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DIGITAL COMMUNICATION 
OVER FIXED TIME-CONTINUOUS CHANNELS WITH MEMORY - 

WITH SPECIAL APPLICATION TO TELEPHONE CHANNELS* 

ABSTRACT 

The objective of this study is to determine the performance, or a bound on the performance, 

of the "best possible" method for digital communication over fixed time-continuous channels 

with memory, i.e., channels with intersymbol interference and/or colored noise. The channel 

model assumed is a linear, time-invariant filter followed by additive, colored Gaussian noise. 

A general problem formulation is introduced which involves use of this channel once for T sec- 

onds to communicate one of M signals. Two questions are considered: (1) given a set of sig- 

nals, what is the probability of error? and (2) how should these signals be selected to minimize 

the probability of error? It is shown that answers to these questions are possible when a suitable 

vector space representation is used, and the basis functions required for this representation are 

presented. Using this representation and the random coding technique, a bound on the proba- 

bility of error for a random ensemble of signals is determined and the structure of the ensemble 

of signals yielding a minimum error bound is derived. The inter-relation of coding and modula- 

tion in this analysis is discussed and it is concluded that: (1) the optimum ensemble of signals 

involves an impractical modulation technique, and (2) the error bound for the optimum ensemble 

of signals provides a "best possible" result against which more practical modulation techniques 

may be compared. Subsequently, several suboptimum modulation techniques are considered, 

and one is selected as practical for telephone channels. A theoretical analysis indicates that 

this modulation system should achieve a data rate of about 13,000 bits/second on a data grade 

telephone line with an error probability of approximately 10" . An experimental program sub- 

stantiates that this potential improvement could be realized in practice. 
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* This report is based on a thesis of the same title submitted to the Department of Electrical 
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DIGITAL COMMUNICATION 
OVER  FIXED TIME-CONTINUOUS CHANNELS WITH MEMORY 

WITH SPECIAL APPLICATION TO TELEPHONE  CHANNELS 

CHAPTER I 
DIGITAL COMMUNICATION OVER TELEPHONE  LINES 

A. HISTORY 

An interest in low-speed digital communication over telephone circuits has existed for many 

years.    As early as 1919,  the transmission of teletype and telegraph data had been attempted 
over both long-distance land lines    and transoceanic cables.     During these experiments it was 

recognized that data rates would be severely limited by signal distortion arising from nonlinear 
phase characteristics of the telephone line.    This effect,   although present in voice communica- 

tion,  had not been previously noticed due to the insensitivity of the human ear to phase distor- 

tion.    Recognition of this problem led to fundamental studies by Carson, '    Nyquist, '    and 

others.     From these studies came techniques,   presented around 1930,   for quantitatively meas- 
8 9 uring phase distortion    and for equalizing lines with such distortion.     This work apparently 

resolved the existing problems,   and little or no additional work appears to have been done un- 

til the early 1950's. 

B. CURRENT INTEREST 

The advent of the digital computer in the early 1950's and the resulting military and com- 
mercial interest in large-scale information processing systems led to a new interest in using 
telephone lines for transmitting digital information.    This time,   however,   the high operating 

speeds of these systems,   coupled with the possibility of a widespread use of telephone lines, 
made it desirable to attempt a more efficient utilization of the telephone channel.    Starting about 

1954,   people at both Lincoln Laboratory     '       and Bell Telephone Laboratories     "      began in- 

vestigating this problem.    These and other studies were continued by a moderate but ever in- 

creasing number of people during the late 1950's.    "       By 1960,   numerous systems for obtain- 

ing high data rates (over 500 bits/second) had been proposed,   built,   and tested.    ~        These 

systems were,  however,  still quite poor in comparison to what many people felt to be possible. 

Because of this,   and due also to a growing interest in the application of coding techniques to 
31-43 this problem,   work has continued at a rapidly increasing pace up to the present. Today 

it is necessary only to read magazines such as Fortune,   Business Week,  or U. S. News and 
44-47 World Report to observe the widespread interest in this use of the telephone   network. 

C. REVIEW OF CURRENT TECHNOLOGY 

The following paragraphs discuss some of the current data transmission systems,   or 

modems (modulator-demodulator),   and indicate the basic techniques used along with the resulting 

performance.    Such state-of-the-art information is useful in evaluating the theoretical results 

obtained in the subsequent analysis. 



Two numbers often used in comparing digital communication systems are rate R in bits 

per second and the probability of error P   .    However,  the peculiar properties of telephone 

channels (Sec. I-D) cause the situation to be quite different here.    In fact,   most present modems 
-4 operating on a telephone line whose phase distortion is within "specified limits" have a P    of 10 

-6 e 

to 10      that is essentially independent of rate as long as the rate is below some maximum value. 
As a result,   numbers useful for comparison purposes are the maximum rate and the "specified 

limit" on phase distortion;  the latter number is usually defined as the maximum allowable dif- 

ferential delay T  over the telephone line passband. 

Probably the best-known current modems are those used by the Bell Telephone System in 

the Data-Phone service.       At present,   at least two basic systems cover the range from 500 to 

approximately 2400 bits/second.    The simplest of these modems is an FSK system operating at 

600 or 1200 bits/second.    Alexander,   Gryb,   and Nast      have found that the 600-bits/second 
system will operate without phase compensation over essentially any telephone circuit in the 

country and that the 1200-bits/second system will operate over most circuits with a "universal" 

phase compensator.    A second system used by Bell for rates of about 2400 bits/second is a 
single frequency four-phase differentially modulated system.       At present,   little additional 

information is available concerning the sensitivity of this system to phase distortion. 
Another system operating at rates of 2400 to 4800 bits/second has been developed by Rixon 

24 29 Electronics,   Inc.    '   '    This modem uses binary AM with vestigial side-band transmission and 

requires telephone lines having maximum differential delays of 200 to 400 (isec. 
27 49 A third system,   the Collins Radio Company Kineplex,   '      has been designed to obtain data 

rates of 4000 to 5000 bits/second.    This modem was one of the first to use signal design tech- 

niques in an attempt to overcome some of the special problems encountered on the telephone 

channel.    Basically,  this system uses four-phase differential modulation of several sinusoidal 

carriers spaced in frequency throughout the telephone line passband.    The differential delay 

requirements for this system are essentially the same as for the Rixon system at high rate, 
i.e.,   about 200 ^sec. 

Probably the most sophisticated of the modems constructed to date was used at Lincoln 
43 Laboratory in a recently reported experiment.       In this system,   the transmitted signal was 

"matched" to the telephone line so that the effect of phase distortion was essentially eliminated.* 

Use of this modem with the SECO      machine (a sequential coder-decoder) and a feedback channel 

allowed virtually error-free transmission at an average rate of 7500 bits/second. 

D.     CHARACTERISTICS OF TELEPHONE  LINE AS CHANNEL 
FOR DIGITAL COMMUNICATION 

Since telephone lines have been designed primarily for voice communication,   and since the 
properties required for voice transmission differ greatly from those required for digital trans- 

mission,   numerous studies have been made to evaluate the properties that are most significant 
for this application (see Refs. 10, 12, 14, 17, 31, 33).    One of the first properties to be recognized 
was the wide variation of detailed characteristics of different lines.    However,   later studies 

t Absolute time delay is defined to be the derivative, with respect to radian frequency, of the telephone line 
phase characteristic.    Differential delay is defined in terms of this by subtracting out any constant delay.    The 
differential delay for a "typical" telephone line might be 4 to 6 msec at the band edges. 

42 
X This same approach appears to have been developed independently at IBM. 



33 have shown     that only a few phenomena are responsible for the characteristics that affect digital 

communication most significantly.    In an order more or less indicative of their relative impor- 

tance,  these are as follows. 

Intersymbol Interference"!":-   Intersymbol interference is a term commonly applied to an 

undesired overlap (in time) of received signals that were transmitted as separate pulses.    This 

effect is caused by both the finite bandwidth and the nonlinear phase characteristic of the tele- 

phone line,   and leads to significant errors even in the absence of noise or to a significant reduc- 

tion in the signaling rate.*   It is possible to show,  however,  that the nonlinear phase character- 

istic is the primary source of intersymbol interference. 

The severity of the intersymbol interference problem can be appreciated from the fact that 

the maximum rate of current modems is essentially determined by two factors:   (1) the sensi- 

tivity of the particular signaling scheme to intersymbol interference,   and (2) the "specified 

limit" on phase distortion;  the latter being in some sense a specification of allowable inter- 

symbol interference.    In none of these systems does noise play a significant role in determining 
rate as it does,   for example,   in the classical additive,   white Gaussian noise channel.       Thus, 

current modems trade rate for sensitivity to phase distortion — a higher rate requiring a lower 

"specified limit" on phase distortion and vice versa. 

Impulse and Low-Level Noise:—   Experience has shown that the noise at the output of a tele- 
  31 33 phone line appears to be the sum of two basic types.    '   "    One type of noise,   low-level noise,   is 

typically 20 to 50 db below normal signal levels and has the appearance of Gaussian noise super- 
imposed on harmonics of 60 cps.    The level and character of this noise is such that it has neg- 
ligible effect on the performance of current modems.    The second type of noise,   impulse noise, 
differs from low-level noise in several basic attributes.        First,   its appearance when viewed 
on an oscilloscope is that of rather widely separated (on the order of seconds,   minutes,   or 

even days) bursts of relatively long (on the order of 5 to 50 msec) transient pulses.    Second,   the 
level of impulse noise may be as much as 10 db above normal signal levels.    Third,   impulse 

noise appears difficult to characterize in a statistical manner suitable for deriving optimum 

detectors.    Because of these characteristics,   present modems make little or no attempt to 
combat impulse noise;  furthermore,   impulse noise is the major source of errors in these sys- 

tems.    In fact,   most systems operating at a rate such that intersymbol interference is a neg- 

ligible factor in determining probability of error will be found to have an error rate almost 
entirely dependent upon impulse noise — typical error rates being 1 in 10    to 1 in 10    (Ref. 3 3). 

Phase Crawl:—   Phase crawl is a term applying to the situation in which the received signal 

spectrum is displaced in frequency from the transmitted spectrum.    Typical displacements are 

from 0 to 10 cps and arise from the use of nonsynchronous oscillators in frequency translations 

performed by the telephone company.    Current systems overcome this effect by various modu- 

lation techniques such as AM vestigial sideband,   differentially modulated FM,   and carrier re- 

covery with re-insertion. 

Dropout:—   The phenomena called dropout occurs when for some reason the telephone line ap- 

pears as a noisy open circuit.    Dropouts are usually thought to last for only a small fraction of a 

t Implicit in the following discussion of intersymbol interference is the assumption that the telephone line is a 
linear device.   Although this may not be strictly true,  it appears to be a valid approximation in most situations. 

$ Alternately, and equivalently,  intersymbol interference can be viewed in the time domain as arising from the 
long impulse response of the line (typically 10 to 15 msec duration). 



second,   although an accidental opening of the line can clearly lead to a much longer dropout. 

Little can be done to combat this effect except for the use of coding techniques. 

Crosstalk:—   Crosstalk arises from electromagnetic coupling between two or more lines in 

the same cable.    Currently,   this is a secondary problem relative to intersymbol interference 

and impulse noise. 

The previous discussion has indicated the characteristics of telephone lines that affect digital 

communication most significantly.    It must be emphasized,   however,   that present modems are 

limited in performance almost entirely by intersymbol interference and impulse noise.    The 

maximum rate is determined primarily by intersymbol interference and the probability of error 

is determined primarily by impulse noise.    Thus,   an improved signaling scheme that consider- 

ably reduces intersymbol interference should allow a significant increase in data rate with a 

negligible increase in probability of error.    Some justification for believing that this improve- 
43 ment is possible in practice is given by the experiment at Lincoln Laboratory.       In this experi- 

ment,   a combination of coding and a signal design that reduced intersymbol interference allowed 

performance significantly greater than any achieved previously.     Even so,   the procedure for 

combating intersymbol interference was ad hoc.    Thus,  the primary objective of this report is 

to obtain a fundamental theoretical understanding of optimum signaling techniques for channels 

whose characteristics are similar to those of the telephone line. 

E.    MATHEMATICAL MODEL  FOR DIGITAL COMMUNICATION OVER  FIXED TIME- 
CONTINUOUS CHANNELS WITH MEMORY 

1. Introduction 

Basic to a meaningful theoretical study of a real life problem is a model that includes the 

important features of the real problem and yet is mathematically tractable.    This section pre- 

sents a relatively simple,  but heretofore incompletely analyzed,   model that forms the basis for 

the subsequent theoretical work.    There are two fundamental reasons for this choice of model: 

(a) It represents a generalization of the classical white,   Gaussian 
noise channel considered by Fano,^ Shannon,^ and others.   Thus, 
any analysis of this channel represents a generalization of pre- 
vious work and is of interest independently of any telephone line 
considerations. 

(b) As indicated previously,   the performance of present telephone 
line communication systems is limited in rate by intersymbol 
interference and in probability of error by impulse noise;   the 
low-level "Gaussian" noise has virtually no effect on system 
performance.    However,   the frequent occurrence of long inter- 
vals without significant impulse noise activity makes it desirable 
to study a channel which involves only intersymbol interference 
(it is time dispersive) and Gaussian noise.    In this manner,   it 
will be possible to learn how to reduce intersymbol interference 
and thus increase rate to the point where errors caused by low- 
level noise are approximately equal in number to errors caused 
by impulse noise. 

2. Some Considerations in Choosing a Model 

One of the fundamental aims of the present theoretical work is to determine the performance, 

or a bound on the performance,   of the "best possible" method for digital communication over 

fixed time-continuous channels  with memory,   i.e.,   channels  with intersymbol  interference 



and/or colored noise.    In keeping with this goal,   it is desirable to include in the model only 

those features that are fundamental to the problem when all practical considerations are removed. 

For example,   practical constraints often require that digital communication be accomplished by 

the serial transmission of short,   relatively simple pulses having only two possible amplitudes. 

The theoretical analysis will show,  however,   that for many channels this leads to an extremely 

inefficient use of the available channel capacity.    In other situations,   when communication over 

a narrow-band,  bandpass channel is desired,   it is often convenient to derive the transmitted 

signal by using a baseband signal to amplitude,   phase or frequency modulate a sinusoidal carrier. 

However,   on a wide-band,  bandpass channel such as the telephone line it is not a priori clear 

that this approach is still useful or appropriate although it is certainly still possible.    Finally, 

it should be recognized that the interest in a model for digital'   communication implies that de- 

tection and decision theory concepts are appropriate as opposed to least-mean-square error 

filtering concepts that find application in analog communication. 

3.    Model 

An appropriate model for digital communication over fixed time-dispersive channels can 
be specified in the following manner.    An obvious but fundamental fact is that in any real situa- 
tion it is necessary to transmit information for only a finite time,   say  T  seconds.    This,   cou- 

pled with the fact that a model for digital communication is desired,   implies that one of only a 
finite number,   say  M,   of possible messages is to be transmitted.t   For the physical situation 
being considered,   it is useful to think of transmitting this message by establishing a one-to-one 
correspondence between a set of M  signals of T seconds duration and transmitting the signal 

that corresponds to the desired message.    Furthermore,   in any physical situation,   there is only 

a finite amount of energy,   say ST,   available with which to transmit the signal.    (Implicit here 

is the interpretation of S as average signal power.)   This fact leads to the assumption of some 
form of an energy constraint on the set of signals — a particularly convenient constraint being 

that the statistical average of the signal energies is no greater than ST.    Thus,   if the signals 
are denoted by s.(t) and each signal is transmitted with probability P.,   the constraint is 

M rT 
2(t) dt < ST      . (1) s ^ r ■* 

i=l 

Next, the time-dispersive nature of the channel must be included in the model. A model 

for this effect is simply a linear time-invariant filter. The only assumption required on this 

filter is that its impulse response have finite energy,   i.e.,  that 

r h2(t) dt < -       . (2) 

t The word "digital" is used here and throughout this work to mean that there are only a finite number of possible 
messages in a finite time interval.    It should not be construed to mean "the transmission of binary symbols" or 
anything equally restrictive. 

t At this point, no practical restrictions will be placed on  T or M.    So, for example, perfectly allowable values 
for  T and  M might be T = 3 X 10' seconds « 1 year and M = 10     .    This is done to allow for a very general for- 
mulation of the problem.    Later analysis will consider more practical situations. 



It is convenient,  however,  to assume,   as is done through this work,  that the filter is normalized 

so that max |H(f)|  = 1,  where 
f 

H(f) = \       h(t) e"Jcot dt 

Furthermore,  to make the entire problem nontrivial,   some noise must be considered.    Since the 

assumption of Gaussian noise leads to mathematically tractable results and since a portion of the 

noise on telephone lines appears to be "approximately" Gaussian,  this form for the noise is as- 

sumed in the model.    Moreover,   since actual noise appears to be additive,   that is also assumed. 

For purposes of generality,  however,  the noise will be assumed to have an arbitrary spectral 
density N(f). 

Finally,   to enable the receiver to determine the transmitted message it is necessary to 

observe the received signal (the filtered transmitted signal corrupted by the additive noise) over 

an interval of,   say T. seconds,   and to make a decision based upon this observationt 

In summary, the model to be analyzed is the following:   given a set of M  signals of T seconds 

duration satisfying the energy constraint of Eq. (1),   a message is to be transmitted by selecting 

one of the signals and transmitting it through the linear filter h(t).    The filter output is assumed 

to be corrupted by (possibly colored) Gaussian noise and the receiver is to decide which message 

was transmitted by observing the corrupted signal for T    seconds. 

Given the above model,   a meaningful performance criterion is probability of error.    On the 

basis of this criterion,  three fundamental questions can be posed. 

Given a set of signals {s.(t)},   what form of decision device should 
be used? 

What is the resulting probability of error? 

How should a set of signals be selected to minimize the probability 
of error? 

54 The answer to the first question involves well-known techniques      and will be discussed only 
briefly in Chapter III.    The determination of the answers to the remaining two questions is the 

primary concern of the theoretical portion of this report. 
In conclusion,   it must be emphasized that the problem formulated in this section is quite 

general.    Thus,   it allows for the possibility that optimum signals may be of the form of those 
used in current modems.    The formulation has not,   however,   included any practical constraints 

on signaling schemes and thus does not preclude the possibility that an alternate and superior 
technique may be found. 

t At this point,  T]  is completely arbitrary.    Later it will prove convenient to assume T] >y T which is the situation 
of most practical interest. 



