0 'r: o G o Fad
p S | ESD RECORD COpPY
o W |_65-183 i RETURN TO
g E ' SCIENTIFIC & TECHNICAL INFORMATION DIVISION
& o (ESTI), BUILDING 1211
o B (FINAL REPORT)
MODELS OF COMMAND AND CONTROL SYSTEMS
(WITH APPLICATIONS TO EXERCISE AND EVALUATION)
TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-65-183
FEBRUARY 1965 ESTI PROCESSEDR
Peter Kugel [J obc raB [] PROJ OFFICER
Martin F. Owens [] ACCESSION MASTER FILE

O _—

DATE

ESTI CONTROL NR

AL 45859
DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION CY NR l OF L cys
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Project 2801
=]
(Prepared under Contract No. AF 19 (628)-2455 by the Technical Operations Research,
Burlington, Massachusetts.)

DDC AVAILABILITY NOTICE

Copies have been deposited with the Defense Documentation Center. (DDC)

DISSEMINATION NOTICE

Copies available at the Clearing House for Federal Scientific & Technical
Information. (CFSTI) (Formerly OTS)

LEGAL NOTICE

When US Government drawings, specifications or other data are used for any purpose
other than a definitely related government procurement operation, the government
thereby incurs no responsibility nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any way supplied the said draw-
ings, specifications, or other data is not to be regarded by implication or otherwise
as in any manner licensing the holder or any other person or conveying any rights

or permission to manufacture, use, or sell any patented invention that may in any
way be related thereto,

OTHER NOTICES

Do not retum this copy. Retain or destroy.

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

LAURENCE G. HANSCOM FIELD BEDFORD, MASSACHUSETTS 01731

REPLY TO

ATTN or: ESEP/65-117/5322 4 June 1965

sussecT; Security Review

vo: ESTI (Lt. Rives)

I can see no objection to releasing this material to OTS.

g1 T

“JORN T. O'BRIEN 1 Atch
ef, Public Information Division n/c
nformation Office

£Sp- TR -65-18

ESD-TDR-65-183
(FINAL REPORT)

MODELS OF COMMAND AND CONTROL SYSTEMS
(WITH APPLICATIONS TO EXERCISE AND EVALUATION)

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-65-183

FEBRUARY 1965

Peter Kugel
Martin F. Owens

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Project 2801

(Prepared under Contract No. AF 19 (628)-2455 by the Technical Operations Research,
Burlington, Massachusetts.)

ii

FOREWORD

The work described in this report was performed by Technical
Operations Research for the Systems Design Laboratory of the Electronics
System Division of the United States Air Force under Contract AF 19(628)-
2455. The purpose of this contractwasto develop techniques to improve
methods used in constructing, controlling, and evaluating command and
control system exercises. The work was based on an examination of
records of exercises of an existing command and control system (473L).
Models were developed to describe various aspects of these exercises,

using existing mathematical techniques.

The contract monitors were Lt. Don Parker (ESRC), Lt. F. A. Fresh
(ESRC), and Robert P. Savoy (ESRC). Martin F. Owens, Robert A.
Langevin, Stanley LaVallee, and Peter Kugel (Project Leader) worked on
this contract for Technical Operations Research. Department D-25 of
The MITRE Corporation, particularly Mr. John Burns and Dr. John
Proctor, assisted in making available exercise records and in numerous
discussions; this help is gratefully acknowledged. This report describes
roughly the results of the second half of the contract. The work described
was performed from 30 November 1963 to 31 January 1965. The results
of the first half of this contract are described in report (TO-B 63-108)
entitled "Some Techniques to Help Improve Methods for Exercising and

Evaluating Command and Control Systems. "

ABSTRACT

Five models of the activities of command and control systems are
described to provide a precise, if not necessarily quantitative, frame-
work within which the behavior of command and control systems can be
studied. Such models are intended as the basis for theories into which
empirical data about this behavior, derived from the observation of exer-
cises, could be fitted to provide predictions about the future behavior of

particular systems.

The Deductive Inference Model describes information processing as

the manipulation of strings according to explicitly given rules. In terms
of such a description, this model deals with the processes of problem

identification and problem solving.

The Inductive Inference Model deals with information processing for

which the system must derive the rules that are to be used. It relates the
assumptions that such a system makes and the inductive strategies that it

uses to the adequacy of its predictions and generalizations.

The Value Model treats a command and control system as a system
that applies the values of the commander. It attempts to relate measur-
able features of the values held by personnel to the kinds of decisions that
they make.

The Semantic Model tries to deal with the manner in which command

and control systems and their personnel represent their information about

their environment.

The Finite Automaton Model treats a command and control system

and exercise controllers in certain types of controlled exercises as cou-
pled sequential machines (finite automata). It provides a vehicle for study-
ing the ability of the exerciser to control the behaviar of the system and

for studying an exercise as a learning situation.

This technical documentary report has been reviewed and is approved:

Ghetl? C K. arlloge L Gl | OTAE

ROBERT P. SAVOY PAUL G. GALENTINE, JR.
Task Scientist, Task 280103 Colonel, USAF
Computer Division Director of Camputers

Directorate of Computers Deputy for Engineering & Technology

iii

TABLE OF CONTENTS

MODELS OF COMMAND AND CONTROL SYSTEMS

(WITH APPLICATIONS TO EXERCISE AND EVALUATION)
PROBLEMS AND SOLUTIONS
APPLICATIONS o o o ittt
MODELS oo e e e e e e

DEDUCTIVE INFERENCE MODEL
INDUCTIVE INFERENCE MODEL
VALUES AND DECISION MAKING
SEMANTIC MODEL

APPENDIX I. DEDUCTIVE INFERENCE MODEL

INTRODUCTION o oo v vt oo v
BASIC ASSUMPTIONS OF THE MODEL
GENERAL CHARACTERIZATION OF COMMAND AND

CONTROL SYSTEM ACTIVITIES

RELATIONSHIP TO THE RESOURCE ASSIGNMENT
MODEL o o 0 e s e e e e s e e e e e

FROM INFORMAL ASSUMPTIONS TO A MORE
FORMAL SYSTEM

SETS OF STRINGS

Sets Defined by Length
Sets Defined by Rules

SETS OF SETS OF STRINGS

Relations e
Orderings . . . « o v v v v e e e e e e e e e e e

Functions 00 0. el

()

b B B o> B =)

TABLE OF CONTENTS (Cont'd.)

Page
AN EXAMPLE o e e e s s 26
INTRODUCTION o 0 o e v e e e e e e e 26
PROCESS TO BE DESCRIBED 27
ELEMENTS OF THE PROCESS 28
Mission e e e e e e e e e 28
Plans s 28
Assignments 00000000l e . 31
Problem Solution 312
VALIDATION e e e e e e e e e e e 33
APPLICATIONS o e e e e e e e e e e e e 33
REFERENCES e e e i v e e e e e 35
APPENDIX II. INDUCTIVE INFERENCE MODEL 36
BACKGROUND o 0 et et et e i e e 36
NATURE OF INDUCTIVE INFERENCE 36
ROLE OF INDUCTIVE INFERENCE 37
ROLE OF RESULTS o o v v v v v e v e v v e 37
PROBLEM TO BE SOLVED 38
MODEL e e e e e e e e e e 39
BASIC IDEA UNDERLYING THE MODEL 39
LIMITATIONS OF PROBABILITY THEORY 41
STRATEGIES o o v e e e e s d e e 42
WORST CASE o o e e e e h e s e e e e e e 43
BEST CASE o i e e e s e e e e 46
PREDICTIONS WITH UNIQUE CONVERGENCE 48
PERIODIC TAPES v o i v i v i e e e e e e 48
RATIONAL TAPES« o v v v v i e i s 50
SEMIPERIODIC TAPES 52

vi

TABLE OF CONTENTS (Cont'd.)

PREDICTIONS WITHOUT UNIQUE CONVERGENCE

DEGREES OF GOODNESS OF RATIONAL PREDICTIONS . .
THE BROOKS ORDERING
SIZE OF PREDICTABLE SETS OF TAPES
PREDICTION WITH LIMITED ERROR

AN ALTERNATIVE ORDERING OF RATIONAL TAPES
GENERALIZATION TO RULE-GENERATED TAPES . .

SPECIAL CASES o v v

Static Elements

Dynamic Elements

APPLICATIONS v oo e i e,
REFERENCES

APPENDIX III. VALUES AND DECISION MAKING IN COMMAND

AND CONTROL SYSTEMS v

INTRODUCTION o v v i i e e e e e e e
THE PROBLEM
THE STUDY o o v v it o i v v e e e
SUGGESTIONS FOR FUTURE WORK
VALUE QUESTIONNAIRE
DECISION QUESTIONNAIRE

APPENDIX IV, SEMANTIC MODEL

INTRODUCTION o v v v vt e e e e e e e e
ELEMENTS OF A SEMANTIC THEORY
SOME TYPES OF SEMANTIC THEORIES

VARIATION OF THE INPUTS FROM THE DISCOURSE

Page
55

55
57
59
59
60
64

66

66
69

71
72

73
74

75

75
75
76
90
91
94

vii

viii

TABLE OF CONTENTS (Cont'd.)

VARIATIONS OF THE INPUTS FROM THE HISTORY

VARIATIONS OF THE MACHINERY USED IN
INITIATION o . 0 e bttt e

VARIATIONS OF THE MACHINERY USED IN

EXECUTION o o v v v v i v v
FEATURES OF MEANINGS AND THEIR MANIPULATION
MEANINGS AND STRING MANIPULATION
A STRUCTURE FOR A SEMANTIC SPACE
RECOMMENDATIONS FOR FUTURE DEVELOPMENT

EXPERIMENTS WITH FINITE AUTOMATA

COMMAND AND CONTROL SYSTEMS AS COUPLED

FINITE AUTOMATA o,
ELEMENTSOF THEMODEL
BEHAVIOR OF ELEMENTS

COMPUTER SIMULATION v v v v v v v
TOPICS FOR FURTHER INVESTIGATION
REFERENCES

Page
108

108

109

109
113
114
117

Figure
I-1

I-2
I-3
II-1

II-2

II-3
I11-1

I11-2

IT1-3

Iv-1
Iv-2

V-1

V-3
V-4
V-5

V-6

LIST OF ILLUSTRATIONS

A Command and Control System Within a Military
Command Structure

A System's Image of Itself and of the World
Steps in Describing a Formal System
Basic Model

Tape Continuations and the Corresponding Intervals on
the Real Line v v v v o v v v v v v v v v

Device for Enumerating Predictions
Means of Subject Responses to Value Questionnaire

Mean Scores of Ult Values for Six Combined Value
Categories 0 e e e e e e

Frequency of Significant Preferences Among Ranking of
Alternatives of Decision Questionnaire

Features of a Semantic Theory
Distance and Type of Input for Two Semantic Theories

Schematic Diagram of a Command and Control System
in an Exercise Situation 0000 L

Sample of a Directed Graph Representation of a
Finite Automaton 00000

Basic Parts of the Finite Automaton Model
Flow Chart of Whole Simulation . .,
Flow Chart of Preprocesser

Flow Chart of Simulator

Table
II1-1
I11-2
II1-3
I11-4

V-1

V-2

LIST OF TABLES

Means of Ult Values Assigned by Test Subjects
Independence of Value Factors t-Tests
Mean Values Attributed to Decision Alternatives by Judges
Pearson Product Moment Correlation Coefficients

Data Elements for Flow Charts

Outputs e e e e e e e e e e e

MODELS OF COMMAND AND CONTROL SYSTEMS
(WITH APPLICATIONS TO EXERCISE AND EVALUATION)

PROBLEMS AND SOLUTIONS

This report describes techniques for use in improving the design of command
and control systems. All the techniques described emphasize the application of
experience gained from using such systems to the improvement of later versions
of those systems, either by changing existing configurations and procedures, or
by adding new equipment and/or personnel. These techniques are intended to sup-
port an evolutionary design program in which command and control systems are
built in increasingly ambitious stages, each stage serving as a test-bed for validat-

ing the design of its successors.

These techniques were developed in support of a program of normative exer-
cisingl developed by the MITRE Corporation for 473L. Under such a program,
exercises of command and control systems are viewed not merely as ways for
maintaining system readiness and evaluating system personnel, but as carefully
controlled experiments, designed to obtain information to be used as a basis for
improvements in system design and operation. Exercises are viewed in a manner
similar to other equipment tests: they are intended to determine exactly what the
system can do and lead to ways of improving performance. The design of such
experiments or exercises faces a number of particular difficulties. Most of these
derive from the special nature of command and control systems that distinguish
them from more traditional military procurements. Among these are: the high
cost of building and of operating (and testing) such systems; their complexity
(which makes exercises difficult to write, monitor, and control); and the fact that
not only the systems but also the problems with which they deal tend to be unique
(so that it is difficult to generalize exercise results into descriptions of system

capabilities).

All the techniques discussed in this report have the same general form. They

are abstract or mathematical models of various features of command and control

1J. H. Proctor, "Normative Exercising: An Analytical and Evaluative Aid in
System Design, " IEEE Trans. on Engineering Management, E10 (1963).

systems. As such, they are conceptual tools intended to relate observable fea-
tures of such systems. They may help one to generalize from specific exercise
results, and they may allow one to predict the effects of system changes. In par-
ticularly fortunate cases, these techniques may permit one to determine the system

change that will optimize some set of parameters.

APPLICATIONS

A given command and control system can be regarded as a system with the
purpose not merely of accomplishing some specific job (e.g., allocating aircraft
to fly medical aid in the event of an earthquake in Nicaragua) but also of making
available a collection of capabilities (e.g., the ability to handle the allocation of
aircraft in the event of a large variety of circumstances). When he plans and
builds a system, the designer cannot really foresee all the specific problems with
which the system will deal. The person testing an intermediate version of the sys-
tem to determine its capabilities can test only selected problems drawn from the
set of all possible problems. The basic purpose of the mathematical models de-
scribed in this report is to enable system exercisers to go from various features
of the results of their exercises to a description of general system capabilities,
and then to use these descriptions to predict system performance for a variety of

system problems.

