Some Iterative Methods Using Partial Order for Solution of Nonlinear Boundary Value Problems

Prepared under Electronic Systems Division Contract AF 19(628)-500 by

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Lexington, Massachusetts

14 May 1965

H. S. Witsenhausen
The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology, with the support of the U.S. Air Force under Contract AF 19(628)-500.
SOME ITERATIVE METHODS USING PARTIAL ORDER FOR SOLUTION OF NONLINEAR BOUNDARY VALUE PROBLEMS

H. S. WITSENHAUSEN*

ELECTRONIC SYSTEMS LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

*Research Assistant Supported by Lincoln Laboratory (Group 28).

TECHNICAL NOTE 1965-18

14 MAY 1965

LEXINGTON MASSACHUSETTS
ABSTRACT

This report surveys three iterative methods which may be used to numerically solve nonlinear boundary value problems.

Accepted for the Air Force
Stanley J. Wisniewski
Lt Colonel, USAF
Chief, Lincoln Laboratory Office
1. INTRODUCTION

Both Picard's and Newton's methods have been the subject of recent investigations by Schroeder, Kalaba, Collatz et al.

The results obtained seem to hold some promise for the iterative solution of the Euler-Lagrange boundary value problem in variational problems.

The present outline surveys, in moderate generality, three methods making use of the concept of partial order:

1) An extension of Picard's method in which Lipschitz constants become operators and the concept of contraction is generalized.
2) An extension of Picard's method using monotone properties and the Schauder fixpoint theorem, dispensing with Lipschitz conditions entirely.
3) An extension of Newton's method using convexity, resulting in maximum-minimum principles and dispensing with second derivatives.

2. SPACES

2.1 P-Spaces

A real Banach space will be called a P-space if a relation < is defined between some pairs of points and has the following properties for all , , , and in . \[\begin{align*}
\text{1} & : & x < x & \\
\text{2} & : & x < y, y < z & \Rightarrow x < z \\
\text{3} & : & x < y, y < x & \Rightarrow x = y \\
\text{4} & : & x \geq O_{\pi} & \Rightarrow c x \geq O_{\pi} \text{ for } c \text{ real positive} \\
\text{5} & : & x \geq y, u \geq v & \Rightarrow x + u \geq y + v \\
\text{6} & : & O_{\pi} < x \leq y & \Rightarrow ||x|| \leq ||y|| \\
\text{7} & : & \lim_{n \to \infty} x_n = x, x_n \geq O_{\pi} & \Rightarrow x \geq O_{\pi}
\end{align*} \]
Positive cone: These conditions amount to saying that \(C \triangleq \{ x : x \to \Omega_\pi \} \) is a closed convex cone in \(\pi \) which remains convex when \(\Omega_\pi \) is removed and such that for all \(x \) in \(\pi \)

\[\{ y : \| y \| < \| x \| \} \cap \{ x + z : z \in C \} = \emptyset \quad \text{(the empty set)} \quad (8) \]

then

\[x \prec y \iff y - x \in C \]

Intervals: \([x, y] \triangleq \{ z : x \leq z \leq y \} \) is called the interval between \(x \) and \(y \).

Then

\[[x, y] \text{ is closed, convex and bounded} \quad (9) \]

\[x \prec y \iff [x, y] \neq \emptyset \quad (10) \]

\[[x, y] = \{ x + z : z \in C \} \cap \{ y - u : u \in C \} \quad (11) \]

2.2 \(Q \)-Spaces

A real vector space \(S \) will be called a \(Q \)-space if there are, associated to \(S \)

a) a \(P \) space \(\pi \)

b) a function \(N \), called partial norm, mapping \(S \) into \(\pi \) and such that, for \(x, y \in S \) the following four conditions be satisfied:

\[N(x) = 0 \iff x = 0 \quad (12) \]

\[N(cx) = |c| N(x) \quad \text{for all real } c \quad (13) \]

\[N(x + y) \leq N(x) + N(y) \quad (14) \]

Let a norm in \(S \) be defined by

\[\| x \|_S = \| N(x) \|_\pi \quad (15) \]

then \(S \) is a Banach space under this norm. Comment: then \(N \) is a continuous mapping of \(S \) into the positive cone \(C \) of \(\pi \).

