posi-

tive semi-definite, rank 1 as required. Let

a1, 2y, * 3k,
w:
2 2
] L a1," *t by,
12 ~ P12 a,,

W WC + 3WD
}
-——-_—r— ———————————
V=Eloew ! CWC+ DWD
T | T T
|
D W : o s
3D, i + 3JC M D - DM C
-y TS p—
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Y v

Recall that P(s) = _— jwo + s jwo

(see equation 13)

Let V = M + 3N

2sM - 2woN
Then P = 92 T >
"o
Letting
sa11 sa12 - b12
K =
a122 + b122
sa,. + w b e )
12 12 all
ard
*
w all woalz + sb12
L =
W a sb w (8122 ¥ blzz
o 12 12 a,‘l
we obtain

e Gy G GND  wa  —— R SM> G . G e . m— - G

|
I <
o ‘ CpK C + DX D
;
z
!

- CTL D + DTL Cc

(14) P =

5 4+ W
o)
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B b p
11 { 12
]
= |lewe—m— i
i
P ! p
21 ! 22
We now add to P the matrix
¢ { ¢
U P
|
|
¢ I F

where F is real, skew-symmetric (n - 2) x.(n - 2).
As noted in the comments after the proof of Prop-
ogsition 1, the addition of this matrix to P can

be offset by subtracting it from Q. Then
- - v
2" = [Ty \Pyy (Iy 4 -Pyp) » fo ¢ 0

Poy ¢ P, +F

which yields

T, TR TR TR R TR S e B TR Y LT Ll T T

— ey LGNS FEES 20 B e oy
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where

(@]
N
(o IR
3,
N
=

-.-——h.&‘-—h——-—l—-—“-—-—*

2
s %y
12 a.,
L

411

is a real 2 x n-2 matrix.
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The first part cf 2" consists of a non-singular

inductive matrix of degree 2 since a y > 7 and

1
by, # 0. Hence this section of 2" can ke real-
ized by 2 inductors plus a congruence transformer.
By the appropriate choice of F, the second part
of 2" can be reslized by 1 gyratov plus a congru~
ence transformer. To see this, suppose. first

that M = ﬁi\is of rank 2 and without loss of gener-

L

m2
“o
ality let EBI;—- = 1. Let F = mﬁﬁa - mojm,.

Observe that F is a. skew symmetric real

(n - 2) x (n - 2) matrix as required. Then the con-

stant part of Z" is congruent to

' —p
0 1 | ml
1
l —tn
HT -1 C : m2 H
______ [~ —————
- - | m. - m.
ml; mof mlJ m,, ng my
/ o 11
= ! $
|
R N
- |
I
¢ | ¢

M SEE DWW B e ey g

v
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where
P
1 0 " m2
]
|
: —
H = 0 1 | -ml
______ o ——
!
¢ P I

Thus the constant part of 2% can be realized by 1

gyrator and ideal transformers. On the other hand,

if M iz of rank 1, i.e. M = /hﬁi then letting F

\‘9"‘71

be the null matrix yields the resul% that only 1

gyrator plus a congruence transformer is required.

This completes Proposition 3 and Theorem 20.
The connections of 2' and 2" will be discussed in
the proof of Theorem 21 which now follows.

Proof of Theorem 21

As required for a Case B synthesis b (jmo) was

Hi1
a singular 2 x 2 matrix where 0 < wo<< 0o .
We then addéd B(s), a 2 x 2 matrix, chosen

according to Lemma 9, such that

B(s) = 2= (AC + E) - (AD + F)
(o]

Lk e i et

oy
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has a real symmetric part AC + E of rank 1, a
real skew-symmetric part AD + ¥ and has the

property that %11 + B is singular at s = jwo.

T ofB 1
; 7 4l ! e -1
Now 1T) ,\2 +<-—1 1 = (2;, +B)
o 1 o
| -11
Hence 2. =[(%,, + B)~! - p ]~l where P is the
11 ‘711 11 - i
B | ¢
~ |
pole matrix in T, ¢ Z +-----f--”- at jo_ (see
| A
Y
Equation 14). i.e.
Ve ~ -1
217 = (24, ¢ B)[ I - Pll(zll + B) ]

From Bquation 14, we see that near s = no,
< 23

Pll il where
211 812 \
A =
2 -2
- a + b
a12 12 12

| . daseurady
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is positive definite since a 1> 0 and b12 # 0.

1
~ ~ . . [}
Moreover, Z (and hence le) contains no j-axis

poles by assumption. Thus near s = o,

5 22
Pll(zll + B) ¥ By A(\AC + E)

and it follows then that 2!

11 has a 2 x 2 pole st @

given by:

_ s ) 2 -1
M= wO(XC + h)[I -~ mo A()\C + E)]

which can be removed from Z' leaving benhind a
PR remainder.
Next, by Equation 15, 2" has a 2 x 2 pole

matrix in its 1,1 2,2 position

2 2
ajp t by,
a 7a12
11
s
N 2b. .2
12
“812 a1
- s 5 A—l
2,

which can be removed from 2" leaving a PR

remainder,

e
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{
0 S 1
2byy |
[
| K
|
~®y 0 :
2b12 i
--------- .f---~-.--,
!
{
|
- [}
Ky, ! F

Thus the connections for the realization of 2
are as shown in Figure 27.

The addition of -B is tu compensate for the
addition of B to Z. Observe the common terminals
lg and 2g. There aire in fact three external
terminals (la, 1b, 1c) associated with port 1.
Similarly for port 2. This gives a total of
six terminals and two commons for the network made
up of -B, N and M.

-B is not PR, but it can be absorbed into a

6-terminal (4 port) matrix given by




shown in Figure 28.

To gsee that T is PR we proceed as follows.

