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A class of general quantum field theories without explicit use of fields A{x) is defined 
by a set of postulates for the von Neumann algebras $c of local obscrvables. The 
vacuum state is cyclic with respect to any flt, and the Borchers tube theorem is 
shown to hold. Some ^ are factors and not of finite type. A property of local 
observables called strict locality is formulated and expressed by means of a necessary 
and sufficient condition for the algebras ^ U is proved for finite regions. 

I. Introduction 
In this paper we want to discuss general quantum field theories in 

connection with a kind of independence of physical measurements at 
spacelike separated points, called (following KNIGHT1 and LICHT2) 

strict locality. Formulated as a postulate strict locality would be closely 
related to usual locality (commutativity of spacelike separated field 
observables). The latter implies (section 11) that we cannot destroy 
properties P of a quantum mechanical ensemble measurable in a space- 
time region B by selecting subensembles which have a certain property Q 
measurable in a spacelike separated region C. Strict locality requires (as 
will be formulated more precisely in section IV) that, on the other hand, 
we cannot gain information about the properties measurable in B by 
measuring observables belonging to C only. 

By a ^general quantum field theory" we mean any theory fulfilling a 
certain set of postulates enumerated below (section II). These postulates 
are, as suggested a few years ago by LUDWIG 3, formulated in the language 
of von Neumann algebras of bounded operators (compare, e.g., HAAG 

and SCHROER 4, ARAKI 5; the mathematical theory can be found in the 
books of VON NEUMANN, DIXMIER, and NEUMARK 6) without reference to 

1 KNIGHT, J. M.: J. Math. Phys. 2, 459 (1961). 
2 LICHT, A. L.: J. Math. Phys. 4, 1443 (1963). - Equivalence of states (preprint 

1964). 
3 LUDWIG, G.: Vorlesungen über Ouantenfeldtheorie II. Berlin 1959(unpublished). 
4 HAAG, R., and B. SCHROER: J. Math. Phys. 3, 248 (1962). 
5 ARAKI, R: J. Math. Phys. 5, I (1964). 
6 NEUMANN, J. v.: Collected Works, vol. III. Pergamon Press 1961. — DIXMIER, J.: 

Les algdbres d'operateurs dans Tespace hilbertien (Algebres de von Neumann). Paris: 
Gauthier-Villars 1957. ~ NEUMARK, M. A.: Normierte Algebren. Berlin: VEB 
Deutscher Verlag der Wissenschaften 1959. 
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2 KARL KRAUS: 

the usual distribution valued operator fields A{x). Thus the theory may 
be somewhat more general than usual axiomatic field theory (A (x) need 
not exist). We hope that systems of von Neumann algebras derived from 
local fields A (A) will satisfy all our postulates. For the free scalar field 
ARAKI5 has shown this (with the exception of postulate 1c)], but for 
other fields - whenever such exist - the postulates are very plausible | 
too.  On the other hand, the frame defined by the postulates will be 
narrow enough to allow a series of conclusions (section III) going 
parallel to analogous developments in usual axiomatic field theory, so 
that we can hope to retain much of the physical contents of field theory. 
Thus we can look at our postulates from two points of view: We can 
consider them as a possible modification (most likely a generalization) of 
axiomatic field theory with similar physical content, or we can use them 
only as a (possibly incomplete) collection of features of axiomatic field 
theory expressed in a language convenient for technical purposes and 
needing a rigorous derivation from the usual (e.g. WIGHTMAN'S 7) 
axioms. 

In section IV we formulate strict locality and examine the conse- 
quences which it would have as a postulate together with the postulates 
of section II. We give a necessary and sufficient condition for strict 
locality in terms of VON NEUMANN'S relative dimension function. Contrary 
to LICHT2 we do not suppose throughout the "duality theorem"4 and \ 
require strict locality for finite regions only. So our conclusions will be 
somewhat weaker: Strict locality can be fulfilled even for factors of 
type I, as is shown by an example of KADISON8, whereas LICHT2 derives 
type III in all cases. 