One cannot reasonably expect a system user to be familiar with all the details
of system operation or to be able to handle all the various branches of science and
mathematics that are involved in system design. However, one thing that a user
knows more fully than any system designer, and which he can contribute to system
design, is the type of problems with which the system will actually be used. He
may not know how to generalize such a description, but he can give examples.
Suppose that we are responsible for the evolutionary development of some particular
system. We assume that the aim of the evolutionary process is to provide the best
possible product for the eventual user of the system. We conduct a particular ex-
periment (or exercise) with the system. In this exercise, the system deals with
a very specific problem (e.g., that a certain amount of medical supplies have to
be flown into Nicaragua, given a certain initial allocation of aircraft to other plans,

and certain time constraints). The results of this exercise tell us how well the

system performed with this problem. They tell us that it took the system x long to
issue the appropriate orders and that the allocation of aircraft was y short of the
optimal assignment. We can substitute these results in our models and use the
models to describe the existing system as a set of capabilities: the system can do

a certain type of task in x time with y error.

With this description in hand we now talk to the user. Although we can explain
many features of this system description to the user, it is probable that all the
details and their implications cannot be communicated within the time that the user
is willing or able to allocate to this job. However, we can ask the user to give us
examples of the kinds of problems that he anticipates his system would have to deal
with within certain time periods, or given certain types of events. We can then
translate his examples to fit into the model of system capabilities derived from
exercise results. Using these models, we can predict what the system would do
in the case of the proffered examples. The user can then tell us where the existing

system falls short of his needs.

The next stage of the process uses the mathematical models to predict the
effects of changes in system performance. Given a change requested by the user
(e.g., faster reaction time for a specific type of problem), there are usually sev-
eral ways to accomplish such a change. Each such alternative will have associated
with it both benefits and costs. Manipulations within models can allow one to esti-
mate some of these, which can then be pointed out to the user so that he can make

his decision among the available alternatives.

The use of such mathematical models to help one to "try on for size" various
alternative system configurations can be compared to the use of scale drawings to
test various furniture configurations in a room. One can move pieces of paper of
fixed sizes and shapes around on a plan of the room to determine where one will be
able to pass and what will fit into what space. The drawing and pieces of paper
are not exact duplicates of one's room and furniture, but they maintain certain

relationships (the relative sizes) of the originals they are modeling.

The models discussed in this report do much the same sort of thing. There
are many models because each attempts only to maintain certain relationships be-

tween certain features of the system being modeled. (The model of the furniture

in the room maintains size relationships and is not of much use if one wants to try
out the effects of various styles of furniture or if one wants to evaluate color

combinations.)

One might ask why there is no one all-purpose model. The system itself is
such a model, since it has all the properties of the system. However, it is more
difficult to manipulate the system experimentally than it is to manipulate a model,
just as it takes more energy to move one's furniture than to move pieces of paper
on a model. An actual tryout is the final test. This is the only way to find out
whether the style, the color, and the locations all fit together. Trying out all one's
ideas in an actual command and control system can be hard on the budget, but
trying out the actual system is necessary to see if theoretical predictions are met.
Models allow one to deal with such problems systematically, symbolically, and

hence economically.

A mathematical model of an existing system is a collection of axioms and
definitions that explicitly define the relationships between various properties of
the object being modeled, together with some parameters that give the actual values
of the characteristics of the existing system. The underlying axioms generally
come in two parts: the first describes some well-known mathematical structure of
general applicability (e.g., n-dimensional Euclidean space), and the second de-
scribes some particular object embedded into that structure (e.g., the sphere),
which is the model of the particular object that is to be dealt with. Empirically
derived data fill in the specific details (e.g., the diameter of the sphere is 4 in.),
and the model allows us to make further assertions about particular details (e.g.,

the volume is a bit over 33 cu in.).

In our case, most of the axiomatic systems into which models will be em-
bedded will be drawn from branches of discrete mathematics that are not within the
traditional engineering curriculum. This may make some of the models appear

more difficult than they really are.

MODELS
DEDUCTIVE INFERENCE MODEL

The deductive inference model, described in Appendix I, deals with a command
and control system as a system whose fundamental role is to make deductive infer-
ences. The notion of a deductive inference is generalized to include any process
that can be described as applying explicit rules to strings of symbols. Such strings
of symbols include not only statements of facts but also statements of values and
features of the command structure. The processing of such strings is used to
model activities such as: the processing of message inputs for incorporation into
the memories associated with the system; the determination of the logical conse-
quences of events described in inputs, as they affect the various elements under the
control of the system; the selection of some particular course of action from among
those possibilities allowed within the given command structure and authorized under
the system's mission; and the translation of these deductions into appropriately

routed outputs of suitable format.

This model was originally intended as a tool for use in the design and control
of normative exercises. In that application it is desirable to allow only one possible
solution and to give a system increasingly strong hints as to the nature of the proper
solution, to guide it back on the normative path when it deviates from it. This
model can also be used as a tool for describing a command and control system as
a system which performs such deductive inferences. Thus, it is a general tool for

the application of exercise results to system improvement.

In Appendix I, the basic view of system operation which underlies this model
is described and an effort is made to justify it. Then the basic elements of which
the model is constructed are presented. Finally, a simplified application is

described.
INDUCTIVE INFERENCE MODEL

The inductive inference model of Appendix II looks at a command and control
system as a system that does something beyond applying given rules to given sym-
bols. In making a deductive inference from a set of strings Sl’ aoo g Si’ one

applies some given set of rules of inference ¢ to those given strings; the result of

applying these rules gives a conclusion C. In inductive inference, the rules one is
given are not adequate for the derivation of C. Rather than rules, one is given a
series of examples. (The examples are usually given in the training period and
constitute "experience.") From these examples, the system (or the people in it)
have to determine the nature of the rule that is to be applied. Only then can they
apply it in the manner described by the model of Appendix I. The inductive infer-
ence model provides a basis for making explicit the way in which certain factual
aspects of past experience are brought to bear on current problems in a command

and control system.

We assume a system whose mode of operation is completely explicit, with the
task of predicting symbols on a tape. Such a system must make assumptions about
its environment beyond those that it can derive empirically from such a tape. The
relationship between various general inductive strategies and such assumptions is
investigated. We also investigate the relationships between these features and the

amount of training required to achieve a given level of performance.

Although some interesting results are derived, such a model is still somewhat
removed from practical application to command and control systems. Nevertheless,
this model appears to have some potential as a medium for the eventual automation
of some aspects of such systems, and for solving some problems in adaptive

pattern recognition.
VALUES AND DECISION MAKING

Appendix III is concerned with the relationship that exists between human
values and decision making in a command and control system. We were encouraged
to undertake this study because we believe that a determinable relationship exists
between value and decision, and that the determination of this relationship can lead
to some useful training concepts for command and control system decision makers.
We foresee the possibility of predicting a person's decision behavior on the basis
of our knowledge of his value spectrum. This notion leads us to speculate about
the possibility of being able to select good decision makers by measuring their
value spectrums and of training decision makers by training candidates in the de-

sired values.

In this phase of the study we confined ourselves to a search for valid and re-
liable measures of value and representative tools for determining a person's deci-
sion making pattern. Value and decision questionnaires were constructed and
administered to an experimental group. The resultant data were treated statistically

and analyzed to determine the extent of the predicted relationships.
SEMANTIC MODEL

The semantic model (Appendix IV) deals with the representation of an image of
the external world within the system. An analysis is made of existing theories for
representing such an image, and these theories are found to be inadequate. Some
abstract features of the ways in which human beings handle meanings are derived,
and an explicit structure that has these properties is briefly described. This model
is also somewhat removed from practical application in the exercise and evaluation
of command and control systems, but may eventually provide a basis for meas-
uring some of those aspects of command and control system behavior which involve

meanings.
FINITE AUTOMATON MODEL

The finite automaton model of Appendix V is based on the theory of finite
automata. It describes the relationships between the systems being controlled
during an exercise and the system attempting to control the exercise. It relates
the amount of information obtained by the controlling system, and the amount of
information this system gives to the systems being controlled, to the effectiveness
of control. It also relates various parameters of the exercise to the efficacy of the
exercise as a learning experience for the command and controt system. It may be

used to study the effectiveness of different command and control system strategies.

This model is perhaps best used for the study of relationships between values
of parameters and the resultant behavior of the command and control system, both
during an exercise and during actual operations. This model may be useful in
anticipating problems in control that might arise during an exercise, given the
exercise design. It may help in planning exercises that will be more satisfactory
learning experiences, and may be useful in the study of overall command and con-
trol system strategies. This model is particularly well suited to computer

simulation.

SUGGESTIONS FOR FURTHER INVESTIGATION

The five models described in this report are tools that may provide the basis
for a precise and scientifically sound methodology for use in many phases of
command and control system exercise and evaluation. They may also make pos-
sible the automation (or at least simulation) of various phases of command and

control system activities.

Each of these models appears to merit further investigation. The value of
conducting such investigations should probably be considered separately for each
model. Since these models appear to have applications that go beyond the exercise
and evaluation of command and control systems, they should probably be investi-

gated independently of such an application.

The model of Appendix I appears to have some value as a basis for the auto-
matic generation of exercise problems and the automation of command and control
system problem-solving activities. The model of Appendix II might have applica-
tions in pattern recognition and the automation of inductive inference. The model
of Appendix III might have applications in the training of command and control sys-
tem personnel, and in psychology. The model of Appendix IV may have applications
in computational linguistics, and the model of Appendix V appears to provide a
basis for simulating both command and control systems and human psychological

processes. Many of these applications probably deserve to be investigated.

APPENDIX I

DEDUCTIVE INFERENCE MODEL

INTRODUCTION

In this appendix we consider a command and control system as a system for
providing the reasoning power that lies behind optimal utilization of the resources
of a military command for some established purpose. This purpose might be the
utilization of interceptors for the defense of cities or the allocation of fuel oil to
depots to maintain readiness for the execution of plans. In constructing a model
(or class of models) of this aspect of a command and control system's activity, we
shall use techniques from mathematical logic. In using an established mathematical
technique on a particular problem, one attempts first to discover an appropriate
set of independent and dependent variables, and then to describe a model for re-
lating the former to the latter. In our case, the inputs to the system will constitute
the independent variables; the outputs will be the dependent variables to be pre-
dicted)’< by the model.

The variables related in this type of model cannot easily be related to numerical
values. They cannot be measured in the traditional sense. The precision of the
model lies not in making everything measurable and numerical but in making every-

thing explicit and definable in terms of observable features alone.

We are trying to do something more general than defining a mathematical model
for a particular system. We are trying to define and justify a certain type of mathe-
matical apparatus as adequate for describing this type of system. This is not an
ad hoc procedure. We chose our type of apparatus (mathematical logic) because it
had been well developed. We took it as far as we could, but in applying it, it be-
came clear that certain things had to be left out because the apparatus for dealing
with them was inadequate. These things were then subjected to separate investiga-
tion, which led to the investigations described in Appendixes II, III, and IV. Thus
we have not tried to squeeze command and control systems into a certain type of

mold, but rather to see how far we could go with a particular method.

%
Predictions will be definitions of the set of all things that a given system
could logically do under given circumstances.

In this appendix we first show one specific way of looking at what we consider
important in the behavior of a command and control system. We do this by stating
a series of increasingly restrictive assumptions, beginning with a general charac-
terization of a command and control system, stated and discussed in natural
English. We end with a more rigorous set of assumptions, which could be stated
as formal axioms. We are concerned not with the mathematical investigation of
these axioms but with a validation of their adequacy as descriptive of a command
and control system's activity, particularly as this bears on normative exercising. 1
The manner in which this adequacy was determined is discussed briefly at the end

of the appendix.

BASIC ASSUMPTIONS OF THE MODEL

GENERAL CHARACTERIZATION OF COMMAND AND CONTROL SYSTEM
ACTIVITIES

A command and control system is an information-processing system within a
military command structure. It receives orders from, and issues information to,
higher commands and, in turn, issues orders to, and receives information from,

lower commands. (See Figure I-1.) Between these input and output operations

System

(n+1)

I Level of command (n + 1)

Y

Command and

| Control System Level of command (n)

X
éo"" (Systemyp,)
39
5 & @
) S)
Sensors &] ® ¢
n) .20 @ [
i o,
I 5)
@) 2
§ @)
/ ;s
CEnvironmenD System(n - 1) System(n - 1) System(n 1)

Figure I-1. A Command and Control System Within a Military Command Structure

10

there are various types and amounts of activities within the system. These activi-
ties vary from system to system and from situation to situation. In this appendix
we shall treat one aspect that most systems appear to have in common: they are

information-processing activities.

We will be concerned with the deductive aspect of this information processing.
Given a situation, given a mission or orders from a superior command, and given
the military command structure that determines the kinds of orders a system can
issue, there is a "best" course of action for such a system. If the system had
unlimited time, it could lay out all alternative actions that it might take and evalu-
ate them according to the criteria set by its mission or superiors. It could then

select from these the one that was best.

In actual practice, a command and control system does not work in this manner.
Although the set of alternatives available to it at any time may be determined by the
facts given, the system usually does not have the time to examine and evaluate all
of them to select an optimum. Ingenuity or clever mathematical techniques are

required to select the best course of action within limitations of time and space.

We are not concerned here with the techniques that bring the finding of optima
within the available time constraints. We are concerned only with describing the

class of all possible actions that a system might take, given a certain situation.

There are a number of reasons for being interested in providing such a de-
scription. Our original motivation was based on the requirement to support a
program of normative exercising. ! To implement such a program, it was neces-
sary to know what a given system might do with a sequence of inputs in order to
provide for possible system responses in the preparation of an exercise. However,
the ability to describe all those things that a system might do, given a situation,
has a number of other applications. For the purposes of this report, the most
important application is a description of the capabilities of both existing and planned
systems that can serve as a vehicle for using exercise results in system design.
Describing all the things that a system might do is a preliminary-step in the investi-

gation of algorithms for seeking optima within realistic time constraints.

The information received by a command and control system may change the

image that the system has of the status of subordinate systems and their environment.

11

A command and control system issues orders in order to produce some change in
the lower commands. This change is sought in order to produce a situation that
meets certain criteria that have been established by higher commands. For
example, a system may find a certain track on its radar that changes its view of
the nature of the environment of the aircraft under its control and of the cities it is
to protect. As a result of this change in image, the system may issue an order to
launch interceptors. The purpose of this order is not to create some state in the
aircraft headed for the interception, but to protect some potential enemy target
from attack.

RELATIONSHIP TO THE RESOURCE ASSIGNMENT MODELZ

The ability to relate both the information it receives and the orders it can
issue to the effects that will ensure is the basis of the reasoning power of the com-

mand and control system. This ability depends on:

1. The kinds of information that the system receives (or can
obtain) about the systems being controlled and their

environment.
2. The ability of the system to process this information.
3. The kinds of orders that the system can issue.

