TECHNICAL MEMORANDUM FRL-TM-25

. TRAJECTORY EQUATIONS FOR A
SIX-DEGREE - OF - FREEDOM MISSILE

BRUCE BARNETT

MAY 1962

Ry i , LR AN et 0 11 v
o iR RO ]

e

CONCEPTS AND APPLICATIONS LABCRATORY
FELTMAN RESEARCH LABORATORIES

PICATINNY ARSENAL b= P
DOVER. N. J. B z

.
<
.n‘.
\
o
N
[T N
(308 F e s S

s
. g R T IEAT
NN, D ok Ve Pl Vb S s Lok O AT

&5
")
[ Y
d
1V
-

cory  JZ I

iR GO

oA ——g—— —— e S




Technical Memorandum FRL-TM-~25

TRAJECTORY EQUATIONS FOR A
SIX.DEGREE.OF-FREEDOM WISSILE

by

Bruce Bamett

May 1962

Reviewed by: ;: M

J. Spector, Chief, Research Engineering
ond Computing Section

Approved by: 41/?3&:\44-..*

W.R. Benson, Chief, Concepts and
Applications Laboratory

Concepts and Applications Laboratory
Feltman Research Laboratories
Picotinny Arsenal
Dover, N. J.




TABLE OF CONTENRTS

Abstract

Table of Symbols
Introduction
Procedure
A. Mathematical Preliminaries
I. Rotating Coordinate Systems

1. Euler Angles and Their Decivatives
B. The Equations of Motion
1. Missile Fixed Coordinate System
II. Fixed Plane Coordinate System
IIl. Forces and Moments

IV. Initial Conditions, Coaversions to Specific Cases
and Singularities

V. Tabulated Equations of Motion
Results and Discussion
Acknowledgement
References
Appendix — Raquired Input Parameters

Distribution List

- e -

Page

16

22
22
27
31
43

52
58
59

59

63




ABSTRACT

The purpose of this report is to explicitly derive two sets of six-degree-
of freedom equations of motion for a symmetric missile.

One set is based upon 2 coordinate system that is rigidly attached to
the missile (body-fixed system), while in the secoad set (fixed-plane sys-
tem) a coordinate system with one axis constrained to lie in a given plane
is employed to derive the equations of motion.

Both sets of equations assume the earth to be spherical, include the
effect of the earth's rotation, and consider variable wind. In addition, for
the body-fixed system, discussion of initial conditions and singularities
of the differential equations is preseniad.
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Arbitrary rector quantities

Angular velocities

Missile velocity, independent of wind velocity
Wiad velocity

Missile velocity relative to the wind

Summation of forces acting on missile
Summation of totques acting on missile

Total angular momentum of missile
Moments of inertia sbout the three axes of the missile

Euler angles

Position of missile ceater of gravity relative two reference co-
ordinate system

Increment of time

Unit vector indicating direction of gravitational force

Vector indicatiag altitude of misasile




Aok

¢+ ¥

Ry

Mean tadius of the earth

Gravitational factor
Mass of rocket
Density of air
Diameter of missile

Distance ftom nose of misasile to ceater of pressure, expressed in calibers

Distance from nose of missile to magnus center of pressure, expressed
in calibers

Distance from nose of missile to missile center of gravity, expressed
in calibers

Thrust malalignment distances

Thrust of missile

Axial deag coefficient
Normal force coefficient
Magnus force coefficieat

Ysw damping moment coefficient

Rolling moment coefficients

Proportionality factor of thrust applied to jet torque
Angle between yaw plane and jy axis

Angles giving position of thrust relative to missile coordinate

system




A® Longitude of missile launch position

Be Latitude of missile launch position
H® Missile angle of declinstion relative to geographic system
G° Aagle measure d from positive k'’ axis relating lateral misaile posi-

tion in geographic sy stem

e Denotes time derivative

Netation

A general vectot \7 will be represented in a particular coordinate system by

(V), where i denotes the refereacing cootdinate system,

A component of & vector will be denoted by two subscripts, the first

giving the compoanent, the second denoting the coordinate system used.
-

Here X, Y, sad Z represent components along the T, i, k axea respectively., For

example (Vy )y is the component of the wind velocity along the j ¢ axis,

v .
Fiaally d; denotes differentiation relazive to the i'® coordinate system.
t
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INTROBUCTION

This report is part of & continuing program to give Picarinny Arsenal a
complete capability in the flight simulation of all types of projectiles and
missiles, whether ballistic or rocket-boosted, guided or unguided. This
capability is important to the development of both conventional and spe-
cial weapons. It provides necessary information for aecodynamic deyign,
range calculations, error analyses, fuzing systems, and complete weapon
systems evaluations. The mathematical model defined in this repott forms
the basts for a corresponding digital computer program which has been
developed for the IBM 709/1401 system.

Contained herein are two detivations of the six-degree-of-freedom equa-
tions of motion of a missile, The two detivations differ by the fact that,
in one case, forces and moments acting on a missile are referred to a co
ordinate system that is rigidly actached to a missile (body-fixed system),
while, for the second set, the forces and moments are referred to a co-
ordinate system that has one axis constrained to lie in a given plane
(fixed-plane system). It is believed that the first set is more appropriate
for asymmetric missiles with the missile coordinate system chosen to
coincide with the principal axes of the body. This system, however, seems
to have a disadvantage for high spin rates (spin-stabilized rockets) in that
it may be necessary to take very small time increments to obtain an accu-
rate trajectory by numerical methods (this will be indicated in RESULTS
AND DISCUSSION). For this case the second set of equations seems more
appropriate.

It should be noted that it may be advantageous to choose other coordi-
nate systems than considered here, either to suit a particular missile or
because of the type of resultant data desired. Stability considerations and
terminal effects are examples for which specialized results are required.

Both sets of equations in this report include the effect of the earth’s
rotation about its axis, gravitational expressions for both the flat earth
(the earth is assumed to be a plane, valid for short trajectories) and the
spherical earth (the earth is assumed to be a perfect spheve), variable air
density, and the effect of wind. It is also well to state specifically that
the following effects are not included in the derivations:




ii

1. Guidance factors

2. The motion of the earth along its orbit
3. Launcher effects

4. Asymmetric missiles

5. Stability criteria

These represent arzas of extension to the present equations. The reader
is referced to References 1, 2 and 3, which treat in some detail some of
these additional factors.

6



To introduce the reader to the equations of motion, a brief derivation is
presented in Equations 1 to 11, The definitions of the various symbols
are given on pages 4, 5, and 6. Equations 1 and 2 provide the foundation
for the equations of motion. Arrows over symbols indicate vector quantities.

IF = ndR (H
de?

st - Y (2)
dt

Here the derivatives are taken with respect to a fixed coordinate system

-

(il, iI, kl). NOW

- Y - - - -+ - Y
%—f— =V e Vypip + Vyqip + Vzik = Vxuiy + Vynin + Vzuky 3)

-

- -
iM, jn. ky indicate a moving coordinate system.

Equation 1 can be written in terms of the moving coordinates as

-

- > d..V - -
ZF =mdlv= m'- M +(¢uxV)] 4)

dt L de

dy() . . — . . .
where M indicates a derivative relative to the moving coordinate sys-
de

tem. In addition,

- - - -+ - -

-
© = oxi] + wyp] + wzK] = wymin * OyniM t @ zM 6]

which upon expansion yieids

- - d V el dv bd ] _'.
SF=m dvx“iu+ Y™+ ——M, + (wynVzu = 9zaVymin
dt dt de
+(wzyVxm ~wxnVzmiv + (0xMYym = @yMVxndky (6)

i terms of the moving coordinate system.

;
—?



Similarly for Equation 2

>3 TR LI Y) IR M
dt dt
where now
] = Ixnoxuin + lyn@ynin + lzmezukn 8

which upon expansion yields

d”zu;

g dwyy? dwyy~ *
L = lxu..__i_u_xuf- Ivm d‘:uiMi' Izm Mt wyyozm{Izy ~Tywin

+ wxye zMIxm ~Tzadin + @ xueyMyn —Ixnk g &
also in terms of the moving coordinate system.