-B + N

[Z2 (AC + E) + AD + F] +‘-§-A—l
0

s a1 2
> A [I-—woA(AC +E)] +AD + F

il

Define Q = I - % A(\C + E)

Q
and G = \b + F
Then-B+N=—§—A“lo+G
Also,N+M=-§A—l+§-(AC+E)[I-—2-A(AC+E)]-1
w w
(o] (o]
= -g— a7l - 52)- a(c + E)17L
o
=5 p-1571
....2A Q
_ | _ r
a~1lg | a~l G | &
- LS T R L_ -
Hence 7T —-5 ‘ + |
- { - - |
a7t | A lQ 1 ¢ 1 ¢

We note first that % A-loﬁl is PR since it was

formed from the addition of M and N, both PR,

e 4
e
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a"1g71 being the residue at a j-axis pole,
must be hermitian non-negative definite by condi-
tion IIIi. By condition I, %-A‘lQ-l must be
real for s real. Hence A-lo_l is symmetric non-

negative definite.

Since both Q and Q"l exist, it follows that

le is non-singular. A is positive definite.

Hence A™10™! and its inverse A are both
symmetric positive-definite 2 x 2 matrices. We

then have:

- | -
2 1 i a~t
S ...__.4..._.....-.' ______ —
2 I
A-l : A-lQ—l
|
A-l/zQAAl/Z: I
_ 8 I
=3 Rpl--mmmm- { R
I 5 A1/2 A—lQ 1 A1/2
|
where
_ {
A-1/2 | R
}
R= |--==~ + - -
|
] iy
¢ 1 A 1/2
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|
put [a"1/2 qa a~1/2 ! 1 \
____________ .g:.-...._.._.............._._._
| -] -
I i al/2 p=1y=1 z1/2
> | N
|
= Xpl---~T """ " 77 X
I -l -
® : Al/2 A 1Q 1 Al/z
where
l
I | ¢
|
X o e oo e e e e = +.......
|
a2 gp a2 0y

and can therefore be synthesized by two inductors
and a congruence transformer. The constant part
of T is 2 x 2, real skew-symmetric and can thus
be synthesized hy a single gyrator.

This .completes the proof of Theorem 19.
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We are now able to prove the following:

Theozem 2.2 et 2 be a PR matrix of deqree 4. Then

the synthesis of 2, if carried out by the hybrid

matrix method described in Theorems 18, 19, 20

and 21 will result in a lossless buffer containing

d reactors, at most d gyrators and a termination

of resistors and gyrators, plus ideal transformers.

A
Proof. Assume a PR matrix 2 to be synthesized.

The removal of an entire j-axis pole at any time,

will reduce the degree by precisely the degree cf

the pole matrix, which appears in the buffer,
Suppose a Case A cycle is called for. Let

G <o < o. Let 6Z = m. Hence 5% = m + 1 since

h ;____@i of Theorem 18 is 1.

Now 82" = 2 and 82' = m - 1. The absoxp-
tion of -b into the perfectly coupled trans-
former requireu one reactor from Z" and one from
Z'. This transformer then has degree 1. Thus
the buffer has degree 2, one due to the trans-
former and one remaining in 2". The degree of

the termination is m - 2. Thus the cycle is mini--

mal.

- %

et St

[y




-133~

Suppase W, = 0 or co. Then no Brune im-
pedance is added. 582" = 1 and 52' = m - 1 and
again the method is minimal.

Suppose a Case B cycle is called for. Let
6% = m. Then 6% = 6(% + B) = m + 1, since 8B = 1
and B and Z contain no common poles.

62" = 2. Hence 62' = m - 1. Both reactors
in 2" are used to absorb ~-B, resulting in a 6
terminal reactive buffer of degree 2. 2' con-
tributed a reactive matrix of degree 1 to the
buffer. Thus the degree of the termination is
m - 2. Thus in every case the method is minimal.

In both Cases A and B, 2" contains at most
1l gyrator. 1In case B, the Brune section B(s)
adds at most 1 gyrator to the buffer. Hence in
every case, the degree is reduced by 2 for at

most 2 gyrators in the buffer.

This completes the proof of Thecrem 22.

In the following pages the entire synthesis
procedure is illustrated in flow chart form. The
various steps are in accord with the lemmas and

theorems of this chapter.

b

4 o
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Synthesis of %

Y

52 >0?
Y N

Realize with R,G and
transformers

%

(__Any j-axis poles? )
Y N

%
Remove and realizel
them. ﬁ is the re-~
mainder.

]

¢~ Is Z or any principal j:>
\__Minor identically singular?

b'4 N

y [ i
Apply congruence trans-j Go to 2
formation and realize

its inverse. Remove
gyrators. Remainder is

| I

Meean o

sl W B

 ——

[ 3 :ad [insZ el
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r i
Pa) . )
(::ZH singular? ::)

Y N

i

Remove resistance

1

2H identically sing~
ular on Re s = 0?

I

formation to give

Y N
A
Take w, = 0] C:Be ZH singular at jwo§:>
‘e Y N
Apply congruence trans- Apply congruence trans-

i formatjion to give .
= Dp2 D and Z (3w0)= Of |2 =D, Z D and zﬁnuno)

T
11 b |singular
Y
<::,Eﬁll identically zero?;:>
Y N
Remove gyrators wo = 0 or co£:>
and realize them
% is the remainder ¥ N
| ‘
| Case A Case A |. |[Case B
Entry 2 Entry 1
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Case A

-

Entry 1

4

Choose b(s) such that 2&1+ b =0
Z=Z+b 1 ¢ (at s=jw )
R o
o 1 ¢

Form rl\z)

{
rﬁémove poles at + jmo Call thdir sum P

T
Let Fl(Z) - P =Q
)
(:jb capacitive? )
Y N
Form Z" = Fl(P + G) Form Z" = Fl(P)
z' =r,(0 - G) z' =r,(Q)

}

{

Remove series poles frcm 2Z2' and 2"

]

poles from Z' and 2"

Add -b and absorb it with the series

A
now Z.