It is customary to restrict the role of the command and control system de-
signer to the development of new machinery for (1) and for the development of pro-
cedures and machinery (or programs) for improving (2). However, it is clear that
the reporting procedures that influence (1) and the military command structure that

determines (3) are also important variables.

In our interim reportz we described a formalism for dealing with (2). The
purposes of this appendix are (a) to describe an improved version of that formalism
and (b) to extend this formalism to include various aspects of (1) and (3). We have
been led to the development of this extended formalism as the result of an effort to
apply our previous formalism to the analysis of exercises of the 473L system pro-
vided for us by the MITRE Corporation.

12

One of the important problems facing a system like 473L is not the solution of

problems, but rather their timely recognition and identification. This aspect of
system performance requires a formalism that includes provisions for handling (1)
and (3). A second result of our experimental application of the resource assign-

ment model is an increase in the simplicity and generality of the model.
FROM INFORMAL ASSUMPTIONS TO A FORMAL SYSTEM

Our model is based on a number of assumptions that lead to an increasing

specification of that model.

Assumption 1. A command and control system is an information-
processing system.

This assumption has two roles. First, it defines the domain of investigation.
That is, in our formal development we shall not consider anything that a command
and control system does that cannot be described as information processing. This
is much like saying that, from a point outside a line, one and only one line can be
drawn parallel to the given line. : We do not say that this is true for the world, but
only that it is true in the space we are going to study, or that we are going to

assume it true and investigate the consequences of this assumption.

The second role Assumption 1 plays is to assert something we feel to be true.
We want to select a postulate that usefully characterizes a system. (To say that a
command and control system is an information-processing system is trivial in the
sense that information processing is an observable feature of such systems. What
we are saying is that such systems can be profitably regarded as systems that do
nothing else, even though many things that go on in them cannot easily be described
as information processing. For example, fuses blow and people tire. The assump-
tion tells us to ignore these things. In making this assumption, we claim that a
useful model will ensue .)

T

Assumption 2. Information processing can be described as string
manipulation according to rules.

This assumption restricts the tools we are going to use in dealing with infor-

mation-processing aspects of the command and control systems. It says that

*
Euclid's fifth postulate.

TFor the purposes of this appendix, a string is a sequence of symbols, often
including the blank. Thus the sentences of this appendix are strings.

13

information processing can be described as the processing of strings of symbols,
that the inputs and outputs of information-processing systems are strings, and that

the behavior of information-processing systems is rule-governed.

A string is a sequence of letters (or symbols) from a finite alphabet. If the
alphabet is (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), then the following are strings on that
alphabet: 90, 10948, 9. If the alphabet is (A, B, ... , Z) then the following are
strings on that alphabet: AAA, AIRCRAFT, ALTITUDE. Manipulation of strings

is usually defined in terms of a set of functions that map strings or sets of strings

into other strings or sets of strings. Usually we require that these functions be
recursive, but this is not necessary. An example of such string manipulating
functions is the one that orders a set of strings alphabetically. Its input is a set of
strings, and its output is a set of strings ordered in a certain way. Another func-
tion of this sort can take pairs of numerals (e.g., 2 and 51) and produce a single

string (53) that denotes their arithmetic sum.

Both of these functions are defined in terms of operations that work on the
strings letter by letter: the first working from left to right, the second from right
to left. The result of each operation is defined in terms of (a) the letters being
considered and (b) the result of the preceding operations. Although such definitions
deal with a potentially infinite set of strings, the definitions themselves are finite.
Also, although these definitions can handle strings of arbitrary length, the oper-
ations that define them operate on segments of restricted length. These operations
are defined on explicitly (mechanically) recognizable features of the strings, not on
indefinite ones such as the meaning of the string.

Assumption 3. A command and control system exists within a military

command structure that defines (a) what such a system can and cannot
do and (b) its mission.

Assumption 4. A command and control system has an image of (a) the
systems being controlled, (b) their environment, and (c) certain laws
that extrapolate these into the future. This image determines what
such a system actually can do or thinks it can do.

Assumption 5. Assumptions (3) and (4) combine to produce problems.
The main purpose of a command and control system is to identify and
solve such problems.

A problem is defined by a system's position in a command and reporting sys-
tem (Assumption 3) and by its image of the world (Assumption 4). A problem exists
for a system when (a) some feature of the representation of the world situation is
incongruent with the system's mission and (b) it is possible for the system to im-

prove that situation by issuing an order within the command structure.

Whether a problem is so identified or solved depends on two things: (a) the
system's image of itself (or those features of itself covered in Assumption 3) and
(b) the system's image of the external world. Both of these can be described as
sets of strings (by Assumption 2) and as the results of processing other strings.
Much of the system's image of itself exists within the minds of its personnel, which
is hard to make explicit since the theory of the workings of the human mind are
not sufficiently developed. Some of the image lies in the more explicit rules of
procedure, which might possibly be described in terms of string manipulation.

But in the formalism to be described here, we will ignore this also. That is, we

shall assume perfect understanding of the system's mission by the system.

Errors may occur also in the production of the system's image of the world.
These errors, which may be of concern to the designers of the system, are of two

sorts: (a) omission and (b) erroneous information.

As shown in Figure I-2, the construction of the system's image of the world

occurs in two phases: (1) the acquisition of information about the environment and

SYSTEM'S IMAGE OF ITSELF

|
Transformation I
l Superior command I—» of inputs -b-i
I
! . at 2
T == J Yes [pick Transform
(3) Any discrepancies ? Best |y for |

Action output

_________ IMAGE OF ENVIRONMENT
r -
| () e
|, | Systems being | Messages r : ':
I controlled + 3| Transformation Il |
: v e e ol

P
| ' Lo i—
i

: Rest of the 1 Sensors e _J'
1 Environment :
|

Figure I-2. A System's Image of Itself and of the World

15

(2) the manipulation of this information within the system. Three other steps
follow these: (3) the system must, in some manner, bring its image of itself to
bear on the image in the world in order to discover discrepancies that call for sys-
tem action; (4) it must select from the (possibly infinite) set of possible system
actions that action it considers to be the best possible, ¥ and (5) it must format the

results of that processing and output them in appropriate representations.

BASIC ELEMENTS OF THE MODEL

Our model will be built up out of certain abstract elements. These elements
will include (a) sets of strings, (b) orderings on sets of strings, and (c) functions

from and to strings and sets of strings.
SETS OF STRINGS

Sets of strings are generally infinite. Since mathematics and science require
finite specifications of the objects with which they deal, these objects are usually
defined in terms of finitely statable rules that can generate infinite sets. One first
introduces some finite set of symbols, which is referred to as an alphabet.
(Examples: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, =), A, B, ..., Y, Z, , -))T One
then proceeds to define a sequence of rules to generate strings. The manner in
which this is usually done evolved to serve the needs of mathematical logic. Because

our application is somewhat different from the usual, we will change it slightly.

The first step is to define the set of all possible strings. The members of this

I

set are all the results of putting together or concatentating members of the alphabet.

*
The best possible action may be that of doing nothing.

i In principle, finite sets can be defined by listing their elements. In denoting
such a set we surround a list with parentheses and separate the symbols by commas.
The first of these sets includes the symbols 5 and +, but not the comma. The
second set could be listed exhaustively too, but since this would take too much space
we mark the ellipsis in the standard way. R and S are members of the second
alphabet. So is the blank, the next-to-last item in the list.

IWe will distinguish the two ways in which one can refer to the members of
this alphabet as "tokens" and "types." A token is an occurrence of a given letter;
a type is the class into which all those occurrences fall. In the word AIRCRAFT
there are two tokens of the letters A and R. Both occurrences of A are of the
same type.

16

The first alphabet permits such strings as 4130 + 4 ---, 54, and + - + - +; the
second permits strings such as ASECIRS, THE AIRCRAFT, and
The last is a string of blanks.

Next, one provides a set of rules that pick out of this underlying set a set that
is supposed to include those strings capable of having meaning. In the case of the
first alphabet, one might specify a set of rules that allows such strings as
90 - 34 = 6, and 23 + 3456 - 3 = 67 - 4. In most treatments a final set of rules is
now added to define those statements supposed to be true. This rule might allow
us to generate such stringsas 2+ 3=5and 2 -2=0, butnot 2 + 2=5, Figure
I-3 shows these three steps in a standard description of a formal system.

Alphabet O t()

Step 1 Step 2 Step 3
(all strings) (all meaningful (all true strings)
strings)

Figure I-3. Steps in Describing a Formal System

Since our treatment is going to be more general, we will often need more rules
to permit us to select more sets of strings at the stages of the process shown in
Figure I-3. We will need to define sets that denote all the allowable orders a sys-
tem can issue, and to define rules for selecting from these orders those strings that
denote the commands it must issue. We will need such rules in addition to the rules
that select sets of strings denoting facts. TFurthermore, our definitions will have
to be more dynamic because our sets of strings denoting truths will be functions of
continually changing sets strings, which will denote the inputs to the system.

In our treatment of strings here, we will be general and abstract. However,
we will use illustrative examples. We will not distinguish different alphabets from

which strings can be drawn, although we will assume all of them to be finite. For

17

example, we will ignore the difference between the word "speed" written as the
five occurrences of letters from the second of our sample alphabets (SPEED) and
that same word written as the five pairs of letters 22, 47, 65, 65, 64 from our
first alphabet (which is a transliteration of how that same word would appear on
BCD tape).

Sets Defined by Length

An alphabet is a finite set of distinct symbols, or types of symbols in the sense

of the last footnote on p. 16. A string on an alphabet A is any result of concatenating

tokens of symbols in A. (The null string, which consists of no letters from A, is

usually excluded.) The length of a string is the number of occurrences of symbols

that appear in it.
Three types of sets of strings can be distinguished by length:

(L-1) A set of strings may contain only those strings on the given
alphabet whose length is less than some given n.

Examples:

(a) The set of all possible words in a computer with fixed
word length.

(b) The set of all integers less than some given integer.

(c) The set of numbers between 0 and 1 with accuracy
limited to some fixed number of decimal places.

(L-2) A set of strings may contain only strings of finite length,

Note: Sets of type L-1 must be finite since there is, by definition, only a
finite number of letters in the alphabet; strings of type L-1 are limited in length.
However, sets of type L-2 can be infinite because, although each of their members
is finite in length, there is no upper bound on this length: given any string, there
is always a longer one. Consider the strings generated by the one-letter alphabet
(1): 1, 11, 111, 1111, Although each of these strings has a finite length, the
set is clearly infinite.

Examples:

(a) The set of all possible books that can be written using
the English alphabet (including punctuation marks).

18

We include all books that might be produced, whether
they make sense or not. If we restrict this set to books
that make sense, we are dealing with a set that is prop-
erly included in this one, but which requires more
powerful machinery for its definition than we have dis-
cussed so far.

(b) The numerals used to denote the non-negative integers,
the generating alphabet in the usual representation
being the alphabet (0, 1, 2, 3, 4, 5, 6, 8, 9.). The
rational numbers can be represented by pairs of strings
from such a set, using the same alphabet as in the
preceding example.

(c) The set of all possible messages, including those that
are garbled, encoded, and otherwise mangled.

(L-3) A set of strings may include strings of any length.

Note: Such a set includes infinitely long strings, which are ignored in many
treatments because they have little practical application in the usual concerns of
mathematical logic. (Since they can denote the continuum, they are often intro-
duced into logic courses in order to prove that the continuum cannot be enumerated.)
There are more strings in sets of type L-3 than there are of type L-2 since any
set of strings of type L-2 can be enumerated.

Examples:

(a) The set of non-terminating decimals used to represent
the real numbers between 0 and 1 (if one leaves out the
decimal point).

(b) The same set used to represent sensor inputs.

(c) The set of arbitrary strings on the alphabet (0, 1, 2,

3, 4, 5, 6",< 7, 8, 9) used to represent the real
numbers.

*We have been assuming a one-way infinity only, and we have been using the
beginning of the strings as a marker to denote the decimal point. If we want to
denote a continuum without bounds, we might include a single mark (.) which we
would allow only once in a string. The additional rule that one of the symbols in
the alphabet can appear only once in the string goes beyond the limits we have dis-
cussed so far. However, it is easy to use strings of type L-3 to denote the points
of the real line by having the digits to the left of the decimal point appear on the
even positions and the ones on the right appear on the odd positions. Thus,
245,987 would be written 9584720000 . ..

19

One reason for being concerned with sets of type L-3, although they cannot be
realized, is that they provide a model of sensor inputs when these can take arbitrary
values in an interval or on a display surface. The reading of such values by an
operator requires that they be truncated in some manner, constituting a mapping of
a set of members from a set of type L-3 to members of a set of type L-1. The
storing of messages in the computer of a command and control system can be re-
garded as a mapping from strings drawn from a set of type L-2 to strings drawn

from a set of type L-1.

Sets Defined by Rules

Given strings of the type we have been discussing, we will usually want to thin
them out. In the usual presentation (Figure I-3), thinning-out procedures are
defined in two steps. * In this appendix, however, we will amalgamate these two
steps. Given a set of strings of one of the L types, we can "thin" them out using

the following types of rules:'r

(R-1) We permit all possible strings within the limitations of length.

Note: We include this "null rule" because the string sets selected by length
define the universe of all possible strings, while strings in this section are supposed
to thin out these sets to include only the strings that one can ordinarily expect to
encounter. (In a natural language, such a procedure might thin out the set of all
combinations to the set of all the meaningful, or at least pronounceable, strings.)
There is no reason to exclude the set of all strings from being identical to the set

of all expected strings.
Examples:

(a) The set of all points on a square display surface that
are distinguishable to within some limited accuracy.

*

The first thinning out selects the set of well-formed formulas, which must be
recursive. (One must be able to recognize a well-formed formula when one sees
it.) In most formal systems, however, the set of theorems is not recursive. At
best it is recursively enumerable. (The fact that this is true for the first order
predicate calculus is known as "Church's theorem.") The second thinning out
selects theorems, but it cannot be recursive in such cases.

1.

These are the procedures used in steps 2 and 3 of Figure I-3.

(b) The possible contents of the words of a given computer
(without error-correcting bits).

(R-2) We permit only those strings given by a finite list.

Examples:

(a) The set of all words that name categories in a data base.

(b) The set of names that can be looked up in a telephone
book .

Note: Such strings often appear in tables that map them onto the words of

another set. The sets of R-2 are distinguished from the following:

(R-3) We limit the members of the set to strings that can be

recognized by applying some given mechanical procedure.