The forces and moments are:

-

-
3F = (FX drag * Fx gravitationsl * FX :hruu)‘u

-
+ (Fy normal * Fy magaus ¥ Fy gravitational + Fy thm-t)}M

+

(FZ normal * Fz magnus * Fgz gravitational Fz thru!’_)kM (10)

¢

M

(Lx ton1 damping * Ly jet torque * Lx spin deceleration
<

thrust mlhli;nment)‘u

+ (LY restoring * LY yaw damping * Ly magnus

thrust malalignm ent)i M

+ (L.Z testoring + L2 yaw damping + LZ magnus

LZ thruse mllnlignment)k M (11)

+




In succeeding sections of this report, these equations of motion, along
with all the necessary supplementary equations for their solution, will
be explicitly derived. In particular, Part A of the section entitled PRCG-
CEDURE covers principles of rotating coordinate systems and Euler
ang?es. In Part B, these principles are used in deriving the equatioas of
motion. A complete tabulation of the resuli.ag equations is presented at
the end of the PROCEDURE.

PROCEDURE

Several coordinate systems are used in deriving the equations of motion.
The reasons can be summarized as follows:

1. Forces and moments acting on & missile are commonly resolved
along the axes of a ""missile coordinate system,’’ that is, a coordinace
system with a conveniently specified orientation relative to the missile
itself. It should be noted that this coordinate system will usually travel
in some manner along the missile trajectory.

2. Newton’s laws of motion are strictly valid in an inertial coordi-
nate system, that is, a coordinate system fized in space. Because of this,
any forces and moments that are resolved along the axes of a moving co-
ordinate system must eventually be referred to fixed (or inertial) coordi-
nates to cotrectly relate forces and accelerations.

3. It is often convenient to refer the motion of a missile to coordi-
nates that are neither inertial not dependent upon missiie orientation. An
example is the case when it is desired to refer the motion of a missile to
coordinates fixed on the earth's surface.

For these reasons the basic equations governing moving coordinate sys-
tems will now be derived.

A. Mathematical Preliminaries

I. Rotating Coordinate Systems

Relations that exist between rotating coordinate systems will now
be denved Consxder first_two non- totating right-handed coorchnate systems
(1,4\. )A\. kA) and (15. lB' kB; as in Figure 1 (p 10). A vector A can be
tepresented in either coordinate system as follows:




Ap = Axpia + Ayaia + Azaka a2

- - -
AB - AXBiB + A\’BiB + AszB (13)

where, since a vector is independent of the coordinate system represent-
ing it,

- - -

Ap=Ag=14 (14

-y
If A is moving, then, relative to eac* coordinate system

da.A dAyan dAy 4 dA s
de de dte t
+  dgA dAy dAy oo dA, g,
vg=2"B. XBip+ "_‘E;B+__Z_B_ga (16)
de dt de de
10
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- -
Since the time rate of change of A (= V) is another vector which again is
independent of the representing coordinate syscem,

-

Vy = Vg =V (1n

Because of Equation 17 it is not necessary to actually specify

‘faff_, d_:,".. of to which coordinate the motion of A is calculaced, or
t t

mathematically

d,A dpA dA
dah ot _d4 (18)
de de de

- - -+

This is not tiue if the ig, jp, kg coordinate system is rotating relative to

i i kue As a wrivial example, it is possible that ddgf\ « 0 while
t

-

d A

de
-
calculate the rate of change of A relative to the fixed coordinates, but in

-

¢ 0, for the case of a vector fixed in the (ig, jp, kp) system. To

dAXB

de

terms of the rotating coordinates ( ), it is necessary to account

- -

also fot the rotation of igs jg kg, namely,

dA. dAo.s  dA dA, : ;
ats Uhxe7 , hvs; | Tzl L4 d4iB A, 200 s, S48
dt de dt dt de de d

-

. . e dyd L
To determine expressions for S..ﬁ'.ﬂ_, .3 , and iAE_B_, imagine a
t de dt

vector B of fixed length rotating with angular velocity @ as shown in
Figure Z (pl2).

11
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Figure 2

g a -
The time derivative of B with respect to any fixed system is as follows:

4

9B . Lim B2+AQ-B@® . Lin AB
dt A0 At Ats0 At

Refercing to Figure 2, the magnitude is

‘_‘9_{ « B sin 0 (20)
At

in a direction perpendicular to the plane containing B and &. This vector,
-
in the limit, is precisely & » B.

Consequently
Lim é:é-éé-uxa 2n
Ats0 Ac  dt

g .
For our particular case B can represent any one of the unit vectors; hence,

-. -

5 - 1 hd > dk - T
daip = wp X-:B; dA,B=(qu]B; :tB=wakB (22)
de

-+ -

- . . b *
where wp is the angular velocity of igs Ips kB

12




Equation 19 becomes

- -+
d.A d -+ - - - - -»
thB - ::B + Axplws xip)+ Ayplwp *jp) + Azplwpg xkg) {23)

dy A -
BB _denxes the time rate of chsage of A relative to the rotating
{4 - - -

-»
coordinate system (igs igs k). This derivative shows how A will chaage

where

in time to an observer situated on the rotating coordinate system,
Rewriting Equation 23 we obtain

daAg dpAp

22 - 20 s tap X Axpip) + (0p X Aypin) + (@ Azkp)

ot fiaally

d Ay . dgAp
dat de

+ ‘7’3 xRy (26)

This is the basic equation governing rotating coordinate systems.

-
To determine the acceleration of A relative to a fixed system, agein in
terms of the rotating coordinates, we have

A

—_ (23)
de? de

-9
o>
]
>
w
.
——
a.
-
< 2"
w
o™’

Following rules just established:

B.% (dA“B) +(an xd"AB) (25%)
de? de de dt

’-'
dA A

v

- -
-.=__‘?_[ B °+(SBxAB)] + wp X ( B °+(waAB))
dt dt de

R




Finally we have the result

ﬂ;_:.;?_ﬁ_=‘i%§.+f.3_°:§x33+zéax§%_§.+ m,x(.;sxi,,) (25)
t

We note in passing that

d,, dpe .
dt de
otsiaceés x :’B = 0
dy@p _dgup (28)
de de

- - > nd = - *
or the time derivative of w can be taken relative to either coordinate system.

We can now remove (he restriction that the two origins are coincident.
4 4 ) « . .
Assume that the (igs 1 g k) system is translating, as well as rotating,
£ - -

relative to the (i, j,, k,) system. We have, referring to Figure 3,

Figure 3

14
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C-A+B (29

d4,C d, A d;
A _A *A (3‘»
de dt dt
3 £ ] 5
4,C d,A doB - -
.._'.‘_.c..é...-r..g...fwaB 30
dt de dt

and finally

d "C. d .; d ;é - d ; - - - d ; g
A - A + B i 2(&) x B + x (@ » B B B 2
e aa BT gt X BenS xB 62

This discussion is concluded by a theorem thac will be of considerable
use in deriving the ballistic equations of motion when more than two co-
ordinate systems are involved.

- - - * - 4 -
Given a primed coordinate system rotating with angular velocity w A

with respect to aa unprimed coordinate system, and a starred coordinace
system rotating with angular velocity é;'B relative to the primed coordinate

system, then the angular velocity of the starred coordinate system relative
to the uaprimed system is SA + GB. The proof is as follows: The velocity

-

of any vector C, fixed in the starred coordinate system, relative to the
primed coordinate system (denoted by 4*' C/dt) is

-

4C L ogx C (33)
de

-
and the velocity of C relative to the uaprimed coordinate systems becomes

dc d'c - -+ - -+ - -~ - - -»
x* tw,XC=(wg xO + (0, xO)=(wg + ) xC (34)
t de

15
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Before deriving the equations of motion 2 second mathematical prelimi-
nary must be disposed of, namely, the Euler angles and their derivatives.
It is pcesumed that the reader has a knowledge of the elementary operations
of matrices.

If. Euler Angles and Their Derivatives

The purpose of this development is to determine what relationships
exist between the axes of two differently oriented coordinate systems.
These relationships are important since we may know the components of a
vector (e.g. velocity) in one coordinate system, and wish to know the com-
ponents of the same vector in another coordinate system. These relations
will be handled by what are known as Euler angles, although one may use
other techniques such as direction cosines. To fix ideas, three arbitrary
totations of a (right-handed) coordinate system will be performed about
selected axes. This is sufficient to orient a given coordinate system into
any other desired (right-handed) position.