Examples of \(P \)-spaces:

a) \(PR^n \) space of vectors \(x = (\xi_1, \ldots, \xi_n) \) with some norm,

\[(\xi_1, \ldots, \xi_n) \prec (\eta_1, \ldots, \eta_n) \] is defined by

\[\xi_i \leq \eta_i \quad i = 1, \ldots, n \quad (16) \]
b) $PC^n[0, 1]$ space of continuous functions f from $[0, 1]$ into \mathbb{R}^n, with norm
\[
\|f\| = \max_{0 < t < 1} \|f(t)\| \text{ in } \mathbb{R}^n
\]
$f \preceq g$ defined by
\[
f(t) \preceq g(t) \text{ in } \mathbb{R}^n \quad 0 \leq t \leq 1 \tag{17}
\]
Examples of Q-spaces:

\begin{enumerate}
 \item [c)] QR^n space of vectors $x = (\xi_1, \ldots, \xi_n)$. Associated P-space: \mathbb{R}^n

 Partial norm:
 \[
 N(x) = (|\xi_1|, \ldots, |\xi_n|) \tag{18}
 \]

 \item [d)] $QC^n[0, 1]$ space of continuous functions from $[0, 1]$ into \mathbb{R}^n

 \[
f = (f_1(t), \ldots, f_n(t)) \text{ Associated } P\text{-space: } PC^n[0, 1] \text{ Partial norm: }
 \]
 \[
 N(f) = (|f_1(t)|, \ldots, |f_n(t)|) \tag{19}
 \]

 \item [e)] $QC^n[0, 1]$ as in (d)

 Associated P-space: $PC^1[0, 1]$ Partial norm
 \[
 N(f) = \|f(t)\| \text{ in } \mathbb{R}^n \text{ a function of } t \tag{20}
 \]

 \item [f)] $QC^n[0, 1]$ as in (d) Associated P-space: \mathbb{R}^n Partial norm:
 the vector
 \[
 N(f) = (\max_{0 \leq t < 1} |f_1(t)|, \ldots, \max_{0 \leq t < 1} |f_n(t)|) \tag{21}
 \]

 \item [g)] any real Banach space with π as the real line and N as the norm.
\end{enumerate}

Comment: The structure of π can be as rich as that of S but may go down as far as \mathbb{R}^1.

3. FUNCTIONS

3.1 Functions from a P-space into a P-space

\[
domain D \subset \pi_1 \quad \pi_1, \pi_2 \text{ P-spaces}
\]

\[
function T : D \rightarrow \pi_2
\]

Since P-spaces are Banach, the concepts of linearity, continuity, complete continuity and (Frechet-) differentiability are defined ipso-facto.
Other concepts are:

- **Positivity:** \(x \succ 0 \implies Tx \succ 0 \) \hspace{2cm} (22)
- **Isotony:** \(x \succ y \implies Tx \succ Ty \) \hspace{2cm} \(\forall x, y \in D \) (23)
- **Antitony:** \(x \succ y \implies Tx \prec Ty \) \hspace{2cm} (24)
- **Monotony:** \(Tx \succ Ty \implies x \succ y \) \hspace{2cm} (25)

For linear \(T \) positivity and isotony are equivalent.

The usual definition of a convex function requires that the domain \(D \) be convex and that the range space \(\mathbb{R}_2 \) be the set of real numbers. To relax the second requirement define

Convexity: \(T \) is convex if

1. \(D \) is convex
2. \(T \) has a Fréchet derivative at every point of \(D \).