Note: For strings of type L-1, subsets drawn out by rules of the types R-2

and R-3 are, in principle, identical. However, there usually are intuitive dis-

tinctions between them. If one selects from the names of all Boston residents (1)

all names containing less than 20 letters, and then (2) the class of all pronounceable

names beginning with the letter A and containing no more than five letters, one is

more likely to describe the first by presenting a list (method R-2) and the second

by presenting a rule (method R-3).

Examples:

(R-4)

The sets of equations that can be generated from the letters
of the alphabet given on p. 16, or the set of well-formed
formulas in a mathematical system. It can be argued that
the sentences of natural languages can be described in this
way; otherwise we would not be able to recognize member-
ship in them. Given such a set, it is not always easy to
find a rule that actually recognizes members of it. Some
mathematical problems that are still unsolved consist of
trying to devise such procedures.

We limit the set to strings that can be generated from the

initial set by some rule.

Note: It may be possible to generate a set of strings mechanically without

being able to recognize mechanically whether a given string is in that set. There

21

are many mathematical systems whose theorems fit into this category without
fitting into the category of R-3 (see first footnote on p. 20). We need such sets

to describe the notion of "logical consequence. "
Example:
The theorems of the first order predicate calculus.

We will not need to add machinery to define the set of all strings true in some
particular interpretation. The set of exactly those strings that represent the theo-
rems of elementary number theory cannot be recursively enumerated and therefore
cannot be described by the four rules presented above. (This is the consequence
of Goedel's incompleteness theorem.) Such sets do not seem to be required for the
purposes of this appendix. However, number theory is indicated for the purposes

of Appendix II.
SETS OF SETS OF STRINGS

For our model we will need various sets whose members are themselves sets
of strings defined in the above ways. The use of such sets will enable us to impose
orderings on sets of strings to represent such things as command structures and
relations between parts and wholes. Sets of sets of strings will also enable us to
define functions on strings and other types of mappings that will provide a sufficient
basic structure for describing the deductive information processing of command
and control systems.

Relations

Sentences such as " Cl124's can carry more cargo than C130's." and "The
distance between Boston and New York is less than the distance between Boston and
Washington." assert relations. The first can be interpreted as representing a re-
lation between the strings C130 and C124, while the second represents a relation
between the strings Boston, New York, and Washington (which in turn denote the

cities Boston, New York, and Washington). *

*The former are strings, and the latter are cities. In this report we are not
generally making a notational distinction between a string used as its own name
(Boston, used as the name of something that begins with a B) and the same string
used as the name of an external object (Boston, used as the name of a city having
a million inhabitants).3 A reason why we are trying to restrict ourselves to string
handling alone in our model is suggested by the difficulty one would have in getting
the second of these Bostons into a command and control center, and the ease with
which the former can fit.

22

Relations can be treated as functions that map ordered sets of strings into the
values true and false. Such a function might represent the relation "greater than, "
In that case it would map* E"), 3:] , [9, 5] , @4, 8:| into the value true, and the
pairs [4, 78] and E&, 5] into false.

Orderings

In dealing with relations, we are concerned not with specific relations but
rather with sets of relations that share certain abstract properties. Since the
classifications that follow are standard, we emphasize the applications rather than

the characterizations.

(O-1) A relation R partly orders a set if R is reflexive, anti-
symmetric, and transitive on that set. T

Relations that have this property are classically the relations "greater than or
equal to, " "included in" (as used in set theory), and "included in" (in the physical
sense). In our case we will also use relations of type O-1 to represent command

structures.

A relation that imposes such an ordering can be defined in a number of different

ways:
1. It can be given explicitly as a table of organization or a tree.

2. It can be given by a rule. We would state a rule to represent the relation
of "being located in" a physical space (usually represented on a map). The facts
that Boston is in Massachusetts and Massachusetts is in the United States would be
represented by referring both to physical locations (in terms of latitude and longitude),

and by defining the relation as the result of a computation on these coordinates.

3. It can be given by a combination of the methods of (1) and (2). We would

want such a representation if we were to deal with the locations of individual

%
Parentheses will be used to denote sets. Brackets will be used to denote
ordered sets.

TA relation R is reflexive if R(x, y) is always true for x = y; anti-symmetric

if R(x,y) always implies that R(y,x) is false unless x = y; and transitive if R(x, y)
and R(y, z) always imply that R(x, z).

23

personnel. We might store the location of a particular squadron in manner (1) by
associating its name with the string Hanscom Field, which in turn would be asso-
ciated with another string denoting its latitude and longitude. The facts that a
certain aircraft is assigned to that squadron and that a certain airman is assigned
to that aircraft could be stored in manner (1). The fact that Hanscom Field is in
Massachusetts can be derived by a rule (2). The transitivity of the relations now
allows us to use this single representation and to derive the fact that the aircraft

is based in Massachusetts, as well as other facts.

The reasons for choosing one sort of representation rather than another are
usually based on a requirement of simplicity. Things that tend to change over
time and/or that are not easily described by rule are stored in manner (2). Re-
lations that connect points in two types of spaces are generally stored as simple
functions. These are often in the form of dictionaries or finite sets of ordered
pairs. For example, these might map the string Hanscom Field into a string that
denotes its coordinates.

(O-2) When a relation holds between every pair of members of a

set (as well as having the properties of O-1), we say that
it simply orders the set.

Note that trees (other than degenerate ones) do not have this property. Given

A

a tree of the form |\ the relationship it diagrams holds between A and the
B C D

other members, but not between B, C, and D. It is easy to see that a tree with
this property must be degenerate in the sense that it becomes a linear ordering
(i.e., it has no branches). Such ordering will appear in those sets that denote

numbers.

Relations of type O-2 can be defined either by lists or by rules. If the domains
of such relations are infinite, they must be given by rules since we make no allow-

ances for infinitely large tables.

Simple orderings are usually imposed by assigning numerical values to objects.
In our formalism we assign functions that map alphameric strings (e.g., the cargo
capacity of a C130) to strings that have dominant numerical parts (35, 000 pounds).

Usually the strings into which the mapping occurs are numerical with associated

24

units (e.g., pounds). These units have not only a scale (pounds) but also an associ-
ated dimension in the usual M, L, T sense. The dimensions often allow units to

be translated into other units, but even the functions that translate units within the
same dimensions into each other can be quite complex. This complexity occurs
when one asks whether a certain object can be flown on a particular aircraft. If
one is clearly within weight limitations, one may still have to worry about rather
complex relations between numerical values of the dimension (0, 1, 0): e.g., will
it fit through the door ?

(O-3) A relation R imposes a complete partial ordering on a set
if R meets the following condition:

U - @2 Rx,2) - R(z,y) = y
X

Completeness in this sense will be an important property when we are using
such orderings on various aspects of the forces under the control of a given com-
mand and control system. Completeness in this sense will correspond to com-
pleteness of information within the system's representation. For example, if a
complete ordering of the command structure includes a given command, then that
ordering includes all the immediately subordinate command units (if it lists any

at that level).

We shall be concerned with one relation that is irreflexive, anti-symmetric,

and intransitive. This is the relationship of class membership, denoted by e¢.

We are concerned with separating these various types of ordering in our model.
Many of the things that we would like to say about a large variety of specific re-
lations of a given type need be said only once in a given representation if the rela-
tions are sorted by type. By singling out the relation "is located in" as a relation
of type O-1, we can derive the fact that if A is located in B and B is located in C,
then A is located in C. This fact is obvious to a human being and need not be sorted

separately.

%
The case where the relationship R is that of whole to part is referred to as a
complete resource net.4

25

Functions

Functions defined over sets can be looked at as sets of ordered pairs that take
their first members from the domain and their second from the range. These
functions allow us to relate one set of strings to another. One such function relates
the string Hanscom Field to its geographical location, which is a pair of numbers.
We also need a function that relates the locations of two airfields and the charac-
teristics of particular aircraft to the flying time from one of these airfields to the
other. Generally, the more complex such functions are in terms of computation,
the more accurate they are. One of the things that a system designer has to deter-
mine is how accurate a system he needs; increases in accuracy usually require an

increase in computation time.

Functions on sets can be given exhaustively by list, or they can be given by
an algorithm that computes them, given the values of the arguments. The reason
for separating out the functions is that, because the same function is used over and

over again, separating it yields a simplification of the representation.

Such a separating of the various functions can increase the power of a system,
but it also increases the difficulty of constructing it. Usually these functions are
only partially separated. This is done by building the system in two parts. The
first part is a programming system, which contains the basic functions, and the
second consists of the actual programs written in terms of those functions. By
separating out the basic elements, we have constructed (or listed the specifications
for) a programming system to underlie the particular languages that will be used
in describing command and control systems. We have specified the basic cate-
gories to be used in constructing such descriptions. (In the sections Sets Defined
by Length and Sets Defined by Rules, we listed basic data elements. In the sections
Relations, Orderings, and Functions, we listed the basic materials for macros,

or basic system functions.)

AN EXAMPLE
INTRODUCTION

When applying the abstract structures described in the preceding part of this

appendix, one must select sets of strings that represent particular things,

26

particular functions with which to describe manipulations, and so forth. How this

selection is made depends on the characteristics of the system being modeled.

In order to suggest how such selection might be done, we shall sketch such a
selection for a restricted example. There are at least two reasons for limiting
ourselves in this way: (1) by using a restricted example, we are able to highlight
essential features, and (2) by choosing an example that is admittedly partial, we
lessen the likelihood that the reader will think that this is the only way in which

this formalism can be applied to the description of a command and control system.

Although the example is limited, the basic notions that underlie it have been
derived from an extensive effort to apply the basic structures of the preceding
section to the description of two exercises of the 473L system. The results of this
effort have suggested that the collection of structures described in the preceding
section is adequate for describing an exercise when one wants the model to define
the set of all possible solutions, given a description of a problem. However,
although we found this machinery basically adequate, we also found it unwieldy.

It is almost impossible to make the necessary computations by hand. In our model
we represented most of the processing that goes on in the modeled system, including
the processing that goes on in the minds of system personnel. Even after one sifts
out the parts of an exercise that are not relevant to the intended problem, the
processing is complex. This complexity led us to reduce the number and variety

of elements required.
PROCESS TO BE DESCRIBED

The information processing that occurs in problem identification produces a
sequence of strings that state a particular problem and state that it is a problem
for the system in question. The information processing in problem solution results

in a sequence of strings that describe what is to be done.

The problem with which we will deal consists of a world situation that will lead
our sample system XXXL to anticipate that a given plan P is probably going to be
executed and that, given the current allocation of resources, the execution of P will
be hindered by a shortage of C130's in command YYY. The solution of this prob-
lem will consist of selecting a particular group of C130's from command ZZZ and

reassigning them to YYY in time for their use in plan P.

27

This problem is quite simple to solve. Our purpose in describing its solution

is to demonstrate the kind of machinery we will use.
ELEMENTS OF THE PROCESS
Mission

We might describe the mission of the XXXL system as that of handling re-
source shortages when this requires obtaining resources from some command
other than the one responsible for the plan. In translating this mission into a for-
mal statement, we must make explicit the elements of the mission statements that
bear on other aspects of problem solution. The XXXL system will have some sort
of a plan file F, and it can be assumed to be responsible only for the plans that are
actually in that file. Since the file is dynamic (plans can be removed from it and
added to it), we will refer to the file as Ft when we want to make the time param-

eter explicit.

The contents of F, are functions of inputs prior to t. In general we do not

t
expect a plan that is input at t' to be in Ft’ since the process of entering a plan into
the file takes time. (In systems that have computerized file plans, the entry of
some given plan into F will require formatting, card punching, and other

transformations.)
Plans

A plan is a set of strings that meets certain syntactic requirements. A change
in a plan is an operation on that set of strings. An execution of a plan can be re-
garded as a function whose arguments are the plan and the system's representation
of the status of the world, and whose values are sequences of such representations
indicating the changes that occur as the result of plan implementation. When the
value of this function does not meet certain criteria given either in the statement
of the system's mission or in an order from a superior command (e.g., specific
time constraints), a problem exists for the system. In order to make explicit the
elements of a plan needed to define the function discussed above, one must specify
the syntax of a language for writing the descriptions. Such a definition can be
presented in Backus normal form. 2 Let us assume that we have available for the

construction of plans all the usual alphanumeric symbols. Since we want the name

28

of the plan to be specifically identifiable, we place it at the head of the string that
represents the given plan. In order to select a particular set of strings (e.g., P
followed by an arbitrary numeral) as allowable, we might write the following se-

quence of syntactical rules in Backus normal form:

<Digit> =<0, 1, 2, 83, 4,5,6 7, 8 9>
@igi> |<)igi><\lumbe>
P<Numbe1>

A function defined by a plan number can now be defined in terms of an explicitly

WA
-
7 &
\;g/\/
1]]

defined segment of the string that represents the plan. We will henceforth assume
the existence of complete syntactic descriptions (in the above form) of the various
languages with which we are dealing; we will not present them further except to

indicate some of the methods of simplification we have discovered.

One segment of the string associated with a given plan denotes its resource
requirements. Assume that this segment is set off by the marker REQUIREMENTS
at each end. Requirements can be of various types. They may designate a par-
ticular unit, or a particular quantity of a particular type object (e.g., 30 C130's).
We will write strings of the second sort with a solidus to separate the string denot-
ing quantity from the string denoting type of unit. For example, to indicate the need
for 30 C130's in a particular plan P, we place the string 30/C130 in the part of the
plan that denotes resource requirements. The requirement for 30/C130 may imply
other requirements (e.g., fuel). These other requirements may be the result of
applying a separate rule, which need not be repeated for every plan in which a re-

quirement for C130's appears.

We also need to represent given quantities of materials, We can do this by
*
permitting a statement of units and dimensions parenthetically after the quantity
and before the solidus. Thus 3 tons of sugar can be denoted by the string

3 (tons)(1, 0, 0)/sugar.

%
Mass, length, and time.

29

A plan may also require resources that are specified only by a requirement
that they meet certain conditions. And a plan may allow for alternatives. For
example, P may call for 30 C130's, or equivalent troop-carrying capabilities if
C130's are not available. To handle this situation, we need to extend our notation
in several directions. First, we need machinery for handling a sequence of alter-
natives, with certain alternatives preferred. Temporarily, we shall use ¢ to indi-
cate the string that denotes the allowable substitutes for the 30 C130's. We can

use conditional expressions of the form:

((30/C130), (9)) (S-1)

The requirement expressed by S-1 is satisfied if one can find objects meeting the
requirements (30/C130) expressed by the first term in the expression. If no such
objects can be found, the requirements expressed can be satisfied by a set of objects
meeting the requirements ¢. Conditional expressions consist of a left parenthesis,
followed by an expression, followed by a comma, followed by any number of addi-
tional expressions, each separated from its predecessors by a comma, and a final
right parenthesis. They are evaluated by first trying to satisfy the first expression,

then the second if the first cannot be satisfied, and so on to the end of the expression.