CHAPTER n 
SIGNAL REPRESENTATION PROBLEM 

A. INTRODUCTION 

The previous section presented a model for digital communication over fixed time-dispersive 

channels and posed three fundamental questions concerning this model     However,   an attempt 
to obtain detailed answers to these questions involves considerable difficulty.    The source of this 

difficulty is that the energy constraint is applied to signals at the filter input, whereas the prob- 

ability of error is determined by the structure of these signals at the filter output.    Fortunately, 

the choice of a signal representation that is "matched" to both the model and the desired analysis 

allows the presence of the filter to be handled in a straightforward manner.    The following sec- 
tions present a brief discussion of the general signal representation problem,  slanted,  of course, 
toward the present analysis,  and provide the necessary background for subsequent work. 

B. SIGNAL  REPRESENTATION 

At the outset,  it should be mentioned that many of the concepts,  techniques,  and terminology 
of this section are well known to mathematicians under the title of "Linear Algebra." 

As pointed out by Siebert,     the fundamental goal in choosing a signal representation for a 

given problem is the simplification of the resulting analysis.    Thus,  for a digital communication 

problem,  the signal representation is chosen primarily to simplify the evaluation of probability 
of error.    One representation which has been found to be extremely useful in such problems 

(due largely to the widespread assumption of Gaussian noise) pictures signals as points in an 
n-dimensional Euclidean vector space. 

1.     Vector Space Concept 

In a digital communication problem it is necessary to represent a finite number of signals 

M.    One way to accomplish this is to write each signal as a linear combination of a (possibly 

infinite) set of orthonormal "basis" functions {<p(t)},   i.e., 

n 

s.(t) =    £    s..cp.(t) (3) 
i=l 

where 

s. - J  ,.<t) Sj (t) Sj(t) dt      . 

When this is done, it is found in many cases that the resulting probability of error analysis 

depends only on the numbers s.. and is independent of the basis functions {<p.(t)}. In such cases, 

a vector or n-tuple s. can be defined as 

sj = (slj,s2j,...,skj snj) 

which,  in so far as the analysis is concerned,  represents the time function s.(t).    Thus,   it is 
J 

possible to view s. as a straightforward generalization of a three-dimensional vector and s.(t) 
J J 

as a vector in an n-dimensional vector space.    The utility of this viewpoint is clear from its 



widespread use in the literature.    Two basic reasons for this usefulness,  at least in problems 

with Gaussian noise,  are clear from the following relations which are readily derived from 

Eq. (3).    The energy of a signal s.(t) is given by 

n 

5" s> dt" £ 8y ■ Sj' s-i 
i=l 

and the cross correlation between two signals s.(t) and s.(t) is given by 
J 

j s.(t) sk(t) dt =   I   s..sik=s. •  sk 

i=l 

where ( ) •   ( ) denotes the standard inner product. 

2.     Choice of Basis Functions 

So far,  the discussion of the vector space representation has been concerned with basic re- 

sults from the theory of orthonormal expansions.       However,  an attempt to answer a related 

question — how are the <p .(t) to be chosen — leads to results that are far less well defined and less 

well known.    Fundamentally,  this difference arises because the choice of the <p.(t) depends heavily 

upon the type of analysis to be performed,   i.e., the <p.(t) should be chosen to "simplify the anal- 

ysis as much as possible."   Since such a criterion clearly leads to no specific rule for deter- 

mining the <p .(t),   it is possible only to indicate situations in which distinctly different basis func- 

tions might be appropriate. 

Band-Limited Signals:—  A set of basis functions used widely for representing band- 

limited signals is the set of cp .(t) defined by 

a>  (t)-^zW sin27rW[t-(i/2W)) . 
Mlt'     V<iW       27rW [t - (i/2W)] m 

where W   is the signal bandwidth.    The popularity of this representation,  the so-called sampling 
representation,  lies almost entirely in the simple form for the coefficient s...    This is readily 

shown to be 

s.. =   \      <p.(t) a At) dt = —— S-(i/2W)      . (5) 

58 It should be recalled,  however,  that no physical signal can be precisely band-limited.       Thus, 
any attempt to represent a physical signal by this set of basis functions must give only an ap- 

proximate representation.    However,  it is possible to make the approximation arbitrarily accu- 
rate by choosing W  sufficiently large. 

Time-Limited Signals:—   Time-limited signals are often represented by any one of 

several forms of a Fourier series.    These representations are well known to engineers and any 

discussion here would be superfluous.    It is worth noting that this representation,   in contrast 

to the sampling representation,   is exact for any signal of engineering interest. 

Arbitrary Set of M Signals:— The previously described representations share the 

property that, in general, an infinite number of basis functions are required to represent a 

finite number of signals.    However,   in problems involving only a finite number of signals,   it 



is sometimes convenient to choose a different set of basis functions so that no more than M basis 

functions are required to represent M signals.    A proof that such a set exists,   along with the 
59 procedure for finding the functions,  has been presented by Arthurs and Dym.       This result,  al- 

though well known to mathematicians,   appears to have just recently been recognized by electrical 

engineers. 

Signals Corrupted by Additive Colored Gaussian Noise:-   In problems involving signals 

of T seconds duration imbedded in colored Gaussian noise,   it is often desirable to represent both 

signals and noise by a set of basis functions such that the noise coefficients are statistically 

independent random variables.    If the noise autocorrelation function^ is R(T),   it is well known 

from the Karhunen-Loeve theorem    '      that the <p At) satisfying the integral equation 

WT) = J  *i X.<P.(T)=\     <P.(T') R(T-T
1
) dT O^T^T 

11 J0       i 

form such a set of basis functions. 

Filtered Signals:—   Consider the following somewhat artificial situation closely related 

to the results of Sec. II-D.    A set of  M finite energy signals defined on the interval [0,T] is 

given.    Also given is a nonrealizable linear filter whose impulse response satisfies h(t) = h(—t). 

It is desired to represent both the given signals and the signals that are obtained when these are 

passed through the filter by orthonormal expansions defined on the interval [0,TJ.    In general, 

arbitrary and different sets of <p.(t) can be chosen for both representations.    Then the relation 

between the input signal vector s. and the output signal vector,   say r.,   is determined as follows: 
J J 

Let r.(t) be the filter output when s.(t) is the filter input.    Then 
J J 

r (t) £ V     S.(T) h(t - T) dT =   £ s     \     cr.(T) h(t - r) dr 
J Jn      J ij Jn       i 

where {a.(t)} are the basis functions for the input signals.    Thus,  if {y.(t)} are the basis functions 

for the output signals,  it follows that 

rkji^    rj(t)yk(t) dt =   £ s... j     j     yk<t) h(t - T) a.(r) drdt 
~o      J °   o      o 

or,  in vector notation, 

r. = [H] s. (6) 
-3 "J 

where the k,  i     element in [H] is 

j     j     yk(t)h(t-r) a.(T)dTdt 

and,   in general,  r. and s. are infinite dimensional column vectors and [H] is an infinite dimen- 

sional matrix. 

|For the statement made here to be strictly true, it is sufficient that R(T) be the autocorrelation function of 
filtered white noise."' 



If,  however,  a common set of basis functions is used for both input and output signals and 

if these <p .(t) are taken to be the solutions of the integral equation' 

\.<p.(t)=\     <P-(T) h(t - T) dT O^t^T 11 JO       l 

then the relation of Eq. (6) will still be true but now [H] will be a diagonal matrix with the eigen- 

values X. along the main diagonal.    This result,  which is related to the spectral decomposition 
1 62 63 

of linear self-adjoint operators,    '      has two important features.    First,  and most obvious,  the 

diagonalization of the matrix [H] leads to a much simplified calculation of r. given s..   Equally 
J J 

important,  however,  this form for [H] has entries depending only upon the filter impulse re- 

sponse h(t).    Although not a priori obvious, these two features are precisely those required of 

a signal representation to allow evaluation of probability of error for digital transmission over 

time-dispersive channels. 

C.    DIMENSIONALITY OF FINITE SET OF SIGNALS 

This section concludes the general discussion of the signal representation problem by pre- 

senting a definition of the dimensionality of a finite set of signals that is of independent interest 

and is,  in addition,  of considerable use in defining the dimensionality of a communication channel. 

An approximation often used by electrical engineers is given by the statement that a signal 

which is "approximately" time-limited to T  seconds and "approximately" band-limited to W  cps 

has 2TW "degrees of freedom";   i.e.,  that such a signal has a "dimensionality" of 2TW.    This 

approximation is usually justified by a conceptually simple but mathematically unappealing argu- 

ment based upon either the sampling representation or the Fourier series representation pre- 

viously discussed.    However,  fundamental criticisms of this statement make it desirable to 

adopt a different and mathematically precise definition of "dimensionality" that overcomes these 

criticisms and yet retains the intuitive appeal of the statement.    Specifically,  these criticisms 

are: 

(1) If a (strictly) band-limited nonzero signal is assumed,  it is known 8 that 
this signal must be nonzero over any time interval of nonzero length. 
Thus,  any definition of the "duration"   T  of such a signal must be arbi- 
trary,  implying an arbitrary "dimensionality," or equally unappealing, 
the signal must be considered to be of infinite duration and therefore of 
infinite "dimensionality."    Conversely,   if a time-limited signal is as- 
sumed,   it is known58 that its energy spectrum exists for all frequencies. 
Thus,  any attempt to define "bandwidth" for such a signal leads to sim- 
ilar problems.    Clearly,  the situation in which a signal is neither band- 
limited nor time-limited,e.g.,  s(t) = exp [—|t | ] where —°° < t < °o,  leads 
to even more difficulties .t 

(2) The fundamental importance of the concept of the "dimensionality" of a 
signal is that'it indicates,  hopefully,  how many real numbers must be 
given to specify the signal.    Thus,  when signals are represented as points 
in n-dimensional space,  it is often useful to define the dimensionality of 
a signal to be the dimensionality of the corresponding vector space.   This 

t Again, there are mathematical restrictions on h(t) before the following statements are strictly true.    These 
conditions"^r& are concerned with the existence and completeness of the <p.(\) and are of secondary interest at 
this point. 

X It should be mentioned that identical problems are encountered when an attempt is made to define the "dimen- 
sionality" of a channel in a similar manner.    This problem will be discussed in detail in Chapter III. 
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definition,  however,   may lead to results quite different from those ob- 
tained using the concept of "duration" and "bandwidth."   For example, 
consider an arbitrary finite energy signal s(t).    Then by choosing for 
an orthonormal basis the single function 

1       rr°   ?      l1/2 

s*(t) dt IE 
it follows that 

s(t) = s^ft) 

where, as usual, 

;■[ s(t) <iP1(t) dt      . 
—oo 

Thus,  this definition of the dimensionality of s(t) indicates that it is only 
one dimensional in contrast to the arbitrary (or infinite) dimensionality 
found previously.    Clearly,  such diversity of results leaves something to 
be desired. 

Although this discussion may seem somewhat confusing and puzzling,  the reason for the 

widely different results is readily explained.    Fundamentally,  the time-bandwidth definition of 

signal dimensionality is an attempt to define the "useful" dimensionality of the vector space ob- 

tained when the basis functions are restricted to be either the band-limited sinx/x functions or 

the time-limited sine and cosine functions.    In contrast,  the second definition of dimensionality 

allowed an arbitrary set of basis functions and in doing so allowed the <p.(t) to be chosen to mini- 

mize the dimensionality of the resulting vector space. 

In view of the above discussions,  and because it will prove useful later,  the following defi- 

nition for the dimensionality of a set of signals will be adopted: ' 

Let S be a set of M finite energy signals and let each signal in this set be 
represented by a linear combination of a set of orthonormal functions,   i.e., 

N 

s.(t) =   YJ    s /.(t) for all s (t) c S 

i=l 

Then the dimensionality  d of this set of signals is defined to be the minimum 
of N over all possible basis functions,  i.e., 

d A  min N 
" {^(t)} 

The proof that such a number  d exists,  that d < M,  and the procedure for finding the {(/?.(t)} 
59 l 

have been presented elsewhere      and will not be considered here.    It should be noted,  however, 

that the definition given is unambiguous and,  as indicated,   is quite useful in the later work.    It 

is also satisfying to note that if S is a set of band-limited signals having the property that 

I for all i < 1 or i > 2TW 

for all s.(t) e S 

tThis definition is just the translation into engineering terminology of a standard definition of linear algebra.     ' 
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then the above definition of dimensionality leads to d = 2TW. A similar result is also obtained 

for a set of time-limited functions whose frequency samples all vanish except for a set of 2TW 
values. 

D.    SIGNAL REPRESENTATION FOR FIXED TIME-CONTINUOUS CHANNELS 
WITH  MEMORY 

In Sec. I-E,  it was demonstrated that a useful model for digital communication over fixed 

time-continuous channels with memory considers the transmission of signals of T-seconds dura- 

tion through the channel of Fig. 1 and the observation of the received signal y(t) for T    seconds. 

Given this model,  the problem is to determine the probability of error for an optimum detector 

and a particular set of signals and then to minimize the probability of error over the available 

sets of signals.    Under the assumption that the vector space representation is appropriate for 

this situation,  there remains the problem of selecting the basis functions for both the transmitted 

signals x(t) and the received signals y(t). 

3-64-3094 

x(t)- LINEAR FILTER 
h(t) -0 -y(») 

Fig. 1.    Time-continuous channel with memory. 
n(t) GAUSSIAN WITH SPECTRAL DENSITY N(f) 

max  |H(f)| «I 

nax[JH(f)|2/N(f)] ■ 
n(t) 

If x,  n,  and y are the (column) vector representations of the transmitted signal (assumed 

to be defined on 0,T),  additive noise,  and received signal (over the observation interval of T 
seconds),   respectively,  an arbitrary choice of basis functions will lead to the vector equation 

y = [H]x + n (7) 

in which all vectors are,   in general,  infinite dimensional,  n may have correlated components, 
and [H] will be an infinite dimensional matrix related to the filter impulse response and the sets 
of basis functions selected.t   If,   instead,  both sets of basis functions are selected in the manner 

presented here and elsewhere,     it will be found (1) that [H]is a diagonal matrix whose entries are 

the square root of the eigenvalues of a related integral equation,   and (2) that the components of 

n are statistically independent and identically distributed Gaussian random variables.    Because 
of these two properties it is possible to obtain a meaningful and relatively simple bound on prob- 

ability of error for the channel considered in this  work. 
In the following discussion it would be possible,  at least in principle,  to present a single 

procedure for obtaining the desired basis functions which would be valid for any filter impulse 

response,  any noise spectral density,  and any observation interval,  finite or infinite.    This 
approach,  however,  leads to a number of mathematically involved limiting arguments when 

white noise and/or an infinite observation interval is of interest.    Because of these difficulties 

the following situations are considered separately and in the order indicated. 

fit is, of course, possible to obtain statistically independent noise components by using for the receiver signal 
space basis functions the orthonormal functions used in the Karhunen-Loeve expansion of the noise. 4/OU   How- 
ever, this will not, in general, diagonalize [H]. 
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Arbitrary filter,  white noise,  arbitrary observation interval (arbitrary T   ); 

Arbitrary filter,   colored noise,   infinite observation interval (T    - °°); 

Arbitrary filter,  colored noise, finite observation interval (T . < <*>). 

Due to their mathematical nature, the main results of this section are presented in the form 

of several theorems.     First,   however,   some assumptions and simplifying notation will be 

introduced. 

Assumptions. 

(1) The time functions h(t),  x(t), y(t),  and n(t) are in all cases real. 

(2) The input signal x(t) may be nonzero only on the interval [0, T] and has 
finite energy;  that is,  x(t) e   £2(0,T) and thus 

\     x2(t) dt = \      x2(t) dt <<*> 
Jo J-°° 

(3) The filter impulse response h(t) is physically realizable and stable. 
Thus,  h(t) = 0 for t < 0 and 

|h(t)| dt < °° £ 
(4) The time scale for y(t) is shifted to remove any pure delay in h(t). 

(5) The observation interval for y(t) is the interval [0, T.],  unless otherwise 
indicated. 

Note:   Assumptions 3,   4,  and 5 have been made primarily to simplify the proof that the <p.(t) 

are complete.    Clearly,  these assumptions cause no loss of generality with respect to "real 

world" communication problems.    Furthermore,  completeness proofs,  although considerably 

more tedious,  are possible only under the assumption that 

I h2(t)    dt    <   CO 

Notation. 

The standard inner product on the interval [0,T] is written (f, g);  that is, 

(f.g)öj1 f(t) g(t) dt    . 
b 

The linear integral operation on f(t, s) by k(t, T) is written kf(t, s);  that is, 

/-»OO 

kf(t, s) £ \      k(t, T) f(T, S) dT      . 
J-00 

The generalized inner product on the interval [0, T  ] is written (f, kg)T  ; 
that is, 1 

r»T pT p°° 
(f,kg)T    A \    1 f(t) kg(t) dt = \    i f(t) \      k(t, T) g(T) drdt 

M      Jo Jo J-« 

With these preliminaries the pertinent theorems can now be stated.    The following results are 

closely related to the spectral decomposition of linear  self-adjoint operators on a Hilbert 
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space.    '     '    i   It should be mentioned that all the following results can be applied directly to 

time-discrete channels by simply replacing integral operators with matrix operators. 

1.     Basis Functions for White Noise and an Arbitrary Observation Interval 

Theorem 1. 

Let N(f) = 1,  define a symmetric function K(t, s) = K(s,t) in terms of the filter impulse re- 

sponse by 

K(t, s) A r h(T -t) h(T -s) dT 

lo 

o^: t, s^ T 

elsewhere 

and define a set of eigenfunctions and eigenvalues by 

I0<£ t <£ T 

i = 1,2, . . . 
X.^.(t) = K?.(t) 

(8) 

[Here and throughout the remainder of this work,   it is assumed that (p .(t) = 0 for t < 0 and 

t > T,  i = 1, 2, . . .   . ]   Then the vector representation of an arbitrary x(t) e £?(0, T) is  x,  where 

x. = (x, q>.) and the vector representation of the corresponding'  y(t) on the interval [0, T.] 

(T. ^.T)t is given by Eq. (7) in which the components of n are statistically independent and iden- 

tically distributed Gaussian random variables with zero-mean and unit variance and 

[H]     = 

'K 
0 

The basis functions for y(t) are {©.(t)},  where 

1 

e.(t) = J\ 
h*.(t) 

I o 

0^t^T1 

elsewhere 

th and the i     component of y  is 

yi=(y.e.)Ti     . 

Note:   To be consistent with the literature,    '      it is necessary to denote as eigenfunctions 

only those solutions of Eq. (8) having X. > 0.     This restriction is required since mathematicians 

normally place the eigenvalue on the right-hand side of Eq. (8) and do not consider eigenfunctions 

with infinite eigenvalue. 

t The representation for y(t) neglects a noise "remainder term" which is irrelevant in the present work.    See the 
discussion following the proof of Lemma 3 for a detailed consideration of this point. 

$ All the following statements will be true if T, < T except that the {<}>.(t)} will not be complete in i'lO,"!"). 