- - -
In parti cular, consider a fixed coordinate system i, i a0 kA, and a sec-

ndiiediing

ond coordinate system (i, ;, k) mmally coincident with it, and whose final
position will be denoted by ip, B kB. Intermediate positions of l, p, k,
will be denoted by a sequence of primes, the number of which denotes the
number of rotations already performed, i , ..., k of course, all being
unit vectors.

Pl

Now first rotate i, j, k about kA by an angle of magnunde gb, as shown in
Figure 4, where each axis of the triad 1, 1s k becomes t' y 1 k‘. respectively.

- -
LTV k!

Figure 4

16




By trigonometry, the projections of the primed axis on the ‘*A’’ subscripted
or fizxed axis can be determined. The result of this computation can be con-

-

veniently weitten in macrix form as foilows:

-1 17+ ]
i cv S o in

i"{ =1 S cyp o i (3%)
» k' » L 0 c z -l LkA o

It is important to note that this matrix equation (and all similar to this) is
a shorthand notation for writing three equations ar once. Each equation
expresses one of the unit vectors, along the coordinate axis of one co-
ordinate system in terms of the other (rotated) coordinates,

For the sake of brevity we have written

SA for sin A and
CAforcos A

where A is any angle.

Similarly, the projections of the unprimed coordinates on the primed co-
ordinates can be written as the inverse (aiso the transpose) of the above

coefficient matcix, namely,
- -y - _! '1

CyYy ~S¢ O i
! (36)

17




.
If aext a rotation of magnitude @ about j* is performed we obtain

Figure 5

i ce 0 -S6 i'

i = 0 1 0 } an
k' sé o Ccé k!

and the inverse

Y 3 -

i cé o 56 it

1 = l 0 1 0 " (38)
k' -S4 0 Cov J k'

The double primes are used to denote the new position of the primed co-
ordinates.

18



Finally we perform a rotation about i of angle &, obtaining

Figur~ 6
ip 1 0 o i
iB =10 Co S¢ i 3%
kp |0 -s¢ c3 K
and
i 1 o o ip
i - 10 Co -S¢ ip (40)
k" 6 S¢ Cé kp

Now the B-subscript denotes the new and final position of the double

primed coordinaces. Three sequential rotations of magaitude ¢, 6, and &,
respectively, have now been completed.

19
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=

If one successively multiplies these matrices, the following is obtained:

ip cocy Cosy -860 ;A
il < | smsacu-cesy  sesesuecocy seco| iy | @
kp SOCHCis + S¢Sy SOCEHSY ~ SCyY  CopCh k‘A

and the inverse

-+ -

ia CACY SOS4CY — CoSY  SOCHCY + SepSyr ip

T | = | cose sesesyecocy socasy-secy | |ip | UB
" -6 S¢Co coco kg

- 3 tpe * - nd
To obtain the significance of these equations, consider a vector R
written in terms of each coordinate system:

R = (R)xaig + (R)yaia + (R)zaka = (R)xa?a + (R)YB-;B + (Mznin (42s)

Assume that the components (R)xg, (R) y g and (R) zp are known, and we
wish to obtain values for (R)x 4, (R)ya, and (R)z,. To obtain these val-

- - - - -

ues we write iy, jg, and kg interms of the iy, ju, k coordinates and

equate like components. For example, from Equation 41 we have

.EB = Cx;'ll.& + CGSQI;;A - S&-.A

ip = (SOSGCY — CSi 4 + (SOSHSY + CECYjs + SPChky (42b)

ky =(SOCHCY + SESU)i, +(SOCHSY = SYCY)j 5 + CeCOk ,

§ubs¢ituting these values in E quation 42a and e guating the coefficient of
iA on the right hand side of the ejuation to (R)XA, the cfefﬁciint of iA
on the left side of the ejuation, and the coefficients of j and k, to
(R)y 4 and (R}, respectively yields:
(R)x s = COCUAR)y g + (SESGCY ~ C@Sy) (R)y p + (SOCECY + S¢SL) (R) z 3
(R) y o = COSYU(R) x g + (S05¢SU + CeCuh) (R)yp + (S0CSU ~ SSC) (R)z g

(R), 5 = =5AR)yp + SGCAR), g + CECAR) 75 (43

20
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Thus, Ejuations 4] and 42 allow us to convert a vector in one coordinate
system to another coordinate system,

It is also possible, and necessary, to express the angular velocity
(discussed preciously) of the rotating system relative (o the fixed system
in terms of the rotating triad with expressions containing the Euler angles and
their derivatives, Using prior notations the angular velocity can be written as

@ = .52.3" + 9_0.-;'-6— i";‘ {44)
de de dt

’ -, - . » - .

To obtain w in the rotating coordinate system, i.e. w g, determine
- - - -+

i'"' in terms of iB' iB’ kB
- - - -

j' intermsofip, jg kp

- - - -

kA in tefms of in, iB, kB

Using relations already established

-

it 'i

i B
ji' - CﬁB’S&B
k, =~ -S6ig + 5¢Chip + C@COky 4s)

It like components are now combined the following results are obtained:

(w)xg - i - f_"ﬁ.se ia tht-ia direction
de de
d d . R .
(m)YB = d_tquS + .E?_S¢C9 in the ip direction
(w)z = —‘.i.ﬁ&f) + .éf.CqSCO in the k g direction (46)
B de de

21
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e e e ey %

Itis also possible to solve for 92, ¥ and 99 in terms of (w)x g,

Bt B |

) de dt dt
{wy p, and (w)zp obtaining

d6
5 T “veC - wzpSé

-_:_?. = Wyp t wyy tan 0S¢ + wWzy tan 9C¢

.%?. = WwypS¢psec & + wypCe sec § (47)

%e now have sufficient mathematical tools to derive the eguations of
motion.

B. The Equations of Motion
I. Missile Fixed Coordinate System

In this Lirst derivation of the equations of motion, all forces and
moments are referred to a coordinate system rigidly attached to che mis-
sile. The following definitions and assignments are made for this case:

o
+

-
»ip Ky A space-fixed (inertial) coordinate system whose
origin is located at the center of the earth with
the Tcl axis coincident with the spin axis of the
earth.
-EE, -i’E, kE A coordinate system that r.gtat?es“widT the earth,
having the same origin as i ip k with k

-

coincident withk,. This system will be called

the rotating earth coordinate system and is that
to which the rissile trajectory will be referred.

- - -
iys Jo kA coordinate system rigidly attached to the mis-
sile, origin as yet unspecified, but iN taken along

the Jongitudinal axis of the missile.

22




- - - -

. The angular velocity of (}E. jgs kg) relative to (i, j,, K );

that is, the earth’s rotation.

- ~ - - - -
@ Angular velocity of (iy, |y, ky) relative to (ig, ig, kg).
-+ - -, A B

JF Angular velocity of (iy, iy, k) relative to (iy, j, k).
Ye can note by a theorem previously proved that
wgp = w + Qg (48)

Let now}“ be along the Jongitudinal axis of the missile, as previously
stated. Let also R be a vector defined between the origins of the inertial
coordinate system 61, ‘;1, -;r]) and the missile coordinate system (‘in, ;w 1“).
Finally, let Sy, be the vector from the origin of the missile coordinate sys-

-
tem to the gravify center of the missile, and R be a vector from the origin
-
of the inertial coordinate system to the terminus of Sy. These vectors are
showa in Figure 7.

Migsile
cG

t-l

-
i

Figure 7
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Vi

Py

- e —— g = ey
’-. ¥ o . - - e ~r N

%e have by Newton's Law for a rigid body
dl'Rc
d:l

5F - m (49)

ey

- 3
where IF is the summation of forces acting on the body and 4R is
de?
the acceleration of the center of gravity of the missile relative to the

d/'R, .
is
-+ - E ] -+ dti
given by Equation 32 with A and B replaced by R and S, respectively:

inertial coordinate system. In particular, the expression for

4R R dys s . - - due -
d* 4 de? de de

If the origin of the missile coordinate system is located at the missile
gravity center, then S, becomes zero, and

4Ry 4R
de? de?

SF = m (s51)

For this assignment, the fictitious accelerations (Coriolis, etc) in E qua-
tion SO become zero. It is for this simplification that the center of gravity
of the missile is chosen as the otigin of the ‘‘missile’’ coordinate system.