Section V is devoted to a proof of strict locality for a large class of 
finite regions using a lemma due to MISRA 9. Thus strict locality is not 
independent on the other postulates, but nevertheless cannot yet be 
derived in its strongest form. 

II. The Postulates 

Postulate 1. (existence of rings of local observables): There is a 
unique mapping C ->9ic of all space-time regions C* onto a set of von 
Neumann algebras (rings) ^Rc of bounded operators in a separable 
Hilbertspace § with the following properties: 

* We suppose throughout the paper C to be open and equal to int C, the interior 
of the closure C of C 

7 WiGHTMAN, A. S.: Phys. Rev. 101, 860 (1956). 
8 KADISON, R. V.: J. Math. Phys. 4, 1511 (1963). 
9 MISRA, B.: On the algebra of quasi-local operators of quantum field theory 

(preprint 1963). 

r 



General Quantum Field Theories and Strict Locality 3 

*•) ^aoc={^f» ^c}"» from which follows: for BcC is ^c^. 
(As to the notation, compare e.g. HAAG10). — 

I b) For the whole Minkowski space M we have 9?M=9, the von Neu- 
mann algebra of all bounded operators. - 

Physically, the projection operators Pe9ic are interpreted as the 
properties (VON NEUMANN11, LUDWIG12) which can be decided by 
measuring devices located inside the region C; or (equivalently) the 
hermiteari Ae9ic should be possible observables in C. As the set of 
projections Pe9ic generates 9lc, {P I/*6^}"=^ (for all theorems on 
von Neumann algebras used here and in the following we refer to6), the 
properties measurable inside C and the ring 9ic mutually fix each other. 
With this interpretation la) says that we can measure in BuC all 
functions of observables from B and C and nothing else, whereas 1 b) 
means that we have a coherent Hilbertspace (no superselection). 

Let us add a continuity requirement. The sequence of regions 
{0,1/ = 1,2...} is said to converge towards the point set C, if the point 
sets 

00 CO 00 00 

lim inf Q = (J    f]Ct   and   lim sup Q = f)    U ^i 

both coincide with C. The point set 

C=lim C, 
|-»oo 

is not necessarily a region C (i.e. open, with C = int C), but we will restrict 
ourselves to this case and require: 

1c) (continuity of the mapping C->9ic): 

*c = {*c.|i = l>2.,.}", 

if C is the limit of an increasing sequence {CJ i= 1,2..., C,- hl ^CJ, and 

00 

if the decreasing sequence {(7,1/ = 1, 2..., Cj+1 cC,} tends to C. - 
We do not intend to discuss this postulate, but hope it is plausible 

too. With the help of 1c) we can generalize la) to unions IJ^» ^ ^ 
ie/ 

is any (possibly even non denumerable) index set, but we could have 
10 HAAO, R.: Ann. Physik (Lpzg.) (7) 11, 29 (1963). 
II NEUMANN, J. v.: Mathematische Grundlagen der Quantenmechanik. Berlin: 

Springer 1932. 
12 LUDWIG, G.: Die Grundlagen der Quantenmechanik. Berlin-Göttingen-Heidel- 

berg: Springer 1954. 
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required as well from the beginning 

It')      ^uCj = {<RC(|/€/}". - 
I«I 

In customary field theory the mapping C -♦<RC is mediated by an ope- 
rator distribution A (JT), and 9ic is generated by all bounded functions 
of the operators 

>K/)=/ol+j7i(*iM(*iW4*i + 
+J/2(*i. ^2) A{xl)A{x2)^.x, c/4x2-I-•••, 

where tbefi(xl ...x,) are testing functions in ^4i with compact support 
contained in CxCx •• C\ As the v4(/) themselves are unbounded, 
domain questions will arise which are avoided here by considering the 
*RC from the beginning. 

Let us call <RC the algebra (or ring) of local observables belon0ing to 
C, and C the support of 9ic. 