Z' minus the series pole is

1
Return to 1

-

. 1 i

fommmc}

g
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Case A
Entry 2

R

Z is now 2%

Form Pl(Z)

Remove pocle at s = jwo Call it P

r

[Eet r,{z) - p=09

1

Fo

rm 7" =T, (P)
z' =rl(Q)

i

{Z' is now.%J

Return to 1

=P

trag.
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Case B

Find B(s) such that Z + B is

]
DR

+ B

singular at jmo. 2

Form Fl 2(Z)

Remove poles at + jwo. Call
their sum P

Q=r, ,(2) - P

Add G to P so that 2" = Fl 2(P+G)

has a gyrator portica of rank 2.

L.

lz' =T, Z(Q-G)l

Remove series poles from Z' and 2"
Use them to absorb- -B

1

[® is now 2' minus the series pole

Return to 1

. T v

G s i 8
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Example of Case B Synthesis

In order to demonstrate the Case B synthesis
procedure, we have selected a matrix which already
has the property that the hermitian part of its
first principal 2 x 2 submatrix is singular on the
j-axis. Thus the initial removal of resistance
is not necessary in this case. Clearly no dgener-

ality has been lost by selecting such a pre-

conditioned matrix.

We wish to synthesize Z =

37s% + 43s + 10 ¢ St 1 13s + 14
(s + 1) (s + 2) s + 2 s + 2
S s + 1 s + 1

6 2
s + 2 s + 2 s + 2
lls - 2 2 s + 1 55 + 6
s + 2 s + 2 s + 2

Computing Z at s = j we obtain

e o Vb e e T
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51 + 62 6(3 + 5) 41 + 12
B(3) =% | 6@ +32) 345 2(3 + )
7 + j24 2(3 + 3) 17 + j4
51  12-j3 24-i6 62 9-36 18-j17
1, i .
= £ | 12+33 3 6 |+ 3| 9+36 1 2
24+j6 6 17 ~ 8+j17 2 4
~
= ZH(J) + Zg,(3)
Hence
51 12-93
N L] l
z, (3) =%
Hy) 5
12433 3

is singular, and so for this case w, = 1.

Brune Section

In order to make ﬁll(j) singular it is neces-

sary to add a Brune section which cancels (3).
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In Lemma 9 an existence theorem is given which

shows that a matrix B exists such that gll + B

is singular at s = j. In what follows the matrix

B is obtained in a slightly different fashion, one

which is perhaps computationally more convenient.
B(s) will be so chosen that B(j) cancels the

matrix 2 (j). To gilve B(s) its required prop-
SHyy

erties we also add an undetermined amount of the

matrix 2y v.). The determination of the multir
11

plier finally €fixes B and is done i such a way

that B has a rank 1 pole at co.

62  9-36 51 12-33 |

B(j) = -

(6] SN

Y
J %
9+36 1 12+j3 3

where ) is chosen so that B(s) has a symmetric

portion comprised of a rank 1l pole at oo, plus

a constant skew-symmetric matrix. The symmetric

 ——

part of B(j) is

62451\ 9+12)\

P

B(3) + B(3)g _ 3
T 75

2 9+12%  143)
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which must be made singular by the choice of A.

2 2

i.e.  (153X°+2372+62) - (144)7+216)x+81) = 0

This gives

\ = =1 E5¢5
" 6
Using ) = = g 29 gives

175-1 4., % 0 V5-1

2 2
B(j) =3 +
1425 6 [\ (51 0
2 2

i.e. we add to Z the PR matrix

[ 17J5-1 1+2V5 0 B-l\
2 2 ¢

B(s) = s +
PSS A B WO S

Letting Z + B = 2 we obtain

51 12-33

L 1 i (745/5
z,(3) = [ 5+2 | )]
12493 3

which is singular as required. 2(s) follows.

— we CERD
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st s 0

25 ' 38 208§

9 +5¢ | (52 . =S 11
i
t
i
]
'
:
!

— L -

]
t
'
| ~{s) 2
t
1

_3*S : _{gs502 (2+5)2

(1es)2 m 2+ (S/ 2er)50(5/ 410 S (§/2-2) (/M Lo 21)S+(5/ +2),8
m
[}
)
1]
'

28 ] (2+5)2 (Z+$)U1+8)2

*HS o : (§/2+ ON{E/ 8+ENS oS A P42),S 02 +(S/ S+ vBIS+IS M IB1L) B +0-E /21 S

B e

P — i —
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244 is singular at s = j, and so Fl'z(z) will

have a pole at s = j. Let

= -‘l ! -
u=f1,\ z;7 (1 2z.,.,)

ZZl

Then we can extract the. pole matrix from U. The

residue matrix in ZI% at s = j is

1 ~4+3

Thus the residue matrix of the pole in U at s = j

— B BSE AR WM s —

is
V= (s -3j)U
5=)
1 o |[ 1 -a+j|[1 o, - 22
= 32821 o 1 fl-a-5 17 Jjo 1 - 82

74924  6+42
5 5

hulen 2 T "p’-—-—-———-~"*“"‘
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) ~4+j ~3-32
_3-/5 | -4-3 17 10+j11
4
-3+j2  10-j11 13

which is of rank 1.

The pole at s = -j in U has a conjugate residue V¥

The entire pole matrix removable from [, Z(Z) ig
’

thus
_ v A
P(s) = s-j s+j
2s ~(8s+2) -(65-49\
~{8s~-2) 34s 20s8-22
- (68+4) 208422 268
_3-45
9
s2 + 1

Letting 2" (s) = r'y 2(P) we obtain 2" =

[ 34s 8s+2 11(3-y3
3§7g 8s-2 2s . 2(3~V8)
~11(3-/5) -2(3~\/5; 0
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17 4 0
i.e. 2"(s) = 3;{§ s 4 1 0
\oe o o
0 2543 11
+ :égfz 0 2
-11 -2 0

which is PR of degree 2, with 1 gyrator.
We now form I'; 2(Z) which is given on the
following page. Q = Fl 2(Z) - P is given on the

page following I'y 2(Z).