We shall want the expression ¢ to describe a transport aircraft whose troop-
carrying capacity is a certain amount. That an object is a transport aircraft is

determined by the fact that it exists in a tree of the form:

CI‘RANSPORT AIRCRAFT)
<D <
GCGORED, G (25

where the nodes under C130 and C124 denote tail numbers of aircraft. If we treat
proper names as the names of the unit class that contains the object named, we
might describe a set of tail numbers of transport aircraft as a set included in a set

that is included in the set denoted by the string x > xC._:2 TRANSPORT AIRCRAFT.

30

We will also need a way to indicate that the troop capacity of the members of
this set must be the same as the troop capacity of 30 C130's. Troop capacity is
a property of the set of aircraft; therefore, we can use the standard notation of the

predicate calculus. Thus we might write:
TROOP CAPACITY (x) = TROOP CAPACITY (30/C130)
*
The full description of this part of the plan now has the form:

((30/C120), (x>C> TRANSPORT AIRCRAFT and TROOP
CAPACITY (x)) = TROOP CAPACITY (30/C130))

A plan may also call for a change in condition. For example, it can require
that an object located in one spot be moved to another. We can denote the change
from a condition expressed by a string ¢ to the condition expressed by another
string A by the string ¢ — A. When such a string appears in a plan it denotes a
potential order. When the plan is activated, the string becomes an order. But
similar strings in a description of the system's representation of the world can
denote the execution of that order. When they appear in the rules that govern trans-
formation in the representation, they can denote relations between such changes in

condition.

Assignments

We have devised sufficient machinery to represent the requirements of plans.
We now need to devise machinery to represent the assignment of resources to plans.
We can denote resources by their names. If we have a squadron that has some name
S, we can denote its assignment to a command C by the string ST C, and the assign-
ment of that squadron to a plan P for some period or time interval t by ST P(t).
Underlying such statements are statements that indicate parts of objects and the
command structure. A statement indicating parts of objects gives us the basis for
identifying an aircraft assigned to a squadron S as also assigned to a command C,

given only the string ST C.

*
We use "and” and "or" to denote the truth-functional connectives in the
obvious way.

A status of forces needs to tell us not only who is assigned to what command,
but also information such as the location and condition of objects. We will associ-
ate a changeable property list to strings that denote objects. The fact that a C130
can carry 35, 000 pounds of cargo does not belong on this list unless that property
is being used: that is, unless the aircraft is loaded with that quantity of cargo.

However, the location of a particular aircraft automatically belongs on the list.

Usually items on a property list will have time intervals over which the associ-
ation holds. Let us denote the fact that a property list A is associated with a par-

ticular string ¢ by writing ¢$A.

To represent the fact that a command C is to execute a plan P at time t we

write:
C$P(t) (S-2)

If P contains a part of the form REQUIREMENTS ... (30/C130) ... REQUIREMENTS,
the processing of S-2 requires that there be some string of the form CTX, where X
is a string, in the representation of the situation such that X contains a part

Y/C130, where Y denotes a number greater than or equal to 30. If this does not
appear, the situation is now described completely as the result of applying given

rules to strings, and we say that a problem has been recognized.

Problem Solution

To solve a problem the system has to do three things: (1) find the allowable
alternatives, (2) select from the results of (1) some preferred alternative, and (3)
issue the appropriate orders. These processes are relatively easy to describe in

terms of the machinery already presented.

The alternatives available to a system are: (1) substitute the same kind of
resource from some other command, (2) substitute an equivalent resource from
the same command or from an alternative command, (3) permit slippage. The
same resource exists in another command if, and only if, there exists in the sys-
tem's representation of the world a string of the form CT ... (X/C130) ... (where
X is greater than or equal to 30). Substitution of resources is definable in terms
of operations using conditional expressions. Slippage is permitted if néme of these

substitutions succeeds.

32

Selection of alternatives involves an application of values. It is difficult to
determine exactly what these are in the case of a given system, but once a system's
set of values is determined, we can assume the value of an alternative to be some
function of its description. The value of this function is a number or a vector. For
example, suppose that cost is the only value we are going to consider. Such a value
can be computed for a given alternative ¢. The result of that computation is a
number X expressing the cost. This result can be represented by the string of the
form ¢VX, where X denotes the cost. The choice of the alternative with the lowest

cost can be readily described as an operation on a set of such strings.

VA LIDATION

Under this contract we used the machinery of this appendix to describe the prob-
lems of two exercises of the 473L system. * we found this machinery adequate to
predict the desired solution as well as alternative solutions. (Sometimes legitimate
solutions appear that were not desired by the exercise designer.) We also found

that the use of these models increased our understanding of the nature of the system.,

APPLICATIONS

The deductive inference model demonstrates that the problem solving activities
of command and control systems can be described in terms of string handling alone.
Such a model has a number of applications in various phases of exercise and evalu-

ation programs, including:

1. Exercise design, to help:

a. Determine whether the information to be given to a system
during an exercise is sufficient to describe the intended

problem to the system.

>kWe have not included these descriptions in this appendix for three reasons:
(1) they are long and hard to read without extensive explanation, (2) they are spe-
cific to the 473L system, and (3) they would require extensive changes to eliminate
classified information.

33

34

Define the values of those parameters of the problem that
should be controlled during the design phase. Examples of
such parameters are the difficulty of recognizing that a

problem exists, and the difficulty of solving a problem.

Determine whether an exercise plan really controls system

behavior in the manner desired.

Exercise monitoring and control, to help:

a.

Organize control or contingency messages by classifying
them according to their roles. This classification may be

useful in planning manual or automatic exercise control.

Organize monitoring by predicting the logically possible

system behavior so that this behavior can be anticipated.

Evaluation of exercise results, to:

a.

b.

Provide an ideal for comparison with observed performance.

Help organize a description of these results for use in making

recommendations.

System evaluation and recommendations for system improvement,

to provide:

a.

A medium for the reallocation of system functions on the
basis of exercise results, by providing a description of sys-

tem functions relatively independent of implementation.

A basis for user evaluation by generalizing exercise results
to a large class of problems, given only the observations of

system behavior in response to several problems.

Design of command and control systems, to provide:

a.

A medium for allocating functions among the various elements

of a system.

The basis for the organization of more flexible command and
control systems in which the user defines his problem when

it arises.

Since computers can carry out explicitly defined processes of the type we have

described in this appendix, this model might also have some applications in:

6. The automation of some of the problem-solving activities of

command and control systems.

7. The automation of exercise design, where one inverts the model.
That is, the solution becomes the input, and the situation that

leads to that solution is the output.

REFERENCES

1. J. H. Proctor, "Normative Exercising: An Analytical and
Evaluative Aid in System Design, " IEEE Trans. on Engineering
Management, E10 (1963).

2. Peter Kugel and Martin F. Owens, "Some Techniques to Help
Improve Methods for Exercising and Evaluating Command and
Control Systems, " ESD report ESD-TDR-64-195.

3. W. V. Quine, "Mathematical Logic" (Cambridge, Mass.:
Harvard University Press, 1955).

4, T. E. Cheatham, Jr., "Translation of Query Language" (Appendix
III Requirements for Support Programs in the 473L System),
Tech/Ops Report TO-B 61-21.

5. J. W. Backus, "The Syntax and Semantics of the Proposed Inter-
national Algebraic Language of the Zurich ACM-GAMM Conference, "

Proc. Internatl. Conf. on Information Processing (Paris, 1959).

35

APPENDIX II

INDUCTIVE INFERENCE MODEL

BACKGROUND
NATURE OF INDUCTIVE INFERENCE

Appendix I treats command and control systems as systems that deal, in
certain ways, with deductive inferences. In this appendix we take the opposite view
in a sense, and consider command and control systems as systems that make in-

ductive inferences.

It is difficult to give a precise definition of the distinction between deductive
and inductive inference, but it is not difficult to convey an intuitive understanding
of this distinction. Roughly, deductive inference is the process of going from
general assumptions to particular conclusions, while inductive inference is used
in going from particular assumptions (or observations) to more general conclusions.

This distinction may be illustrated schematically as follows:

L for all X, o (x)
¢(a1) and ¢(a2) ... and ¢(an)

deduction T induction

where x is a variable, but the a, are the names of individual objects. Deductive
inference appears to end up with no more than is given, helping to account for the
certainty of the conclusions. Inductive inference in some sense amplifies the
assumptions and thus appears to conclude things that do not follow necessarily.
However, we do not intend to suggest that deductive inference is trivial. All math-
ematics is deductive. As we saw in Appendix I, when the deductions that can be
made from a set of assumptions are sufficiently large, considerable ingenuity may
be required to find a deduction that meets given conditions. At the moment, the
problems that are involved in dealing precisely with inductive inference appear to
be more basic than those involved in dealing with deductive inference. For this
reason, the subject of this appendix has been less fully developed in the past, and

our treatment is at a more fundamental level.

36

ROLE OF INDUCTIVE INFERENCE

Inductive inferences are made frequently in command and control systems;
for example: (1) when an air defense system attempts to predict the intercept point
for an aircraft that is zigzagging;* (2) when an-intelligence system attempts to pre-
dict future enemy action from existing deployments; and (3) when a logistics system

tries to plan its shipments on the basis of anticipated requirements.

Inductive inferences are characterized not by the fact that their conclusions are
not stated with certainty, since probability theory yields such conclusions deduc-
tively, but rather by the fact that the conclusions appear to go beyond the given
facts or premises. This appendix will show how inductive reasoning utilizes very
general premises hidden in the past experience of the person making the inference.
However, inductive inference deals only with relations between facts and does not
consider values. (The way in which values are handled is the subject of Appendix
III.) Inductive inference may allow us to predict that an opponent in a game of chess
will get into a position that will cost him a knight if we make one move and into a
position that will cost him a bishop if we make another. These are relations of
facts. A judgment of value is required to choose which of these consequences we

prefer.
ROLE OF RESULTS

The study of inductive inference is not as well developed as that of deductive
inference, but it has evolved further than the theory of value judgments. In dealing
with the deductive aspects of command and control systems, we were able to as-
sume a set of basic axioms and to use the structure of those axioms as a background
for emphasizing the peculiarities of a specific command and control system. In the
treatment of values in Appendix III, we will observe that investigation is required
to determine the nature of the basic objects to be dealt with. In our study of induc-
tive inference we deal with the development of basic axioms into which the particular
aspects of a command and control system might be mapped. (The mathematical

content of this appendix will be developed into a paper for journal publication.)

%
It is a deductive inference if the course of the aircraft is known,

37

PROBLEM TO BE SOLVED

The criteria one can use to distinguish between valid and invalid inductive
*
inferences are not clear. This is not the case in deductive inference. In order

T

to decide whether a deductive inference of the form' ¢ implies A is valid, it is
sufficient to know that A holds in every model in which ¢ holds, or more simply

that ¢, and not A, is formally inconsistent.

The availability of a criterion for recognizing sound deductive inferences allows
researchers in deductive logic to prove theorems and devise new tools. Unfortu-
nately, such a criterion is not available for testing inductive inferences. It is easy
to suggest that conclusions reached inductively should maximize simplicity, pre-
dictive power, or utility. It is another matter to make precise what these vaguely
stated criteria mean. Currently, there is no general agreement on this matter.
Certainly the criteria of deductive inference will not work. Given any finite collec-

tion of statements of the form qbl(al), cie B qbn(a)}, there are an infinite num-

n+1
ber of ways in which such a statement can be generalized, assuming that we have
either an infinite number of available predicates or an infinite number of available

names of individuals. In most formal languages we have both.

The problem of finding a justification for going from a finite number of state-
ments about particulars to general statements about a larger class of particulars
is an old one. Military systems depend on their ability to predict the future (future
threats, future needs, future capabilities), and to do this they make inferences that
go beyond the given facts. Exercises seek to develop and evaluate the ability of

military systems to do this kind of thing.

The difficulties produced by the current lack of knowledge about the inductive
process are particularly felt in exercising operators to perform inductive tasks.

Since we do not know how experience is brought to bear on the performance of the

X

This is not quite true, since the paradoxes of Cantor, Russell, and others,
as well as the incompleteness theorems of Goedel, Rosser and others, show that
this criterion will not work when pushed to extremes. However, it has been used
in the development of the subject and continues to serve as a rule of thumb.

¥ ¢ and A are variables ranging over statements. ¢(a;) and Mai) are statements
about a, .

task, we can only guess at how to sequence training exercises and the kind of ex-
perience that they should contain. The only way to evaluate the quality of a per-
formance is to ask how well it would work in reality. Thus, the quality of our
exercising becomes totally dependent on the quality of our simulation of enemy be-
havior. The main reason for the present study of inductive inference is to help

overcome this dependence.

MODEL
BASIC IDEA UNDERLYING THE MODEL

In intelligence tests, frequently one is asked to continue a sequence of numbers,

given the first few members. Thus, one may be asked to continue the sequence:

2, 4, 6, 8, The expected continuation is, of course, 10, 12, 14, ... , but
it could just as well have been 2, 4, 6, 8, 2, 4, 6, ..., 8, 8, 8, 8, 8, ..., 107,
67, 342, ..., or anything else. The first of these is felt to be the most natural,

based on one's education or other past experience. The validity of the IQ test
depends on the fact that most people with the same background will tend both to have
the same (relevant) background and to use it the same way. We shall be concerned

with the question of how this might come about.

The example above captures the basic elements of what occurs when an oper-
ator tries to predict the future track of an aircraft on a radar screen. In theory,
any prediction is possible. However, for all practical purposes, extremely im-
probable ones can be considered impossible (e.g., a 180° turn with zero radius),
while others are very unlikely, given the past behavior of the track (plus the oper-
ator's experience). A good system may be judged by its ability to make such extra-
polations. However, currently there is little that we can say about what is involved
in making good extrapolations rather than bad ones. d We can recognize the former
(they work) from the latter (they fail), and we can train operators by giving them

more experience, although we have only the vaguest idea of how this works.

*
Psychologists can describe some features of this process, but they cannot
describe the mechanism accurately enough to be able either to predict or to simu-
late it.