Postulate 2. (invariance): There is in § a unitary representation 
V {o. A) of the inhomogeneous Lorentz group with the property 

l/(a,/i)^ct/-,(a^) = ^fl^)C, 

where the region (a. A) C is generated from C by the Lorentz trans- 
formation {a. A): 

{aJA)C={x\A-l{x-a)eC}. - 

Postulates, (spectral condition): The representation Uia,\) = e~iap 

of the translation group defines the energy momentum operator Pß, the 
spectrum of which shall lie in the closed forward cone: P2^0, PQ^O. 

There exists one and only one translationally invariant state (eigen- 
state of Pp with eigenvalue 0), the vacuum ß0. - 

We need not discuss postulates 2 and 3; they are immediately carried 
over from field theory7. The same is true for 

Postulate 4. (usual locality): If B. C are spacelike separated regions 
(i.e. {x-y)2<0 for all pairs xeB, veC), then <R|, and ^R( commute: 

For later use (comparison with strict locality) we recall shortly the 
intuitive meaning of postulate 4. Suppose we have decided positively some 
property PesHB and therefore reduced the statistical operatorn,2 from 
W io *PWP, with the normalization factor ^(trace (P W))-1. Then 
no subsequent measurement in C can destroy this property, because 
if any property öe^c turns out t0 ^ true' we have further reduced 
the statistical operator from *PWP to jiQPWPQ^fiPQWQP [with 

I 
1 j fi 



General Quantum Field Theories and Strict Locality 5 

ß = (trace (QPW))'1], for which the property P remains true: 

trace(P • ß QPWPQ) = ß' traceCQP^PO^ 1. 

On the other hand, this "compatibility" of any pair of properties 
PeyiB,QeWc implies12 their commutativity PQ = QP and so 

{P\Pe*B}<z{Q\Qe*c}' 
from which follows6 

Postulates, (primitive causality): For any region T containing a 
complete spacelike hypersurface I (shortly called a T-region) is SRr = 

This means: All that can be measured anywhere can as well be 
measured in any T-region, or: any state ^ is fixed by its behavior with 
respect to measurements in a T-region (compare HAAG and SCHROER

4
). 

III. Some immediate consequences 

From postulates 1 — 5 we can draw easily some conclusions, which 
will be formulated as lemmas I -4. 

Lemma 1. (generalized Reeh-Schlieder theorem13): For any C (C is 
open, as assumed in postulate 1) the algebra %c is cyclic with respect 
to the vacuum state ß0. - 

The proof makes no use of postulates 4 and 5 and consists in almost 
literally translating the proof of REEH and SCHLIEDER

13
 from usual to 

"quasi-local" fielHs (see below).   It can be found in ARAKI'S paper5. 

Lemma 2. (generalized Borchers theorem14): Let be Z the cylinder 
region \xQ\<tQ, |x|<r0. Call D the double conic frustrum generated 
byZ: 

D = {.X||.Y0|</0, |*|-H*0|<r0+l0} 

(see Fig. 1). Then ^„ = ^7. - 

The proof from postulates I - 3 is based on the same facts as the 
original proof of BORCHERS 

,4. But because we found no derivation in the 
literature, we will sketch it shortly.* The relation <Rzc:<RD is clear, we 
must prove only 9?zz>ÄI), or ^ZC^D. Let C^Z be a cylinder region 

* Note added in proof. Meanwhile we got knowledge of a proof due to ARAKI 

(Einführung in die Axiomatische Quantenfeldtheorie, mimeographed lecture notes, 
Zürich 1961/62). 

13 REEH, H., and S. SCHLIEDFR: NUOVO Cimento 22. 10M (1961). 
14 BORCHERS, H. J.: NUOVO Cimento 19, 787 (1961). 
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| JC0 | < T < r0, | ic | < p < r0, ^ any operator from 9ic, A (x) the "quasi- 
local field" defined by A{x)=U{x, 1) AU1^ 1), i.e. by translating A 
by x. Any A'eWz commutes with A (x) as long as xeZ = {x\\x0\<t0~xy 

l^l<ro-p} (Fig-2), so the function Fix) = (p\ [A(x\ A']\qy with 
two arbitrary energy-momentum eigenstates | /?>, | q} vanishes for any *eZ. 