14 



Proof. 

The proof of this theorem consists of a series of Lemmas.    The first Lemma demonstrates 

that eigenfunctions of Eq. (8) form a basis for £2(0, T),  i.e., that they are complete. 

Lemma 1(a). 

If T    ^T,  the set of functions {«^(t)} defined by Eq. (8) form an orthonormal basis for £2(0, T), 

that is,  for every x(t) e £2(0, T) 

x(t) =    YJ    x/i(t) O^t^T 
i=l 

where x. = (x, (p.) and mean-square convergence is obtained. 

Proof. 

Since the kernel of Eq. (8) is £     (see Appendix A) and symmetric,   it is well known      that at 

least one eigenfunction of Eq. (8) is nonzero,  that all nonzero and nondegenerate eigenfunctions 

are orthogonal (and therefore may be assumed orthonormal) and that degenerate eigenfunctions 

are linearly independent and of finite multiplicity and may be orthonormalized.    Furthermore, 

it is known    '      that the {<p.(t)} are complete in £_(0,T) if and only if the condition 
1 £ 

(f,Kf)T    = 0 f(t) e £?(0,T) 
1 1 

implies f(t) = 0 almost everywhere on [0, T],    But 

(f,Kf)T    = £   1   K     f(T) h(t dt 

Thus, to prove completeness,  it suffices to prove that if 

\     f(T) h(t - T) dT - 0 0^ t<<: Ti with Ti >T 

then f(t) = 0 almost everywhere on [0,T].    Let 

•T 
u(t) = \      f(T) h(t - T) dt 

Jo 

and assume that 

t <; T 

u(t) = 
1 

z(t-Td) t>T1 

where z(t) is zero for t < 0 and is arbitrary elsewhere,   except that it must be the result of 

passing some ^2(0, T) signal through h(t).    Then 

poo -sT 
U(s) = \     u(t) e"st dt = e Z(s) - F(s) H(s) Re[s] ^ 0      . (9) 

Jo 

Now,  for Re[s] > 0, 
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|Z(s)|  = r z(t) e"St dt ■■I £ \      |z(t)| exp{-Re[s] t} dt 

poo poo        p 

<: \       |z(t)|  dt =  \ \      f(T) h(t- r) dr (It 

vo ~o 

However,  from the Schwarz inequality, 

*T fpT        pT 
f(T,|dT.<|]o *«\o 

pT p°o pT p°° 
£j      |f(T)|j      |h(t-r)| dtdr^ j      |f(r)| dr j       |h(t)|dt      . 

£ 
,1/2 

r(T) dr 

and,  from assumption 3, 

£ |h(t)| dt < °° 

Thus, 

r1 2       1/z r 1 f (T)dT     J l< IT J 
1/2 

|h(t)| dt < °° Re[s] ^ 0 

Since f(t) e £2(0, T),  this result combined with Eq. (9) implies that there exists a constant A 

such that 

|F(s) H(s)| ^ A exp{-Re[s] T^ for Re[s] ^ 0      . 

68 
From a Lemma of Titchmarsh      it follows that there exist constants  a  and ß with 

a + ß = T      such that 

|F(s)| ^ A1 exp{-Re[s] a} Re[s] ^ 0 

|H(s)| ^ A2 exp{-Re[s] ß] Re[s] ^ 0 

where A,A2 = A.    Finally,  since 

1     fjOC 
F(s) est ds 

and similarly 

h(t) 
1     fj°° (s) eSt ds     , 

these conditions and ordinary contour integration around a right half-plane contour imply that 

f(t) =0 t < a 

h(t) = 0 t < ß 

From assumptions 3 and 4, h(t) is physically realizable and contains no pure delay. Thus, by 

choosing ß = 0, it follows that a = T^ and, if T1 ^.T, that f(t) = 0 almost everywhere on [0,T]. 

This completes the proof that the {(p.(t)} are complete. 
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The following Lemma demonstrates that the {Ö.(t)} defined in the statement of the theorem 

are a basis for all signals at the filter output,   i.e.,  all signals of the form 

■f r(t) = \      X(T) h(t - T) dT 
Jo 

O^txT 

x(t) e f2(0fT)       . 

Lemma 1(b). 

Let r(t) and ö.(t) be as defined previously.    Then 

r(t)=   YJ    
riei(*) °^t^T4 

i=l 

69 ,, where r. = (r, 6.)™    =   /X7x.,  x. = (x, cp.), and uniform convergence      is obtained. 

Proof. 

Define two functions r   (t) and x   (t) by 

n 

where 

and 

xn(t) £   YJ    Vi(t) O^t^T 
i=l 

x. = (x,<p .) 

^^TXn (T) h(t - T) dt Ox t<T 1 

Then 

|r(t)-rn(t)|  = r [X(T) - Xn(T)]   h(t - T)   dT 

I <c \        X(T) -x   (T)|   |h(t - T)|  dT       . 

Thus,  from the Schwarz inequality, 

»T 
Z^\X     |x(T)-Xn(T)|2  dT^       h2(t-T)dT 1 
^l        |x(T)-Xn(T)|2  dT^ h2(t)   dt 

However,  by assumption 

£ h   (t) dt <oo 
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and Lemma 1(a) proved that 

Thus, 

lim   \      |X(T) - x  (T)|
2
 = 0      . 

n-« Jo n 

lim   I r(t) - r   (t) |  = 0 0 <<: t ^ T 
n-*°° 

and uniform convergence is obtained.    Since 

n n 

it follows that 

rn(t)=   I   xihcP.(t)=   X   7\x.e.(t) 

i=l i=l 

i=l 

and therefore that 

But 

^W  I  J\^eyQihi 

i  „   . _,      i      /*r 
J    x Ti      /ÄX       J      lTi      /xX      J N/    i     J J 

Thus, 

r(t) =   YJ    (r.e )      6 (t) 

i=l       * 

and the Lemma is proved. 

The following Lemma presents the pertinent facts relating to the representation of n(t) by 

the functions {©.(t)}. 

Lemma 1(c). 

Let the {©.(t)} be as defined above.    Then the additive Gaussian noise n(t) can be written as 

00 

n(t) =    YJ    
niei(t) + nr(t) 0^: t^Td 

i=l 

where 

ni=(n'9i)T1 

n. = 0 
l 

n.n. = Ö.. 
i J        ij 

i a 



and the random processes    2    n.0.(t) and n  (t) are statistically independent. 
i=l 

Proof.'1' 

Defining 

X 

nr(t) = n(t) -   YJ    "i9^) 
i=l 

it follows that n(t) can be represented in the form indicated.    By assumption,   n(t) is a zero-mean 

process.    Therefore, 

n. =   (11,6.)       = (n.e )T    = 0 
i i 1 i i 1 

and 

-T,  rT t 
n.n. = (nf6)       (n, 9 )       =\   * f   j n(r) n(t) 6 (r) G (t) dr dt 

J j J      1      Jo       Jo J 

= f   *C  d ö(T-t) e (T) e (t) drdt = (e   e )     * «..     . 
Jo       Jo J J      1 J 

(Note that unit variance is obtained here due to the normalization assumed in Fig. 1.)   Next,   let 

n   (t) be defined as s 

n
s(t) =   Z   n.e.(t) o<:t<:T1 

i=l 

and define n    and n    by -s -r    J 

Bs=lns(V-ns(t2> ns(tn»l 

n^ln^l.n^t.) n^t^l       . 

Then,  the random processes n   (t) and n   (t) will be statistically independent if and only if the 

joint density function for n    and n    factors into a product of the individual density functions, 

that is,   if 

P(ns,nr) = P^rig) P2(nr) for all {t.} and {tl} 

t The following discussion might more aptly be called a plausibility argument than a proof since  the series 
00 

I   n.e.(t) does not converge and since n(t) is infinite bandwidth white noise for which time samples do not exist. 

However, this argument is of interest for several reasons:   (a) it leads to a heuristically satisfying result, (b) the 
same result has been obtained by Price/U in a more rigorous but considerably more involved derivation, and (c) it 
can be applied without apology to the colored noise problems considered later. 
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However,   since all processes are Gaussian it can be readily shown that this factoring occurs 

when all terms in the joint covariance matrix of the form n (t.) n (V) vanish.    From the previous si      r   j 
definitions 

ns(t) nr(f) =     YJ W*)       *<f) - E niei<t') 
■i ■■    *■ i J 

=  E \    1 n(T) n(f) G.(.T) e.(t) dr - Yi E nTn".e.(t) e (f) 
vr-> J J 

i ° 1 J 

= E V) ei(t)- E ei(t') e^t) = o     . 
i i 

Combining the results of these three Lemmas,  it follows that for any x(t) e  £?(0,T) 

x(t) =   E Vi(t) 

and 

y(t) = E yiei(t) + nr(t) 

where 

and 

Xj = (x, <p.) 

y. = (y, 9.)rr,    =    /\T x. + n. Jl      w$     l'T ^y   l    l l 

n. = (n,0 ) 
1 

Thus,  only the presence of the noise "remainder term" n  (t) prevents the direct use of the 

vector equation 

y = [H]x + n      . 

It will be found in all of the succeeding analyses,  however,  that the statistical independence of 

the n  (t) and n  (t) processes would cause n   (t) to have no effect on probability of error.    Thus, 

for the present work,  n  (t) can be deleted from the received signal space without loss of gener- 

ality.    This leads to the desired vector space representation presented in the statement of the 

theorem. Q.E.D. 

2.     Basis Functions for Colored Noise and Infinite Observation Interval 

This section specifies basis functions for colored noise and a doubly infinite observation in- 

terval.    Since many portions of the proof of the following theorem are similar to the proof of 

Theorem 1,  reference will be made to the previous work where possible.    For physical,  as well 
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as mathematical,  reasons the analysis of this section assumes that the following condition is 

satisfied: 

r |H(f)l 
N(f) df < °° 

Theorem 2. 

Let the noise of Fig. 1 have a spectral density N(f),  define two symmetric functions K(t - s) 

and K^t - s) by1" 

exp[joj(t - s)] df 
K(t - s) 4 \ £ |H(f)| 

N(f) 

10 elsewhere 

and 

K^t-s) 4^      N(f)'1 expljco(t-s)] dt 

X.<p.(t) = K<p.(t) 

and define a set of eigenfunctions and eigenvalues by 

10^: t ^ T 

U - 1,2  

Then the vector representation of an arbitrary x(t) e it   (0, T) is  x» where x. = (x, <p .) and the 
vector representation of the corresponding y(t) on the doubly infinite interval [—oo,0°] is given 

by Eq. (7) in which [H] and n have the same properties as in Theorem 1.    The basis functions 

for y(t) are 

1 

(10) 

©i(t) = \ 

lo 

hcp^t) 0V< t < » 

t < 0 

.th and the i     component of y is 

y£ = <y, K^ ä ^^   y(t) K^.d) dt       . 

Proof. 

Under the conditions assumed for this theorem, the functions {<p.(t)} of Eq. (10) are simply 

a special case of Eq. (8) with T . = +<».    Thus, they form a basis for ^2^°» ^) anc* tne representa- 
tion for x(t) follows directly.   [See Lemma 1(a) for a proof of this result and a discussion of the 

convergence obtained.]   By defining G.(t) as it was previously defined,  it follows directly from 

Lemma 1(b) that the filter output r(t) is given by 

tBecause N(f) is an arbitrary spectral density, it is possible that N(f)"' will be unbounded for large f and there- 
fore that the integral defining K,(t — s) will not exist in a strict sense.    It will be observed, however, that 
Ki(t — s) is always used under an integral sign in such a manner that the over-all operation is physically mean- 
ingful.    It should be noted that the detection of a known signal in the presence of colored Gaussian noise involves 
an identical operation.^ 
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r(t)=   £   ^ xie.(t) o^t< 
i=l 

Furthermore,  since 

1      J       mr      L   a   J /x.x. 

— j j     ^(a) h(t-a) da     K      K^t-sjJ    </>.(p) h(s-p) dpds 
i j    "" ° 

   \     <P>) \     </>>) \     \     h(t-a) K,(t-s) h(s-p) dtdsdadp 
LX.   J0 J0 J J-°oJ-oo 1 

i J 

— J     ^i(a)J     ^J(P)J        '^(f)'     exp[ja;(a-p)] dfdadp 

d1 

^^'»ih-Ji^Wii 
i J 

it follows that 

<r'Kiei>=V\xi 

and thus that 

n 

r(t) =   2   <r,Kte.> e.(t)      . 

Finally,   with .'Ä   (T) and n. defined by 

»   (T)M      N(f) ejwT df 

it follows that 

n. =<h, K,0.>= 0 l     N   '     1   i' 

and 

n.n. = <n,K„0.><n, K^G.S l j     N        1   i'\ *     1   j/ 

/-»oo      /-»oo /'»OO /"lOO 

= \       \      *n(t-s)l       K At -a) 0(a) da \       K(s - p) 0 .(p) dp dt ds 

rO        /"VJO /"-»OO        /-»OO 

\      0.(a) 0.(p) da dp \       \      SI   (t - s) K   (t - a) K  (s - p) dsdt 

zz 



or 

rvx>       r\oo 

nJäT=\       \      6 (a) 9 (p) K.(a-p) dadp = <e    K.e >= Ö..      . 

From this it is readily shown,  following a procedure identical to that used in Lemma 1(c),  that 

the random processes n  (t) and n  (t) defined by 

OO 

ns(t) £  YJ   n.e.(t) 
i=l 

nr(t)in(t)-ns(t) 

are statistically independent.    Thus,  neglecting the "remainder term" leads to 

y(t) =  Z  y^a) 
i=l 

where 

y. = <y,K,e.> =   /AT x. + n. Ji     NJ'     1    1'      V   1    1        1 

or,   in vector notation, 

y = [H]x + n      . 

3.     Basis Functions for Colored Noise and Finite Observation Interval 

This section specifies basis functions for colored noise and an arbitrary,   finite observation 

interval.    As in Sec. II-D-2,   it is assumed that 

r iH (f)l 
N(f) df < * 

Theorem 3. 

Let the noise of Fig. 1 have a spectral density N(f),  define a function^ K  (t, s) by 

\    4 31   (t - a) K   (CT, s) da = ö(t - s) 0^:t, s^T Jo n l 

where 

91   (T) i \      N(f) eja,T df 

define a function K(t, s) by 

K(t,s) ä 

-T.  rT . 
\    M    d h(ff - t) K  (<r, p) h(p - s) da dp 0 <; t, s ^ T 

I 'i elsewhere 

t Comments identical to those in the footnote to Theorem 2 also apply to this "function." 
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and define a set of eigenfunctions and eigenvalues by 

I (L< t << T 
X.<p.(t) - K<p.(t) 

i =  1,2,... (ID 

Then the vector representation of an arbitrary x(t) e £-,((), T) is  x,  where x. = (x,<p.) and the 
*- 11 

vector representation of the corresponding y(t) on the interval [0,T   | is given by Eq. (7) in which 

[H] and n  have the same properties as in Theorem 1.    The basis functions for y(t) are 

©i(t) = w\ 

h^t) 0^t^T1 

elsewhere 

.!h 
and the i      component of y  is 

Proof. 

This proof consists of a series of Lemmas.    The first Lemma presents an interesting prop- 

erty of a complete set of orthonormal functions. 

Lemma 3(a). 

Let {y.(t)} be an arbitrary set of orthonormal functions that form a basis for £_(0, T.),   i.e., 

they are complete in Jt??(0,T,).    Then 

OO 

E    Vt(t) y.(s) = ö(t-s) 0^t,s^T1 

i=l 

in the sense that for any f(t) € i?2(0,T   ) 

l.i.m. \   1 f(a)   Yi y^) y^ 
n—   Jo Li=1 

Ao)\   da = f(t) 

Proof. 

By definition,  a set of orthonormal functions {y(t)} that are complete in f 2(0,T .) have the 

property that for any f(t) e £2(0,T   ) 

V f(t) = l.i.m.    ]_,     (ffy.)T    y.(t) 0^t^Tj 

n-*°° 

that is, 

i=l 

f(t) = l.i.m.   \     ! f(a) 
r n 

V y L(a) y ,») 
Li^l 

da 

The following Lemma provides a constructive proof that the function K.(t,s) defined in the 

theorem exists. 
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Lemma 3(b). 

Define a function K  (t — s) by 

[iR   (t - s) 0< t, s^ T, 
K   (t - s) i 

elsewhere 

and define a set of eigenfunctions |y(t)} and eigenvalues {ß.} by 

/Vi<t> - Vi(t) 

0^t^T1 

i = 1,2,... 

Then 

v   y.(t) y.(s) 
K^s)^   l l 0<rt,s^T l 

i=l 

Proof. 

64 From Mercer's theorem      it is known that 

V 

Thus,  with 

Än(t-s)=   IJ   /^(t) y.(s) o^t,s<:T1      . 

i=l 

v   yi(t)yi(«) 
K1(t,s)=   L    j  0^t,s^Td 

i=l l 

it follows that 

C   * Ä  (t-a) K (<r,s) da =  YJ E -J- Y^t) yt(s) (y^y^ 
^o .    .      i    *• 1 

i   J 

x1 

= u  Vl) yi(s)     • 

This result,   together with Lemma 3(a) and the known      fact that the {y(t)} are complete,   finishes 

the proof. 

Lemma 3(c). 

It T    ^ T, the y.(t)\ defined by Eq.(ll) form an orthonormal basis for ^2(0, T),  that is,   for 

every x(t) g  i'2(0,T) 

oc 

x(t) ~-    Tj    x.<p.(t) O^t^T 

i=l 

where 

x = (x,<p.) and convergence is mean square. 
i     x 
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Proof. 

Since K(t, s) is an £2-kernel,'  it follows from the proof of Lemma 1(a) that the {(p .(t)} are 

complete in £ 2(0, T) if and only if the condition 

(f, Kf )T = 0 

implies f(t) = 0 almost everywhere on [0, T-].    But 

(f, Kf)    = \    MM     \     f(t) h(a-t) K  (a,p) h(p-s) f(s) dtdsdt/dp 
Jo      Jo      Jo   Jo 

Thus,  from Lemma 3(b), 

l 

and it follows that the condition 

(f, Kf)T = 0 

implies 

(f, Kf)T =   YJ j:  h     *|    f(t) h(a-t) y.(a) dtda 
1 

Jo Jc 
f (i) h(a - t) dt 

"o 
y.(a) da = 0 i = 1, 2, . . . 

However,  the completeness of the y.(t) implies that the only function orthogonal to all the y.(t) 

is the function that is zero almost everywhere.       Thus (f, Kf)T = 0 implies 

fT 
\      f(t) h(a - t) dt = 0 almost everywhere on [0, T  ] 
Jo 

and, from the proof of Lemma 1(a), it follows that, for T. > T, f(t) = 0 almost everywhere on [0,T] 

This finishes the proof that the {(p.(t)} are complete.    The following paragraph outlines a 

proof of the remainder of the theorem. 