39

To consider past experience mathematically, assume some sort of a mathe-
matically definite system (e.g., a Turing machine) which receives information

from a tape. (See Figure II-1.) This tape is divided into squares, and the machine

¢lafof1]of1]of1]of1]o]1[= Output tape(s)

¢

Machine

¢

1{0]1}0(1]0 §<—Inputtape

-<€— Direction of tape motion
Figure II-1. Basic Model

reads the tape one square at a time in some fixed direction. The machine contains
a definite program that outputs one or more tapes for every symbol that it reads.
These tapes are interpreted as "predictions" of the remainder of the input tape.

The remainder of this appendix will deal with (1) the relationship between the prior
knowledge of this device concerning the nature of the tape it is reading and (2) the
ability of the device to improve its performance in predicting the rest of this tape

as it reads it. The former represents the underlying premises of induction and the
latter, an operator's ability to improve his performance as the result of experience
with the task. By representing only the bare skeleton common to all such situations,
this model makes the process more susceptible to mathematical investigation. We
will be concerned with situations where the machine neither has so much information
that it is always right nor is so poorly informed that no program could possibly

work.

Our machine is, of course, not an actual machine but a mathematical model of
any such machine. It is much like the abstract automata that are used to represent
the capabilities of computers. When such machines start to read a tape, they start

off in some initial condition. The next condition of the machine and the tape(s) that

40

it outputs are completely determined by the preceding state and symbol read by the
machine. : We depart from most standard formulations only in distinguishing the
source of inputs from the space used for "scratch" work during the computation.
(These are both represented by the input tape in Turing's and most subsequent
formulations of automata.) The following additional assumptions can be shown to

result in no decrease of generality:

(1) The input tape rolls along in one direction and cannot be

rewound.

(2) Each square contains one of two symbols, which we shall
call 0 and 1.

LIMITATIONS OF PROBABILITY THEORY

First, let us see how far we can go with probability theory as it would usually
be applied in this situation. Assume we are going to write a program for our
machine that will simply get it to count appearances of symbols on the segment of
the tape that it has already 1:read and then predict the symbol that it has encountered

natively. It is easy to see that such a device is not of much use in predicting tapes

most frequently in the past. ' Where ties occur, we have it predict 0 and 1 alter-

of the form:

10101010101010

which we will henceforth denote by 10, the overline indicating that the sequence is
repeated indefinitely. Here a human being would soon sense a pattern as he saw
more and more of the tape, and he would begin predicting the next symbol without
error. Our device, however, would be wrong 75% of the time (i.e., it would

actually do worse than chance).

* .
The reader who is interested in a more complete and precise description of
such machines is referred to Davis (Ref. 1).

T In our exposition we shall regularly switch between the prediction of the next

symbol and the prediction of the whole tape. Since our devices are deterministic
and we know their programs, these are equivalent.

41

A human being should start perfect prediction after he had read the fourth
symbol (i.e., after he had read 1010, rather than after reading 101, which he might
well continue as 1T1). Difficulties arise when we try to make explicit what is in-
volved in the guessing of such patterns. This kind of task is fundamental in the

inductive mode of command and control systems.
STRATEGIES

Let us now consider other procedures for predicting symbols on tapes, refer-
ring to such a procedure as a "strategy." A strategy can be considered to be a
program built into the device. We shall want our programs to improve their be-
havior as more and more of the tape is read. In particular, we shall be concerned
with determining the point at which the quality of prediction has reached an optimum.
The occurrence of this point will represent the achievement of one particular goal

of exercising: the training of an operator for a particular task.

A strategy is a procedure for storing information from the tape as it comes in,
plus a procedure for outputting a prediction as a function of the stored information.
An observer of such a machine may not know either its program or the conditions
of its internal (or memory) tape. He may speak of the "behavior of the device" as
the relationship between a segment of the tape of some fixed length n and the output
produced immediately after reading this segment. This is the standard stimulus-
response paradigm of the psychologist. However, it does not take into account that
the length of the preceding segment that influences the behavior of such a device
need not be determinable ahead of time. This may be arbitrarily long. It may
even be a function of the entire contents of the tape or the entire experience of the
organism. Psychologists have managed to avoid this additional complication and
still get useful results because they deal with animals that may have limited capa-

*
bilities. Human beings, however, appear to have greater capabilities.

We shall be concerned with strategies that (1) change as more and more of the

tape is read and (2) change for the better in that they predict more and more

)

Devices of this stimulus-response type can be subjected to interesting mathe-
matical treatments, but doing this is not our concern here. See Ref., 2 for a
review.

42

symbols correctly. When such a device reading the tape 10 begins to predict 0 and
1 alternatively without exception (and in correct phase with the input), we will say
that the device has "converged" because it has started giving the best possible

guesses (which in this case are always right, but need not have this property).

We will be concerned with strategies that converge to the behavior that is the
best possible, given whatever initial information about the tape is available to the
system in the first place. We assume that the program used by such a machine is,
in some sense, locked before the tape is read and that its program does not sur-
reptitiously enter as data (as in Turing's universal machine). Thus, the initial
information with which such a device can be provided can be looked at as informa-

tion about the set from which the particular tape has been drawn.

To delineate the scope of the investigation, we shall consider two extreme
cases: the best possible and the worst. Let us begin with the worst. We shall
deal with a situation in which no strategy will improve one's chances of success.

In order to do this we will have to define what we mean by "chances of success."
WORST CASE

Consider the case where we have no initial information about the set from which
the tape has been drawn. To define the probability of drawing a given tape, we would
like to say something like: "The population from which this'tape has been drawn
contains exactly one sample of each possible tape on 0 and 1, and the odds of drawing
any particular tape are the same as any other." The trouble with this is that, since
there is an infinite number of possible tapes, the odds of drawing any given tape
are 0. Therefore, we must concern ourselves with sets of tapes and determine if
there is any natural probability measure that we can assign to such sets. To say
that sets of equal size should have equal probability will not work since no consistent

%
measure that meets this requirement can be defined.

*Proof: Suppose that this is possible. Define any function that divides the set
of all tapes into two equivalent-size sets (e.g., all the tapes whose first symbol is
1 in one set, and those whose first symbol is 0 in the second). If sets of the same
size must have the same probability, then both of these have the same probability
as the other and as their sum (since they have the same cardinal number). But
this is impossible since the probability of their sum must be 1.

43

One clue to the nature of a natural measure is provided by the fact that, although
we have been dealing with tapes that are infinitely long, we are really basically in-
terested in dealing with only finite segments of the tapes. The reason for letting
them be infinitely long is simply that we are trying to deal with the situation where
the length cannot be determined ahead of time. In general, we want to consider
predictions for the next m squares, after n squares have been read. Form =1, we
would like the tape>|< X0 to have the same probability as the tape X1, since these are
the only tapes of length n + m beginning with X. By a similar argument, we would
like the tapes X00, X01, X10, and X11 to have equal probabilities of occurring.
Given this condition (extended for infinite sequences of finite tapes), there is a

unique probability measure for the set of all tapes. The intuitive argument follows.

Observe that the set of all possible tapes can be set into a one-one correspond-
ence with the real numbers in the interval [0, 1__] in a rather natural manner.
This correspondence is established by letting the tape T correspond to the real num-
ber whose binary decimal'r expansion is .T. This correspondence works almost
everywhere, i.e., at all but an enumerably infinite number of points. The difficulty
(which could be overcome) occurs with the numbers denoted by two distinct binary
decimals: .X01 and .X10. These numbers (i.e., all numbers representable by
terminating binary decimals) correspond to two distinct tapes. However, this makes

no fundamental difference in our assigned measure.

If we identify tapes with the points on the real interval [0, 1] that they can re-
present, we observe that if we already have read a sequence X on the tape, then the
set of all continuations XT fall in the interval [X3, .XI]. See Figure II-2. We
note, also, that all tapes of the form XOT fall to the left of the midpoint of this in-
terval, while all the tapes of the form X1T fall to the right. If we identify the

E3

We use X, Y, and Z to range over segments of tape. The tapes X0 and X1
are the two arbitrary tapes with the same initial segment, followed by a 0 in the
first case and by a 1 in the second.

TThis usage is sanctioned by Hardy and Wright (Ref. 3, p. 112) on the grounds
that there is no viable alternative. T is a variable ranging over infinite tapes,
and . T denotes the infinite decimal constructed by writing the contents of T after
the decimal point.

44

X0T X1T
r—/\.\ (‘-/\-—\
1 X] i 3
! 1
\ J
~

Figure II-2. Tape Continuations and the Correspond-
ing Intervals on the Real Line

probability of Xa with the length of the interval associated with all real numbers
denoted by numerals of the form .XaT, our requirement is always satisfied. Fur-
thermore, it is easy to prove that no other measure meets it. Therefore, we are
led to define (1) the probability of a given finite segment of tape as the measure of
the set of all its continuations, (2) the conditional probability of a continuation of a
given segment (P(Xa/X)) as the measure of all continuations of X divided by the
measure of all continuations of Xa, and (38) the measure of any set of tapes as the

measure of the corresponding set of points on the interval [0, lJ .
This enables us to state the following theorem:

Theorem 1: Given the problem of devising a strategy for pr;edicting
symbols on a tape drawn from the set of all tapes on an n-letter alpha-

bet, the optimal strategy has the probability of success in predicting the

next symbol of 1/n, and every strategy is optimal.

Proof: At a given point on a tape, any possible strategy will predict (by our
definition of a strategy) a single sequence of length n as the next n symbols on the
tape. By our definition of the probability of the continuation of a given tape, the
probability of the tape XN (where N is a segment of length n), given X (= P(XN/X),
equals 1 /nm. But this is precisely the probability of every continuation and, there-

fore, the probability of success of any prediction whatever.

This theorem is trivial from a mathematical point of view. However, it is of

interest because it says that unless one assumes something about the structure of

*
In our case, n = 2,

45

the input beyond the alphabet that generated it, i one cannot make any distinctions
between the goodness of alternative inductive strategies since they are all equally
good. In other words, without additional assumptions about the structure of one's
inputs beyond assumptions about the nature of their elements, inductive inference
won't work. We need to look for additional assumptions which have sufficient
generality to apply to any military situation. Such assumptions will have to be
rather broad ones about the structure of the universe as it is sensed by both man

and man-made sensors.
BEST CASE

The other extreme occurs if the set of tapes from which a tape is drawn is

finite. Here we have the following:

Theorem 2: Given the problem of devising a strategy for dealing
with a tape drawn from a finite set of tapes, there always exists a
strategy that converges to optimal prediction as soon as possible and
whose probability of success at convergence is 1, provided that either:
(a) each of these tapes can be generated recursively, (b) the device
making the predictions has an infinitely large memory, or (c) predic-
tion is required only for some fixed, given number of squares in the
initial segment of any tape.

Proof: Case (a): To say that a tape (which contains an infinite number of
occurrences of symbols) can be generated recursively is to say that there exists a

T

finite program that generates it, one symbol at a time. Since it is clear ' that any
finite number of finite programs can be combined into a single program that gener-
ates the nth symbol of each, followed by the (n + 1)th symbol of each, and so forth,
let the predicting device contain such a program. At each point when n symbols
have been read, let this program generate each of the tapes up to the first n sym-
bols. If only one of these tapes matches the n symbols of the tape being read, out-

put the rest of this tape. If more than one tape matches the symbols, let the

*The assumption that the tape contains distinct and distinguishable symbols is
a strong assumption. However, it can be justified if one is dealing with a human
inductor. There is some evidence that biological organisms have innate symbol
discrimination mechanisms (see Lettvin et al., Ref. 4, Hubel and Wiesel, Ref. 5).

1‘Foraproof, see Ref, 1, Theorem 2.1, p. 31.

46

predicted symbol in position m (for m > n) be the symbol that appears in the nth

position in the majority of the tapes that are continuations of the part read. If
neither symbol is in the majority, write a 0 or a 1. It is easy to see that this pro-
gram meets the conditions of the theorem.

Case (b): Let the device contain a copy of each tape, possibly with the squares
of the tapes interspersed on a single tape (i.e., the mth symbol of tape n on the
(nm - 1) + m) i square of the single memory tape). Proceed in a manner parallel

to that of case (a), using look-up instead of generation.
Case (c): Proceed either as in case (a) or (b).

These two theorems set a bound on one part of the area under investigation.
Theorem 1 says that if one has the most comprehensive* set of tapes from which to
draw, then there is no interesting way to compare alternative strategies. Theorem
2 says that if one knows that one is dealing with a tape drawn from a finite set (and
one knows what this set contains when one is designing one's strategy), then one
can always devise (but not necessarily implement)+ a strategy that is optimal in

the following senses:

1. It converges to the best possible strategy, and this strategy

has a probability of success of 1.
2. It converges to this strategy as soon as possible.

3. Its behavior, measured in terms of the probability of success
of its predictions, is always the best possible, even prior to

convergence.

4. It is possible to augment the strategy so it indicates when

convergence has occurred.

This is the best we can do, and we will find increasingly general classes for which

these various features have to be degraded.

*
We cannot say "largest" because of Theorem 8, p. 60.
T The reason why implementation may not always be possible is that one can

know the symbols on a tape that has been recursively generated without being able
to figure out the program that will generate these symbols in this order.

47

PREDICTIONS WITH UNIQUE CONVERGENCE

In a limited number of cases one can devise strategies that converge to predic-
tions that are optimal in the sense that (1) their odds of being successful are as

high as possible and (2) there is no other strategy which has this property.
PERIODIC TAPES

We define a "periodic tape" as one that consists of the same sequence of zeros
and ones repeated over and over again. Any periodic tape can be represented as

X. An example is the tape:

11011101110111011101110111011101 ... = 1101

We have the following theorem about prediction with periodic tapes:

Theorem 3: Given a tape drawn from the set of all periodic tapes,
there is a strategy that converges to the best possible strategy and
does this as soon as possible. Upon convergence, the probability of
success is 1. However, it is impossible to augment this strategy to
have it indicate when convergence has occurred.

Proof: When the device has read a segment X, there are three possibilities:

() X=YY ... Y, where YY ... Y is a sequence of at least two occurrences

of the segment Y.

(b) X=YY ... YZ such that Z is not empty and Y = ZZ’ . (That is, X con-
sists of a repeated sequence of Y's, followed by some initial part of Y. E.g.,
X =1101101111.)

—— — g
Y Y Z

(c) All other possibilities.

If either (a) or (b) holds, this can clearly be determined by a finite number of
trials. The simplest way of making these trials is to test each initial sequence of
the read portion X whose length is not more than 1/2 of the length of X to see if it
meets the required conditions. Once this has been done, proceed as though X is
the tape that is constructed out of the shortest possible Y. (If X consists of at

least four repetitions of some Y, there will always be more than one way in which

48

it could be represented as a sequence of segments.) If (c) holds, predict the first

symbol of the tape, assuming that X is the initial segment of a tape of the form X.