Fig. I.  The regions Z and D = ZoS 
with«D   «^ 

Fig. 2. Regions used in the proof of lemma 2 
(D=ZuS, D=ZuS) 

By invariance and spectral conditions F+(x) = (p\ A(x) A' \q} and 
F_{x) = (p\ A'A(x)\qy have analytic continuations F + (r), F_(z) 
into the regions l\nz€V+ resp. Imz€K„ (K+ and K_ are the open 
forward resp. backward light cone) and coincide for real zeZ. By the 
generalized edge of the wedge theorem14 they coincide for real ZGD too, 
where D is the double conic frustrum generated by Z:D={JC| \x0\< 
to--x*\*\ + \xo\<ro-P + *o~x}' That means: From A'e9('z follows 
lA(x\ A']-0 for xeD too. But as is easily seen all translated regions 
Cy = {x\ x—yeC, with yeD cover D up to an edge; their union is the 
region D of Fig. 2. As we have [postulate la')] 9l%**{#c9\ yeD}* and 
any A{y)E(HCy is of the form A(y)=Ü{y, \)AU~l{y, 1) with some 
AeWc (postulate 2), we have indeed shown A'eWfr, consequently 
Wz^Wft, or cquivalently (the property 9lzcÄ5 is obvious) SR^SKg. 

Now we repeat the whole procedure by using instead of C the double 
conic frustrum C generated by C: C = {^| |Ar0|<T, |x|>|Ar0|<p + T}. 
The translated C^ lie in D for yeZ, and we cover the whole region D by 
the Cf with yeD. So we conclude as above «RgcStJ, and finally <RD= 

Corollary (generalized Borchers tube theorem): For any tube, i.e. 
any open region R containing an infinite timelike curve ic = z(/), x0 = t 
with |z(/)|<oo for all /, we have ^ = ^ = 8. - 

■     ■ m 
r 

« "•—:  , J •#.— 
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The deduction from Lemma 2 follows literally the proof of an 
analogous corollary in ref.14.* The generalization of BORCHERS" tube 
theorem due to ARAKI 

, 5 is also true here, as may be shown similarly. 
From Lemma 2 we can construct for every region C an extended region 
Ci3 C with 9lc = SR0 if we define recursively C0 = C and Ci+! as union of 
C, and all double conic Jrustra generated 
by cylinder regions in Cj and take 

C= UC^limCi. 
1=1 i-»oc 

An example shows Fig. 3. We define the 
spacelike complement C of Cas the sei of 
all points lying spacelike to the closure 
r  rJt  f • F'i- 3' <* no""»' refion C and the related 

' regions C'% C = CuS and C "-CL UTIUXJ 

C' = {A| (.V-^)
2
<0 for all yeC]. 

A region C shall be called normal, if the closure of CuC contains a 
whole spacelike hypersurface I. (For instance, the C of Fig. 3 is normal. 
As a counterexample, the union of two finite regions separated by a 
timelike distance is certainly not normal). We can then prove: 

Lemma 3. For a normal region C the von Neumann algebra 92c is a 
factor6, i.e. {«c, ^c}" = ^ or equivalently ncnWc={X 1}. - 

Proof: From postulate 4 we have yic,c:Wc and thus 

{«c.«cr=>{«c.«cr-{«c.«c'r««cuc'. 
But because C is normal, we can find a decreasing sequence {rj of 
T-regions converging towards CuC (see Fig. 3). From postulates 1c) 
and 5 we then have 

Thus we have proven {Wf. ^c}" =5 ^c uc = ^ which means {Äc, «cl" = * 
because 9 is maximal. 