Let \(T'_y(x) \) denote the Fréchet derivative at \(y \), a linear function from \(\mathbb{R}_1 \) into \(\mathbb{R}_2 \).
3. For all \(x, y \) in \(D \)

\[
T'_y(x - y) \leq Tx - Ty \tag{26}
\]

Extremization: For a function \(F \) from an arbitrary set \(A \) into a \(P \)-space, define

\[
m = \max_{a \in A} F_a \iff \exists b \in A, \forall a \in A: F_a = F_b = m \tag{27}
\]

and

\[
p_{\min} Fa = - \max_{a \in A} (-F_a)
\]

Then (26) can be written

\[
Tx = \max_{y \in D} (Ty + T'_y(x - y)) \tag{28}
\]

the maximum being attained for \(x = y \).

3.2 **Functions from Q-spaces into Q-spaces**

Let \(T \) be a function mapping a domain \(D \) of a \(Q \)-space \(S_1 \) (with partial norm \(N_1 \) taking its values in \(P \)-space \(\mathbb{R}_1 \)) into a \(Q \)-space \(S_2 \) (with partial norm \(N_2 \)).

* Note that if a \(\max \) exists its value \(m \) is unique, just as in the real case.
taking its values in P-space \(\pi_2 \).

Since \(S_1 \) and \(S_2 \) are Banach spaces under the induced norms \(\| x \|_{S_1} = \| N_1 x \|_{\pi_1} \) \(\| y \|_{S_2} = \| N_2 y \|_{\pi_2} \) the concepts of linearity, continuity, complete continuity and Frechet differentiability are defined.

Generalized Lipschitz Condition

The function \(T \) is said to be \textit{Lipschitz continuous-K} on \(D \) iff there exists a continuous linear positive function \(K : \pi_1 \rightarrow \pi_2 \) such that for all \(x, y \) in \(D \)

\[N_2 (Ty - Tx) \leq KN_1 (y - x) \] \hspace{1cm} (29)

This implies

\[||Ty - Tx||_{S_2} \leq ||K|| \cdot ||y - x||_{S_1} \] \hspace{1cm} (30)

so that \(T \) is then Lipschitz continuous with the constant \(||K|| \) also.

Generalized Contraction:

A function \(T \) mapping a domain \(D \) of a Q-space \(S \) into the same space \(S \) is a \textit{K-contraction} on \(D \) if it is Lipschitz continuous K on \(D \) and the linear function \(K \) on the associated P-space \(\pi \) satisfies the condition

\[x + Kx + K^2 x + \ldots \text{ converges for all } x \text{ in } \pi \] \hspace{1cm} (31)

It is sufficient to this effect that \(||K|| < 1 \), then \(T \) is a contraction in the ordinary sense under \(|| \cdot ||_S \). It is also sufficient (and necessary) that the spectral radius of the linear operator \(K \) satisfy

\[\rho(K) < 1 \] \hspace{1cm} (32)

4. THE GENERALIZED PICARD ITERATION

Problem: Let \(T \) be a function mapping a domain \(D \) of a Q-space \(S \) (with partial norm \(N \) taking its values in P-space \(\pi \)) into \(S \). Find an element \(x \) of \(D \) for which \(x = Tx \) (a fixpoint).

Contraction Theorem:

Let \(T \) be a K-contraction on \(D \)
Let \(x_0 \) be an element of \(D \)
Let \(x_1 = Tx_0 \) and \(r_0 = N(x_1 - x_0) \)
Then the equation
\[r - Kr = Kr_0 \] \hspace{1cm} (33)
has a unique solution \(r^* \) in \(\Pi \).