(= T
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(S/°2+02 (5 e p LS5/ 921, ) ks)

e/ 8-9S IS/ vr 26N+ (S A ¥6+912) S+ (S/254101)cSH S 110210, S] ) ]
o ° o
\ o ] o
[8/+8+02+(S/ 914918+ (§/ 9420, 8] L1+ ;S)
R+5Xi5]
Tes 2+$
[9/'v-09+(5/ voe+B8)Se [(g/ v-8)-(5/ vi+¥2)s-
o (S/11461-1,S+(g/ Dier2) 5] L8/ 2-vLSel8 2] S]
s 158

g/ e e2i-1g/ v o6l | R TI

nm\.nvﬁo.wm..w»w_.wen& (S5 o1L), S ~li-5/ L1 S] [/2-2etgfeettis s oozl )

2*s

[s/r-8e
(§/°942€)5o(§/ P1e28), S +(§/E+6) S}~

[ts/r2e0n1e (S 6051528 AP42),S)-

2o (S A 2eIS L o) 8

[@2)"g

[
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Then 2'(s) =T, ,(Q) =

|
s(e2+20/5) | SQRIHIE) | 5,
| 1
+ 354158, +‘2§i%515 |
__________ - SR R
l [
(37+§7 5) 1 gusys) ) &
17475 | 7+3¢5 r
T ! 3 |
________ b_!..._....._.._._._.___._.:___.__
|
4+5y5 i 1+/5 ! 5
62+29,5 3741745 0
_ 137417y 1145(5
=g 5 3 0
0 0 0
35+15/5 2A§£wﬁf -
. | 2140¢5 7+3Y5 0
4 2
345 0 5,
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/ 0 Ly ~1-445

+ -'—%—E 0 -1-V5
\1+4J§ 1+y5 0

The first of these three terms is a rank 1 pole
at oo and can be realized by a single inductor
and ideal transformers. The second term is
purely resistive and can be realized by 3 resis-
tors and ideal transformers, and the third term
can be realized by a single gyrator and ideal
transformers,

The rank 1 pole at oo in Z' is called M.
It is caused by the addition of B to Z.

From Z"(8) we obtain a series pole at o

given by

f17 4 o‘

N = s-éiﬁé 4 1 0

Lo o o

The connection sequence of 2', 2", M, N and -B

is shown in Figures 29, 30, 31 and 32.

BB

s e

— W GEED BN amn o mae o wmve DR AR OED

-t
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The matrices -B, N and M of Figure 32 are com-

bined by the methcd éiven in the proof of Theorem

21 into a matrix

-B + N ! N
!
T = | = - ) — - —
l
N | N+M
The reactive part of T is
=
2 5 51+17¢5 12+4V5
2 2
12+4Y5 3+/5
5 1 SN 220D
2 2
S
51+17/5 12+4/5  175+75/5 49+21/5
2 2 2 2
12+4V5 3+J/5 49+21J5 14465
2 2 2 2

which is rank 2 and may be realized by con-

gruence transformer and 2 inductors. The final

realization for Z is shown in Figure 33.




APPENDIX I

The PR Property.

A. THE IMPEDANCE MATRIX.

Definition 1.1 A network is said to be

passive if there are no energy sources within
that network.

Suppose a network is excited by an external
energy source. Any increase of the energy with-
in the network must be obtained from that external
source. We thus have
Axiom 1.1 A passive network cannot posess an
increasing amount of energy when all external
forcing functions are zero.

Suppose that a passive network is excited
by an external forcing function, which is periodic
(period T). Once a steady state has been achieved
the transfer of average energy can only be from
the exciting source into the network. We state

this as

Axiom 1.2 The average energy supplied to a pas-

sive network by a periodic source is, in the

steady state, non-negative.

~152-
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Let e(t) be the instantaneous energy enter-

ing a passive network and p(t) the instantaneous

power. Then

_d e(t
p(t) = &2{E)

Let the source be periodic and let a steady state

exist. Then

(n+1)7T
1
Pave =7 p(t) dt
nT
= %[e((n-i-l)T) - e(nT)].

By Axiom 1.2, e((n+l)T) = e(nT). Hence we have

the following

Theorem 1.1 The average power entering a passive

network from a periodic source is, in the steady

state, non-negative.

Suppose that there are n ports at which
forcing functions may be applied, and let the
responses be measured at those n ports. Let the

network consist of finite numbers of resistors,

—r
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capacitors, gyrators, ideal transformers, self
and mutual inductors, all of which are iinear. |
Let the forcing functions at the n ports be cur-
rents, and the responses be voltages.

Then vk(t), the voltage at the k-th port
is related to ir(t), the current entering the
r-th port by a linear differential equation of
the form

h mankmD v (t) = ‘zoﬁrvD lr(t)

v

where D means %E .

The coefficients akm and Brv are obtained

) g, oy g g M e

by the application of Kirchhoff's laws to the
network. Since a network comprised of a finite
number of elements can have only a finite number
of loops and nodes, it follows that p and q are
finite. Moreover, if all of the elements in the
network are physically realizabie, then their
values are given by real numbers. The applica-
tion of Kirchhoff's equations will encounter only
zeal numbars and so all of the %em and Brv will

e real.
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Suppose we restrict the forcing functions
ir(t) to be in the class of functions which are
Laplace transformable. Assuming no stored enexrgy
within the network at t = 0, we obtain, by trans-

forming both sides of Equation 1.1,

5 I.(s)

Z Ao

n=0

where s is the Laplace complex variable.