Lemma 4. (KADISON
8
, GUENIN and MISRA

16
): If 9?c is a factor, it 

cannot be of finite type. (For the classification of factors, we again refer 
to6; a short account can be found in ref.16). - 

The proof of GUEMN and MISRA
16
 uses nothing but the facts col- 

lected here in the postulates and lemma 1 and need not be repeated here. 
* Note added in proof. With similar methods, we can also get the following 

corollary: For any region G containing the origin and invariant under the homogeneous 
Lorentz group there exists a T-region r,= {jr||jc0|<«} with ^^^T;- (Postulate 5 
then implies flgs:».) 

15 ARAKI, H.: Helv. Phys. Acta 36, 132 (1963). 
16 GUENIN, M., and B. MBRA: NUOVO Cimento 30, 1272 (1963). 
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IV. Strict locality 

As a counterpart to usual locality (postulate 4), we could require the 
following: Let be B, C two spacelike separated regions, P any property 
measurable at B. If we consider any state vector in §, we should not 
be able by examining this state in the region C only to predict anything 
about the outcome of a subsequent measurement of P in B, There 
should be all possibilities left open: P can possibly be found identically 
true, identically wrong, or true with any probability /i between 0 and I in 
this state*.  We can fornmlate this in mathematical terms as follows: 

Postulate 6. (strict locality): If £, C are spacelike separated regions, 
P any nontrivial projection (/>4=0. 1) in <RB, <P any state from §, there 
exists a state V from P§ which is equivalent to <P with respect to measure- 
ments in C, i.e. (*, /10)=(V, /IV) for all hermitean Ae^{c (or, equi- 
vaicntly by the spectral theorem, for all projections />e9?c). - 

From/l = iM + /l + ) + iM-^+),(/l + ^ + ) and/(/<-/l + ) hermitean, 
we then find (^, A 0) = (V, A V) for all Ae^. 

Clearly postulate 6 follows from a part of our above requirement: 
We should be unable by measuring in a given state at C only, to exclude 
the possibility of P being identically true in this state**. But if we 
replace P by 1 ~P 69^, we deduce from postulate 6 the existence of a V, 
equivalent to ^ with respect to C, for which P is identically wrong, and 
the state /i^ V + (l -p)* Vj is equivalent to ^ too and gives the probabi- 
lity /i for the properly P, So our intuitive requirements are fully contained 
in postulate 6. 

To be more carefully, we should formulate strict locality by con- 
sidering general statistical operators W instead of pure states W = P^, 
for we cannot distinguish pure states from mixtures by measuring 
expectation values at C only. (It would be possible if 94c were irreducible 
but this is not the case.) Then we would have. 

Postulate 6'. Let be B, C, P as in postulate 6, W any statistical 
operator (W/ + = W^, W >0, trace (MO = 1). Then there exists a statistical 
operator If with trace {A If,) = trace {A W) for all hermitean ^e^f and 
trace(/,IV)=1. - 

* Such a requirement was first proposed by LUDWIG3; a formulation and detailed 
discussion was independently given by LICHT2. At first sight LICHT'S notion of "primi- 
tive locality" tref.2, second paper) looks quite different from our postulate 6, but the 
equivalence of postulate 6 and LICHT'S theorem 4 can easily be shown. 

** As is well knownl2, we can in principle measure all expectation values {<t>.A<P) 
of observables /4 in a state 4> simultaneously, even if the A are not commuting. This 
should not be confused with the fact that we can decide properties P, Q simultaneously, 
i.e. construct ensembles for which P as well as (? or 1 — (> are true, only if the prof^erties 
are compatible, i.e. [/*, C?]=0. 

T ^~ 
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If we specialize to pure states W = P^,v/c now cannot know whether 
the equivalent W U \ pure «täte P^ (as above) or some mixture. Thus the 
requirement 6' seems to be weaker than postulate 6. 

In the rest of this section we discuss the implications which the 
addition of postulate 6 to postulates I - 5 would have. A characterization 
of strict locality equivalent to postulate 6 for factors Wc gives 

Theorem 1. Postulate 6 is fulfilled for the (ordered) pair of spacelike 
separated regions B, C with ÜRC a factor if and only if every nontrivial 
projection Pe^iB is infinite with respect to the factor Wc. — 

The proof of Theorem 1 follows mainly the procedure of LICHT
2
, 

partly suggested to him by ARAKI. 