With 6.(t) as previously defined,   it follows directly from Lemmas 1(b) and 3(c) that for any 

x(t) € £2(0,T) the filter output r(t) is given by 

OO 

i=l 

Furthermore,  by a procedure identical to that in Theorem 2,   it follows that 

1 \.\. 
1    J 

which implies that 

«r.Kj«»),.  -V\xi 

t See Appendix A. 
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and thus that 

r(t) =   E    OM^e.^    e.(t)      . 
i-1 1 

Next,  with n. defined by 

it follows that 

"i=<S'Kiei»T/° 1 

and,  by a procedure identical to that in Theorem 2, that 

n.V (n,Kie.)T] (n.Kiej)Ti= (8,^,9^^ «..      . 

From this it is readily shown,  following a procedure identical to that in Lemma 1(c),  that the 

random processes n  (t) and n  (t) defined by 

oo 

n8(t)£  E   n.e.tt) 0^:t^T1 

i=l 

nr(t) An(t)-ng(t) 0^t^T4 

are statistically independent.    Thus,  neglect of the "remainder term" leads to 

00 

y(t)= Z y^t)        o^t^T1 

i=l 

where 

y- = (y,K,e.)_   = ,/xTx. + n. J l      yj'    1   iT,      v   l    l        i 
1 

or,  in vector notation 

y = [H] x + n 

and the theorem is proved. 

4.     Interpretation of Signal Representations 

The previous sections have presented several results concerning signal representation for 

the channel of Fig. 1.    Since these results have of necessity been presented in a highly mathemat- 

ical context,  it is of interest to interpret these in terms of more physical engineering concepts; 
in particular,  it  is  desirable to  interpret these in terms of optimum detectors  for  digital 

communication. 

Consider first the {</> .(t)} of Theorem 1.    The first and foremost property of these functions 

is that they are solutions of the integral equation 

Vi(t) = J    *i(T)K(t.T)dr o^:t<<:T (12) 

2.1 



where 

K(t,s)=\    1 h(cr - t) h(a - s) da 
Jo 

To understand the physical meaning of this relation,   consider the optimum detector for white 

noise and an observation interval [0,T  ] when a time-limited signal x(t) is transmitted.    If r(t) 

is the corresponding channel filter output on [0,T  ],   it is well known that the optimum detector 

cross correlates r(t) with the channel output over the interval [0,T  ].    Interpreted in terms of 

linear time-invariant filters,'  this operation can be performed as shown in Fig. 2 where the 

matched filter has been realized as the cascade of a filter matched to the channel filter over the 

interval [0,T  ] followed by a multiply-and-integrate operation.    The significance of the fact that 

the {<p.(t)} are a solution to Eq. (12) is now made clear by noting that the (time-variant) impulse 

response of the cascade of the channel filter and the "channel portion" of the matched filter is 

K(t ■-f h(a -t) h((7 - s) da O^t.s^T (13) 

where K(t, s) is the response at time t to an impulse applied at time  s.    Thus,  the {(p .(t)} are 

simply a set of signals that are self-reproducing (to within a gain factor X.) over the interval 

[0,T] when passed through the filter K(t, s). 

3-64-3095 

X(t)' h(t1 "". cpy<" -H^-—► *<- 
CLOSED FOR 
0 < t < T, 

n(t) 

N„=l 

x(t) 

£« 

Fig. 2.    Concerning interpretation of the {$.(0} of Theorem 1 . 

This feature or,  more basically,  the fact that the {<p.(t)} are a solution to Eq. (12),  causes 

the {(p .(t)} to have two extremely important properties.    This first property,  that the {cp .(t)} are 

orthogonal over the interval [0, T] and may be assumed normalized,   is readily shown in the 

following manner.    Assume that for i ^ j,   X. ^ X.r   Then it follows that 

\      (p.(t) \.<p.(t) dt=  \      <p At)  \      <p AT) K(t, T) drdt 
Jn       * J   J J_        A      J_        J 

or 

\.((p ., (p .) -  (cp .,K(p .) 
J     i      J i J 

(14) 

and similarly since K(t, s) = K(s,t), 

-T 
j      <P-(t) X.cp.(t) dt - j      <Pj(t)j      ^i<T) K(t, r) drdt 

t Here, and throughout this work, the question of the physical realizability of all filters other than the channel 
filter has been ignored. 

t It can be shown via an argument too long to present here that all (j)j(t) having a common eigenvalue can be 

assumed to be orthogonal.64,65 
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r <p.(t)\.<p.(t) dt = r <p.(T) r ^.(OK^udtdT 

X.(<p.,<p.) = (<?,Kr)       . (15) 
J J 

Therefore,  upon subtracting Eq. (14) from Eq. (15) it follows that 

(X. -X.) («p.,<p ) = 0      . 

But, by assumption, (X. - X.) ^ 0.   Thus ((p.,cp.) = 0 and the {<p(t)} are orthogonal.    The fact that 

the {«^(t)} can be assumed to be normalized follows directly from Eq. (12) by observing that if 

<p.(t) is a solution to this equation,  then c<p.(t) is also a solution when c  is an arbitrary constant. 

The second property,  that the {<p  (t)} are orthogonal over the interval [0,T.] after passing 

through the filter,  follows in a straightforward manner.    Let r.(t) be the channel filter output 

when <p  (t) is transmitted.    Then 

\     r.(t) r.(t) dt = \    M     <p  (a) h(t -a) da \     q>  (p) h(t - p) dp dt 
Jo      l        J Jo      Jo Jo       j 

= \      \     <p(a)(p(p)\    * h(t -a)h(t-p) dtdpda 
Jo    Jo J       Jo 

= \     ^i(aMj     <P-(p) K(a,p) dp     da 

fT 
= X. \     <?.{*) (p  (a) da = XA<P {, <P J = X 6 . (16) 

J   ^-y-k J J J J J 

Thus,  the {<p(t)} are orthogonal after passing through the filter.    This property is important 

because it allows the channel memory (its time-dispersive characteristic) to be treated analyti- 

cally in terms of a number of parallel and independent time-discrete channels with different 

gains.    In other words,  when the transmitted signal is written as 

x(t) =   YJ   x.<p.(t) 

i 

it follows from Theorem 1 that the received signal can be written as 

y(t) = Z y^t) 

where 

pT 
e.(t) Ä—L-  \     <WT) h(t-T) dr 

and,  due to the fact that the ©(t) are orthonormal as just demonstrated [J*~- ©-(t) = r.(t)], 

^i = <y'ei)T1 = V\xi + ni <17> 
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with 

n.n. = Ö.. 
i J        ij 

This is simply a statement that to obtain y each coordinate of x is passed through an independent 

time-discrete additive Gaussian channel with gain Jx~ and unity noise variance.    Thus,  for pur- 

poses of analysis,  the channel of Fig. 1 simplifies to that of Fig. 3. 

3-84-3096 

*ir *& 

A 
-e- 

■► *1 

Fig. 3.    Mathematical equivalent 
of channel in Fig. 1. 

A 

Finally,  it is of interest to interpret the inner product for y. in terms of Fig. 2.    From 

Eq. (17),  yi Is given by 

yi= fr'ei>T 
= \ 1 y{t) Gi(t) dt 

1     Jo * 

■f'«>£ 
T (PAT) 

Jh 
h(t - T) dTdt 

—pr \     <PAT) \    j y(t) h(t-T) dtd7 (18) 

Comparing Eq. (18) with the filtering operations indicated in Fig. 2 shows that y. is precisely 

l/Jx. times the output of the optimum (matched-filter) detector when (p.(t) is transmitted.   This 

result becomes important in practice when a large number (M » d) of d-dimensional signals are 

to be transmitted,   since the construction of d  "coordinate filters" is much simpler than the con- 

struction of  M different matched filters. 

The previous discussion has shown that in spite of the highly mathematical nature of the 

signal representation of Theorem 1,  it is possible to readily understand the important properties 

of the {^.(t)} by interpreting them in terms of optimum detectors.    An analogous discussion of the 

properties of the {ap .(t)} of Theorem 2 follows. 

As before,  the {<p.(t)} are defined as solutions to the integral equation 

Vi(t)=l    <Pi(T) K(t'T) dT O^t^T (19) 

where K(t, s) is now given by 

K(t,s) - K(t-s) = y     1^ (f)l' N(f) 
exp[ja;(t - s)] df 

To obtain a physical understanding of Eq. (19),  consider the optimum detector for colored noise 

and a doubly infinite observation interval when a time-limited signal x(t) is transmitted.    It Lfl 
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x(t) H(f) 
y(t) ?JVW 

—* 

n(t),N(f) 

nw) 
H*(f) 

3-64-3097 

/> \- 

x(t) 

"WHITENED" CHANNEL 

Fig. 4.    Concerning interpretation of the (<}>.(t)} of Theorem 2. 

54 known      that the optimum detector cross correlates the channel output y(t) with a function q(t) 
over the doubly infinite interval,  where 

... _ r°   X(f) H(f)    icot Hf 
q(t) - J N(f) e        df      • 

Interpreted in terms of linear time-invariant filters,  this operation can be performed as shown 
in Fig. 4.    Note that the optimum detector has been formed here as the cascade of a "prewhitening" 

filter, a filter matched to the "whitened" channel filter characteristic and a multiply-and-integrate 

operation.    Upon observing that the impulse response of the cascade of the channel filter and the 

"channel portion" of the optimum detector is given by 

K(t) -f    JH (f)l 
N(f) 

Jwt 
df 

it follows from Eq. (19) that the {<p-(t)} are simply a set of signals that are self-reproducing (to 

within a gain factor X.) over the interval [0, T] when passed through the filter K(t).    As before, 
this characteristic causes the {(p .(t)}to have two important properties.    The first property,  that 

the {<p .(t)} are orthonormal,  follows directly from the discussion of the {<p .(t)} of Eq. (12).    The 

second property,  that the {</>(t)j are orthogonal at the channel output with respect to a generalized 

inner product,  has been demonstrated in the proof of Theorem 2.    A more physical interpreta- 

tion of the latter property can be obtained by investigating the orthogonality of the <p .(t) at the 

output of the "whitened" channel.    Let r.(t) be the output of this channel when <p.(t) is transmitted; 

let 6.(t) and K^t) be defined as in Theorem 2, i.e., 

e.(t) =—L T   <PAT) h(t-r) d7 fir J~     
l 

X.-o 

and 

Ki(t> ■ £■ sfeeJUt df 

and let h   (t) be the impulse response of the "prewhitening" filter.    Then 

poo poo      r poo j   poo 

j      r.(t) r.(t) dt = JÄX j j      9.(a)hw(t-a)da     h      e.(p) hw(t - p) dp 

^»oo      /-»oo poo 

= JxXj      ^      e.(a)e(p)j      hw(t-a) hw(t -p) dtdadp 
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r (t) r.(t) dt =   /\X \       9 (a) \       6 (p) K  (a - p) dp da 
—oo      J J *^_oo *^-oo        J 

x.x. <e.,K,e.>= X.6.. 

where the last line follows from the proof of Theorem 2.    Thus,  the statement that the (p .(t) are 

orthogonal at the channel output with respect to a generalized inner product is equivalent to the 

statement that the {<p At)} are orthogonal at the output of the "whitened" channel. 

From these orthogonality properties it follows as shown in Theorem 2,  that if x(t)'is written 

as 

x(t) =   YJ   X^iCt) 

i 

then y(t) can be written as 

y(t) = E y^tt) 

where 

and 

y.^y.K^.) (20) 

n.n. = 6.. 
i J        ij 

Thus,  the orthogonality properties of the {q> .(t)} again allow the channel memory (its time- 

dispersive characteristic and the colored noise) to be treated analytically in terms of a number 

of parallel and independent channels with different gains as shown in Fig. 3. 

Finally,  it is of interest to interpret the inner product for y. in terms of Fig. 4.    From 

Eq. (20),  y. is given by 

/~kOO /"»OO 

y. = <y, K^.) = ^      y(t) j      K4(t - T) 6.(T) dr dt 

p°° pT  (p .(a)   p°° 
= \      y(t) \      -^r   \      h(T-a) K.(t-T) drdadt 

= -p J    ^i^^     y^§    %u    exp[jw(a-t)] dfdtda      .     (21) 

Comparing Eq. (21) with the filtering operations indicated in Fig. 4 shows that y. is precisely 

l/^/xT times the output of the optimum detector when c^.(t) is transmitted.    It is interesting to 

note that this is identical to the result obtained previously for the {</? .(t)} of Theorem 1. 

In conclusion,   it should be mentioned that the {cp .(t)} of Theorem 3 can also be interpreted 

in terms of the appropriate optimum detector in a manner directly analogous to the preceding 

discussion.    In this case,  however,  the derivation of the (time-variant) "prewhitening" filter 
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and the remainder of the optimum detector becomes as mathematically involved as was the proof 

of the Theorem. 

5.     Some Optimum Signal Properties of Basis Functions 

The functions {<p .(t)} have some additional properties that are of interest from the standpoint 

of optimum signal design.    Consider the situation in which one of two time-limited signals is to 

be transmitted through the channel of Fig. 1.    Let these signals be ±x(t).    It is desired to select 

the signal waveform x(t) so that the probability of error is minimized for fixed signal energy 

when an optimum detector is used.    Depending upon the noise spectral density and the receiver 

observation interval, the following results are obtainedJ 

a.    White Noise,  Arbitrary Observation Interval [0,T  ] 

It is well known that the optimum detector (matched filter) for this situation makes a deci- 

sion based upon the quantity 

I 1 y(t) r(t) dt = (y.hx)       = y •   r 
b 1     ~ 

where r = [H] x denotes the usual vector inner product,   and the basis functions,   with respect to 

which x,   y,   and r are defined,  are those of Theorem 1.    The probability of error for this de- 

tector is given by 

,     n- /E/N , 
Pe=-±-\   " °exp[-l/2tZ] dt 

where 

E = (hx, hx)„    = r • r =   /_,    X.x.' 
1 i=i l' 

and N    is the (double-sided) noise spectral density.    Thus,   since the transmitted signal energy is 

(x, x) = X •   x =    I,     X. 

i=l 

and since by convention (Ref. 64) X. > X2 ^ X, ^ . . .   ,   it follows that for fixed input signal energy 

the output signal energy is maximum (and therefore the probability of error is minimum) when 

x(t) = (p .(t)?    More generally,   it is quite easily shown from these results that x(t) = (p.(t) is the 

signal giving maximum output energy on the interval [0,T.] under the constraints 

(x,^) = 0 i =  1,2 j - 1 

(x, x) = 1 

t Note that these results assume either a single transmission or negligible intersymbol interference. 

t Note that X. = (h<f».,h<|>.)T /(<|>.,<j>.).    Thus, X. is effectively an energy "transfer ratio" and $,(t) is the £„(0,1") 
i ill -j /     iii t. 

signal having the largest "transfer ratio" i.e., it is "attenuated" least in passing through the filter.   This property 
appears to have been first recognized by Chalk'^ for the special case T, = °°. 
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At this point, two additional properties of the {<p .(t)} of Theorem 1 should be mentioned: 

(1) When Tj = °°,  Eq. (7) reduces to the well-known      integral equation in- 
volved in the Karhunen-Loeve expansion of a random process with auto- 
correlation function $n(t - s) = K(t, s); 

(2) When K(t, s) is defined as 

' /-»oo 

\      h(a - t) h(ff - s) da 0^:t, s ^ T 
K(t,s) 4 . 

.0 elsewhere 

and h(t) is specialized to h(t) = (sin7rt)/7rt,  the {<?i(t)} are the prolate 
spheroidal wave functions studied by Slepian,   Pollak,  and Landau.    »7-* 

The next section demonstrates that (p AX) of Theorem 2 is the optimum signal for binary 

transmission when the noise is colored and a doubly infinite observation interval is used. 

b.    Colored Noise,   Infinite Observation Interval 

54 The optimum detector for this situation is known      to make a decision based on the quantity 

J       y(t) q(t) dt 

where ^ 

q(t) . £ XffJHlü ej.t ^ 

Introducing the signal representation of Theorem 2, this becomes 

y(t) q(t) dt = <y, K^> = y •  r = y •  [H] x      . C 
The probability of error for this case is determined by the quantity 

|2 

f |X(f) H(f)| df = <r, Kdr>= r •   r =    ^    X.x. N(f) 

which might aptly be called the "generalized E/N  ."   Thus,   since the input energy is (x, x) = x •   x» 

it follows that again x(t) = <p.(t) is the optimum signal to be used to minimize probability of error 

for fixed input signal energy. 

In conclusion, the following section demonstrates that <p At) of Theorem 3 is the optimum 

signal for binary transmission when the noise is colored and a finite observation interval [0, T.] 

is used. 

c.    Colored Noise,   Finite Observation Interval 

54 For this situation,  the optimum detector is known      to make a decision based on the quantity 

t Tl y(t) q(t) dt 

where 
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00    (r, y.)T 

1=1 * 
y.(t) 0<t<T1 

with 

and 

ß^Ü) = Kny.(t) 0^:t^T1 

Kn(t - s) & 
j      N(f) exp[jw(t-s)] df 04<t,s^T1 

.0 elsewhere 

In terms of the signal representation of Theorem 3,  this becomes 

pT                             pT            I* °°    fo^T 1 
j    d y(t) q(t) dt = j     jy(t)      E     J ~ ^(t)     dt 

rTi     lrTi     Tv yi(8)Yi = i  y(t) I  r(s) \l "Sr 
i=l 

ds dt 

-(jr.V)     -  ly^x^^e.)^ 

= E yA J^ xj = y • [H] x = y • I     • 

The probability of error is again determined by the "generalized E/N  ," now given by 

00 

f    r(t) q(t) dt = (r. K r)      = r •  r =   £    M{
2      ■ 

Thus,  since the input signal energy is (x, x) = x •   x»  it follows that again x(t) = <pAt) is the 
optimum signal to use to minimize probability of error for fixed input signal energy. 
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CHAPTER m 

ERROR BOUNDS AND SIGNAL DESIGN FOR DIGITAL COMMUNICATION 

OVER FIXED TIME-CONTINUOUS CHANNELS WITH MEMORY 

In Sec. I-E,   a model was introduced which involves the transmission of one of M  signals of 

T  seconds duration through the channel of Fig. 1 and observation of the channel output for T. sec- 

onds.    Subsequently,   it was shown that a suitable matrix representation for this problem is 

y = [H]x + n (22) 

where x,  y,   and n are the (column) vectors representing the channel input,   output,   and additive 

noise, respectively, [H] is a diagonal matrix,   and n has statistically independent and identically 
distributed components.    Using this representation and a slight generalization of recent results 

74 75 of Gallager,    '      this chapter will present the derivation of a bound on probability of error and 
provide some information on optimum signal design.    ' 

A. VECTOR DIMENSIONALITY PROBLEM 

Before proceeding with the derivation of an error bound,   it is necessary to consider in de- 

tail the dimensionality of the vectors involved.    In deriving the representation of Eq. (22),   it 

was shown that the basis functions used in defining x are complete in the space of all £->(°, T) 
signals,  that is,   in the space of all finite-energy signals defined on the interval [0, T],    Since it 

64 is well known that this space is infinite-dimensional,      it follows that,   in general,   the vectors, 
as well as the matrix,   of Eq. (22) must be infinite-dimensional.    In many cases,   this infinite 

dimensionality is of no concern and mathematical operations can be performed in the usual man- 

ner.    However,   an attempt to define a "density function" for an infinite-dimensional random 
vector leads to conceptual as well as mathematical difficulties.    Consequently,   problems in 

54 which this situation arises are usually approached      by assuming initially that all vectors are 

finite-dimensional.    The analysis is then performed and an attempt is made to show that a lim- 

iting form of the answer is obtained as the dimensionality becomes infinite.    If such a limiting 
result exists,   it is asserted to be the desired solution.    This approach is used in the following 

derivations in which all vectors are initially assumed to be d-dimensional.    However,   for this 
problem,   it will be shown that for minimum probability of error the signal vectors should be 
finite dimensional.    Furthermore,   it will be found that the "optimum" dimensionality is inde- 
pendent of d (assuming that d  is large) and thus that the original restriction of finite d involves 
no loss of generality.    This result is obtained because the X.  in the [H]   matrix approach zero 

for large "i" and gives an indication of the useful "dimensionality" of the channel. 