Define
q
v
zZ B_.s
v=0 IV
ket T Tp .
z s
mzoakm

2y is a rational function in s with real coef-
ficients.
By the assumption of linearity if currents
are simultanecusly applied to all n ports,
n

Vk(s) = rilzkr(s)Ir(s) k=1,2...n

¢l

— YRR “wi.tpm
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This gives the general equation for the network as

Vis) = 2(s)I(s)}.

where V(s)} is the vector of Laplace transfoims of
the port voltages and I(s)} the vector of port
currents. Z(s) is an n X n matrix called the
driving point impedance matrix. We have thus
proved the following

Theorem 1.2 Let Z(s) be the driving point im-

pedance matrix of a passive linear finite lumped

(PLFL) electrical network. Then the elements of

Z(s) are rational functions of s with real coef-

ficients.

B. CONSTRAINTS ON THE POLES OF zij'

Let all currents be zero, except for ir(t).
Suppose that ir(t) is a rectangular pulse of
finite duration starting at t = 0, and such that
after t = tl' ir(t) = 0. If Zkr(s) posesses
poles in Re s > 0, then it can be shown that
after t = tl’ when all forcing functions are
zero, vk(t) increases without bounrd. Since this

implies an increase in the internal energy of

the system, a violation of Axiom 1.1 is

s

— wesy Sy BME GEN DS S
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encountered. Hence zkr(s) cannot have poles in
Re s > 0, and this i true for k,r = 1,2...n.

Assume zkr(s) has a pole con the j-axis at

s jwb' and apply the same current pulse.

If the pole has a multiplicity equal to m then
vk(t) will have in it a term f(t)cos(wot+8)
where f(t) is a polynomial of degree m-1l.
Clearly if m > 1, this term will have an ampli-
tude which increases without bound, again viola-

ting Axiom 1l.1l. We thus have

Theorem 1.3 Let Z be the impedance matrix of

a PLFL network. Then the zij have no poles in

Re s > 0 and any poles on Re s = 0 are of single

multiplicity.

C. ENERGY CONSIDERATIONS

Suppose a network whose impedance matrix
is 2(s), is excited by a current vectcr i(t){
where ir(t) is entering at the r-th port. Let

i(t)} be of the form

e
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mlcos(mot+al)\
mzcos(wot+a2)

ity =

-_-— . - -

!
m_cos (®w_t+a )
n o n

where Wy O and w, are all real, and where
mo # 0 or co. Note that all components of
i(t)} are sinusoidal with the same frequency.
Phases o and amplitudes m are completely
arbitrary.

i(t)}] may be written

mze :
i(t)} = Re el® t E
]
[]
[
m_eJ%
n
ja,
m, e
[}
Let I} = ! = al + jbl
mnejan
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where a} and bl are real n-vectors. Then
i(6)} = Re(e?™F 1),

Let n(t)‘ = eju%tI}. Then letting H(s)}
be the Laplace transform of n(t)l, we have

Ii

s - jmo

H(s)} =

If H(s)] is applied to the ports of Z(s)

the corresponding voltages will be

N(s)| z(s)H(s)}

ngt 1}

5 - 30,

Assume that jwo is not a pole of Z(s).
By Theorem 1.2, j-axis poles in zij(s) are
simple, and poles in the right half plane do not
exist. Hence letting n(t)} be the inverse

Laplace transform of N(s)} we obtain

]
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. W ey%t
n(t)} = z(jwo)eJ ot‘I} + 5 iﬁwk ) I}
+ 2 F_(t)e % FI%)E g

where Wk is a residue matrix at a possible
j-axis pole of Z(s) and where Fr(t) is a matrix
of polynomials in t of order one less than the
multiplicity of the r-th pole of zij(s) in the
left half plane at s = 0. + jwr, (0r<: 0).

In the steady state, (t very large)

jagt
jwet we

n(e) = z(jo)e?™ 1 + 5

k
2 STo, = oy o

n(t)} has a real and an imaginary part. The
response to the real part of 7n(t)} must be the
real part of n(t)}.

Hence if i(t)} = Re(eju%till) we obtain
W e jwot

k
x 3@ @)

jot

v(t)} = Re{Z(jwo)e I} + I} )

The instantaneous steady state power into the

network 1is

2™




-161-

n
() = £ i (t)v_(t)

ss
m=1

]

Re (eI4%¢ T) Re(Z(j‘”o)ejw"t 1} )

We_jaa,,t
ooy 1)
k o)

+ Re (ejw"t_f) Re(Z
k

Recall that I} = a} 4+ jb}. Let

Z(jw )I} = Ef = ct + jdi

and
wkxt .
j(“’k - wo) = ey} + Jfk;.
Then
p . (t) = Re[ (3 + 1B)eI™Y Re((ch + jab)eI™t)

+ Re{ (T + j.];)ej%t] Re[Z(ek{ + jfk& )ejw°t]
k

act coszwot + Ddl sinzwot

(adt{ + bci)sin wot cos wot

- - N .
+ {a cecs mot - b sin wot)il(ek} cos mkt - fk* sin u)kt)
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The average power will be

® 2v/wo

_ o
Pive = 77 / pss(t)dt
o

=(acl + ba})

]
[N ] P

Now,

3 Re(T*E}) = 2 Re[(F - 3B) (ct + 3ai ]

(3cl + Bdl).

|
| =

Thus

1 -
Poye = 3 Re(I*E}).

But E} = Z(jwo)Il. Hence

N =

P =

ve Re(f;z(jwo)ll).

But by Theorem 1.1, Pave > 0. Hence we must
have, for wo not a pole of Z(s) and

for 0 =< wo-< o0,

Re(f;z(jwo)lp > 0.
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I1f = 0, n(t)} = 1} which is real and

n(t)} = 2(0)I{ which is also real. Hence

— -
Pgg(t) = Re(I) Re(z(0)I{)
+ terms due to possible
j-axis poles in zij(s)
= Re a Re cl
= ac}
Hence Pave = ac}, and

Re (I*E}) = Re(3cl) = ac}
Thus as krefore, for 0 not a pole of zij(s),

Re (T*z(0)1}) = O.