If furthermore
\[\{ x : N(x - x_1) < r^* \} \subset D \] \hspace{1cm} (34)
then the sequence \(x_n \) obtained by
\[x_{n+1} = Tx_n \quad n = 0, 1, 2, \ldots \] \hspace{1cm} (35)

(a) exists in \(D \)
(b) converges to a limit \(x^* \) in \(D \)
(c) \(x^* \) is the unique solution of \(x = Tx \) in \(D \)
(d) an error estimate is given by
\[n(x^* - x_1) < r^* \] \hspace{1cm} (36)

Application: If the iteration has been carried out up to the calculation of \(x_n \),
apply the theorem with \(x_{n-1} \) as \(x_0 \) and \(x_n \) as \(x_1 \).

Equation (33) need not be solved, it is sufficient to find \(b \) in \(\Pi \) such
that \(r^* < b \) and use \(b \) in (36). The bound \(b \) can be found from the condition
\[b - Kb > Kr_0 \] \hspace{1cm} (37)

For instance if \(c > 0 \) and \(\alpha, \beta \) real satisfy
\[Kc < \beta c \quad r_0 < \alpha c \quad \beta < 1 \]
then
\[r^* < \frac{\alpha}{1 - \beta} Kc < \frac{\alpha \beta}{1 - \beta} c \] \hspace{1cm} (38)

5. THE MONOTONE PICARD ITERATION

Problem: Let \(T \) be a function from a convex domain \(D \) in a \(P \)-space \(\Pi \) into
\(\Pi \). Assume \(T = T_1 + T_2 \) with \(T_1 \) isotone on \(D \), \(T_2 \) antitone on \(D \). Find a
fixpoint \(x = Tx \) of \(T \) in \(D \).

Method: Start from 2 elements \(x_0, y_0 \) of \(D \) and proceed by
\[x_{n+1} = T_1 x_n + T_2 y_n \]
\[y_{n+1} = T_1 y_n + T_2 x_n \] \hspace{1cm} (39)
Nesting Theorem:

If \([x_0, y_0] \subseteq D \) and \(x_0 < x_1 < y_1 < y_0\) \hspace{1cm} (40)

then (a) \(x_0 < x_1 < x_2 < \ldots < y_2 < y_1 < y_0\) i.e., the iteration defines a sequence of nested non-empty intervals \([x_n, y_n]\).

(b) The image of \([x_n, y_n]\) under \(T\) is a subset of \([x_{n+1}, y_{n+1}]\) and a fortiori of itself. Thus any fixpoint in \([x_0, y_0]\) belongs to \([x_n, y_n]\) for all \(n\).

Fixpoint Theorems:

A. Finite dimensional case.

If \(T\) is finite dimensional then (39), (40) imply

(a) \(x_n \to x^*\) and \(y_n \to y^*\) with \(x^* < y^*\)

(b) if \(T_1\) and \(T_2\) are continuous then there exists a fixpoint in \([x^*, y^*]\) and a fortiori in \([x_n, y_n]\).

(c) if \(T_1, T_2\) are linear then \(1/2(x^* + y^*)\) is a fixpoint.

B. Infinite dimensional case.

(a) If the image of \([x_n, y_n]\) under \(T\) is totally bounded it contains a fixpoint of \(T\).

(b) If \(T\) is completely continuous on \([x_n, y_n]\) then statement (a) applies.

Since intervals are closed, bounded and convex these properties result essentially from the Schauder fixpoint theorem.

Application: Solutions of differential equations can often be considered as fixpoints of completely continuous integral transformations.

Note that no Lipschitz constant or operator \(K\) need be determined.

6. THE MONOTONE NEWTON ITERATION

Problem: Let \(S\) and \(S_1\) be \(P\)-spaces and \(V\) a real vector space. Let \(L\) be a linear and \(F\) a non-linear function from a domain \(D\) in \(S\) into \(S_1\) and \(G\) a linear function from \(D\) into \(V\). Let \(c\) be a given element of \(V\). Find \(x\) in \(D\) such that

\[Lx = Fx\] \hspace{1cm} (41)

\[Gx = c\]
Assumptions:
a) D is convex
b) there exists a linear function R from S to S such that $\| R \| \leq \gamma$
 and $RLx = x$ for $x \in D \cap \{ y : Gy = c \}$
c) F has a bounded Fréchet derivative on D