B. RANDOM CODING TECHNIQUE 

This chapter is concerned with an investigation of the probability of error P   for digital 

communication over the channel of Fig. 1.    Ideally,   the first step in this analysis would be the 

derivation of an expression for the probability of error under the assumption of an arbitrary 

set of M  signals.    This expression would then be minimized over all allowable signals to find 
both the minimum possible probability of error and the set of signals that achieve this.    How- 

51 53 ever,   it will be found here,   as is usually the case,    '      that an exact expression for P    is im- 

possible to evaluate by any means other than numerical techniques.    Thus,   it is necessary to 
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investigate some form of an approximate solution to this problem.    The approach used here 

involves an application of the random coding technique to a suitable upper bound to P  . 

Conceptually,  the random coding technique may be viewed in the following manner.    First, 

an ensemble of codes' is constructed by selecting each code word of each code independently 

and at random according to a probability measure p(x).    In other words,   for each code word 

= p(4) d^d|2. ..d4k. ..  =p(4) d£ 

and,   furthermore,   for any set of distinct code words,   say x., . . . , x , 
1 s 

p(xl, X2,  • • • , Xg)   =  P^)   P(X2)- ■ • P(Xg) 

Next,  the probability of error for each code is evaluated.    Finally,  these values are averaged 

over the ensemble of codes to find an average probability of error P  .    Viewed in this manner, 
it seems that the random coding technique only makes an impossible problem even more difficult. 

However,  the simple expedient of reversing the order of ensemble averaging and evaluation of 

P ,   when coupled with a suitable bound on P      leads to a relatively simple expression for P 

for the channel of Fig. 1. 

Accepting this statement,   it is still not clear that knowledge of P    is either meaningful or 

useful.    For example,  the knowledge of an average probability of error for an ensemble of codes 
is quite different from a knowledge of P   for a single code.    Furthermore,   it is not a priori ob- 

vious that a knowledge of P    will provide any information on the construction of good codes. 

Finally,   it is not clear that the value of P    will provide any indication of the minimum possible 

probability of error for a code since the ensemble averaging could include a large fraction of 

codes having a high probability of error. 
Fortunately,  these doubts can be resolved quite readily.    The very fact that P    is an aver- 

age over an ensemble of codes implies that there must be at least a fraction l/A (A > 1) of the 

codes in the ensemble that have a P    less than AP  .    Thus,   for example,   the construction of a 
e e r 

code by choosing each code word independently and at random according to the probability meas- 

ure p(x) must lead,   in 99 times out of 100,  to a code having a P    not greater than 100 P       Al- 
though this procedure certainly does not yield a code having an absolute minimum probability of 
error,   it is at present the only general approach known for constructing large codes that have a 

P    that is even close to this minimum.^ e 
Therefore,   the only problem that remains to establish the usefulness of the random coding 

technique is to determine the accuracy of P    relative to the minimum possible P  .    For both 

discrete,   memoryless channels and the time-discrete Gaussian channel,   this problem has been 
51 53 studied by deriving a lower bound to P   by means of the "sphere packing" argument.    '   "    For 

these channels it has been shown that the two exponents in the bounds to P    and P    are identical 
for all rates between a rate R    and capacity.    Furthermore,   for the Gaussian channel the value 

of R    is less than the rate at which a digital communication system with coding would be operated. 

t For convenience, the terms "code" and "code word" are used here to mean, respectively, "a set of M finite 
energy signals of T seconds duration" and "one of a set of M finite energy signals of T seconds duration." In 
addition, no distinction is made between a signal x.(t) and the vector x. representing this signal. 

$ The validity and importance of this approach have been demonstrated experimentally with the SECO machine. 
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Thus,   for this channel,  the random coding technique provides a practical solution to the problem 

of determining probability of error. 

Since the determination of a lower bound to P   does not appear practical for the channel of 

Fig. 1,  the approach used here has been to specialize the P    expression to the case considered 
53 by Shannon      and then to compare this result to his.    This analysis is performed in Sec. III-E 

and indicates that the bound obtained in this work is quite accurate at rates above R  . c 
One point that has not been considered is the question of how the probability measure p(x) 

should be selected.    Aside from noting that the ensemble of codes should satisfy an energy con- 

straint of the form of Eq. (1),  the only statement that can be made is that a mathematically trac- 

table function should be chosen which "seems reasonable" on the basis of experience and intui- 

tion.    If the resulting expression for P    can be shown to be sufficiently accurate,  the problem 

is solved.    Otherwise,   another choice would be tried.    As a practical matter,   it is found that 

for the Gaussian channel of Fig. 1 the logical choice of a Gaussian p(x) of the form 

p(x) = I! pfa) 
i 

where p.(x.) is a one-dimensional Gaussian density function,   leads to satisfactory results. 

C.    RANDOM CODING BOUND 

This section will derive a random coding bound on probability of error for digital communi- 

cation over the channel of Fig. 1.    Let x., . . . , xM be an arbitrary set of M d-dimensional code 

words for use with this channel and assume that the a priori probability for each code word is 

l/M.    Let the probability density function for y given that x- was transmitted be p(y|x).    Then, 
51 54 ™~ ^ ~    J 

it is well known    '      that the detector which minimizes probability of error decides that x. was 

transmitted if and only if 

p(y|xk)^P(yl2ij) for allk = 1, 2, ...,M      . 

69 
Thus,   if a set of M  characteristic functions      are defined as 

^(y)^ 

[y:p(y|xk)^p(y|xj)      for all k = 1 M] 

[y^pfylx,) > p(y|x)      for some k =  1, . . ., M] —     —    K —    3 

it follows that the probability of error for this detector is given by 

M M 

j-1  - 1=1 

This expression,   while valid for any M  and any set of signals (s.(t)},   is mathematically intrac- 

table for interesting values of M.    Thus,   it is necessary to derive a bound on P    that is suffi- 

ciently accurate to be useful and yet is readily evaluated.    The random coding technique dis- 

cussed above when applied to a suitable upper bound to Eq. (23) gives such a result. 

An obvious inequality is 
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?j(yU 

M        r     /      I \,Vl+P 

h   li(yTxTj 
:=1 J k 

P >o 

since the right-hand side is always non-negative and is not less than 1 when p(y|x,) < p(y|xk) for 

some j ^ k.    Thus, 

pj(e)^_f   pCylxj)1^ 
M 

l P(y|xk)l/1+P 

k=l 
dy (24) 

Now,   let each code word be chosen independently and at random according to a probability meas- 

ure p(x) and average both sides of Eq. (24) over this ensemble of codes.    Then 

P.(e)Ape^   P(y\x.)i/i+P 

M 

E  p(y|xk)1/l+p 

k=l 

dy (25) 

where the bar denotes averaging with respect to the ensemble of codes and the independence of 

the selection of x. and x,   has been used for the average under the integral.    Equation (25) can be 

further upper bounded by noting that zp £ zp for 0 ^ p ^ I (Ref. 78).    Introducing this inequality 

into Eq. (25),   and recalling that the average of a sum of random variables equals the sum of the 

individual averages,   gives 

i(l+p) 
Pe<M^y    p(y|x)l/(1+p)      P   dy O^p^l 

or 

where 

Pe <exp[-TE(R,p)] 

E(R,p) = Eo(p)-pR 

O^p^ 1 (26) 

D(p) = -lln £    \§    p(y|x)1(1+p) p(x) dxl   +P dy 

R = InM 

This bound,   which applies to any channel for which the indicated integrals exist,   will now be 

specialized to the channel of Fig. 1.    Recall that in deriving Eq. (26) it was assumed that the set 

of signals {s.(t)} were d-dimensional,   i.e.,   each of the signals could be written as a linear com- 

bination of d basis functions.   ^There was,  however,  no assumption made with respect to which 

set of d functions should be used.    Thus,   if I denotes the set of integers that specify the basis 

functions used and if the matrix representations of Theorems 1,   2,   and 3 are recalled,   it follows 

that for the channel of Fig. 1 
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P(y|x)=   Ei  -= expf-^y.-^x.)2]      . (27) 

Next,  let the probability measure p(x) which defines the random ensemble of codes be 

(28) 
p(x)=    I]   (Zira^r^expl-l^2/^2)]      . 

iel 

There are two reasons for this choice of p(x): 

(1) This form of p(x) results in a mathematically tractable expression for 
the error exponent of Eq. (26). 

(2) When the resulting exponent is specialized to the time-discrete case 
considered by Shannon^3 it is within a few,percent of his random coding 
exponent (see Sec. III-E).    Furthermore,   Shannon's exponent was shown 
to be identical to the exponent in a lower bound to probability of error 
over a range of rates that are of considerable practical interest. 

Finally,   assume an average power constraint on the ensemble of codes of the form 

£    a.2 = ST      . (29) 

iel 

Substituting Eqs. (27) and (28) into Eq. (26) gives,   after evaluation of the integrals, 

E(R,p,£) = ^r     Zlnl+TV^    -PR (30) 
id       L J 

where 

,22 2 . 
a = (ai,ai,...,ak,...)       . 

For fixed R,   maximization of Eq.(30) over p, a,   and the set I gives the desired random-coding 

error exponent.    For convenience,   let this maximization be performed in the order I, a, p. 
64 Maximization over the set I is easily accomplished by recalling      that the X. are by assump- 

tion ordered so that X. ^-\2 ^A,. . .   .    Thus,  the monotonic property of In x for x > 1 implies that 
E(R, p, a) is maximized over the set I by choosing I = {1, 2, . . ., d}. 

The maximization over  a_ is most readily accomplished by using the properties of convex 
79 functions      defined on a vector space.    For this purpose,  the following definitions and a theorem 

80 of Kuhn and Tucker      (in present notation) are presented: 

(1) A region of vector space is defined as convex if for any two vectors a 
and ß in the region and for any X, 0 ^. \ ^ 1,   the vector Xa + (1 — X)ß is 
also~in the region. 

(2) A function f(a) whose domain is a convex region of vector space is de- 
fined as concave if,   for any two vectors a   and ß in the domain of f and 
for any X, 0 < X < 1, 

Xt(a) + (1 - \) f(ß) ^ f [\a + {1 - \) ß] 

From these definitions it follows that the region of Euclidean d-space 
defined by the vector a_,   with 
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Fig. 5.    Concerning interpretation of certain parameters in error exponent: 
(a) Interpretation of Bj(p) and  N; (b) Interpretation of B(p) and W. 
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o* >0      and       YJ   ai   = TS 

i=l 

is a convex region of vector space,   that In x is a concave function for 
x ^-1, that a sum of concave functions is concave, and thus that E(R, p, a) 
is a concave function of a. 

Theorem 4 (Kuhn and Tucker). 

Let f(ff) be a continuous differentiate concave function in the region in which a satisfies 
d       2 2 2    a.   = TS and a.   > 0, i = 1, 2, . . ., d.    Then a necessary and sufficient condition for a   to maxi- 

i=i     l l 

mize f is 

8f(a) 

B*> 
,$ A for all i with equality if and only if a . ^ 0 

where A  is a constant independent  of   i whose value  is  adjusted to  satisfy the  constraint 
d       2 
2    a    = TS. 

i=l    l 

It follows that the a_ maximizing Eq. (30) must satisfy 

^ A all i = 1 d 
X./(l +p) 8E(R, p, g)  _    p 

8cr.Z-        ^ 1 + (X^/Vd + p) 

with equality if and only if a.   > 0.    Thus, 

<1 + P)lB^-tl 2 
ai   = 

In 

where N is defined by 

XN>BT(p)»XN+1 

and 

i = 1, 2 , N 

i = N + 1 d (31) 

BT(p)       2TA(1 +p) 

The value of BT(p),  and thus N,   is chosen to satisfy the constraint 

N 

Z   °l - TS 
i=l 

which yields 

1 1 + P       i=l    l 

BT(p) N 
(32) 

A convenient method for interpreting EL^p) and N is presented in Fig. 5(a).    This is simply the 
51 discrete form of the well-known water-pouring interpretation discussed by Fano      and others 

for the special case of channel capacity.    Substituting Eqs. (31) and (32) into Eq. (30) gives 
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N X 
E(R.p)= £r    J   tag-^j-pR      . (33) 

i=l T 

Maximization over p  is accomplished using standard techniques of differential calculus and 

leads to the final result 

ET(p) = (y^—)2 |BT(P) R(1UR<CR(0) (34) ,2 S 
P 

where 
N 

R<"'=2T   I   toB^)-^f^!BT("' °^"-<1 (35) 

and 

N 
A. 
 l 

iT( 
ET(R) = ^f    £   ln^-ijy-R 0<: R< R(l)      . (36) 

i=l 

A bound that is in some cases more useful,   and in all cases more readily evaluated,   can be 
derived by considering Eqs. (34) to (36) for T -* ».    It is shown in Appendix B that the resulting 

form for the exponent is 

E(p) =(T
£
r^)2 §B(p) RC^R<C (37) 

2 
R<>>=Iw

lnrJ$ibdf-7773? tB(p) ^"<l <38> 

Nifllii1""" K«»«»c 

where 

E(R) = C     InJffilL  df-R Q^R<:R^ 
JW 

C ■ R(0) 

Ro = R(l) c 

s     . r N(f) 

|H(f)|2 
df .           2(1 +p)       J\V 

B(p)                           W 

w_ f,f.  iHtfiJ2 > RfnJ 

A convenient method for interpreting the significance of B(p) and  W  is illustrated in 
Fig. 5(b).    Pertinent properties of the exponent of Eqs. (37) to (39) are presented in Fig. 6. 

D.    BOUND FOR  "VERY NOISYn  CHANNELS 

In this section,   an asymptotic form for the bound of Eqs. (37) to (39) is derived for the con- 

dition S ■* 0.    Consider first the bound for 0^ p ><: 1 and recall (Fig. 1) that N(f) is assumed to 
be normalized so that 
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Fig. 6.    Random coding exponent 
for channel in Fig. 1. 

13-64-30991 

SLOPE - -I 

SLOPE = p 
0 < p < I 

R (nats) 

Thus,   for S "sufficiently small," it is clear from the water-pouring interpretation of Fig. 5(b) 

that except for pathological H(f) and N(f),t 

lH(f)| 
N(f) « 1 for f € W 

Introducing this approximation into the expression for B(p) gives 

1 S 
B(p) ■« 1 - 

i + 2W(1 + p) 
f or S - 0 

2W(1 +p) 

In view of this,   Eq. (37) becomes to first order in S 

E(^"(TT7)2f Rc^R<c      ' 
Introducing the same approximations into Eq. (38) gives 

Jw       B(p) (1 +p)2  2 

1-1-       l]   df P_ 
;w    3(p) lA   , ■I. (1 +p) 

_ s 
2   2 

_,      S _£ s s 
WTJ)       (1+p)2  2"  2(1+p)2 

Finally,   elimination of p  between Eqs.(40) and (41) gives 

|2 
R   ^ R^: C 

0<Cp4 1 

E(R)*C |    -,/g 

where 

e       2 

R   - S _ C 
Rc "  8   "   4 

In a similar manner,   it is found that Eq. (39) becomes approximately 

.1       R, E(R) «C [£-§] OX RX R 

(40) 

(41) 

(42) 

(43) 

tNote that due to the normalization of N(f) the statement that S is "sufficiently small" is equivalent to the 
statement that a suitably defined signal-to-noise ratio is "sufficiently small." 
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The result of Eqs. (42) and (43) is of interest for several reasons. 

(1) It is independent of the filter and noise spectral characteristics and is 
thus a "universal" bound for the channel of Fig. 1. 

(2) It is identical to the exponent in the bound on probability of error for the 
transmission of orthogonal signals over a white Gaussian channel.^1  This 
implies that for "sufficiently small" signal power the memory of the chan- 
nel in Fig. 1 has negligible effect on probability of error. 

(3) It agrees precisely with the small signal-to-noise ratio (SNR) bound 
found by Shannon for the band-limited channel,      and is identical except 
for the definition of C,  to a bound found by Gallager'5 for "very noisy" 
discrete memoryless channels.    Thus,  the bound of Eqs. (42) and (43) 
can,   when C  is appropriately defined,   be considered to be a "universal" 
bound for "very noisy" time-invariant channels. 