The sufficiency is obvious: P infinite with respect to 9i'c together 
with the separability of § implies6 the equivalence of P and 1, or the 
existence of a partially isometric operator VeWc which maps § onto 
P6{V*V**\,VV*~P). For any ^e§ take V=V<PeP%; then 
from Ve$i'( it follows 

for every AG9{C. 

To prove the necessity, we will construct a partially isometric opera- 
tor VzWc with V* V=\,VV*^P^P, which shows the equivalence 
of § and P, öcPJv with respect to 9?c- Thus § is equivalent to a 
subspace of it and consequently infinite. (The same fact follows6'16 

from the existence of a vector Q0 cyclic for the infinite factor Äc and for 
^c) P 8 's then infinite because a subspace /^ § of it is equivalent to & 
and thus infinite too. 

The above mentioned V can be constructed explicitly as follows 
From postulate 6, there exists a vector Vo6P$ equivalent to the vacuum 
state ß0:(y0,/t ,//0) = (ß0,^ßo) for Ae^. (From l6*f we have 
||y0|| = ||Ooli«I.) The set XCG0 = {A Q0\Ae*c}K dense in ö (lem- 
ma I), and we define on *KC Q0 an operator V by V A ß0 = .4 V0, which 
is obviously linear. Furthermore, V leaves invariant inner products in 
*CQ0 

{VA1Q0JA2Q0)={A}H'0.A2V0)={V0.A:A2V0)={Q0,A;A2Q0) 

= M1ß0,/42ß0). 

Therefore, V has a partially isometric closure V with T+ T = 1. The 
range of V and consequently, because /* § is closed and V continous. 
the range of V is contained in /* &: 

PVAQo = PAV0 = APV0 = AV0= VAQ9. 
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Every ♦€§ is (strong) limit of 3lcß0, 

i-»ao 

and 

f:40=lim VAAiQo^hm AAtfo^lim AVAiQo^AV lim A^-AViP 
i-»aD i-»aD i-»ao l-»X 

for 'iny v4e^0 thus VeWc. 
The possibility of constructing V using the existence of an equivaient 

state T0€P^ Tor the vacuum Q0 only ('f 0 is then eigens^ate of P "suiciiy 
localized outside C in the terminology of KNKiHT1 and LICHT') 

allows to restrict the 4>e& in postulate 6 to the vacuum Pö. But because 
the vacuum ß0 is not distinguished with respect to local measurements, 
such a restricted postulate retains the old intuitive meaning. 

With postulate 6 we can give a short proof of Lemma 4: 

Corollary 1. Strict locality for regions B, C with <RC a factor implies 
$ic infinite. — 

As y eWgcWc is infinite, *Rc is infinite. As Q0 is cyclic with respect 
to SRfl, a fortiori for 9?^, and for <R0 it follows16 <RC is infinite too. 

Corollary 2. (LICHT2): Suppose SRc. = <Rc ("duality theorem**, as a 
hypothesis proposed by HAAG and SCHROER4, proved for one and 
disproved for another kind of regions for free scalar fields by ARAKI 5). 
Then strict locality holds for the pair C, C of regions if and only if *RC 

is a factor of type III. — 
Necessity: 9lc is a factor, i.e. ÄcnÄc = {A I}, because the existence 

of a nontrivial />e9?cn9?c = 9?cn9lc. clearly would violate postulate 6. 
Furthermore, every PG*RC =9?c must be infinite with respect to y{'c, 
which mean^   <Rc of type III and thus6 <RC of type III too. 

Sufficiency: 9?c factor of type III implies ^^^c ^ type III, i.e. 
every P +0 from <RC. is infinite with respect to 9?^ which is strict locality. 