To obtain a particular form of the eguations of motion we can write
+
d,R

in either the inertial or missile coordinate system as follows:
de

d ‘R - -+ -+ - - - - -
-{—-‘ (V)= (Vg + Wygip + gk = (V= W xpdu + Oyadint Vzpdky 62
t

Using Equations 24 and 34, we can express Equation 51 in the follow-
ing forms




-

SF o= p &V | dVn (538)

dt dt
. dy (V) - “
IF =2 m : M, {wpiuw x (V) y {53b)
t
5 d (v) - - -
IF = m "d‘ v wyn @00 x (M), (53c)

Note ther Equation 53¢ is expressed in rerms of the missile coordinate
systzm. To use this equation, the forces also will have to be expressed in
terxs of the missile coordinates.

For the moment equation we have

si . A0 _ 40
de de

(34)

Where IL is the summation of torques acting on the missile, and (-})‘ - (i)“

is the total angular momentum of the rocket relative to the inertial system,

but in terms of the (fl, }", Ex) or (f“, ?“, Eu) cootdinates, respectively.

Again, using E quation 24

e ———

de

- d . .
dlu - W + @R Dy (53)
dt

which, when considering the earth’s rotation again, becomes

i

de de

s (@) ¢ @ x], (56)

If the principal axes of the missile are chosen to be coordinate axes of the
missile coordinate system, we can write the angular momentum as

T =L R s * Iy Py * Tz @R 20 57

Ixns lyws 12y being the moments of inertia about the i, jy, ky axes,

respectively. Equations 53 and S6 are the general vector equations of
motion of a missile.
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Since the spin rate {1 of the eacth is known, we can appropriately se-
lect a convenient orientation of the iy, jj, & 2nd iy, iy, ky coordinate sys
tems and, by use of the Euler angles, obtain Q g in terms of theiy, jy. ky

system, that is, (55}“.

To accomplish this objective, set both ‘i:[ and?ca permanently along the
spin axis of the earth, so that

b

and determine the components of ;: = ;E in terms of -i.u, -i‘w k- Using

E quation 42 yields

Qpkg = {88y + (NESECHN + NECeChk y (59
In component form, E quation 59 becomes

() 5y = eSO

(Qp) yu = S1gS4CH
(Qg) zy = NgCeCO (60)

In the vector Equations $3 and 56, (unlike ﬁg) & and V are not known

quantities. They are unknowns which will ultimately give rise to the
teajectory through solution of the differential e quations of motion. From
before

- -

Wy, = Mgy * Mgy 0k 52
Similarly, writing @ in component form yields:

Gy = @y + @yin * (@) zuk 61
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Now, we can immediately write the basic vector equations in component
form which are valid for the spherical and rotating carth case. Two facts
should be pointed out in these general vector equations: (1) Factors such
as variable air density, variable wind, and the gravitatioas! acceleraion
do not sppear in the inertial terms (which have just been defined), bu
only in the force and moment part of the equations of motion {which will
be derived in Section B of the PROCEDURE). (2) The general vector
Equations 53 and 56 are written in terms of the missile coordinate system
(as indicated by the presence of .dlg;::l.}. As such, the unknown quanti-

-+ Y
ties V,,, w, must be related back to a coordinate system to which the
- . ®_ " - - e -
motion is referred. The latter presents no additional derivations. Ry in

Equation 43, which expresses the components of an arbitrary vector in the
coordinate system, may be replaced by the missile velocity vector, (V).

Similacly, (@), may be related to the rates of change of the Eulerangles

by Equation 46 or 47. When the angular velocity of the missile is known,

the aew Euler angles can be computed by an integration, while kaowing

the velocity components will yield, upon integration, the missile position
((RYxgs (R)ygs (R)25). These equations are all tabulated at the end of

the PROCEDURE.*

A

II. Fixed Plane Coordinate System

It is not necessary to specify a ‘'missile coordinate system'’ that
is rigidly attached to che missile, as has been doae previously. In this
section a “‘missile coordinate system®’ with one axis constrained to lie
in a given plane is considered, although a coordinate system that is
rigidly attached to the missile is temporarily used.

The following definitions and assignments are made:

k Same coordinate system as defined earlier (see p 22)

Tk Same coordinate system as defined earlier (see p 22)

‘Fu the interested readesr, Reference 3 coatains the derivation of these equations of
motion without the use of matriz notation.
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igs ips kg The missile coardinare system. The putisulu orienta-
tion of this system will be such that the i axis is

coingident with the missile axis of symmetry, while
the jp axis is conscmned to lie in a plane paral)el to

-.

the plane determined by i xx, ;1. The origin of ip, jg, “F
is at the missile center of gravity.

w b ¥y A coordinate system that is rigidly attached to the
missile, with iy along the missile axis of symmetry,

and with the same origin as 1 %

F' ’f' ¥

e
m

The angular velocity of -i.E. i’g, ;E relative to :;p ;,:1,

-

- - - -
'‘Angular velocity of ip, jp, kg relative to ig, jgr kg.

= IV

- - - - Y -
‘Angular velocity of iy, jy, ky relative to ip, jg, kg.
Note the different meaning of this & compared to chat
defined on page 23.

e

s - v

3, Angular velocity of i 1,‘, i ku relative to '!’ 31’ k,

L T T

Our basic vector equations in terms of igs ips kp now decome
-

- dgv - - -
SFaa-fF + (Mp+ Qpp x Vr (62)

- d e d - -
iL - I;JF + (M + Qlp x Jg (63)

In these equations the quantity (@) + (65 )p is the angular velocity of
the missile coordinate system to which we rcfer our forces and moments,

- - - -

relative to the inertial system, i.e., (np. o k )relanve to (11, )l, "1)

To derive the equations of motion for the fixed plane system, it is first
necessary to specify the orientation of iF' i!_., kF relative to i, iE' kg

in terms of the Euler angles, so that che i} axis lies in a plane parallel

-
&
»

o
-




- o+

to the plane determined by iy, jj. This condition will also be fulfilled if
the j, axia is constrained to lie parallel to the plane determined by i, ig.

- -

which (by definition) is coincident with the i,, ) I plane.

To accomplish this pbjective, consider the following two rotations:
(1) Rotate the iy, jg, k; coordinate system about kp by an angle of magai-

tude i, obtaining the identical matrix expressed in Equation 35. (2) Ro-
- -+ -+

tate the resultant coordinate system i ,7', k' abowt the j' axis b} an

angle of magnitude 8, the final position being denoted as iF, iF, kF. if

the resultant matrices are multiplied chere is obtained

[ FJ CYcd -Sy Cysd i
ig | = |swce cy syss i
| kg | -6 0 cf kg )

It can be seen from the inverse that 51-‘ has no component along k for all
¥ and 6, which fulfills the constraint on the j, axis.

-
*

The angular velocity 0 of ig ;!-"IF relative to i‘g }E’is can be

wricten as

g+ 325 63)
de de

- - -»

- -
By obtaining the components of k. and j* onthe i, j p ky axes, we have

W B+ Yook, (66)

(Q)F = -86
dt dt de

Solving for ‘i.'i.{‘ and _‘.i_o_ yields
dt dt




i

d'!“ '(n)xp (ﬁ)zp

—_— - (87
e sin @ cos @

30 . ., (68)
de

-

For Equations 62 and 63 to be of use, it is necessary to express Jgs the

angular momentum, in terms of the angular velocities and the moments of
inertia of the missile, namely

;F = Iy p@ )y pip + IYF(mF)YF}.F * IZ.F(‘"F)ZF-LF (69)
where
‘3?"3*5*55 (70)
Additional relationships between & and &} must be derived since six un-

knowns, instead of the usual three for the angular velocity, are introduced

- g - - = & -
when « and Q are written in component form. These additional relation-
ships will now be derived.

- -
It will be recalled that both iM and iF are to be coincident at all times.
-» - -

Hence, the only rotation enjoyed by the i k,, coordisates not shared

M! iu’
- - - -+

by the ir, jg, kg system is the motion about iy, or the spin of the missile

about its axis of symmetry. This can be expressed as
(@yp = P (m)YF = (wyp =0 71

where P is the spin of the missile.

Since a new unknown, P, has been introduced, it becomes necessary to
eliminate one of the unknown components of -&'lp. This is easily done since

(1), can be writien in terms of (Q)ZF by use of Equation 67.