If ®, = © we apply the transformation
s' = %. Then s = co maps into s' = 0. An

inductor sL 1is now replaced by a capacitor

ll and a capacitor %E is replaced by an
s' (%)
L

1
inductor s'(E). Clearly this is a passive net-~

work and as before Py > 0, which implies

e




-164-

Re (I*z(s)I|) =2 0 at s' =0

We have thus proved

-

Theorem 1.4 If 2(s) is the driving point imped-

ance matrix of a PLFL network and jwo is not a

pole of Z, then for any complex vector X,

Re(;;z(jwo)x}) > 0.

Corollary 1.4.1 The hermitian part of Z(s) is

non-negative definite everywhere on the j-axis

where 2 has no poles.

Proof.
Re (x*Z(s)x}) = ;;ZH(s)vt for all X

Corollary 1.4.2 If 2Z(s) is the impedance

matrix of a lossless network (i.e. without res-

istors) then ZH(s) is null everywhere on the

j~axis where Z has no poles.

Proof. Since the average power delivered to

the network is zero,

Re(i%z(jwo)xa) =0

for all X .
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D. THE ASSOCIATE FUNCTIONS

Definition 1.2 Let £f£(s) be a rational function

of the complex variable s, with real coefficients.

Then f(s) is said to be a real rational function

of s.

Definition 1.3 Let F(s) be a matrix whose ele-

ments are rational functions of s. Then F is

said to be a rational matrix function of s.

F may be a rational matrix functi-on which is
any or all of square, real, symmetric etc.

Definition 1.4 Let F be a square real rational

n x n matrix function and let X be a constant
complex n-vector. Then f(s) = X*Fxt is called

an associate function of F. Note that for any

F there are arbitrarily many associate functions.
If F is symmetric then f is a real rational
function for any X . If X is real then f is
a real rational function even if F is not sym-
metric.
In general however, f is a rational function
with complex coefficients.
Theorem 1.5 Let Z(s) be the matrix of a PLFL
electrical network., Let z(s) be _an associate
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function of Z. Then
i) Re z(s) = 0 for Re s = 0

ii) z(s) has no poles in Re s > 0

iii) If z(s) has poles on Re s = 0

then they are of single multiplicity,

and have positive real residues.

Proof.

Proposition i) fecllows immediately from

Thecren 1.4.

By Theorem 1.3, none of the z,. have poles
n n 1]
in Re s > 0. Now z =3 z zi.xi*x. , and

i=1 j=1 *J J
SO z(s) cannot have poles in Re s > 0. Hence
ii) 1is proved.

By Theorem 1.3, if any of the zij have poles

on Re s = 0, then they are of simple multiplicity.

Hence z(s) can have poles on Re s = 0 only if
they are simple.

Suppose z(s) has a pole at jwo. Let
s-jwO = peje. Then for very small p,

. Kel?

pe

— W G O BN PBee

e
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ja

where Ke is the residue at the pole. Since

Re z(s8) 2 0 on s = jw (by i) we have

cos{a +68) >0 for 6 =1w/2, -m/2.

But this can only be true if o 0, i.e. z(s)
has a positive real residue at a j-axis pole.

This completes iii) and pisoves the theorem.

Corollary 1.5.1 If 2, the matrix of a PLFL

network, has a pole on the j-axis then the

residue is a non-negative definite hermitian

matrix.
roof.

Let z(s) = §az(s)xl. If 2(s) has a pole at

s = jwo, let W = (8 -~ jwo)z(s) be the
s=ja>o
residue matrix, and let
w= (8 - jwo)z(s) be the
s=ja)O

residue in z(s). ‘Then
w = X*Wx]| .

But if w if non-zero, then by iii) of Theorem

1.5, it must be pcsitive and real. Hence
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X*Wx} = 0.

This me ans that WH is non-negative definite and

wSH is null. Hence W is non-negative definite

hermitian, which proves the corrolary.

E. FURTHER IMPLICATIONS

Lemma 1.1 Excluding possible j-axis poles, let

f(s)

i) Dbe regualar cn Re 5 = 0

ii) have no poles in Re s > 0

iii) Dbe such that Re £(s) 2 0 on

Re s = 0.

Then Re f(s) > 0 for Re s = 0.
Proof.
Let C be the closed curve consisting of the
j-axis except at poles of f(s) where C is a
small semi-circle of radius p in the right half
plane. Let R be the region enclosed by C, in
the right half plane.

By the Principle of the Minimum, (well

known in functions of a romplex variable)

0 = Re f(s) £ Re Z(s)
s £ C s £ R

Showrnres i
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Since p can be taken arbitrarily small it follows
that, except at possible j-axis poles,

Re f(s) 2 0 for Re s 2 O.

This proves the lemma.

Corollary 1.1.1 1If z(s) is an associate function

of Z(s), the matrix of a PLFL network, then

Re z(s) =2 0 for Re s = 0.

Proof.
By Theorem 1.5, all conditions of Lemma 1.1
are satisfied for z(s).

We can now prove the following

Theorem 1.6 Let Z(s) be the matrix of a PLFL

network. Then ZH(S) is either hermitian positive

definite in Re s> 0 or it is identically null

for all s.

Proof.

Let z(s) be an associate function of Z(s).
Suppose Re z(s) = 0 at an isolated point s = S,

in the right half plane, and suppose that z(s)

is not identically zero. i.e.

z(s,) = iB (B real)
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Then

1 _ Ke
Z(S) - JB- (

& - 8

where g(s) has poles at Sq of order n-l1 or less.

Let 8 - Sg = peje Then for p sufficiently

small,

% cos(a - né)

Re ( L )
z(s} - B

Now

1 Re z(s)

Re(«'z(fs) - jB)

(Re z(s)}% + (Im z(s) - B)°
But by the corollary to Lemma 1.1, Re z(s) > 0
in Re s = 0. 1In particular, this is true on

j0

s - 5, = pe . Hence

cos(a - nf) =20 for 0 = 6 = 2m,

Clearly then n = 0. But in that case Re z(s)
does not have a zero at an isolated point in

Re s > 0, which contradicts the assumption that
it does.