 $\| F'(x) \| \leq \mu$ for $x \in D$
d) F is convex on D
e) $\| Fx \| \leq \alpha + \beta \| x \|$ for $x \in D$
f) $\gamma(\beta + 2\mu) < 1$
g) $\sum \Delta \{ x : \| x \| \leq \| x_0 \| , \| x \| \leq \frac{\alpha \gamma}{1 - \gamma(\beta + 2\mu)} \} \subset D$
h) $Lx_0 \succ Fx_0$
i) $Gx_0 = c$
j) $Lx \succ F'(y)x$ and $Gx = O_Y \Rightarrow x \succ O_S$
k) For all $x \in D$ there exists a unique solution y of the linear equations

 $Ly = Fx + F'(x)(y - x)$
 $Gy = c$

 This defines a function T from D into S by $y = Tx$.
l) (41) has a solution x^* in D.
m) x_0 and $x_1 = Tx_0$ are in D.

Newton's Method:
Under assumptions (c) and (k) starting from an element x_0 in D attempt the iteration

\[x_{n+1} = Tx_n \]

which is possible as long as the iterates stay in D.

Monotone Property:
Under assumptions (a) (c) (d) (j) (k)

\[x_{n+1} \succ x_n \text{ for } n \geq 1 \]

Maximum Principle:
Under assumptions (a) (c) (d) (j) (k) (l) (m)

\[x^* = \max_{x \in D} \{ x : x = Tx \} \] (43)
Interval Property:
Under assumptions (a) (c) (d) (h) (j) (k) (l) (m)
\[x_1 < x^* < x_0 \] (44)

Minimum Principle:
Under assumptions (a) (c) (d) (j) (k) (l) (m)
\[x^* = \text{pmin } x_0 \] (45)
subject to \(x_0 \in D \) and \(Lx_0 \geq Fx_0 \)

Boundedness Property
Under assumptions (a) (b) (c) (d) (e) (f) (g) (j) (k) and \(x_1 \to x_0 \) the sequence \(x_0, x_1, x_n \) exists, is monotone increasing and contained in \(\Sigma \).
In finite dimension this implies convergence to a solution of the problem.
In infinite dimension convergence follows only if the sequence can be shown to be sequentially compact (as when \(T \) is completely continuous). Otherwise, for instance in PC \([0, 1]\) only pointwise convergence follows.

7. BOUNDARY VALUE PROBLEMS

\[\dot{x} = A(t)x + F(x, t) \quad F, c, x \text{ n-vectors} \] (46)
\[Nx(0) + Mx(1) = c \quad A(t), N, M \text{ nbym matrices} \]

Let \(\phi(t) \) be a fundamental matrix, a non-singular solution of
\[\dot{\phi}(t) = A(t) \phi(t) \]
Assume \(N\phi(0) + M\phi(1) \) is non-singular. Then the solution of
\[\dot{x} = A(t)x + f(t) \]
\[Nx(0) + Mx(1) = c \] (47)
is for \(0 \leq t \leq 1 \)
\[x(t) = G_1(t) c + \int_0^1 G(t, \tau) f(\tau) \, d\tau \] (48)
where
\[G_1(t) = \varepsilon(t) \left[N\varepsilon(0) + M\varepsilon(1) \right]^{-1} \]

\[G(t, \tau) = \begin{cases}
G_1(t) N\varepsilon(0) \varepsilon^{-1}(\tau) & \text{for } \tau < t \\
-G_1(t) M\varepsilon(1) \varepsilon^{-1}(\tau) & \text{for } \tau > t
\end{cases} \] \hspace{1cm} (49)

(The value for \(t = \tau \) is immaterial)

The solution of the non-linear problem, if one exists, is a continuous function \(x(t) \) satisfying

\[x(t) = G_1(t) c + \int_0^1 G(t, \tau) F(x(\tau), \tau) \, d\tau \] \hspace{1cm} (50)

i.e., it is a fixpoint \(x = Tx \) of the mapping \(T \) from the space of continuous \(\mathbb{R}^n \)-valued functions on \([0, 1]\) into itself defined by (50).