We needed the "duality theorem" together with postulate 6 for the 
pair of regions C, C to derive type 111. Note that postulate 6 for the 
pair of regions C, C is the strongest possible strict locality requirement: 
From it strict locality follows for every other pair BcC\ QcC as is 
evident from <HBcz<RL , ^cc^c,- ^ seems to us that requirements on 
the local rings <KC make sense operationally only if restricted to finite C. 
(It is precisely this case of finite regions for which strict locality will be 
derived in section V.) Conversely, to derive strict locality for C, C (one 
of which is necessarily infinite) from strict locality for all finite pairs 
B(zC\ CiczC only we did not succeed. So we are not as convinced as 
LICHT2 is that for regions C for which the duality ^c. = ^c is va,'d 
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strict locality inevitably requires factors ^ of type III.* We can even 
imagine finite regions C with factors <RC of type I without violating 
lemma 1, the duality equation 9tC' = 9?c» an^ postulate 6 at least for 
pairs ii, C with 5c;C finite, if we remember a theorem of KADISON

8
: 

Lemma. There exist pairs of factors 9?c, 9?»SWc of typela, with 
joint cyclic and separating vector ß0 such that every projector P 4=0 
from *RB is infinite with respect to Ac- — 

On the other hand, strict locality for infinite regions, especially for 
the pair C, C, without the duality equation restricts the possible factor 
types as follows: If for a normal region C the factor 5^ were of type I, 
postulate 5 wodd Lmply6 the duality theorem lRC' = 9lc» and together 
with corollary 2 this means: 

Corollary 3. Strict locality for C. C with normal C excludes factor 
type I for Äc. - 

If, however, ^c is of tyr< H« and the duality fic—Rl doc* «wi »uid. 
the factorization ':HC, ÄC' is not a ccupied one, and 1HC can even be of 
t>pe HI (VON NEUMANN

6
), which implies strict locality for C, C. Thus 

we expect no analogue to corollary 3 for type II. 

V. A proof of strict locality 

In this last section we will show that for finite regions B, C postulate 6 
is not an independent one, but can be derived from postulates 1-5. 
Thus any general quantum field theory has automatically the strict 
locality property, and it is unnecessary to discuss possible other formula- 
tions like postulate 6' any further. We first demonstrate: 

Theorem 2. Let be /?, C finite normal spacelike separated regions. 
Then B, C are strictly local with respect to each other. - 

The clue in proving this is the following result due to MISRA
9
: 

Lemma. Let be 9{B a factor, x any spacelike translation which trans- 
forms its support B into BxczB\ and let there exist a region Bl^BuBx 

with 9?Bl a factor. Then every projection PE9{B is infinite with respect to 

If we take this lemma for granted, the remainder of the proof is 
very easy. As we immediately convince ourselves, the union BuBxof the 
normal region £ and the spacelike separated translated region BxcB' is a 
normal region too, thus %B and 9?*^ are factors, and we can put 

* Note added in proof. Recently, ARAKI has found the factors 5lc for the free 
scalar field to be type 111 for most regions of physical interest. The author thanks 
Professor H. ARAKI for a copy of his paper (Type of von Neumann algebras associated 
with free scalar field, preprint 1964). 
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Bx-BuBx in the above Ic. •"« Furthermore, because C is finite, we 
can always choose a translation x big enuugii iv; .r.J'- P -»nd C spacelike 
separated, %BKJ»' CÄC- Bö* every Pe9iB is by the above lemma infinite 
with respect to 9*^^ and thus also with respect to Wf. - Theorem 2 
immediately leads to the following slight generalization: 

Corollary. Any spacelike separated pair of finite "unpathological" 
regions B% C fulfills the strict locality condition. — 

Proof: For any not too pathological finite region C the double cone C" 
generated by C, i.e. the set of points spacelike separated from the closure 
of C (Fig. 3), is certainly a normal region. If B, C are spacelike separated 
the same holds true for B'\C". Thus from theorem 2 we have strict 
locality for B\ C", which implies strict locality for B, C. 
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