Since Re z({s) > 0 in Re s > 0, either
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Re z(s) > 0 in Re 8 > 0 or Re z(s) = 0 for all s.
Since this is true for any associate function of

Z(s) it follows that either ZH is hermitian

positive definite in Re s > 0 or it is null for

'y

ail s. This completes the proof of the theorem.

¥. THE PR PROPERTY

Definition 1.5 A square matrix function F(s)

is said to be positive real (PR) if I and II

are satisfied.
I The matrix elements f.lj are rational
in s with real coefficients

I1 For any complex vector X ,

[} 4

Re(§§Fx{) =0 for Re s 0.

Theorem 1.7 Let F(s) be a square real rational

matrix function. Let f(s) be an associate func-

ticn. Then F(s) is PR if and only if

IIa. Re f(s) 2 0 for Re s = 0

ITb. £f(s) has no poles in Re s> 0

IIc. For Re s = 0, poles of f(s) are

simple and have non-negative residues.

Proof.

Suppose F(s) is PR. Then for any vector ¥ ,




Re f(s) = Re(X*Fx{) = 0, on Re s = 0
Suppose f(s) has a pole in Re s > 0. 1i.e.

Ke J®
£(s) = ———— + g(s),
(s - s )
o]

where g(s) has poles of order n-1l or less at Sge

Let s - S, = peje. Then for very small p,

fe) 3 K oIl - n0)

and Re f(s) =

©IR

cos(a - n@), (n =6 = 2r).

But this is non-negative which can only be true
iZ n = 0. Hence f(s) cannot have poles in
Re s > 0.

Suppose f(s) has a pole on the j-axis.
Then, following the proof of proposition iii)
of Theorem 1.5, such poles of f(s) are simple
and have non-negative residues.

This completes the proof of the theorem.

Corollary 1.7.1 Let F(s) be a PR matrix. 1If

F(s) has a j-axis pole then the residue matrix

is hermitian non-negative definite.

e —
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Theorem 1.8 Let Z(s) be the impedance matrix

of a PLFL network. 'Then 2Z(s) is PR.

Proof.
By Theorem 1.2 the zij are rational real functions
of s.

By Theorem 1.4, for any vector X,

Re (X*2x}) 2 0 on Re s = 0.
By Theorem 1.6, either

Re(;%ZxJ) >0 in Re s > 0
or it ,is identically zero. Hence

Re (x*2x{) = 0 in Re s = 0.

This proves the theorem and completes the appendix.




APPENDIX IIX

Diagonalization of Skew-symmetric Matrices.

Let A be a real skew-symmetric matrix of
order 2n. Then there exists an orthogonal

matrix V such that

0 ul:
|
0 {
]
Tt P !
) O Mg
| !
B | |
L mmm ——
|
0 I
S
!
[ 0 Hn
l
|
0

where the Wy are real and possibly zero. This
is proved as follows.

Lemma 2.1 The eigenvalues of a real skew sym-

metric matriXx are pure imaginary, Or zero.

Proof.

Let A be real skew symmetric, let A be an

~174-
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eigenvalue with associated eigenvector X.

Then
Ax{ = i, . . . . 1.
and
Ax*| = A*X¥ ., . 2,
Hence §;Axt = Af%xl (by 1) and i%Axl = —x*?}x&

by 2. Since X is not the null vector

Lemma 2.2 Let A be a real skew symmetric matrix,

let ip be an eigenvalue (u real, nonzero) and let

xl + iyl be the associated eigenvector, where the

vectors x| and y| are real. Then x| and y| are

orthogonal.
Proof.

A(x} + iyt) = in(xt + iy})
Thus

Axb = —uyl . . . . . . . 1.
and
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Ayp = uxf. « . .« .« . . 2.

Hence by 2, Y(Ay}) = -pXyi, giving nyxt = —uXyh .
But u, x| and y} are real, nonzero.
Thus Xy} = 0. QED

Lemma 2.3 Let A be a real skew-symmetric n x n

matrix, ig a nonzero eigenvalue with associated

eigenvector x} + iy} . Let M be a real ortho-

gonal matrix whose first two columns are x} and vy}

Then
0 Mo
|
' ¢
MTA M = - 0 :
_____ I I
|
!
¢ ! An—2
where An~2 is a real skew symmetric matrix of

order n-2.

Proof.

Let M = (x} y| maf . . . mn}) be an orthogonal

matrix. Then

aM = ( ax| Ay} Amap ... N

(-uyt wxi Am3; . . . Am

R
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Now
xAm3J = -m3Ax4
= U'Tﬁ3YJ
= 0.
Hence
MM = [ X |(uyt owxt Amg. . . Am )
2
E%
[}
{
|
m
n
0 T} ! 0 . .0
= i
|
-\l 0 { 0] .0
_______ T —m e ——— -
0 0

Since A 1is skew-symmetric, so is VTA V. Hence

SO 18 An—-2. QED
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Theorem 2.) Let A be a real skew-symmetric matrix

of order 2n. Then there exists an orthogonal

matrix V such that

0 ul:
} 0
-I-Ll 0
|
e
L0y
! !
| I
= -
VAV -, 0 !
e o = - -+t -
!
0] |
I
_ra____
| “‘n
|
]
ﬁ% 0

where the Hy are real and some possibly zero.

Proof.

If A has only zero eigenvalues then it is the
null matrix and we take V as the identity matrix,
and the proof is complete. If A has a nonzero
eigenvalue, let it be called iul. Then by Lemma
2.3, there exists an orthogonal ma*trix M, such

1
that

& g
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— e o e e s i feme S e W G G e

Suppose, for a proof by induction, that there

exists an orthogonal matrix Mr such that

0 ulll

|
-1 0
A SO 0

+3

- Ty -
MrA Mr 0 L

(We call this the r-fold skew-diagcnalization of

A). If A is the null matrix the rest of

2(n-r)

the proof is trivial.