E.    IMPROVED LOW-RATE RANDOM CODING BOUND 

The previous sections have presented a random coding bound on probability of error for the 
51 53 channel of Fig. 1.    As is usually the case with random coding bounds,    '      this bound can be 

shown to be quite poor under the conditions of low rate and high signal power.'     In fact,   it is not 

difficult to show that the true exponent in the bound on the smallest attainable probability of error 

differs from the random coding exponent by an arbitrarily large amount as the rate approaches 
zero and the signal power approaches infinity.    This section presents an improved low-rate ran- 

dom coding bound based upon a slight generalization of recent work by Gallager      that overcomes 

this difficulty. 
Before proceeding with the derivation of an improved bound,   it is important to consider 

briefly the reason for the inaccuracy of the random coding bound.    As indicated previously,   the 

random coding bound is, in principle,  obtained in the following manner.    First,   an ensemble of 

codes is constructed by selecting each code word of each code independently and at random ac- 

cording to a probability measure p(x).    Next,  the probability of error is calculated for each code. 
Finally,   these values of P    are averaged to obtain P  .    Note,   however,   that nothing in this pro- 

cedure precludes the possibility that a small fraction of the codes in the ensemble may have a 

P    considerably greater than that for the remaining codes.    Thus,   it is possible that P    could 
be determined almost entirely by a small percentage of high P    codes.    (This is simply illus- 

e -1 trated by considering a hypothetical situation in which 1 percent of the codes have a P    of 10 
-10 e 

while the remaining 99 percent have a P    of 10       .)   An improved bound is derived here by ex- 

purgating the high probability of error code words from each code in the ensemble used 

previously. 
Consider the channel of Fig. 1 and let x,, x~. , xM be a set of code words for use with this 

channel.    Then,   given that x- is transmitted,   it follows from Eq. (24) that 

Pie)N< 
3 ^Y Lp<^/ /2 

M 

I P<y|xk)l/2 

k=l 

dy (44) 

t Comments analogous to those in the immediately preceding footnote also apply to the term "high signal power." 
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or equivalently 

M 

k=l 

(45) 

where 

*j'*k
)=i p(yl^)l/2p(ylxk)1/2dy    . Q( 

From these equations it is clear that P.(e) is a function of each of the code words in the code. 

Thus,  for a random ensemble of codes in which each code word is chosen with a probability 

measure p(x),  P.(e) will be a random variable,   and it will be meaningful to discuss the probabil- 

ity that P.(e) is not less than some number A,  that is,   Pr (P(e) ^ A}.    To proceed further,   a 
3 3        75 

simple bound on this probability is required.    Following Gallager,      let a function <p-(x., . . . , XJUI) 

be defined as 

^•••^M) = 

1 if P.(e) ^A 

ifP.(e)<A      . (46) 
J 

Then,   with a bar used to irrdicate an average over the ensemble of codes,   it follows directly that 

Pr (P.(e) >A}  = cp.Ut xM>      . (47) 

From Eq. (45) an obvious inequality is 

M 

^! %k<A"S     E    Q(2Lj,xk)S 

k=l 

0 < s^ 1 (48) 

since the right-hand side is always non-negative (for A > 0) and is not less than 1 when P.(e) ^A 
and 0 < s<c 1.    Thus, 

M 

Pr (P(e) ^A}<CA"S     £    Q(x    xk)S 0 < s<: 1 
J J 

k=l 

where,   due to the statistical independence of x. and x.   over the ensemble of codes, 
J K 

Q(xj,xk)s=^  £   K   p(y|x//%(y|xk)l/2dySp(x.)P(xk)dx. dxfe 

(49) 

In this form it is clear that Q(x., x.)    is independent of j and k and therefore that Eq. (49) re- 
3    K 

duces to 

Pr (P(e) ^A)^(M-l) A'S Q(x    x^)8 0<s^l       . (50) 

At this point it is convenient to choose A to make the right-hand side of Eq. (50) equal to l/2. 

Solving for the value of A gives 
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A = [2(M-l)f    Q(Xj,2£k) ̂  P >1 (51) 

where p ^ l/s.    Now,   let all code words in the ensemble for which P.(e) ^Abe expurgated. 

Then from Eq. (51) all remaining code words satisfy 

P (e) <[2Mf    Q(x   xk) >l/p P ^1 (52) 

Furthermore,   since Pr (P.(e) > A] 4 l/2,  it follows that the average number of code words M' 

remaining in each code satisfies M' ^M/2.    Thus,  there exists at least one code in the expur- 

gated set containing not less than M/2 code words and having a probability of error for each code 

word satisfying Eq. (52).    By setting exp[RT] = M/2,   it follows that there exists a code for which 

where 

and 

Pe < 4P exp[-TEe(R,p)] 

E*(R,p) = E*(p)-pR 

P >1 (53) 

)i^  lnQ(x.,xk)l/p 

tf 

This bound will now be applied to the channel of Fig. 1.    As before,   let 

P<y|x> =   El ^expf-ity.-./XTx.)2] 
iel^ 

(54) 

let p(x) be chosen as 

P(X) = n 
iel \f27 

exp -i&l (55) 

and let the input power constraint be given by 

Z    '"'ST    . 
iel 

(56) 

[This form for p(x) has been chosen primarily for mathematical expediency.    However,   results 
obtained by Gallager      indicate that it is indeed a meaningful choice from the standpoint of maxi- 

mizing the resulting exponent.]     Substituting Eqs. (55) and (56) in Eq. (53) yields,   after the inte- 
grals are evaluated, 

E 

2 

iel       L J 

P ^1 (57) 

where 

2^<<V -;....) 
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2 
For fixed R and T,   maximization of E   (p) — pR over p, a,   and the set I gives the desired 

bound.    [In the maximization over p   it is assumed that RT » In 4.    This allows the factor of AP 

in Eq. (53) to be neglected in performing the maximization and involves no loss of generality 

since RT = InM and large values of M  are of interest.]     Comparison of Eqs.(53) and (57) with 

Eq. (30) reveals a strong similarity in the analytical expressions for the two bounds.    As a result, 

the maximization procedure used previously can be applied without change to this problem,  yield- 

ing the final result 

P^ < 4p exp[-TE*(p)] p >1      . (58) 

where 

El(p)ä  |BT(2P-1) -T^'=   4-T 

N 

i=l 

X. sBT(2p-l) 

1       A(
1+(-»l        i=l   Xi 

BT(-)= N 

and N  satisfies 

XN>BT(2p-l)>AN+1       . 

As before,   a bound that is more readily evaluated can be derived by considering Eq. (58) for 

T -* oo.    The result,   which is proved in Appendix B,   is 

Pe<4p exp[-TEe(p)l p^l (59) 

Ee(p)A  |B(2P -1) 

where 

- lH(f)|2 ,f      _S  B(2p -1) 
v
inN(f) B(2p -1)  at~   4   "      p 

+ N(f) r        JN f) 
Jw 777772 df 

A MiM-n^w lH(f),2 
B(.)= W 

Wi{+f:l
H^^B(2p-l)}       . 

Figure 7 presents the pertinent characteristics of this bound and relates it to the previous 

random coding bound.    Note from Eq. (59) that B(2p — 1) and W can be interpreted in terms of 

the water-pouring picture of Fig. 5(b) by simply replacing S/[2(l + p)],   where 0 ^ p ^ 1 with 

S/4p,   where p ^ 1. 

This completes the derivation of the error bounds for the channel of Fig. 1.    There remains 
the problem of investigating the accuracy of these results since there is no assurance that they 
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EXPURGATED BOUND  p > I 
'SLOPE = -p 

13-64-31001 

STANDARD  BOUND  p = I 
SLOPE * - I 

STANDARD BOUND 0 < p < I 
SLOPE ■ -p 

R (nats) 

Fig. 7.    Error exponent for channel in Fig. 1. 

Fig. 8.    Comparison of error exponents. 
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will be sufficiently accurate to be useful.^   As noted in Sec. III-B,  the only practical approach to 

this problem is to specialize the bounds obtained here to the case considered by Shannon      and 

then compare the two results.    This is most readily accomplished by considering the present 

bounds in the form of Eqs. (34) to (36) and Eq. (58) for the case 

1 i = l, 2, ...,2T       (T an integer) 

0 i > 2T      . 

When evaluated these become 

*t- 

R(p) = ln[l + 2(1
S

+    j]   - ^B1 nats/second 

E(R) = ln[l + |] - R 

R < R>£ C 

0<c RX R 

and 

Ee(p) = |[l+ |l_1 

R(p) = ln[l + -f-] - E (p)   nats/second 

p ^1 

P ^1 

and are plotted in Fig. 8 for S/2 = 256. The corresponding bounds of Shannon are also plotted in 

Fig. 8 and have been obtained by observing that the relation between the present notation and that 
of Shannon is 

2T = n 

S/2 = A2 

R = 2R s 

It should be noted that the new bound is tighter than Shannon's for low rates although somewhat 

weaker for rates near capacity.    Furthermore,   the new bound is quite close to Shannon's lower 

bound exponent over a range of rates around R   that are of considerable practical interest. 
In order to obtain additional insight into the form of the error bounds for different channels, 

it is of interest to evaluate the bounds for the channel defined by 

H(f) = 
1 +jf 

N(f) = 1       . 

Substitution of these expressions into Eqs. (37) to (39) and Eq. (59) gives 

R<"> =2 <(4(fT7)i1/3 -*™~liMrhj]l/i] -nr nats/second 

E(R) = 2[(^,V3_tan-i(^)1/3]_R 

Rc ^ R ^ C 

04P4 1 

0 < R < R 

t See Sec. III-B for a discussion of this problem and of the procedure normally used to investigate such bounds. 
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and 

Ee(p) =! ii + (Ü)2V P ^i 

R(p) = 2 [(|f)l/3 -tan-^lf )1/3] - ^B1   nats/second 

Figure 9 presents these bounds for S = 103.    It is interesting to note that the only basic dif- 

ference between the curves in Figs. 8 and 9 is that the ratio R /C is significantly smaller for the 

latter curve. 

Fig. 9.   Error exponents for channel in Fig. 1 with 
H(f) = [l + jf]_1, N(f) = l, and S = 103. 

A fact of considerable practical importance can be determined from the above examples. 

At present,  the highest rate at which practical coding devices can operate is R (Ref. 82) — 

the rate axis intercept of the straight-line portion of the unexpurgated random coding bound.t 

For "noisy" channels [see Eq. (43)],   R is readily found to be C/2;   a somewhat disappointing 

result in view of a natural desire to signal at rates approaching C.     However,   Figs. 8 and 9 

demonstrate that the situation is quite different for moderately large signal powers.    For the 

band-limited channel,   R is essentially 1 bit/second less than capacity for all S > 10  ,   and 

in fact R    __   /C — 1 for S — °°.    For the single-pole channel,   it is readily shown that R ■* comp' e      «* • J comp 
0.8 C for S — °o with this relation being quite accurate for S > 10  .    Thus,   at high signal powers 

it is possible to achieve data rates quite close to capacity using existing coding and decoding 

techniques. 

In concluding this section,   one final point should be made concerning the error bounds.   As 

indicated above,   practical coding devices operate at rates less than R .    However,  the use 

of such devices would normally imply a desire to use the channel as efficiently as possible,   i.e., 

to use a rate near R .    Thus,  the fact that the unexpurgated random coding bound applies 

for all rates above R   — (S/8) B(l) coupled with the fact that R > R    implies that there would c r comp        c       r 

seldom be any practical interest in the expurgated bound.    Furthermore,   it is clear from Fig. 7 

that R    and C are the crucial factors in determining the unexpurgated bound;* in other words, 

given R    and C,   an exponent that is sufficiently accurate for engineering purposes can be ob- 

tained graphically by simply using a French curve to draw the exponent between R    and C. 

t Note from Eqs. (38) and (39) that for any channel and for any signal power S, R (S) = C(S/2), i.e., the 
expression for Rcomp is identical to that for  C with S replaced by S/2. COmp 

t This, of course, assumes that  C is known as a function of S  so that R,.«—,, can be determined from the relation 
Rcomp(S) = C(5/2). COmP 
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F.    OPTIMUM SIGNAL DESIGN IMPLICATIONS OF CODING BOUNDS 

This section is concerned with presenting an answer to the third question of Sec. I-E; namely, 

how should the signals that are to be transmitted through the channel of Fig. 1 be constructed so 

as to minimize probability of error.    The need for such an answer is made clear when the wide 

variety of techniques (such as AM/DSB,  AM/VSB,   PM,  differential PM,   FM,   etc.) presently 

used for telephone line data transmission are considered. 

Initially,   it might appear somewhat surprising to expect any information concerning signal 
design from the error bounds derived above.    For example,  the derivation of error bounds for 

51 53 the white Gaussian channe1     '      provides no insight into "good" signaling waveforms and in fact 

it makes no difference —the signals are simply linear combinations of any set of orthonormal 

functions.'   However,  for the channel of Fig. 1,  the previous analysis shows that "good" signals 

are finite linear combinations of a particular set of orthonormal functions,   namely,   those of 

Theorems 1 to 3.    Furthermore,   the use of any other set of orthonormal functions would,   in 
general,  lead to "good" signals that were infinite linear combinations of these functions.    Thus, 

in this case,  the error bounds do indeed provide significant insight into how "good" signals 

should be constructed. 
To obtain an understanding of how the error bounds provide an answer to the signal design 

question,   it is necessary to reconsider briefly the original formulation of the problem.    As in- 

dicated in Sec. I-E,   it was desired to formulate the problem of digital communication over fixed 
time-continuous channels with memory in such a way that the subsequent analysis would lead to 
a bound on the best possible performance.    Thus,   no practical restrictions were introduced with 
respect to the form of the signals;   it was simply stated that the channel would be used once for 
T  seconds to transmit a signal of T  seconds duration.   Since  T was completely arbitrary, this 

appeared to be the most general statement possible.*   Following this formulation of the problem, 

basis functions were found for use in the vector space representation of the signals.    Since the 
basis functions were shown to be complete,  this representation introduced no restrictions  on 

the form of possible "good" signals.    Next,  the vector space signal representation was used with 
the random coding technique to obtain an upper bound to probability of error for a random en- 

semble of codes.    As noted in Sec. III-A,  this derivation initially restricted the signals to be 
d-dimensional where  d was finite but could be taken to be arbitrarily large.    However,  the re- 

sult of optimizing the random coding bound over the structure of the ensemble of codes showed 

that only a lesser number N of the input signal coordinates should be used.    [See Eq.(31) and 

the preceding maximization over  a.]    Thus,   allowing d to become infinite after the optimization 
procedure removes the initial finite dimensionality restriction.    This leads to the conclusion 

that of all possible structures for a random ensemble of codes, the best is the one in which each 

code word in the ensemble is a finite linear combination of the first N eigenfunctions.    Further- 
more,  this result demonstrates that "optimum" digital communication over the channel of Fig. 1 
involves use of the channel only once to transmit one of these signals. 

t Clearly, practical considerations (e.g., a peak-power limitation) might make one set of functions more desirable 
than another. 

t For example, this statement does not preclude the possibility that "good" signals might be linear combinations 
of time translates of a relatively short and simple signal, it just does not assume this. 
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In conclusion,  two points should be made concerning this "optimum" signal structure. 

(1) In retrospect,   it is almost obvious that good signals should be of this 
form.    As noted before,  the eigenvalues \± are effectively energy trans- 
fer ratios.    Furthermore,   when the eigenvalues are ordered so that 
Al >\£ >Xß ^ . . .,   it is known"4 that X^ — 0 for i — °°.    Thus,   since the 
input signals have an energy constraint and since the channel noise is 
Gaussian,   it would intuitively seem most unwise to place a large amount 
of signal energy on an eigenfunction that was severely "attenuated" in 
passing through the filter.    Clearly,  the theoretical analysis confirms 
this reasoning and in addition,  provides an explicit method for deter- 
mining the number of eigenfunctions N that should be used. 

(2) Although the previous discussion has demonstrated the optimality of this 
signal structure from a theoretical viewpoint,   it is clear that from an 
engineering standpoint it is not practical;  i.e.,  the generation of a large 
number of eigenfunctions lasting for days or weeks is simply not feasible. 
Thus,   it becomes important to investigate other more practical forms of 
basis functions in an attempt to find signals that can be readily generated 
in practice and are also nearly as "good" as the optimum signals.    This 
problem is considered in Chapter IV. 

G.    DIMENSIONALITY OF COMMUNICATION CHANNEL 

The dimensionality of a channel is a concept of interest to communication engineers.    This 

concept is frequently discussed in terms of the noiseless,   band-limited channel defined by 

H(f) = 
ll |f|^w 

0 elsewhere 

N(f) = 0      . 

For this channel,  the dimensionality is usually considered to be the number of linearly independ- 

ent signals that can be transmitted in T  seconds and recovered without mutual interference.   By 
an argument based on the sampling representation for band-limited signals it is concluded that 
the channel dimensionality is 2TW,   since use of (sint)/t signals allows transmission and recov- 

ery of 2W independent signals per second.    There are,  however,   several fundamental criticisms 

of this approach. 

(1) Since (sint)/t signals are not time-limited,  the statement that 2TW sig- 
nals can be transmitted in T  seconds involves an (arbitrary) approxi- 
mation. 

(2) It is not clear how this approach should be used to define the dimension- 
ality of a band-limited but nonrectangular channel or of a non-band- 
limited channel.    For example,   if H(f) = [1 + jw]"1,   how is  W to be 
defined?    Conversely,   if the channel is band-limited but nonrectangular, 
its impulse response is,   in general, 

h(t) -   V  h    sin7r(2TW-i) mt' "   L  hi     7r(2TW-i) 

Thus,  transmission of (sint)/t signals leads to received signals having 
mutual (or inter symbol) interference. 

(3)    In view of Theorem 1,   an alternate and considerably more general defini- 
tion of channel dimensionality is simply the number of orthonormal sig- 
nals of T  seconds duration that can be obtained which remain orthogonal 
over some interval at the channel output.    This definition is more appeal- 
ing,   since it applies to any channel and since the intersymbol interference 
is zero between all output signals.    However,   it was shown in Theorem 1 
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x.. = 

that the set of <^^(t) having this property are completet and therefore 
infinite in number.    Thus,   in contrast to the finite dimensionality of the 
original approach,  this definition indicates that all channels are infinite 
dimensional.    Clearly,  this represents no improvement over the pre- 
vious definition. 

Before presenting a definition of dimensionality that overcomes these problems,   it is im- 

portant to consider in greater detail the infinite dimensional result just obtained.    As indicated 

previously,  the eigenvalues X. corresponding to each <p.(t),   are the energy "transfer ratio" of 

the filter for that eigenfunction,   i.e., 

^i-^i'T,        /0
Tl[/0

T
n(T)h(t-T)dT]2dt 

•'O i 

Furthermore,   when the X. are ordered so that X. ^ X? ^ A3 ^ . . .,   it is known      that X- — 0 for 
i — °°.    Assuming normalized <p.(t),   this implies that when <p.(t) is transmitted the output signal 
energy approaches zero for large "i."   Thus,   since any physical situation involves measurement 

inaccuracies (noise),   it is intuitively clear that the useful dimensionality of a channel is indeed 

finite,   i.e.,   all the (p .(t) whose eigenvalues are "too small" are unimportant in determining the 
channel dimensionality. 

From this discussion it is clear that a useful definition of the dimensionality of a communi- 

cation channel must include a meaningful definition of "too small."   The following definition of 
dimensionality which is based on the optimum  signal results of Sec. III-F  satisfies this 
requirement. 