XF

(Wyp = ADyp tan 0 (72
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Finally, we can account for the earth’ s rotation, Q g, by defining i, j;, k;

- -+ -»

and ig, jg, kg coordinate systems as ia the "‘missile fixed"' case with
the result as before

-

Qg - (Qg)k; - (ﬂg)kg

- - -

where, by Equazion 64, kg can be expressed in terms of the

ig, g kg
system. Therefore:
(QE)XF - -(05)88 (73)
(Qg)yr = O (74)
(Qg) 25 = (Rg)CH (7%

Rith the relations obtained from the above analysis, (G ) can now be
written as

(‘:F)F - (P - tan «Q)ZF - (QE )SG);F + (Q)YE‘;F + ((Q)ZI_- + (QE;ZFCO):F (76)

Once Equations 62 and 63 are integrated to obcain the unknowns
Vxp My Vzz Py (Dy g, (D) 75, the inverse of the matriz in Equa
tion 64 is used to obtain (V)yg, (V)yg: (V)zg- Equations 67 and 68 are

used to determine .%.‘_l' and 9_2, integration of which provide ¢ 2nd 4.

t de
These equations are tabulated in Part V of this section.

I1l. Forces and Moments

The forces and moments acting on a missile may be classitied
into four categories, as follows:

1. Gravitational
2. Aerodynamic
3. Jet

4. Guidance
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Guidance terms are beyond the scope of this report and will not be con-
sidered. The remaining forces and moments will be considered in the or-
der shown on page 31,

a. Gravitational Force

The gravitational force acts at the center of gravity of the missile
and, hence, does not produce any moments. Further, when specifying this
term and other altitude dependent terms, distinction must be made between
the spherical earth and the flat earth cases in the equations of motien. In
both cases, however; the magnitude is given by g = g, Ry*/h,? where Ry

is the mean radius of the earth, and g, is the gravitational acceleration

at sea level. To ascertain the direction of this force for the fla: non-rotat-

- -

ing earth we may take the inertial coordinate system i, j, k, to be such
-
that k, is pointing vertically upwards.

The gravitational force ng (Y being a unit vector specifying the
direction) then becomes ng - -mgkl (acts opposite to kl) With respect

...

to the missile fixed system (by obtaining l‘l in terms of i ‘w in ku)' this

force is

mgY = mglShhy - S$CHjy ~Cep Chky] 7
and, by similar reasoning, for the fixed plane system
mg¥ = [SOif - COkgl (78)
In both cases, the alticude (ho) will equal (R)ZE.

For the spherical earth case, it is necessary to define a vector
from the earth’s origin to the center of gravity of the missile. It is along
this vector that the gravitational force acts.
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Referring to Figure 8

Figure 8

we may note

- - - -
.R=(R)xgig +(R)ygig +(R)zgke

o9
R = RY (80)
Hence
¥ f_ - (Rxgie Rypig
R VIRG, + (R p +(Rpp VRN + (R}, + (R |
R -»
+ ®zeke (81)
3 f 1 2
\/(R)XE +(R)YE + (R)ZE

For the missile fixed coordinare system,

ig = COCYiy + (SOSPCY - CHSY iy + (SICHTY + SpSPk,,  (82)
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with similar expressions for j; and kg. Combining all the i, components
will yield in this direction:
! 3
: ]
VIRY o+ (R + (R

(28 )y =

[(R)x gCOHCY + (R) y gCOSY ~ (R)zS6] (83)

The same peocedure is umed for the fixed plane coordinate system, where
again & tabulacion is presented in Part V of this section.

The alticude for the spherical eacth case is simply

R = Rl = b, = V(R +(Riyg+ RGg

b. Aerodynamic Forces and Moments

(84)

The serodynamic forces and moments that will be included in the
equations are presented in the following table.! For convenience, both the
scalar magnitude and direction are included in the table.

Sywbel
(DF)

(NF)

(MF)

(RM)

(MM)

(YDM)

Perce

Axjal
Deag
Normal

Magnus

Moment

Restoring

Magous

Yaw Damping

Scolor Magnitude

PV k4

pd’Vg .k N

pd‘(d F xV‘k F
pd*V; flan(A—)

pd'e pyVek p(A p)

1

Wy (.3 3 42
pdV (wpy +wgpg)ky

Direction

Along mis-
sile axis
1 to mis-
sile axis
in plane of
yaw

4t plane
of yaw

dto plane
of yaw

1 to missile
axis in

plane of yaw
Independent
of yaw plane,
but L to mis

sile axis

“This cable was essentially taken from Reference 6. For a more complete listing with
explanations, see Reference 4.
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Symbel Farce

Moment Scale: Magnitude Direction
(AR) - Roll Damping FAA™ ép @ de‘ Aloag mis-
Momeot sile axis
- Roll Moment oV, ”k¢d‘ Aloag mis-
sile axis

The velocity V. expressed in the table is the velocity of the missile

relative to the wind. For example, if the wind has a velocity component
(Vg )xy in the same direction as the missile velocity component (V)y,,

as shown below, then the velocity of the missile relative to the wind
((V,)xn) becomes

(Vooxn = Mxu ~ (Vwxu

(8%
=
-———-—————
Vo) xm
Figure 9
Similarly
Vdvu = Vyu - (Vydyy

It should al so be noted that the angular velocities w

px' “ry’ 04 9,
expressed in the table are the three components of S in vector Equation 48.
For example, in the iu direction, with the use of E quation 59, w

can be

FX
written as

(wF)XN = -(QE)SG + (m)xu (87)
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Finally, if the wind is given in terms of either the inertial or rotating
earth coordinate system, the Euler transformmations should be used to
determine the wind components along the axes of the missile coordinate
system.

Each of the forces and moments given in the table will now be briefly
discussed. The reader is referred to other texts for a more complete dis-
cussion.

The axial drag acts along the missile loagitudinal axis of symmatry,
but in direction opposite to the velocity (-(Vl)x“) of the missile along

that axis. Since the line of action of this force passes through the cen-

troid of the missile, there is no induced moment due to this force. The
magnitude of this force is as given in the table.

The normal force, on the other hand, acts perpendicular to the missile
axis and lies in the plane of yaw, that plane determined by the velocity
vector of the rocke:(‘;’.,) and the rocke_t. axis(§ee Fig 11, p 37). The com-
ponents of the normal force along the 3“ and k y aXes act opposite to those

of the missile velocity components as shown in Figure 10, p 37. To ob
tain the magnitude of these components, as shown in the table (pp 34 and
35) note the normal force lies in the yaw plane but perpend: cular to the
missile axis; hence, if y (in Fig 11) is defined as the angle between the
vaw plane and the j,, axis, then it is easily seen that

tNFiYM = INF|cos y

. ;m;z“ = |NF| sin y (88)

where

)
Cos y = YM (#9)

F 2
\/(v,)w ey

-~

R

r

J Lo e T : ——




(NFlyy

///’

Figure 11
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and

‘-Vx)zu

V((vr )‘YH + (V' )'ZM

Siay =

This force does not act at cthe centroid (CG) of the missile, but ar what
is known as the center of pressure (CP), which is determined only by the
exterior configuration of the missile. Consequently, this force gives rise
to a moment, called the restoring moment. If the distance between the mis-
sile center of gravity and the center of pressure (CP) is denoted by A' (CP
is assumed behind the CG as shown in Figure 12), then the components
of the restoring moment are:

IRMly = INFlypA' (90)

Figure 12

. ) 1
If the velocity components are along the positive " and T(M axes, then,

by the right-hand rule, the components of the restoring moment will be
negative along the jM axis and positive along the k, axis.

The normal force and axial drag as described above should not be con-
fused wich the lift and drag which are components perpendicular and

parailel, respectively, to the velocity vector of the rocket.
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The magnus force depends upon the angular velocity of the missile and
acts perpendicular to the plane of the yaw. Consequently, to obtain the
component of this force along the}’“ axis, it is necessary to multiply the

scalar magnitude by sin y. Thus,
!MFiYu = |MF| sin y along .i’u
and
IMF|,,, = IMF| cos ydong}u (o1)
If (V,) yyand (V,) 2, are the velocity components of the missile relative

to the wind (discussed previously), then the sign of the components of
this force is as indicated in Figure 13, where the spin is considered to be

{(W)ZM

Figure 13

-
positive, i.e., acts in the direction of the positive i, axis. If the direc-

tion of the spin is reversed, the magnus force will act in the opposite
direction. Again, since the magnus force does not act at the ceneroid of
the missile, but ac the magnus center of pressure, this force gives rise
to a moment called the magnus moment. If the magnus center of pressure
is again behind the center of gravity, as indicated in Figure 14 (p 40),
then, by the right-hand rule, both components of the magnus moment will
be in the positive e k“ directions, the magnitude of which will be the

magnitude of the scalar component multiplied by the moment arm A g as
seen in the figure.
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Figure 14

The yaw damping moment tends to reduce the magnitude of the yaw
(assuming kj; positive) and acts opposite to the resultant of the lateral

angular velocities ((wg)y y (wp)yy)- This is shown in Figure 15. Note

that there is no component of the yaw damping moment along the missile
axis of symmetry. Noteworthy also is that a force asscciated with k

exists; because it is difficult to measure chis effect, however, this force
was omitted in the analysis.