Taking any norm in \(\mathbb{R}^n \) and the maximum over \(0 \leq t \leq 1 \) of this norm as the function space norm the function \(T \) is completely continuous in many cases.

Thus the iterative methods can often be applied.

Example: (Collatz)

\[\dot{x} = -t - \sqrt{x} \hspace{1cm} x(0) = 0 \hspace{1cm} x(1) = 1 \]

There is no Lipschitz constant for this problem but the iteration,

\[\begin{align*}
\dot{x}_{n+1} &= -t - \sqrt{x_n} \hspace{1cm} x_{n+1}(0) = 0 \hspace{1cm} x_{n+1}(1) = 1 \\
\dot{y}_{n+1} &= -t - \sqrt{y_n} \hspace{1cm} y_{n+1}(0) = 0 \hspace{1cm} y_{n+1}(1) = 1
\end{align*} \]

is isotone with

\[x(t) \leq y(t) \iff x(t) \leq y(t) \quad \forall \ t \in [0, 1] \]

and is completely continuous.

Taking \(x_0 = t^2 \), \(x_1 = \frac{4}{3} t - \frac{3}{3} \)

\[y_0 = (2\sqrt{t} - t)^2 \hspace{1cm} y_1 = \frac{23}{15} t - \frac{8}{15} t^{5/2} \]

Then \(x_0 \leq x_1 \leq y_1 \leq y_0 \) and \(x_1(t) \leq x^*(t) \leq y_1(t) \quad \forall \ t \in [0, 1] \) for a solution \(x^* \).
REFERENCES

* About 150 further references are given in [2].
<table>
<thead>
<tr>
<th>DISTRIBUTION LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director's Office</td>
</tr>
<tr>
<td>W. B. Davenport, Jr.</td>
</tr>
<tr>
<td>Division 2</td>
</tr>
<tr>
<td>F. C. Frick</td>
</tr>
<tr>
<td>S. H. Dodd</td>
</tr>
<tr>
<td>J. T. Huntington</td>
</tr>
<tr>
<td>Group 28</td>
</tr>
<tr>
<td>J. A. Arnow</td>
</tr>
<tr>
<td>J. F. Nolan</td>
</tr>
<tr>
<td>A. Armenti</td>
</tr>
<tr>
<td>C. R. Arnold</td>
</tr>
<tr>
<td>F. Belvin</td>
</tr>
<tr>
<td>R. N. Davis</td>
</tr>
<tr>
<td>P. L. Falb</td>
</tr>
<tr>
<td>L. A. Gardner, Jr.</td>
</tr>
<tr>
<td>H. K. Knudsen</td>
</tr>
<tr>
<td>O. A. Z. Leneman</td>
</tr>
<tr>
<td>J. B. Lewis</td>
</tr>
<tr>
<td>H. E. Meily</td>
</tr>
<tr>
<td>A. J. Morency</td>
</tr>
<tr>
<td>H. C. Peterson</td>
</tr>
<tr>
<td>F. C. Schweppe (100)</td>
</tr>
<tr>
<td>J. M. Winett</td>
</tr>
<tr>
<td>P. E. Wood</td>
</tr>
<tr>
<td>Group 41</td>
</tr>
<tr>
<td>E. Hoffstetter</td>
</tr>
<tr>
<td>Group 62</td>
</tr>
<tr>
<td>K. Jordan</td>
</tr>
<tr>
<td>I. Stiglitz</td>
</tr>
</tbody>
</table>
This report surveys three iterative methods which may be used to numerically solve nonlinear boundary value problems.