Let (x.j(t)} be a set of signals for use with the channel of Fig. 1 and let the 
(x.j(t)} be selected in the optimum manner of Sec. III-F, i.e., each Xj(t) is 
oi the form 

N 

x.(t) =    YJ   x..<p.(t) O^t^T 

i=l 

where N is determined by Eq. (31).    Then the dimensionality D of the 
channel is defined as* 

°=>™ßU  ■ 
Note that this is effectively a "dimensionality per second" definition as opposed to the "dimen- 
sionality per T seconds" definition considered previously. This normalized definition is used 

so that a finite number will be obtained for the dimensionality in the limit T -* ». 
In concluding this section,   several points concerning this definition should be mentioned. 

(1)    From Appendix B it follows that D = 2W,   where  W is defined by Eq. (39) 
and the water pouring interpretation of Fig. 5(b). 

t Although the completeness proof for Theorem  1   does not apply to the rectangular band-limited channel 

U-oo I "WM* = °°) '* 's possible to show that the <}>j(t) are also complete for this case. 

t Recall that  N is the dimensionality (Sec. Il-C) of the set of transmitted signals and that for T -*• °° and p -*•(), 
R -"C.    Thus, the channel dimensionality is defined as the limiting (normalized) dimensionality of the set of 
signals that achieve a rate arbitrarily close to capacity. 
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(2) The presence of noise is considered simply and directly in the evaluation 
of W and thus of D. 

(3) It is satisfying to note that application of this definition to the band- 
limited channel defined by 

H(f) = 
|f| <C W 

elsewhere 

N(f) = N    > 0 o 

gives D = 2W. 

(4) This definition applies to any channel whether or not it is band-limited 
and flat. 

(5) Calculations indicate that N=^TD= 2TW [where N  is defined by Eq. (31) 
and W is defined as in (1)] when T  is only moderately large.    For ex- 
ample,   Slepian7^ has shown that,   for the band-limited channel defined 
in (3),  the error in this relation (N — 2TW) is not greater than unity for 
2TW > 2.    Furthermore,   at the other extreme calculations by the author 
for the channel 

H(f) =(1 + jf)-1 

N(f) = N 

S/2N    = 102 

have shown that for T > 1 second the error is again not greater than 
unity.    Thus,  this definition of dimensionality,   although defined as a 
limit for T -» *>,   gives meaningful information for practical values 
of T. 
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CHAPTER IV 

STUDY OF SUBOPTIMUM MODULATION TECHNIQUES 

It has been shown that "optimum" digital communication over the channel of Fig. 1 involves 

use of the channel once for  T seconds to transmit one of M signals.    It has been demonstrated 

that "good" signals should be constructed as finite linear combinations of the first  N eigenfunc- 
tions,   i.e.,   each x.(t) is of the form 

N 

X.(t) =   YJ    
xifi^ 0< t< T (60) 

i=l 

and that the optimum detector makes a decision based on the  N numbers y.,   wheret 

It should be recalled,  however,  that there has been no claim that this approach is in any sense 
practical.    In fact,   since  T might be on the order of hours,   days,  or weeks and since the gener- 

ation of a large number of different functions [the {<p-{t)}] of this duration is not feasible,   it is 
clear that it is not.    The purpose of this section is to investigate some "suitable substitutes" for 
the {<pAt)} and to compare the resulting error exponents to that obtained when the {(p .(t)} are used. 
In this manner it will be possible to make an engineering evaluation of the trade-off between 
equipment complexity and performance. 

In the "optimum" approach to digital communication over the channel of Fig. 1 there are two 

basic operations: 

The selection and generation of the transmitted signal x.(t); 

The receiver decision based on the channel output y(t). 

However,   when considering an implementation of this approach it is convenient to break the 
81 problem into two different classifications,   commonly called coding and modulation: 

Under modulation is included the problem of generating the 
{<p(t)}t  or suitable substitutes,   and the problem of determining 
they, of Eq. (61). 
Under coding is included the problem of selecting the coefficients 
Xji and the problem of making a decision based on the numbers y.. 

Although this breakdown is convenient and widely used in practice,   it must be emphasized that 

the basic operations are the two indicated previously.    Thus,   in the design of an efficient com- 
munication system,   coding and modulation must be considered together and possible trade-offs 

between the two evaluated.    In practice,  this might be accomplished by evaluating the cost and 

performance of various combinations of several coding and modulation techniques. 
82-84 In view of the existence of several practical coding techniques and the lack of signifi- 

cant previous studies of modulation for the channel of Fig. 1,   the remainder of this report is 

t For simplicity of presentation, the following discussion assumes white noise and an infinite observation interval. 
However, unless otherwise indicated, the discussion is valid, with obvious modifications, for any noise spectrum 
and any observation interval by simply introducing the appropriate {<}>.(t)} and inner product for y. from Theorems 
1 to 3. ' ' 
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concerned with a theoretical investigation of several modulation techniques and an experimental 

investigation of one that appears quite promising for the telephone channel. 

A basic problem in designing a modulation system is the determination of "suitable substi- 

tutes" for the {cp .(t)} of Eq. (60);   it simply is not practical to think of constructing a large number 

of signals that may last for hours,   days,   or weeks.    Thus,   in practice it is necessary to replace 

the {cp.(t)} by a set of functions that are time translates of a small set of relatively simple signals. 

When this is done the phenomena called intersymbol interference appears due to the time- 

dispersive nature of the channel.    As a result,  the modulation problem reduces to a study of 

various techniques for overcoming intersymbol interference.    The following sections consider 

several such techniques. 

A.    SIGNAL DESIGN TO ELIMINATE INTERSYMBOL INTERFERENCE 

This section considers the possibility of substituting for the {<p.(t)} a set of time translates 

of a single,   time-limited signal that has been designed to eliminate intersymbol interference. 

Although this problem can be formulated and a formal solution presented for an arbitrary ob- 

servation interval,   it is practical to obtain numerical results only for the infinite interval.    In 
view of this and the fact that the resulting analysis is greatly simplified,   an infinite observation 

interval (T. = °°) is assumed at the outset.    For simplicity,   it is also assumed that the noise is 
white;   the generalization to colored noise is presented in Appendix F. 

Consider the situation in which a time-limited signal x(t) of 5 seconds duration is transmitted 

through the channel of Fig. l.t   Assume that the channel is followed by a matched filter whose 

output is sampled at t = kJ,   k = 0, ±1, ±2, ....    Then by designing x(t) so that the matched 

filter output is zero for all sampling instants except t = 0,   it will be possible to transmit a 

sequence of time translates (by kj seconds) of x(t) without incurring intersymbol interference. 
It is not clear,   however,  that this approach will lead to performance that is acceptable relative 

to the optimum performance found previously.    This question can be investigated by considering 
first the problem of choosing a fixed energy x(t) to eliminate intersymbol interference and in 

addition give maximum energy at the channel output.    It will then be possible to compare the 

error exponent for the best possible performance of this suboptimum technique with the optimum 

exponent found previously. 
The problem of choosing x(t) to satisfy the conditions indicated above can be solved using 

standard techniques of the calculus of variations.    '   "    From Fig. 1 and the definition of a matched 

filter it follows that when x(t) is transmitted,   the matched filter output for t = k3" is 

£[£J"wwt-H[£ x(p) h(t - kj -p) dp    dt 

3" no- 

where 

■n 

V'1«r 

X(CT) x(p) Rh(ff — k3" — p) da dp 

h(t) h(t -T) dt 

t For this problem, J will be on the order of the reciprocal of the channel bandwidth. 
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and that the energy of x(t) at the channel output is simply the matched filter output for k = 0. 

Finally,  the energy of x(t) is given by 

J r x2(t) dt 

Thus,  by means of Lagrange multipliers,  the constrained maximization problem requires 

maximization of the functional. 

N 

l=y     -\x2(a) +   \     X(CT) x(p) Rh(a-p) dp +    YJ    
2ß 

k=l 

f"" ) x(p) Rh(a-p -kj) dp da (62) 

where the intersymbol interference constraints have been applied only to sampling times greater 

than zero since the output of a matched filter is an even function of time about t = 0.    The number 

of successive sampling times  N to which the constraints are applied is arbitrary at this point. 

The maximization of I is accomplished in the usual manner by substituting x(t) = y(t) + €f(t), 

where y(t) is the desired solution,   and setting 

ill 
d< 

= 0~ 
6 = 0 

Appendix C shows that this implies 

Xy(t) =   \     y(-r) K(t - T) dT 
Jo 

where 

N 

O^t^J (63) 

K(t - s) £ R  (t - s) +    YJ    /MRh(t - s + kJ) + R,(t -s-kmi 
k=l 

64 
Since K(t — s) is symmetric and £->,' it is known      that a solution to this equation exists.    How- 

ever,  to the author's knowledge,   there are no results in the theory of integral equations which 

insure that the {/3,} can be selected to satisfy the intersymbol interference constraints.    Under 

the restriction that h(t) is the impulse response of a lumped parameter system,  this difficulty 

can be overcome by transforming Eq. (63) into a differential equation with boundary conditions. 

(See Tricomi      for a discussion of the relation between boundary value differential equations and 

integral equations.)   The boundary conditions will be determined first by investigating the prop- 

erties that any signal must have to give zero intersymbol interference at the matched filter 

output. 

t When all the ß,  are finite, this follows directly from Appendix A. 
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By definition,  the impulse response of a lumped parameter system can be written as 

n 

h(t) = 

-s.t 
L   aie t^o 
i=l 

0 t < 0 (64) 

where a. and s. are, in general, complex constants satisfying certain conditions which insure 

that h(t) is real. Thus, for t > 7, the response r(t) to an input x(t) that is nonzero only on the 

interval [0, 3"] is 

ti -s.t IJ -s.i 
x(a) h(t - a) da =   £    a.X(-s.)e    l 

where 

IJ S.(7 

x(a) e  l    da 
o 

Similarly the matched filter output,   say z(t),  for t ^3"  is given by 

z(t) =   \      r(a) r(t + a) da 

n -s.t  r°° -s.a -s.t  p<» -s. 
=   YJ    a.X(-s.)e    l    \      r(a)e    x da 

i=l 

-s.t 
=   £    a.X.H(Si) e     X 

i=l 

where 

and 

H(s) •r h(t) e'st dt 

x.£x(s.) x<-s.) 

Now,   assume that intersymbol interference is zero for n successive sampling instants,   i.e., 

z(kj) = 0 for k = 1, 2, . . ., n.t   Then the {X.} must satisfy the  n homogeneous equations 

n -s.kJ 
YJ    a.X.H(s.) e     X       =0 k = 1, 2 , n 

i=l 

t In order that the error exponent may be evaluated for these signals it is necessary that intersymbol interference 
be zero for all sampling instants, i.e., that N = °° in Eq. (62). However, the results of the following derivation 
are independent of N, provided N ^n, and as demonstrated later, lead to signals giving zero intersymbol inter- 
ference at all sampling instants.    Thus, for convenience,  N = n is assumed at this point. 
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However,  these equations can be satisfied by nonzero X. if,   and only if,  the determinant of the 

coefficients of the {X.} vanishes.    By forming this determinant and factoring out common terms, 

it reduces to 

-/ 

-sJ 2 
(e     4  ) 

-sJ n-1 
(e     1  ) 

"SkJ 

-s, 3" n-1 
(e    k   ) 

"sn* 

-s 3" n-1 
(e 

Q L 

This is a Vandermonde determinant and is known      to be equal to 

11 (e -e ) 

i = l 
k=l. . . i-l 

Thus,  the determinant will be zero if,   and only if,  for some i ^ k 

(65) 

where 

j = NPT 

i = 0, ±1, ±2, . . . 

However,   this relation between the poles of H(s) will not exist in general J   Thus,   the {X.} must 

be identically zero if there is to be zero intersymbol interference at the matched filter output. 

Since X. = Xfs^ Xf-s^,   it follows that for each i = 1, 2, .... n either X(s.) = 0 or X(-s.) = 0.    [The 

condition X(s.) = 0 and X(—p.) = 0 is not included in the following discussion since it is a sufficient 

but not necessary condition for obtaining zero intersymbol interference.]   Although not obvious, 

this restriction on x(t) is precisely what is required to obtain a solution to Eq. (63). 

Recall that x(t) is defined to be nonzero only on the interval (0, 3"].    Therefore,   X(s) is an 

entire function which,   from the above arguments,  has zeros at either s. or — s.,   i = 1, . . ., n. 
87 1 1 

Gerst and Diamond      have shown that a Laplace transform with these properties can be written 

X(s) = Q(s) V(s) (66) 

t The remainder of this discussion ignores the special cases in which Eq. (65) is satisfied since these are of limited 
practical interest. 
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where 

Q(s) 4   f]   (s-z.) 

i=l 

(67) 

and z. = s. or —s. according to whether X(s.) =0 or X(—s.) = 0,   respectively.    V(s) is the Laplace 
111 x st    l transform of a pulse v(t) that has a continuous (n — 1)     derivative and satisfies the boundary 

conditions 

v(0) ,(T)       = 0 

where 

,<*-*>«» * v^-V) = 0 

(i)m A   dV 

(68) 

vVi'(t) £ 
dt' 

Thus,  the result is obtained that any solution to Eq. (63) which satisfies the intersymbol inter- 

ference constraints must be of the form 

y(t) = Q^p) v(t) 

where 

Qt(p) £ Q(s) 
s=p=d/dt 

and v(t) satisfies the integral equation 

.3 
AQt(p) v(t) =   \     (Qa(p) via)} K(t - a) da 0 <c t ^ J (69) 

as well as the boundary conditions of Eq. (68).    This result provides the boundary conditions 

required to obtain a solution to Eq. (63).    The corresponding differential equation will be derived 

next. 
Observe that the operator Q (p) under the integral sign in Eq. (69) involves differentiation 

with respect to a.    Thus,   as shown in Appendix D,   integration by parts yields,   after substituting 

the boundary conditions of Eq. (68)J 

AQ^p) v(t) =   \    v(a) (Q^-p) K(t - a)] da (70) 

or 

XQt(p) v(t) = Q^p)   \     via) K(t - a) da (71) 

t The fact that K(t — a) is a linear combination of translates of a lumped parameter autocorrelation function 
implies that K(t) has derivatives of all orders when impulses and their derivatives are allowed. 
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where the last step follows from the fact that 

-^ K(t-a) = (-1)1 -±j   Kit-a) 
dt1 da 

Next,   observe from Eqs. (64) and (67) that the definition of Q(s) implies that 

H(.)H<-)ANU!> NU') 
D(s2) Q(s) Q(-s) 

2 2 2 
where N(s  ) and D(s  ) are polynomials in s    and c  is a constant.    Thus,   applying the differential 

operator QJ-p) to both sides of Eq. (71) gives 

-o 

where 

er 

XD(p2) v(t) = D(p2)   f   y(a) K(t - a) da (72) 

D(p2) £ D(s2) 
s=p=d/dt 

k=l 

Since,  by definition, 

K(t-a) =   f      ^V exp[s(t-a)] 
J-°o   D(s  ) 

Eq. (72) implies that 

\D(p2) v(t) = D(p2)   f    via)   f     ^^  exp[s(t-a)] 

1+    l   ßkieskJ + e-skT) df s = j27rf 

1+    E    /MeSkJ+e-skJ) 
k=4 

dfdor 

=   f     v(a)   f     N(s2) exp[s(t-a)] 

= N(p2)   f     v(a)   f      exp[s(t-a)] 

1+    2    /»k(e8kJ  +e"skJ) 
k=l 

1+    l   ßkiesk? + e~sk?) 

k=l 

dfda 

dfda 

= N(p2)   f     v(<r) 
Jo 

6(t-a) +    2    ßk[öit-a + kJ) + öit-a-kJ)] 

k=l 

da 

(73) - N(p ) v(t) 0 <t <3"     . 

This differential equation together with the boundary conditions of Eq. (68) and the relation 

y(t) = Q^p) v(t) (74) 

defines the solution to Eq. (63) which satisfies the intersymbol interference constraints.    However, 

since this is a boundary value instead of an initial value differential equation,  there is no assur- 
88 89 

ance from the previous work that a solution exists.       Brauer      recently studied this problem and 
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found that there exists a countably infinite discrete set of eigenvalues {\.} for which there are 

corresponding eigenfunctions (v.(t)} that satisfy both the differential equation and the boundary 

conditions.    Thus,   a solution to the integral equation of Eq. (63) which satisfies the intersymbol 

interference constraints exists and satisfies Eqs. (68),   (73),   and (74). 

Before proceeding with an investigation of the properties of the (v.(t)} and the corresponding 

(y.(t)},  two points should be noted.    First,   observe that the only property of the polynomial Q(s) 
used in deriving Eq. (73) from Eq. (71) was 

Q(s) Q(-s) = cD(s' (75) 

Therefore,   it is possible to arbitrarily choose either z. = s. or z. = — s.,   for i = 1, . . ., n in Eq. (67) 

without changing the fact that resulting (y.(t)} are solutions of Eq. (63).    Thus,   there are 2n pos- 

sible choices for Q(s) each of which leads to an equally valid solution to the original maximization 

problem.    Second,   observe that Brauer's result states that there are an infinite number of solu- 

tions to Eqs. (68) and (73).    Thus,  the question arises as to which of these solutions is the one 
that yields maximum output signal energy.    It is shown below that if the eigenvalues are ordered 

so that X. ^ *•? ^ ^o ^ ■ ■ -,  then y.(t) = Qt(p) v. (t) is the desired optimum signal. 
The fact that the (v.(t)} satisfy Eqs. (68) and (73) leads to several interesting and useful 

properties of the corresponding channel input signals {y.(t)}.    One property of the (y.(t)} is that 
they are orthogonal and may be assumed normalized.    To verify this,   let the following notation 

be adopted. 

(f.gL ä  \    f(t) g(t) dt (76) 

and 

Pf(t) ä P(p) f(t) 

where P(p) = P(s) |   _   _d/rft and P(s) is a polynomial.    Then it follows that 

(Yj^J = (Qv^Qv^y 

Upon integrating by parts and substituting the boundary conditions of Eq. (68) this becomest 

{yi'yjh = (VQ_Qvj) = c^i'0^ (77) 

where 

Q"(s)^Q(-s) 

and the last step follows from Eq. (75).    Now,   from Eq. (73) it is found that 

and also that 

^(v^Dv^cj- = (v.,Nv.)<r       . (79) 
J    i        J J i        j J 

However,   integration by parts and substitution of the boundary conditions of Eq. (68) shows that* 

(78) 

t See Appendix D for the details of a similar integration by parts. 

$ Operators satisfying the following relations are said to be self-adjoint. 
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<Vj, Dv.)j = (v.. Dvj), 

and 

(v^Nv.^ =(v.,Nvj);r       . 