(YDMY:«.

Figure 15

The final aerodynamic terms to be considered are the roll damping mo-
ment and the roll moment. Both moments act along the longitudinal axis of
the missile. The former is induced by the fin cant, while the larter tends
to reduce che axial spin by skin friction on the surface of the missile dur-
ing flight. Both moments act in a direction opposite to that of the spin of

the missile.
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It should be noted that none of the aerodynamic coefficieats are assumed
to be linear in nature and hence are not to be taken as slopes from experi-
mental curves. Racher, these coefficients are obtained directly from experi-
ment as functions of Mach number and angle of artack. For example, one
value of Mach number, the angle of attack, and the corresponding axial
drag are sufficient ro determine one value of kp,.

c. Jet Forces and Moments

The jet forces and moments considered in this report are due to
thrust, thrust malalignment torques, and jet torque to initially spin the
missile about its axis for spin stabilization.

The jet thrust is the primary force that imparts forward motion to the
missile. Although it should ideally act along the missile axis of symmetry,
the thrust may have componeats along all three axes of the missile co-
ordinate system. This is due to imperfections in the rocket design, the
practical nature of propellants, and other factors. To obtain quantitative
relationships, one may conveniently define two angles: (1) 81, the angle

between the direction of the thrust and an axis parallel to the missile axis,
and (2) §,, the angle between the projection of the thrust force on the

-

i Eu plane and the ?M axis. These angles are illustrated in Figure 16.

Tn o=

Figure 16

Fzom geometrical considerations,

(Tyy = Tcos 6y along i, axis

(T

YM T sin 8T cos BA along j,, axis

(Mzy = T sin 51 sin & A along ?‘u axis 92
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If the ditectinn of the thrust does not change relative to the missile,
then for the missile fixed coordinate system, both 8, and 8, can be taken

as constants during the missile flight.

To obtain the corresponding malalignment corques, refecence is made
to Figure 17,

(Thvn

(Mg T
™ '
| "

R

Figure 17

Tu

-+

If (TYxms (Tyrs (T) 2y act along the positive iy, juy, ky axes reepectively,
then taking moments will yield

-

Thrust moment in iy direction:

(TxM = (Tzutu ~ (Dymn (93)
Thrust moment in-j'M direction:

(Myy = My = Doyt (94)
Thrust moment in LM direction:

(T = (Myn® - (Myutfy 9%)

where ¢, 1. and r, are defined in Figure 17,
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Finally, the jet torque can be considered as proportional to the total
theust or KT. If the spin about the iy axis is clockwise, then the jet
torque is said to be positive by the right hand cule. Its purpose is to ini-
tially spin the missile for spin stabilization. It acts as indicated in Fig-
ure 18.

Diagrom illustrating {et torgue

Figwe 18

In summary, the forces and moments as discussed in this section are
exhibited in the table shown on page 44.

IV. Initial Conditions, Conversions to Specific Cas2s and Singulari-
ties

a, Initial Conditions

Initial conditions for the equations of motion will consist of
initial values for the following variables: Ry 1» (R)yys (R)z}; (Vi
Myu, VMzng 6, ¥, ¢ (w)xM, (Wym, (0)zn- Of these quantities (R)xj,
(R)yp (R)z5, and 6, 4, ¢ are in reference to the inertial coordinate system,
while (V")x“, (V)YM' (V)ZM and ("’)xw (m)“‘, (“’)ZM are referred to the
missile coordinate system. In addition, it is important to know the orienta-
tion of tliese missile coordinates at launch, relacive to the earth. Aay ini-
tially directed forces (for example, thrust malalignment) will influence the
particular latitude and longitude of the missile impact point at the end of
the trajectory. The se directed forces take on added importance in influ-
encing the terminal point of the trajectory if an ellipsoid is usedto ap-
proximate the earth’s geometry.
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To obtain the initial conditions, let us now precisely ortent the inertial
coordinate system. As previously stated, the origin of this coordinate sys-

3 - - - - - - -
tem is situated ar the earth’ s center with the kI axis coincident with the

-

acis of spin of the earth. Now iet i (arbitrarily) coincide with the Greea-
wich Meridian (zero degrees longitude), while j; is perpendicular to i
and k; in a direction given by che right-hand rule. Further, let us assume

the existence of another coordinate system xc , ’C' kc initially coincident

hid - -

with i, j;, k. Upon successive specified rotations, it is intended chat
- -

b d

ic, ics k¢ will become the missile coordinate system. Here the subscript

C simply denotes that this coordinate system is used to determine initial
conditions. As before, primes will be used to denote the intermediate

crotations. Let the launch point of the missile be at A° longitude and B®
laticude.

-
Our first objective is to orient the i axis so that it passes through the

launch point of the missile. This is easily done by two rotations, first a
rotation about k of magmmde A°, and second a romnon lbout )C of

magoitude B°. Note that i ‘C- ;c, k- is now labelledas lc , lc kc

Using the techniques in Part A of the Progedure, we can readily escablish
relationships between if, j;, & and i'', jc'', k¢''. By matrix multiplica-
tion, we have

M o+ ) 3 b F W ]

ic" CACB CBSA -SB i

i | = | -sA CA 0 it (96)
| k¢ ] | sBca sBsA  CB] | |

It will be convenient if, in principle, we now translate the rc ‘ fc“,lc"

coordinate system out to the surface ci the earth so that the origin is at
the launch point 0' of the missile. It will be noted that i ' is still ina

direction extending radially outward from the center of the earth and pro-
vides a perpendicular line to the earth's surface ac the launch point,
while Tc" and ic" determine a tangent plane to the earth’s suface at 0'.
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-
Note also that the k.'* axis points towards north. In this “translated’’

-

position 0*, i¢'’", ;c" , ;C" will be called the geographic system. To
completely specify the orientation of the missile, two additional angles
are specified relative to this geographic system. In this analysis we will
use (1) the angle of declination of H® from the perpendicular to the earth's
sutface, and (2) a lateral orientation angle G° measured from the negative
ic“ axis in a counterclockwise direction in the tangenr plane.

These angles are pictured in Figure 19,

- 0° Lengitude

kU Tronsloted

Figure 19
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The object now is to petform two additional rotations using the input
information of G°® and H°, so that the i ' axis finally coincides wich the

missile axis. We first rotate about ;c” by G° so that * ¢! coincides with
the projection of the missile axis on the fc", l:c" plane. The second
rotation is about the i*c"' axis of magnitude -H®, which finally causes the
i::"' axis to become coincident with the missile axis. It is important to

-

note that the j, axis is located in the tangent G° from the east, measured

in a counterclockwise direction. Figure 20 shows the final rotation.

g_‘ctn
- [M
Miustle
-!é” “Jém 'J“
Baost e
J¢
GO

-‘l + -:‘ '.
-gc

Figure 20
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Mathemazically, the resultant mateix for the G® und H rotations is

- - -

-

whete

N CH SHHG ~SHCG

ky ] | SH  -CHSG  CHSG |

-

A,, = CACBCH - SASGSH — CASBCGSH

”b
-
]

A, = -CHSB - CGCBSH

A,, = -SACG + SGSBCA
A, = CGCA + SGSBSA
Ay, = SGCB

SACBCH + CASGSH - SASBCGSH

A,, = SHCBCA + CHSGSA + CHCGSBCA

A, = SHCBSA « CHSGCA + CHCGSBSA

A,, ~ =SHSB + CHCGCB

We are now in a position o obtain the initial Euler angles, so thac i,

be comes coincident with the missile axis. We first perform a rotation about

'l:x of magnitude ¢, and a rotation about‘j' of magnitude 6. We will now have

e -

(97

(98)

*
1

i'" coincident in both cases. To obtain j''* we perform a rotation about

i of magnitude ¢. Mathematically, the three rotations expressed in matrix

form are
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o cocy cosy -6 i
iw | = | soseCy - Cosy sOsgsy + CYCs  Sgco )
l ky | | SOCHCY +SSY  S6CHSY -S4y Coch k|

This and the preceding matrix must be equivalent, since the final positions
of the missile cootdinate systems are 1o be identical. To obtain 8, ¢, we
simply compare corresponding elements of the two matrices. In particular,

S6 = SBCH + CBCGSH

syCé . . (SACBCH + CASGSH - SASBCGSH)

CyCco (CACBCH - SASGSH - CASBCGSH)
CO6 . tan g = SGCB (100)
CoCe CHCGCB - SHSB

It is to be understood that these angles ate att = 0, or at time of launch.