Suppose A is not the null matrix.

2{(n-+)

= ]
Let Kr+l L S b be orthogonal, and
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let
° ur+l;
{ ¢
I
T _ -1L 0 I
Dr+lA2(n—r)Dr+l - _~ff£ _____ i ________
- ! Az(n-r—l)

The existence of D_ is guaranteed by Lemma 2.3.

+1

T -
Hence Kr+1M?k MrKr+l =

— o et - e = -

But MrKr+1 is a product of orthogonal matrices

= M K

and so is again orthogonal. ILet Mr+l T

Then we have shown that if there exists an ortho-
gonal matrix M  which is supposed to skew-dia-

yonalize A tc an r-fold level, there also exists
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an orthogonal matrix Mo which skew-diagonalizes
A to an (r+l)-fold level.
But Ml exists. Hence Mr exists for all r

positive and integral, where the matrix A has

the nonzaro eigenvalues iul. . . . iur (r = n).
Let V. = MM,. . .M. Then V is orthogcnal and
!

0 ul‘
I 0
———————————— -{
| 0 Ko
! 1
l [
| I
- -, O
VTA v L__Z__~___L__
l
° ]
! 0 Hn
i
|
|“Hn Y

where some of the b, are zero. This proves the

theorem.

Corollary. Let A be real skew-symmetric of brder

2n+l. Then there exists an orthogohal matrix V

such that




|
l
' /
!
|
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0

1
|
|
|
n

i
!
i

—
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il EMOVE | AXIS POLES FROM |
BEGIN AND REALIZE THEM
! @
i

—
MAXE €V D SINGULAR AT o,

BY REMOVAL OF RESISTANCE
FRON PORT

i ®

APPLY CONGRUCNCE TRANSFORMATION
10 MAKE Ro'l'n ““o) -0

@
v, e 0 OF w?

YES Ho
J29) @
FORM I (2) ADD BRUNE REACTOR TO PORT 1
-~
SPLIT [°(2) INTO A L"’ MAKE fm 31y ey} v 0
HYBRID (PR MATRIX
P AND A HYBRID PR { ®
MATRIX Q FORM I (2)
SPLIT (Z) INTO A RYBRID 1PR
{' ® MATRIX P AND A HYBRID PR
]
MATRIX
FORM ' T(P) TRIX2
OF DEGREE } 1 ®
AMD REALIZE H
FORM 2" ¢ T'(P) OF
{ '0) DEGREE 2 AND REALIZE
FORM Z' 1 F(Q) ‘ @
AND CONNECT Z' 70 Z* &
M SERIES PARALLEL FORM Z* g 1 (Q) AND CONNECT 2*
(FIG 1) TO 2 1N SERIES PARALLEL (FIG 1)
ADD ABGATIVE REACTOR
@ 10 PORT | TO COMPEHSATE
APPLY INVERSE CONGRUENCE FOR BRUNE REACTOR IN(8)
TRAHSFORMATION 10 ‘
COMPENSATE FOR {3) REALIZE @3
TIIS AS & TRAHSFORMER
S A L ABSORB MEGATIVE REACTCR ]
i A PERFECTLY COUPLED
—® TRANSFORMER AND REALIZE
12> o ,1
'y ¥
Yo o
REALIZE 2'4% A CONTIRUE MTH
RESISTIVE MATHRIX REAUZA\T!O’H?F
2 riswovd
e
HALT {
= ~—1 10

Figure 2 - Flow Cha of Synthesig Procedure

— ey BEW N BRI Mema e



-187-

T l¥0d

| ®jdwox3 jo (s)7 3o voypzijDaY - £ nbig

.Nwl llllllll IJ_
_@ , |
| = .
A
_ |
: |
e e ] °
e L L40d
_ 7
| = | °
ol _
| |
L

gl _




~-188~-

gt em———

J3wiroysupi] 3247 sunsg - p anbiyg

[ =]

oo

-~ ..N

Z

LR 4

ol

L4

L 4

s

h. |




~189-

Z ?|dwox3 jo (5)7 jouoyozi|pay - ¢ ainbiy

It

v3al

~Nlw

sz

‘{ fl‘,lr

Iv3ai -
C 1304
. s
L ]
i
.
\ ,
YIWYOISSHYHEL
FONINAONGD
[ ]
200
[ ]
M
I
l— o
P UIWSOLASHYYL INNYE
sy s I L30d
™ °
e o




(s),,Z 3o vonnzI|D3Y - 9 3unbiyg

Xid1iVWN OlLVY SNENL

-190~

YIAWBOSSNYYIL TTvaal

.
o~

d

3

!

Rm

——




~191-

wZ §0 UOHDZIID3Y ajousafy - £ aunbiy

%m | _—
gz lt L

— o — o S

XI¥LY¥® 32NVA3dnI

YIWIOISNYEL A31dN0D ATLD34¥3d

6 ¢

-
"
o~

3
1.
1)




-192-

F——r.,

uolpzpaYy 31247 sunig - g 2unbiy

94z - |

"l

:N

sh-




LI . '
i
o]
i3
9]24) sunig jo uolinz) o3y Jowsoysuni] - ¢ 3unbyy
¢l to¢ $ it
|'"|'.II.I. N - em ol (e -
3hz-t | - lq —nZ
1
Ly~ L~
!
(12
[e)]
-~
!
(Q4€z~- 1) 92 9z
. s Ghz-1)s
9z




ey BN AR S5 BN Pew

Jauoysunij aaidndond 3124 sunig = (0| aunb1yg

61 ¢ _
AL o e
¢ | Ghz-Cmye | - g 5 Tt |-z
e . (]
.!." ~o3> - “ e ®
1
<
2]
i}
!
©
442 -, ™) 952 L L Q52
° N °
y® 952 =g
[+
Na




~-195~

Figure 11 is deleted.
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