It is easy to see that this procedure will converge as soon as possible, since
it will converge as soon as a single sample of the sequence of which the tape is
generated has been read. Upon convergence, its probability of successful predic-

tion will be 1, which is the highest possible.

However, we cannot augment this strategy to announce convergence when it
has occurred, unless we are willing to settle for false announcements to an arbi-
trarily large amount. Suppose that such a strategy did exist, and take some
periodic tape and run it through the device, implementing the strategy until conver-
gence is announced. Assume this occurs after n squares have been read. Then
consider a tape exactly like the original tape for the first n squares but different
from it in the next m squares (i.e., it contains zero where the original contains

one, and vice versa), and then is periodic with a period of length n + m. Example:

Actual Period
|]

1101 1101 1101 0010 0010 0010

Predicted ' s 14 JT‘ M g

Period

Conver-
gence
Announced

Assuming that the device in question takes seriously its own prediction of conver-
gence (so that it maintains its guessing sequence unchanged), this device will be
wrong with a probability that approaches m/(n + m). But since m can be as large

as one likes, the probability of its failure can be as large as one likes.

This theorem has some philosophical interest in that it displays situations
under which inductive inference is possible to the highest imaginable degree (it
yields perfect predictions), but under which it is not possible for the device doing
the inferring to determine whether the procedure that it is using is sound at any
point in time. Indeed, as far as the device is concerned, the inference that it makes

may not work again for any given finite interval. If this device is a human being,

49

this means that it may not be correct again for the rest of its life. If the device is
a command and control system, this means that it may not be correct again until
it is too late. This is one aspect of what is often referred to as the "problem of

induction, " and Theorem 3 shows that it cannot be solved.

A periodic world is more than one can expect. Nevertheless, one might feel
intuitively that the ability to deal with periodic tapes does lie at the base of inductive
inference. Science, which is an example of the use of inductive inference, began
with the prediction of periodic phenomena (e.g., the flooding of the Nile). The

first sciences (e.g., astronomy) predicted phenomena that were perfectly periodic.

RATIONAL TAPES

It can be shown* that any periodic decimal (to any base) represents a rational
number. Given the base, each such decimal represents a distinct rational number.
However, not every rational number is represented by such a tape. Therefore, it
is natural to consider generalizing the set from which a tape for prediction is to be
drawn to include not only those tapes that represent rational numbers in the interval
[0, 1] that have periodic representations, but also tapes that represent any rational
numbers in this interval. This generalization appears particularly relevant when
one notes that the pure periodicity of the representation of a rational number is a
function of the base selected. There is no particular reason why the base 2 should
be the one that will eventually prove useful in applications. However, the notion of

a rational number is independent of the base and is thus more fundamental .

Although not every rational number is periodic, every rational number is even-
tually periodic in the sense that at some point along its representation to any base

it becomes periodic and remains so in its non-terminating representation.

Let us, therefore, consider the set of rational tapes, i.e., tapes that repre-
sent the names of rational numbers. This set consists of the periodic tapes and

what might be called "impure periodic tapes." Impure periodic tapes are those

%
See Ref. 3, pp. 111-112.

50

that can be represented as YX, but not as X, nor as Y'X with Y’ shorter than Y.

Y is referred to as the "impurity." Example:

11010101110110110000101110111011 .

Y kXXX

ol

The set of all tapes that are either periodic or impurely periodic will be called
the class of "eventually periodic tapes. " The facts that every rational number is
representable by an eventually periodic tape (to any integral base) and that every
such tape represents a rational number (though not a unique one) are proved by
Hardy and Wright (Ref. 3, p. 111). It is easy to show that the results of Theorem
3 carry forward to the case of eventually periodic tapes. However, optimal con-

vergence must be guaranteed somewhat differently.

Assume that we have a tape segment X. We look for the longest tail segment
of the sequence X such that it matches an initial segment of X. (A tail segment is
a segment at the end of the sequence.) This can be computed as follows: Denote
mmﬂ@hdxwmmycmmmrmumemvﬁgmmmdxfIHMyumm
same as the preceding |L(X)/2| symbols of X, treat these as the period (unless an
alternative period has been established by such a routine at an earlier stage in the
processing of the tape that begins with X, in which case assume that period if this
can be done consistently). If not, decrease the length of the tail segment being
tested until a match of the appropriate type is found. The result of this procedure

continues rational tape segments as follows:

X Continuation
a. 110111011101 11011101 ...
(¥ Ji Ji g ‘_——l\——-’
b. 110001011011011013 011011011 ...

*
| LX)/2| denotes the integral part of L(X)/2.

51

*
But for the irrational tape it yields:

c. &.0‘1_1,0}_1_}»011 1111111111 ...

A]

Examples (a) and (b) are in accord with intuition. However, for (c) we feel that the

natural continuation would be
. 1101111101111110 ...

We will return to this case later (p. 61). However, for rational tapes we have:

Theorem 4: In the case of rational tapes or eventually periodic
tapes, it is possible to devise a routine that predicts convergence as
soon as possible and whose probability of success upon convergence is 1.

SEMIPERIODIC TAPES

One can do more to predict symbols on periodic tapes such as:

001100110011001100110011 ... (1)

than to say that at any point there is a 50-50 chance of either a1 or a 0. Given a
tape of this form, we expect to be able to do more than flip a coin to predict the

next symbol, and clearly we can.

A periodic tape is one that consists of some finite sequence of 0's and 1's,
repeated over and over again. (The sequence in (1) is 0011.) Suppose one has a
tape constructed from more than one such sequence. (Call these component se-
quences Sl’ ce SS.) If the order in which these subsequences appear is always
the same, then the resulting tape is still periodic, although it has a longer period.
However, consider the case where the order of sequences is.determined randomly.
For example, suppose we begin with the sequences 101 and 01110, which we will
term "generating sequences." Further, assume that we toss black and white balls
into a hat (in some ratio, R) and then start to write sequences out on the tape as
follows. We draw balls from the hat (with replacement); every time we pick a white

ball, we write 101; every time we pick a black one, we write 01110 on the tape.

%
Theorem 136, Ref. 3.

52

We can speak of the tape generated this way as the "semiperiodic tape generated
from the subsequences 101 and 01110 with a probability distribution of R." Where
the distribution assigns roughly equal odds to both of these generating subsequences

we might get a semiperiodic tape that looked like this:

—— e — —
10101110011101011011010111010101110011101010110 . .. (2)
— L J L I J L]

If one is going to try to predict occurrences of 0's and 1's on a tape like (2), it
is clearly useful to know the kind of tape with which one is dealing, the subsequences
from which it is generated, and the probabilities with which they occur. This knowl-
edge could improve the quality of one's predictions. For example, if we assume
only that (2) is generated-from 0 and 1, we might eventually come to the conclusion
that 1 appeared five times for every three occurrences of 0. Thus we might decide
that the way to "predict" (2) is to predict 1 every time. This would give us a prob-
ability of success of 5/8. However, if we manage to figure out what the generating
sequences are (we are not told this initially), we can improve our probability of
success to 7/8. We would do this by noting when we were in the middle of a subse-

quence and by taking full advantage of this fact.

There are at least two interesting features in the situation discussed above.
One feature is that the improvement of the predictions depends considerably on

features of the basic sequences of which a tape is generated. Consider a series of

sets of sequences Wl’ ce Wi’ ... where each set Wi in the series consists of
two sequences:
00000000 1
— J
h 4
Wi < 0 repeated i times (3)
A
r)
00000000 0.

If we consider tapes génerated by the sequences in a Wi’ then it is clear that the
value of knowing the generating sequences ‘(the members of Wi) of a semiperiodic

tape goes down as i goes up.

53

A second feature of this situation is that an algorithm exists that will, given a
sufficiently long piece of a semiperiodic tape, be able to determine the sequences
from which the tape is generated and the probabilities that govern the relative
frequencies of these occurrences, assuming that these are stationary. The exist-
ence of such an algorithm follows from the fact that a finite piece of tape can only
be made up of a finite number of possible subsequences. Given any finite combina-
tion of "candidates" for the generating sequences, one can determine by algorithms
whether assuming them to be the generating sequences of the tape would improve
one's predictions. The evaluation algorithm would have built into it a sort of
"nervousness" factor. This factor would determine how many times the given
segment of the tape would be chopped up into smaller segments on which the same
set of generating sequences would be tested. If this factor is 0, then the best guess
at any point on the tape (say, the Nth tape square) is that the tape was generated

by one subsequence of length N which had appeared exactly once.

The phrase "sufficiently long" at the beginning of the preceding paragraph im-
plies that the distribution of subsequences in increasingly long segments approaches,
to within some arbitrarily close limit, the distribution over the tape as a whole.
However, the program of a predicting device cannot determine when it has a "suf-
ficiently long" segment in hand. The device for predicting symbols on a periodic
tape knew that its strategy would eventually lead to improvement in some meas-
urable degree; here this is not the case. This is shown by the sets of sequences
defined in (3), which gives us part 1 of the following theorem:

Theorem 5: There exists a strategy that converges for any semi-
periodic tape such that:

1. Given any €, an infinite number of semiperiodic tapes
exists for which this strategy will not improve the prediction
by more than ¢ over the simplest possible strategy; i.e., the
strategy that assumes that the tape is a semiperiodic tape gener-
ated by the shortest possible subsequences (0 and 1).

2. It is impossible to program a device to determine when
it has finally reached the optimal strategy for a given tape, i.e.,
converged.

Difficulty 2 is the same as that for periodic tapes in Theorem 4. Difficulty 1,

however, is a new '"problem of induction." Roughly, it says that given any

54

allowable margin of error, no matter how small, a device faced with a semi-
periodic tape cannot be sure that the strategy it uses is any better than the simplest

possible one within that margin of error.

A very natural way to find sequences that generate some semiperiodic tapes is
to compute the autocorrelation function of the part of the tape already read. This

function can be defined as follows: Let a, = 1 if the ith symbol on the tape is 1, and

let a, = -1 if the ith symbol is a 0. Now, define the autocorrelation function A (n)

for a segment of length L as:

(i+n)=L/2
A(n) = i Iai+ai+n

n=1

Given a sufficiently long slice of the tape, this function will peak at every n, where
the length of a subsequence generating this tape is n. (But not every peak will be

the length of a generating sequence.) In terms of this function, we can also deal

with the case where the probabilities with which sequences occur are not independent.
It is easy to see how this can be done, depending on the type of nonindependence.

An alternative technique can be based on the observation that if sequences of length

n have been used in generating tapes, this will show up in the transition probabilities
of nth order Markov Processes describing the tape. This is used in a related ap-

plication on p. 66 below.

PREDICTIONS WITHOUT UNIQUE CONVERGENCE

In this section we deal with sets of tapes that cannot, in general, be handled by

strategies that always converge to uniquely optimal predictions.
DEGREES OF GOODNESS OF RATIONA L. PREDICTIONS

Assuming either periodicity or rationality, there is an infinite number of per-
mitted continuations for any given segment of tape. Speed of convergence has dic-
tated a choice of one of these, but it is not necessarily the most natural, and it

leaves open the question of which continuation is second best.

Therefore, it is natural to extend the investigation to include the problem of
ordering all possible continuations of a given segment (within the given assumptions)
according to "goodness." Note that because of the word "goodness" this problem

is not one that is susceptible to purely mathematical investigation.

An ordering according to goodness will be appropriate insofar as it approxi-
mates human behavior in this direction. For example, we will want an ordering
that ranks 1010101 ... ahead of 11111111 ... as a continuation of 10101 ... (under
the assumption that the tape considered is rational), not because there is any mathe-
matical reason for this, * but rather because human beings prefer the former to the
latter. What determines the adequacy of proposed ordering is not something in-
trinsic to it (although we would like the rule that defines it to be relatively simple),
but the fact that it agrees with our intuitions, and eventually because it predicts

choices that humans can be found (empirically) to make.

A useful ordering has been proposed by Dr. Franklin C. Brooks of Technical
Operations Research. He suggests that tape continuations be ordered by the size
of the denominator of the reduced fraction that they represent. The size of this
denominator is clearly independent of the radix of the notation in which it is written,
so that this ordering has the sort of universality over other bases that one would
like. The fact that this ordering agrees as well as it does with our intuition is

rather surprising.

The following examples illustrate where this happens. Suppose that we are
given the initial sequence 110 and asked to continue it. According to the Brooks
ordering, the continuations, in order of preference, are as follows (the underline
marks the given sequence):

1. 110 =3/4=1100000 ...
2. 1100=4/5=110011001100 ...

3. 110 =6/7=110110110110110 ...

4, 1101 =17/8=11011111111111

*
There was such a reason when the tape was assumed to be periodic.

56

However, when one more symbol is provided as in 1101 the continuation as 110 is

preferred, followed by 1101, and 1101.
THE BROOKS ORDERING

Another interesting case is the continuation of 011. The preferred continuation
here is that the form of the tape is 01 (= 1/2). The next in order, however, is not
the expected 011, but rather 0—1T6, and there is a sense in which this is particularly
appealing. The second of these can be described in terms of a period of only length

2 and a rule that says switch symbols (0 for 1 and 1 for 0) every period.

Given a sequence D of 0's and 1's, let us define T(D) (the "transpose" of D) as

the sequence that contains 0 where D contains 1 and 1 where D contains 0. It can

—~ *
be proved that if a rational number can be expressed in the form .DT(D) it has a
smaller denominator than a rational number that can be expressed in the form B,
if the length of DT(D) is equal to the length of E.

The more rigorous statement of this is as follows:
Letx = .D.

Lemma 1: x is representable as a fraction whose denominator is at most
2L(D) - 1, where L(D) is the length of the period D.

Proof:

x=.D

2Lx =D+ .D=D+ x (since multiplying .X by the length of X has
the effect of moving the decimal point over
one period)

el-1-Dp

p/eY-1=x (QED)

Lemma 2: 1 - .X = . T(X)

Proof:

X+ TX)=1 (since if one were to write out the two left hand
terms, one under the other, one would find one
and only one occurrence of 1 in each column)

*
The ligature denotes concatenation.

57

Since .1 =1, .TX) + X =1. From this, the truth of the lemma follows
algebraically.

LetX = IS’\I‘(D) for some D, and denote the length of X by L. L must be even

so that L/2 is an integer.

M2 =D+ TE)

=D+1-.X (by Lemma 2)

(zL/2+1)(.§)=D+1

X=(D+ 1)/(21‘/2

L/2.