One must be careful, however, in ascertaining the correct quandeant of
these angles.

For the initial position of the missile, only the latirude and longitude
are required to compute the (R)xy, (R)y;, (R), coordinates of the missile

launch point. We can assume att = O that the reference coordinate sys-
. . . . 2 . .
tem ?E , TE ,Tc,__._ is coincident with the i i T‘l coordinates, where again

the di; axis coincides with 0° longitude. From Figure 21 (p 50) it is easily

seen that

(R,, = RW cos B® cos A°

X1
(R)y; = Rycos B® sin A° (iol)
Ry being the mean radius of the earth.

Similarly, knowing the coordinates of the terminal position of the mis-
sile enables the determination (by the same equation) of the latitude and
longitude of the trajectory’s end.
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Soin Anly of Earth

G° Longitude /

R)yy
(R)w
[ﬂ)xt
S
Launch Poim
of Missile
Figure 21

Finally, knowing the orientation of the j,, axis and any directional

fotces and moments relative to a specified compass direction enables one
to compute the components of these forces and moments along the missile
coordinate system. For example, if one wanted the effect on the terminal
poinc of the trajectory due to thrust malalignment initially directed in an
essterly direction, then &8, (the lateral thrust malalignment angle) may now
be given a definite value, namely the G° as we have defined it. Similarly,
knowing the orientation of the missile coordinates will enable the compu-
tation of aay initial lateral velocities and angular velocities. This com-
pletes the discussion on initial conditions.

b. Conversion to Specific Cases

For short trajectories, generalization to the “‘rotating earth’’ and
“spherical earth'’ cases may not be warranted in soiviag the equations of
motion. Coaverting the equations to the flat earth requires using the appro-
priate gravitational term as well as setting the altitude equal to Z (in

place of h = (R)y g + (R} g + (R}, ). To coavert to the non-rotating
carth it is only necessary to set Qg equal to zero. Similarly, to neglect
wind one sets Vg equal to zero.

c. Siagularities

Care must be taken that certain quantities do not become increas-
ingly large, without bound, in solving the equations of motion. Such a
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singularity is present in the missile fixed system. Equation 47 is repeated

below for convenienc=

..ég. = wyC¢ - wzSP

de
.g.‘é.=mx+wytm9$¢+wztm9€¢ (47)
14
..:.?2. = wySe sec G+ wzCo sec §
4
When 6 - 90° both .:i and _:_‘f_ + =, which means that the above set of
t t

equations cannot be used in the limit. To overcome this difficulty we take

[
tan p = - .2 (102)

Gy

which is obtained from Equation 46 with 6 = 90°. Ditferentiating both
sides of this equation yields

dw d
wz(—-l) - wv(—?—é) {103)
3¢ . d L At cou?
de my'

If wy also equals zero, one may use the alternate expression

a

Cot ¢ = — ¥ (104)
@z
obtaining
. ( de Y\ i ( dmz )
d¢ 2\ 3 )~y
—_ sin? ¢ (10%)
dt wZ'

Knowing d_d; we can solve for Y. through

de de




.8,

T T U (106)

which is also obtained from Equazion 46 with § = 90°. If in addition to
6 = 90°, both wy and w, equal zero, recourse must be taken to higher or-

der derivatives,
V. Tabuylated Equations of Motion

Following is a summary of the six-degree-of-freedom equations of
motion for body fixed system {rotating spherical eacth).

Force Equations

T cos 81~ pd¥(Ve)idpa + .
VIRY, L+ (R} + (RY,

[—(R)xg cos 6 cos Y ~ (R)y g cos 6 sin ¥ + (R)5 sin )] =

m {d(v)xu
dt

+ ((m}Y“ + (QE) ain ¢ cos @ (V)zu

= (@) zy + (1) cos ¢ cos 0 (V) yi ]

PV, Ik (Ve Dy

T sin 8y cos 5, —

ALY ] H
VOV, + (Vo)y,,

P @R VoMKV zn | ‘mg

VIR + Vo VIR g+ (R + (R,

[—(R)xg(sin 8 sin ¢ cos ¢ — cos ¢ sin )

- (R)y g(sin 0 sin ¢ sin Y + cos ¥ cos @) - (R), (sin ¢ cos O] =

1 dViyu
m

+ ((w)zy + (NE) cos & cos ) (Viyy
dt

A
119)
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T sin 6'1- sin 6A - Pd’(‘( }’MEN(¥ )ZN

/ 2 2
VIV v * %

. pA'(wE )y Ve Ik F (Ve ) v . mg

\/'(\; )im +{¥ )’z.q \;"(R)‘XE + (R)’YE * (R}’ZE
[<R)xE (sin 6 cos ¢ cos y + sin ¢ sin ¢)

~{R) y g {(sin @ cos ¢ sin ¢ - sin b cos ) ~ (R}, (cos ¢ cos 1l =

d{V)-
o { (d)LM + (@) = () sin 6 (V)y
t

- ((“’)YM + (QE) sin ¢ cos 0) (V)XM l

Moment Equations
T sin Sy sin S,1, ~ T sin O cos B,y + kT

~ Ve ko p(wF)xNd® - p(Vy)uk o d* =

Aed gy
Tym p” - (QE) cos 8cos O (w)yy + (QE) cos 8 sin ¢ (w) M

{1, -1 wl Uy (@ 7y * Q) sin ¢ cos 8(“’)zu

ZM

+{Qg) cos & cos B(w)yy+ () cos? 6 sin ¢ cos ¢)

Pd'(V' );kN A=V,

T cos 8'1“1 - Tsind ASi“ 8.1.:( -

- 2 2
VOV T (%

P Wil VOMEE(A E = D (V) gy .
- = k() pdepdyy

\'(“'; ).YM + (V')'ZM
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[ dic ]
IYML d_i_f_g:g_.} (QE) (3] lf) cos 8 {Q)XM + (QE) sin 6 (&}}ZN j
+ T xm~ Tz Cadzplwyxn - (QE) sin 8 (w) zn

+ {Qg) cos ¢ cos G wy ~ (QE)' cos ¢ cos 0 sin §)

AV k(A = 1) (V)
TsinSTcssSAt,—Tco-S-rru+L‘NN XM

Vi(vl’ )’YN + (Vt )’ZN

L PO@R) XMV Mk F(A F

IV )z _ kit (Ve )mpd (w B zu
\,'I(V‘)i,"“ + (\: )aZN

d
= Iz { (“:‘Z“ — (QE) sin & cos 8 (@), - (QE) sin 6 () yM ]

~(Qg) sin 6 (w)yy - (Qg)* sin 0 sin ¢ cos O)

Additional Equations
Vxg = cos 8 cos ¢ (Viyy + (sin 6 sin @ cos ¥ ~ cos ¢ sia ¥) (VIyy

+(sio B cos & cos ¥ + sin ¢ sin Y) (V)

Vyg = cos 8 ain ¢ (VIxy + (sin 8 2in ¢ sin ¢ + cos ¢ cos ¢) (VIyy
+(sin G cos ¢ sin Y ~ sin ¢ cos ¥) (V)5

Vzg = ~sin 8 (V) x)y+ sin ¢ cos 0 (V)yy + cos ¢ cos 8 (V) zy

(Vgdgn = (Vy) xg cos 6cos ¢+ (Vg )y o8 8 sin y - (Vg)zp 8in 8
(Vgdyn = (Vy) xg (sin 8 sin ¢p cos Y ~cos @ sin YY) + (Velye
(sin 6 sin ¢ sin ¥ + cos Y cos ¢b) + (VV)ZE sin ¢ cos @