+ 1)

Clearly D < 2 Thus we have shown that if .X = .I?I‘(X) it has a fractional
representative whose denominator is less than that which we can find for any frac-

tion of the form .X by Lemma 1, or:

_ Theorem 6: Every rational number representable in the form —
.X to base 2 has a denommat})r < 2LX), but if X 'is of the form YT(Y)
it has a denominator < oL
It is well known that 2* - 1 is prime if P is prime” for P= 2, 3, 5, 7, 13, 17,
but that for P = 11 it is composite (211 - 1=89x 23). This means that for all cases
of period less than 9, for L odd, none of the fractional equivalents of .X can be
reduced, although all those expansions of .X such that X = I?I‘(D) can be reduced.
It is of interest to ask whether this condition of having a period that can be decom-
posed into I?I‘(D) is a necessary condition for having a denominator less than the
upper bound set by Theorem 5 for periods of length less than 11 (since it is false
for 11). An initial investigation of this question (which can be settled by computation)

suggests that this is so, at least up to length 8.

Miller6 has argued that psychological evidence suggests that the capacity of the
human immediate memory appears to be about 7 bits. If one would like to argue
that (1) the purpose of this memory is to order inputs according to the Brooks order-
ing and (2) the purpose of this ordering is to advance sequences whose periods are

of the form)?I‘(X), then one might argue that the upper bound on the size of this

*
Prime numbers representable in this manner are known as Mersenne primes.

58

memory is based, not on a neurological accident, but rather on the numerical fact
that the procedure (of finding smallest denominators) fails to accomplish its pur-

pose for larger numbers.
SIZE OF PREDICTABLE SETS OF TAPES

Theorems 3 and 4 concern periodic tapes and eventually periodic tapes and

are special cases of a more general theorem, due to Dr. Brooks, which asserts:
Theorem 7: Given a primitive recursive function ¢(x) and a tape

drawn from the set of tapes that this function enumerates, there exists

a strategy that guarantees eventual convergence of the predictions of

symbols on the tape.

Proof: Let ¢(x) be such a function. Consider the tape generated by ¢(x) for
some given value of x. For a given tape segment of the form X, compute ¢(1) until
the first LX) (binary) digits have been computed. If this matches X, predict that
the tape contains the binary expansion of ¢(1). If not, compute ¢(2) for L(X) places
in the binary expansion. If this process succeeds in matching the segment X, pre-
dict the expansion of ¢(2). If not, continue computing ¢(n), replacing n withn + 1
at each step. Since ¢ (X) is primitive recursive and since the tape T is drawn from
the range of the binary decimal expansions of ¢(x), this process must eventually
exactly match T, and it does this at the first moment that there is no other tape
earlier in the enumeration that matches the read segment exactly. This clearly is
the earliest possible moment at which convergence can be guaranteed, although

this procedure may fortuitiously lock on earlier.
PREDICTION WITH LIMITED ERROR

By our definition of a predicting device we have guaranteed that the number of
distinct predictions be enumerable. Therefore, it is clear that no such device
could predict a tape drawn from a non-denumerable set if we insisted both on con-
vergence and on error-free prediction. However, if we relax the error-free con-
dition we obtain a theorem that says that, however small a degree of error we
desire, there is a non-denumerable set of tapes that can be predicted to within that

degree of error.

59

To state such a theorem we have to define what we mean by "some given degree
of error." Probably the most restrictive definition that we can give of the notion
of a device that is correct at least m percent of the time is the following: A strat-
egy for the prediction of symbols on a tape is correct at least m percent of the time
on a given tape T if there exists som;e specifiable integer (n) such that for every
segment of tape of length n, the method of prediction handles at least m percent of

the symbols correctly.
Given this definition, we can now state:

Theorem 8: Given any m less than 100, there exists a set of tapes

such that (1) there exists a machine that predicts symbols on this set of

tapes correctly at least m percent of the time and (2) this set is not

enumerable.

Proof: Given any such m (which might even be transcendental), there is a
number m’ such that m < nv < 100 and which is representable by a terminating bi-
nary decimal. Consider the tape that consists of m’ 1's followed either by a 0 or
a 1, followed by another sequence of m’ 1's, again followed by either a 0 or a 1.
In this situation we can guarantee condition (1) immediately by simply predicting 1
each time. The fact that this set is not enumerable (condition (2)) is proved by
simply crossing out all the sequences of m’ guaranteed 1's. What remains is a set
of arbitrary sequence of 0's and 1's. This defines a one-one correspondence with
the real numbers in the interval [0, 1] if we ignore the denumerable set of excep-
tions noted on p. 44 . This proves that our set of tapes has the cardinal number of

the continuum and therefore is not enumerable, and the theorem is proved.
AN ALTERNATIVE ORDERING OF RATIONAL TAPES

The enumeration of rational tapes that we suggested in a preceding section is
not the only reasonable one that can be conceived. In this section we will consider
an alternative enumeration that is capable of generalization to the case of tapes
drawn from the set of all rule-governed tapes (i.e., those covered by Theorem‘7).
In this case, again, we have a proof that convergence can be achieved (Theorem 7),
and we want to order predictions by some sort of a priori device that corresponds

to intuition.

60

An example may clarify the importance of this point. Consider the tape

nl's (n+1)1's
[0 T o WY s WY st WY Snsmna ¥ r T —
010110111011110111110 011 11011 110

This is not a rational tape (Theorem 136, Ref. 3), but intuitively we feel it is

predictable.

If we know only that we are dealing with a tape that has been generated by a
primitive recursive function, and we are given an initial segment of this tape such

as

10110111011110111110,

there is an infinity of allowable continuations since there is clearly an infinity of
strategies whose first outputs match the given segment and whose continuations are
distinct from each other. We need to know why the continuation that we consider to
be natural is the one that is preferred. We can do this within the terms of this
appendix by giving an ordering of rule-governed tapes that matches empirical ob-
servations. To do this, we will generalize the notion used in this section to predict

rational tapes.

The fundamental notion here is an old one that says that the complexity of a
computef output can be measured in terms of the size of the smallest possible pro-
gram that can generate it. In a somewhat different form, this argument has been

developed by Solmonoff. 7

Our enumeration of the rational (and later primitive recursive) tapes will de-
pend on our enumeration of the programs used. This will require being more

specific about the predicting device than we have been up to this point.

We assume that our machine (Figure II-3) contains (a) a copy of the segment
of the input tape that it has already read; (b) a device that generates programs in a
certain order; (c) a second device (the computer) that can be loaded with the pro-
gram generated by the first device (the generator), and writes the results that the

program produces on a segment of the scratch tape as long as the internal copy of

61

output tape

JNEEEEN

Test C -
Programs ompute
Cl}’;‘ogratm Logr = (uses test
nerator programs)
11ilolil1l0 Output of computer
executing test program
\
Comparator
Output whole tape A
generated by computer if
the initial segment matches |1 I 0 |1 0 | 1| 0 ICopy of segment of in-
the copy of the input tape put tape already read

[1]o]1[o]1]o]1]o]1]o}

Input tape

Figure II-3. Device for Enumerating Predictions

the input tape; (d) a comparator that compares the segment of the scratch tape
produced at the end of this process with the copy of the input tape segment; and
finally (e) a switch that is thrown when the comparator succeeds in matching the
scratch tape and sample tape segments. The effect of throwing the switch is to
have the program restart and to have the computer write its results on the output
tape instead of the scratch tape. The kinds of predictions that such a device will
make will depend on the kind of programs that it can generate and the order in

which it generates these programs for testing.

Version 1: A program is a finite set of triples of the form qXSqu, where x
and z range over the non-negative integers and Sy is either 0 or 1. These triples

are interpreted by the computer as follows: The computer begins in a state -

62

A triple of the preceding form is executed if the machine is in state q, - In execut-
ing a triple qXSyqz, the machine prints the symbol Sy on its scratch or output tape
and shifts to state q,- This process continues (the machine is now in qz) until the
machine gets into a state such that no such state name is a first member of a
program triple. At this point it halts. The basic notion of our enumeration is to
enumerate these programs in order of their length. Because of the way our total
machine works, we do not have to consider either programs that can be shortened
(i.e., which generate the same output as a shorter program) or programs that do
not generate infinite outputs. Furthermore, we need not consider separately those
programs that are similar to each other, beyond renaming their qx's. We will want

to make sure that we consider only programs whose behavior is fully determined.

These conditions lead to the following postulates to limit the programs we con-

sider, where P is an arbitrary program:

1. The computer is deterministic: quyqzeP and 9, S y,qz, cP
- X#xX =y#£y andz # 7).

2. Every instruction goes somewhere: quyqzeP
—- (dT) (T = qx,Sy,qz, and x’' = z).

3. Every instruction is used:

Define "successor" as follows: a, is the successor of
qx if, and only if there is a quyqzeP. Define T(qx, P) as
the set of all states of P that can be reached by reiteration
of the successor operation. The postulate now reads:
0,8,9,€P — q ¢ Y@y P

4. Programs that are just reletterings of each other (aside from
reletterings of the Sy) are considered equivalent. That is,
two programs are equivalent to each other if there exists a
one-one mapping from the states of one to the states of the
other that maintains the relationships within triples. (If the
image of x is denoted by f(x), then (quyqzeP = f(qx) Sy f(qz)
Py - P=P))

63

We enumerate such programs in order of length (number of instructions), and
*
within length to the sum of the sizes of the ancestrals of the successor relation of

all the states within them. We observe that:

1. This always defines a prediction for any tape, or a sequence of predictions
if one lets the machine keep printing output tapes as it continues down the

enumeration.

2. Such programs generate all and only binary decimal representations of

rational numbers in the interval [0, 1] .

3. This ordering differs from the enumeration of the rationals in order of

the size of the denominator. (See example (a) below.)

4, This is a reasonable enumeration as a predictor of what we consider to be

good continuations.

Examples:

TN
(a) 1011 is continued 011011011011011 ... rather than

e e, [m——y [y

1011101110111011 (Compare this with the prediction of

the alternative on p. 56.)

11010 is continued '11016'11016'11010‘ ... rather than
110100000000000 . . .

The sequence of n 1's followed by a 0, followed by m 1's is
continued periodically rather than with an infinity of 1's,

providing m is sufficiently small.
GENERALIZATION TO RULE-GENERATED TAPES

A further advantage of the preceding enumeration is that it can be generalized

as follows:

!
Version 2: Let the programs be sets of quadruples of the form qxsgrs;qw’

where x and w are non-negative integers, t and t' are o or s (and indicate which of

)

Given a relation R(x,y) and a set S, the ancestral of R(x,y) in S is the set of
all z such that there are z!'s in S for which R(x, z1), ... ,R(zi-1, zi) and such that
zl =z,

two tapes the symbol is to be read from or written on), Sy is either 1 or 0 or B

(for "blank"), and SZ is either 1, 0, B, R, or L. These quadruples are interpreted

as follows: Again an initial state g is selected. When a machine is in state q,

and it reads the symbol Sy on the tape t, then it

1.

-
Prints 0, 1, or B on the output tape if StZ is 0°, 10, or Bo,

respectively.

4
Prints 0, 1, or B on the scratch tape if StZ is OS, ls, or BS,

respectively.

Moves the scratch tape one square to the left or right if

/
StZ is L® or RS, respectively.

Moves the output tape one square to the left or right if

S; is L° or Ro, respectively.

Our machine now has two scratch tapes, one of which serves as a potential

output tape (if it matches the sample); the other is used for a temporary memory.

The main motive behind this construction is suggested by the following program:

-

S.,s
%pB 19
3 prepare the scratch tape (S)
1° R®
9 9
.
write 0 on the output tape
0° R a >
Y 2
S S :
9, B" L qq
dq 1°1° qy g copy the 1's on S onto the output tape
S S -
Qy 1" R L)
q Bf 1° 9 q add a 1 to the string on the scratch tape
Q5 1° R® g
< s L rewind the scratch tape and go back to q1
q5 B" B q1

o’

This generates the tape 010110111011110111110

65

A program to generate a periodic tape of length L has to write the numerals of
the period onto the scratch tape, requiring L instructions; rewind the scratch tape
(which we shall assume to be endowed with an end marker), requiring two instruc-
tions; and copy the contents of the scratch tape, requiring three instructions. Thus,
the total requirement of the program is that it take L + 5 instructions, although
there will be cases where this can be decreased. Since the preceding program
takes 10 instructions, our routine suggests that after five symbols have been read
(i.e., 01011), the periodic continuations 010110101101011 ... and the original
0111011110111110 ... are both equally likely since both require programs of
length 10. Once one more symbol has been read and the segment 010110 is in hand,

the correct continuation is slightly preferred. This seems to coincide with intuition.

SPECIAL CASES
NOISY INPUTS

If we are to be concerned with real devices or systems, some attention should
be paid to the fact that it is unreasonable to expect inputs to represent exactly what
is on the tape. In other words, there will be noise. In spite of this, we would

probably prefer to have the tape:

101010101010101010101010100101010101010101010101010 . ..

noise

continued as 10 rather than by 100, which repeats the noise periodically.

We define a "Markov Process of order n" as a procedure that predicts on the
basis of expected transition probabilities, where probabilities are based on n-grams
(sequences of 0 and 1 of length n). Given the case of the preceding sequence, to
predict 10 this device might use a second order Markov Process defined by the fol-

lowing transition probabilities derived from the given segment:

00 01 10 11
00 .0 0 .02 0
01 0 .98 0 0
10 0 .02 .98 0
11 0 0 -0 0

66

It is simple to see and to prove that such devices will eventually predict occurrences
of 0 and 1 on any perfectly periodic tapes and will do creditable jobs on noisy peri-

odic tapes.

To handle noise on rule-governed tapes, instead of the usual type of Markov
Process consider a slightly more complex version. Assume that we have some
finite set of rules (or operations) Rl’ cee s Rn' Assume that in some manner we
have also found a number of subsequences Sl’ cee s Sm’ Let us denote the result
of applying rule Ri to some one of these subsequences Sj by Ri(Sj). If we assume
that this results in some other sequence, then one of the rules might be applied to
this result, and so forth. Consider the set of all such results generated by applying
a given rule Ri to any rule-generated sequence and denote it by Ri(S). Now consider

the transition matrix of the following form:

1,1 1, i+]j) 5)

W —emm—

A
b=

such that

The > 1 occurs if some Sa is also Rb(Sc) or if some Ra(x) = Rb(y) for a#b. Such
a matrix tabulates the probabilities that if a given sequence appears on the tape,
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>