(V) zu = (Vy)yg (in § cos ¢ cos ¢ + sin ¢ sin U) +(Vy)yg

(sin 6 cos ¢ sin ) — sin ¢ cos f) + (Vg ), cos ¢ cos 6




9_9_. = myml¢—wzliné

dt

i . Wy + Wy t92 G 3in @ + w, taa fcos @

™ X
.i.:_:’f. ~ ay sin ¢ sec 8+ wy cou g sec
M = My~ Vel xug (edyy = (wdyy ~(Qg) sin 6
Vlyy = My~ Vglyy (@plyy = (@yy + () sia ¢ cos @
Oz = Mzu = Vo) 2 (wpdzy = (@)zy + (D) cos $con 6

E quations for Initial Conditions

8i0 6(3) = cosHsin B+ sinHcos Geos B

280 ¢(O) sin Gcos B

cosHeowos Geon B~sin Hsin B
tag (0) = cosHecos Bain A+sinHsin Geos A—3sinH cos Gais Bsin A

cos 6(0) = cos Hcos Bain A +sin H sin Gcos A~sin Hcos Gsin Bain A

sia ¢(0)

(R)Xl(m Ry cos Beos A

Ry (©) = Ry cos B sis A if given longitude sod latitude
H

(R)z{(0) = Ry sin B
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Step Equations

(Ryyg = | (Vggth 8- 3
e ) e e
; ¢ *odd
(R)YE = {a (V)Ygd: & = ’lc —_dt
de
4 . 1 di
(R)zg = f, (VIzgdt Y o= f, S¥de
N

Equations for Singulor Conditions

For = 90° (wlyy # 0

[ dw) yy () 7y |
des m)ZM( “‘\ww)m (_ "’“)
= de ¢/ dt cos?
o (@Xyu

For §=90° (wjyy=0 (wlzy#0

. ’ d(w) [ d(w)yy, |
(@) 2y ( “‘)-(mm | —= )]
- de de ! sin’¢
H
de (@),

In both cases

E = ‘i‘.é. —(m)XM
de dt

Following is an alternace set of more important equations for the fixed
plane coordinate system:

dv
XF
IFyp = m s t Vo~ QD COH VY, ]
—dvyr
Ay . + ~ - - - ’
"FYF m " *(QZF QECG) VXF ( QZFtan ) QESO) \!ZF
§
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™M

e
N
"

[}

Vg '
i

SLyp = Ixp { _;f.‘.' ~0pCOSODyE ~ d_f.:éim 8- Ozg OyF cec'&]
{4 t

-+ QYF( QZF + QBCG}Izy -{QZF * 3566){27;{??

a1y,

Ly = Iyp+(Qzp+QgCO) (P ~-zptan 6§~ 0pSO)xF

df

~(Qyp) (P~ 0yp tan 6~ QSO

Vyg = C¥COVyp - SYVyp + CUSEVp
VYE - WCGVXF + Cl/leF +S¢S@Vzp

vZE = "SGVXF +C9VZF

(v')XF - (V')xEC:/lCG + (V')YEWCO - (V')ZESO
(Vedyp = ~(Ve)xeS¥ + (VedyeCv

(Vo) 25 = (VdygCUSO + (Vg)y pSYSO + (Vg )z CO

29 - Qyr

de

d
.&g - QZF ICCG
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Flot Earth

Spherical Earth

T .
mgy = mg_ | (=(RxCYCH ~ (RyySYUCH
7 H - } ] ; 1
VIR)yg + (Riyg + (Riyp

v (R}, S8)iv + ((R)y oS = (Rh o CY )}y
2E F XE E F

* ((R)y  CUSO - (R),  SUSO + (R),, Dk ]

RESULTS AND DISCUSSICN

The complete set of the equations of motion are tabulated in the pre-
ceding section. Before these equations are solved, however, the user must
specify other conditions of the problem. For example, the time (o the cuer
off point (i.e., where the thrust period terminates) must be given. Varia-
tions in mass, ceater of gravity, center of pressure, and magnus cencer of
pressure during and after the thrust stage are required. The thrust mal-
alignment distances (r, , q, r,) of the rocket must also be furnished. Fur-

ther, a complete set of the aerodynamic coefficients must be given for the
complete velocity range and for all angles of attack encountered.

If it is desired to include wind, a wind profile must be available. In addi-
tion, air deasity, speed of sound, and gravirational acceleration as func-
tions of altitude must be specified. The user should also furnish informa-
tion to determine the end of the trajectory such as terminal alticude, ete.

Similarly, the user must decide upon a particular numerical integration
scheme in order to solve rhe equations of motion. Frequent!y used in this
area is one of the Runge-Kutta techniques.

it should also be noted that in the tabulated equations of motion (for the
missile fixed system) several terms contain a teigonometric function of the

angle ¢. For spin-stabilized rockets, i.c., large (w)XM and (wF)XM'

the rate of change of ¢ may be quite high (d¢ /dt). This may require small
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time iacrements for the numerical solyution of thewe equations to obtain
suitable accuracy. This problem is not encountered when one considers a
missile triad that does not spin with the missile. For this latter case,
however, one seems to be confronted with time variant moments and
products of inertia for asymmetric missiles.

A final word about the equations is that there is no estimate of the
dispersion of the missile. This requires the computation of several tra-
jectories, each for slightly different initial conditions, and appropriate
statistical combinations of the various range deflections from the stand-
ard range,
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APPENDIX -~ REQUIRED INPUT PARAMETERS

The complexity of the sixdegree-of-freedom equations of motion requires
the use of a computer for solution. These equations have, therefore, been
programmed for the [BM 709 of Picatinny Arsenal. This appendix tabulates
the input data tnat the user must supply to the. computing personnel for a
meaningf ul statemeat of the problem,

Table of taput Deta

1. Specify flat or spherical earth case.

2. Specify rotating or non-rotaring earth case.

3. Specify phases of flight that are to be considered,
Phase [. Acceleration of booster and main stage,
Phase II. Coasiing of booster and main stage.
Phase llI. Separation of booster and main stage.
Phase IV. Coasting of main stage.

Phase V. Acceleration of main stage.

Phase VI. Free flight of main stage.

4. Specify the time duration of each phase considered.
5. Specify mass of missile and booster combination,
6. Specify mass of booster alone (at launch).

7. Specify rate of change of mass of booster during Phase L.

8. Specify rate of change of mass of main stage during
Phase III (if considered).

9. Specify rate of change of mass of main stage during
Phase V (if considered).
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12,

13,

14.

15,

16.

17.

18.

19.

20.

21

22.

(rave data relating thrust ve time for Phase | and for
Phases [l and V {when considered).

Specily initial moments of inertia of booster and main stage
(at launch, Phase 1) along principal axes of rocket.

Specify rate of change of moments of inertia ot booster along
principal axes during Phase L

Specify rate of change of moments of inertia of main stage
during Phases Iil and V {when considered).

Specify distance from missile nose to missile ceatroid at

0n
start of Phase | and after separation of booster.

Specify rate of change of missile centroid position for
Phase [ and for Phases HI and V (when considered).

Specify same information as in Step 14 for missile center
of pressure,

Specify magnus center of pressure.
Specify maximum diameter of missile for Phases | and I

Specify magnitudes for the aetodynamic coefficients

kpa kg
by ksﬁp
kl—' kH

as functions of Mach number and angle of actack for booster
and main stage combination and main stage alone.

Specify chrust malaligament angles (BT, BA) for Phases I, I1I,
and V.

Specify chrust malalignment distances and their rates of change
for Phases |, I, and V.

Specify propottionality factor of thrust used for initi: " spin
stabilization.

61




23.

24,

2.

26.

27,

28,

29.

30,

31

32.

Specify lanitude and longitude of fauach point of missile.

Specify orientation angles of missile relative (o geographic
system.

Specify initial velocity components of missile ((V)XM, (V)YM'

(Vizu).

Specify initial angular velocity components of missile {(w}xm,
(wly o (@)y))

Specify wind velocity components as function of altitude,

Specify altitude at which trajectory is to terminate {air burst,
ground burst).

Specify output data desired (R} ., (R)y ., (R), ., 6, &, ¥,
(V)XE...).

Specify time increments for each phase when above quanti-
ties are to be tabulated.

Specify any peculiarities of the missile system.

Good Luck!
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