Thus,   it follows from Eqs. (78) and (79) that 

(X. -X.) (v.,Dv.)cr = 0 
J        1       l        J J 

and therefore that (v., Dv)cr = 0 if (X. - X.) ^ 0.    From Eq. (77) it then follows that afl y.(t) cor- 1       J J J       1 . 1 

responding to nondegenerate v.(t) are orthogonal.'    Finally,   since Eq. (73) is linear,  it follows 

that the (y.(t)} may be normalized;   a convenient normalization,  which is assumed throughout the 

remainder of this work,   redefines the (y.(t)} as 

(80) 

^c" T^t) = Q^p) v.(t) 

and assumes that 

(y^g-i     • 

(81) 

(82) 

A second property of the (y.(t)} is that they are "doubly orthogonal" after passing through 

the channel filter in the sense that if r. (t) is the filter output when y.(t — j3") is transmitted then 

(rij' pkf>- 
l 

if i = k and j = i 

otherwise (83) 

In other words,  the (y.(t)} are orthogonal at the filter output and in addition,   nonequal time trans- 

lates of any two of the functions are orthogonal at the filter output.*   This result can be verified 

by noting from Eqs. (76) and (81) that 

oo        J 7 
(rij' rkl,-o =  c I     J     [<^(P) v.(a)]h(t-j3--a) da j*    [Qp(p) vk(p)] h(t - I? - p) dp dt 

3"    J 
=   cli    IQa(p) v.(a)][Qp(p) vk(p)]Rh[a-p + (j-l)y]dadp 

Integration by parts and substitution of the boundary conditions of Eq. (68) show that this becomes 

{TlfrVpm =   c j   i    vi((T) vk(p) {Qa(-p) Qcr(p)Rh ^-p + (J -l)?ti dffd^ 

or from Eq. (75), 

(rij' rkl)- =  c J   1    vi(a) vk(p) {°<P2)Rh la ~ p + (j " i)T ]} dadp 

t It can be shown that degenerate eigenfunctions are of a finite multiplicity and may be assumed  to be 
orthogonal. 

t It should be observed that the orthogonality of time translates of the {yj(t)} follows directly from the fact that 
the {y;(t)} have been chosen to give zero intersymbol interference.    In other words, the conditions of orthogo- 
nality at the channel filter output and zero intersymbol interference at the matched filter output are identical. 
Thus, the {y.(t)} give zero intersymbol interference at all sampling instants. 
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However,   since 

Rh(cr-p) =   \       ^^- exp[s(a-p)] df s = j27rf 
J-«   D(s   ) 

this implies that 

(rij'rki}co = j1   j1    v.(a) vk(p)  f D(p2) |      Ms_)   exp{s[a-p + (j - i)J ]} df j da dp 

= ]    j     v^a) vk(p)  (N(P
2

) j       exp{s[a-p + (j - 1)3" ]} df J da dp 

3"    3" 

J    J     vi<°"> v
k<P> (N(p2) Ö [a - p + (j - f)3"]} dadp 

0 

if j = 1 

otherwise 

xj(vi'Dvk,y     ifj = i 

A. 
l 

otherwise 

if i = k and j = 1 

otherwise (84) 

where the last two lines follow from Eqs. (79) to (82).    Thus,  the {y.(t)} are "doubly orthogonal" 

in the sense stated. 

A third and extremely important property of the (y.(t)} is that the corresponding eigenvalues 

{x.} are the ratio of the output to input signal energy,   i.e., 

X. = 
(ri0' ri0)-o 

This is readily verified by noting from Eqs. (77),   (81),   and (84) that 

(ri0' ri0}°o   _   (vi' Nvi>J = X. (^i>J    ' ^v^ih       i     ' 
(85) 

Thus,   with X.^Xy^X-^...,   it follows that y.(t) is the solution to the original maximization 

problem. 

A final property of the (y.(t)} is obtained for the special case in which z. = — s. for all i in 

Eq. (67).    For this case it follows directly that 

7i(t) = D+(p) v.(t) 

where 

H(s)A  *0^ 
D+(s) 
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and thus that 

riQ(t) = N+(p) v.(t) 

Since N (p) v.(t) is a linear combination of derivatives of v.(t),  this demonstrates that r.Q(t) is 

time limited to [0,3" ],   i.e.,  the time-limited input y.(t) yields an output r.Q(t) that is again time 

limited to the same interval.1"   This specia1 form of the solution to Eq. (63) has been studied by 
90 

Hancock and Schwarzlander      and is of practical interest due to the possible simplification of 

matched filter construction for time-limited signals. 

As an illustration of these results,  consider the situation in which the channel filter is given 

by 

l 
H(s) = 1 + s 

Then 

^ ä H(s) H(-s) = —U, 
D{sn l-s* 

and the boundary value differential equation becomes 

or 

where 

and 

{i'^hM'-° 0 < t < 3" 

2 

1 

Vi(o) 

Hows 

= v.(3-)=0 

readily that 

v.(t) 
1 

a. sinw.t 

o elsewhere 

ui = ii r/J i = 1, 2,3, 

where 

From Eq. (67) and the discussion following Eq. (75),  Q(s) is 

Q(s) = 1 ± s 

tTo the author's knowledge, this property of the solutions of Eq. (63) was first recognized by Richters. 
91 
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Thus,   the eigenfunctions and eigenvalues are 

A. = [1 + w. 2,-1 i = 1, 2  

and 

f2A.ll/2 
y(t) = I—~-l        [sinoj.t ± a>. cosu.t] 

From this observe that 

r4A.A.il/E   p3" 

However, 

y(t) y(t) dt = I—y I \      [sincj.t sin w.t + w.w. cosw.t cos w t 
0     i      J l r J       J0 

1 J        ! J * J 

± w. cos u>.t sinw t ± a>. sinoj.t cos w t] dt 

\     sinw.t sinw t dt =   \      cos co.t cos o> t dt =  = Ö. . 
J* * J J™ i j 2     ij 

and integration by parts shows that 

Thus, 

w.   \       cos uj.t sinw t dt = — w •   \      sincu.t cos a> t 
J0 J J J0 J 

p3" [4A,A.il/2  T - 

dt 

and the (y.(t)} are orthonormal.    Next,   consider 

poo 

r   (t)4   \       yJv-yS) h(t-a) da      . 

Evaluation of the integral shows that 

r 0 

f2A.ll/2 

t< jJ 

(1 ±u>p Binw.tt-jJ) -w^l =F 1) {cos w^t - jJ) -exp[-(t- j3")]} 

fi <t<(j + 1)3" 

c^d Tl) exp[-(t- j3")] [(-l)1"1 eT + 1] t > (j + 1)3"       . 

Observe from this that if the  +  sign is taken in the definition of Q(s),   r. (t) has the simple form 

m [2X 11/2 
ry<t)     M' 

sinw^t- j3") j3"<: t<<: (j + 1)3" 

0 elsewhere 

In other words,  the time-limited input signal y.(t — j 3") yields an output that is again time limited 

to the same interval.    Furthermore,   it follows almost trivially that 
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\. if i = k and j = i 
(rij'rki)<*= " 

I 0 otherwise 

i.e.,   for this Q(s) the (y(t)} are "doubly orthogonal" at the filter output.'   Also,   note that since 

the (y(t)} are normalized,  X. is the ratio of the output to input signal energy. 

The previous work has derived the optimum time-limited signal that gives zero intersymbol 

interference at the matched filter output.    It is now of interest to compare the performance of 

this modulation technique to that obtained when the optimum technique of Sec. III-F is u*sed. 

Recall that optimum signals are constructed as linear combinations of the first N eigenfunctions, 

i.e.,   each signal is of the form 

N 

Xj(t) =   YJ    *ifiW 0<t< T 
i=l j = 1, . . ., M 

and that a study of suboptimum modulation techniques involves finding "suitable substitutes" for 

the {<p.(t)}.    For the suboptimum modulation technique of this section,  the {(pAt)} are replaced 

by time translates of the optimum signal y^t),   i.e.,   if (<p.'(t)} are the functions substituted for 

the {(p.it)} then* 

«p.»(t) Ay^t-iJ) 0<t<T 

i  = 1,2, K (86) 

and a general input signal is of the form 

K 

x(t) =    YJ    VJ'W 0< t< T       . (87) 
i=l 

For this input,  the corresponding channel output is 

K 

y<*> =   Z   J\ x.e.'(t) + n(t) (88) 
i=l 

where 

e.'(t)A——  f      <p.'(T) h(t - T) ÖT 

and \. is the first eigenvalue of Eq. (73).    From this it follows that the matched filter output at 
t = k3",   z(kJ),  is§ 

t Verification of this property for Q(s) = 1 — s is possible, but tedious and is omitted. 

t It is assumed here that 3" and T are related by T = KJ where K  is an integer.    However, K = N is not assumed 
since   N is the optimum dimensionality of the {x.(t)}  only when the {<|>.(t)} are used. 

-1/2 
§ For convenience it is assumed here that the matched filter is matched to A] times the channel filter output 
when y, (t) is transmitted.    This, together with the assumed noise spectrum normalization (see Fig. 1) gives unity 
noise variance at the matched filter output. 
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poo poo 

z(kJ) = j      y(t) 9^(1 - kJ) dt = j      y(t) 6£(t) dt = (y, G^ 

K 
=  Yt    [x] x.(e.',e,')   + (n, e,1) u    v   1     i    i'    k «> '    k «> 

Xl   xR + nk (89) 

where n,  £ (n, G ')     and the last step follows from Eq. (84) by noting that   /AT G.'(t) = r   .(t). 

Furthermore, 

IOO        pOO 

\      n(a) n(p) G^(a) e.'(p) da dp 

poo     poo 

= j    j    «(<r-p) ek(<r) eyip) d<7dp 

= (ek-eJ')» = 6kJ    ■ (90) 

Thus,  by comparing Eqs. (89) and (90) to the vector representations of Theorems 1 to 3,   it 

follows that the value of C for this modulation technique,' say C,   can be obtained from Eqs. (32) 

and (35) by substituting 

A. = 
l 

\± i = 1, . . .,K 

otherwise 

and performing a maximization over 3" .    [The prime has been used here to indicate that A ' is an 

eigenvalue of Eq. (73).]     The resulting expression is 

C* = max Ar  In [1 + \A7) S3"] (91) 
3"     2J 1 

where the fact that A. is a function of the length of the interval over which y.(t) is defined has 

been emphasized by writing A.  = A.(3").    It should be mentioned that the maximization over 3" 

is required since the value of 3"   in Eq. (86) is arbitrary and therefore should be chosen to max- 

imize C\ 

From Eq. (91) it is clear that a knowledge of the first eigenvalue of Eq. (73) is required as 

a function of the interval length 3" .    However,  boundary value equations such as this are quite 

tedious to solve for specific cases.    Thus,   since only the eigenvalue is of interest and not the 

eigenfunction,   it is desirable to investigate a means for determining the eigenvalue without 

solving the differential equation.    Such a result can be obtained by considering the Laplace 

transform of the solution to Eqs. (68) and (73) repeated below for convenience 

t Recall that a conclusion of Sec. Ill — E was that a knowledge of Rc and C as a function of signal power S pro- 
vides sufficient information about the error bounds for engineering purposes.    However, in a study of suboptimum 
modulation systems which involves only a comparison (and not a numerical evaluation) of the error exponent for 
various techniques, it is convenient to make a further simplification and to evaluate only C as a function of S; 
the tacit assumption being that if C is close to C, then R^ is close to Rc and conversely, if C differs greatly 
from C  then R ' differs greatly from R  . 

c ' c 
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[N(p2) - ^Dfp2)] VjCt) = 0 0 < t < 3" (92) 

v.(0) = v.(3") = 0 

v^n'i](0) = v^n'i](7) = 0       . (93) 

Since no additional effort is required to obtain an expression which defines all the eigenvalues, 

this will be done. 

Recall that by assumption the (v.(t)} are zero outside the interval [0, 3"] and that the poly- 
2 2 nomial D(s ) is of order 2n.    Assume that the order of N(s ) is 2m and that m < n.    Finally, 

observe that although the boundary conditions imply that all derivatives of v.(t) through the 
st l 

(n — 1)      are zero at t = 0 and t = J ,   it is possible that higher order derivatives of v.(t) will 

involve impulses and their derivatives at these end points.    In view of these conditions,   Eqs. (92) 

and (93) can be replaced by the equation 

[N(p2) - ^Dtp2)] v.(t) = P1.(p) 6(t) + P2.(p) 6(t - 3") —o < t < <*> (94) 

where P,.(s) and P_.(s) are polynomials of order (n — 1) or less whose coefficients will be deter- 

mined later.    Since Eq. (94) is satisfied for all t,  the Laplace transform of both sides can be 

taken.    This yields 

P,.(s) + P?.(s) esT 

V.(s) = -^-= S _ (95) 
1 N(s*) -X.D(s^) 

where V.(s) is the transform of v.(t) and the domain of convergence is the entire finite s-plane. 

It is shown in Appendix E that all nondegenerate solutions of Eqs. (92) and (93) are either even 

or odd functions about t = J/2.    Thus,   since an even or odd function has an even or odd trans- 

form,   it follows that for nondegenerate eigenfunctions 

Pli(s) e^2 + P2.(s) es*/2 Pu(-s) es^2 + P^-s) e"8^2 

N(s2) - X.D(s2) N(s2) - VDfs2) 

Pli(») * P2i{_s) = ±lPlit-
s) * P2i(s)J eS J (96) 

s *J Expansion of e       shows that the right-hand side of Eq. (96) is an infinite order polynomial while 
st the left-hand side is at most an (n — 1)      order polynomial.    Thus, 

Pu(s) ±P2i(-s) = 0 

and Eq. (95) becomes^ 

t Although the previous discussion has shown Eq.(97) to be true only for nondegenerate eigenfunctions, it is 
possible by means of an argument identical to that used by Youla92 to show that it is true for all eigenfunctions. 
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P..(s) ±P..(-s) e 
TT/\ 11 'I 
V (s) =  2 2~ 

1 N(s^) -X.D(s^) 

s!T 

(97) 

Next,   recall that V.(s) must be an entire function since v.(t) is a pulse.    Thus,   the coefficients 

in P. .(s) must be chosen so that the numerator of Eq. (97) contains all the zeros of the denominator. 
2 2 

If ±s.,, ±s->, . . . , ±s.    are the 2n roots of N(s  ) — X.D(s  ) = 0,  this condition leads to the n ll       i2'        '      in l 
homogeneous equations 

■ Piil-B;,) e""    = 0 = 1, .... n (98) 

Since 

PU(S, A I  aii s^ 
j=l 

Eq. (98) becomes 

auO ± wu) ♦ a.2(l , wu) mu + a.3(l ± wü) B *  + . . .   + ^ [1 ± (-l)""1 w.,J s.^1 = 0 

1=1, 

where w.. ^ exp[s.f3"].    Thus,   a set of nonzero coefficients {a..} exists if and only if 'U if 

(99) 

(1*1^)        (l^wil)sil 

d±wi2) 

(l±w.n)        (lTW.n)sin 

... i    .\T\-i i t      .n-1 [1 ± (-1)        Wil] (sH) 

[li(-1,n'1^(8/"1 

=     0 (100) 

Equation (100) is the desired result which allows evaluation of the {\.} without explicit solution 

of the boundary value differential equation. [In addition, observe that this result and Eqs. (97) 

and (99) provide a frequency domain solution for the {v.(t)}.] 

The result will now be used to evaluate the performance of the suboptimum modulation tech- 

nique of this section.    A convenient class of channels to consider are those having Butterworth 

filter characteristics,   i.e.,   channels for which 

H(s) H(-s) = 
l + (-Dn(f)2n 

2 2 For this class of filters,  the roots of N(s  ) — X.D(s  ) = 0 can be expressed in the simple form 

su = (2*) [A.  l-l] -1 _!i*/2n exp[J7r(—— + T)] i = 1 , n 

Observe that if X. is written as 
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X.  = l /k   . \ 

<+(f) 
J_ 
k  .\2n 

ni 
y 

where k  . is a constant,  then 
ni 

k 
sii = 27r IT exP U^'^iH1 +  2)] ' s 1, .. 

and after factoring out common terms,   Eq. (100) becomes 

•, n 

(101) 

A     = 

<1±wil> (l^wH) [i=M-i)n_1 wu] 

(l±w.n)       (lTw.n)  {exp[i7r(n- l)/n]}   •••   [1 ± (- l)n_1 w.J {exp [J7r(n- l)/n]} n-1 

=     0 

(102) 

where now w.. = exp {27rk   . exp [J7r(i — l/n) + (l/2)]}.    Thus,   for the Butterworth filters,  A   is in- 

dependent of 3"   when the {x.} are expressed as in Eq. (101). 

Consider first the case for n = 1.    From Eq. (102) it follows that k  . must satisfy the relation 

(1 ±exp[j27rkli]} = 0 (103) 

However,   as noted previously,  X. is the energy transfer ratio of the filter when y.(t) is trans- 

mitted.    Since the filter is normalized so that 

max |H(f)| = 1      , 
f 

it follows that X. < 1.    Thus,   k.. = 0 is not an allowed solution to Eq. (103) and the final result is 

k41 = i/2 i = 1, 2, . . . 

or 

X. = 
l 

1 + %)Z 
(104) 

which agrees with the result found on page 67 after the introduction of a bandwidth scale factor 

of 2n.    Substitution of this expression into Eq. (91) shows that 

S3" 
C = max ry log2 1 + 

1 + <2f>2 
bits/second 

This expression is plotted in Fig. 10 along with the value of C = R(0). It should be noted that 

this technique is inferior to the optimum technique by approximately 3 db for S/2 = 10 and by 

nearly 7 db for S/2 = 103. 

To investigate the performance for higher order channels,   it is necessary to solve for k  . 

from Eq. (10 2).    Since this becomes quite tedious manually for n > 2,  the evaluation has been 

accomplished numerically on a digital computer.    The result is that to two significant figures 

and (at least) for n < 10,   k  . is given by 
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k . = \ [i{n-l) + i] i= 1.2  

Thus, 

X. =   {1 + l       I 
-(n — i) + l r 

(105) 23" 

and Eq. (91) becomes 

O = max 23s log2 (l + SJ [1 + (^^p)*11]"" *) bits/second    . 

Figure 11 presents C for a Butterworth channel with n = 10 together with the value of C = R(0) 

calculated from Eqs. (37) to (39). It should be noted that although C - C for S - 0, there is an 

effective signal power loss of 25 db for S/2 = 10   . 

This extremely poor performance at only moderately large signal powers when coupled with 

the lesser but still significant loss for the simple n = 1 channel suggests that this suboptimum 
modulation technique is of limited practical interest.    The following paragraph considers an 
extension of the present technique that leads to significantly improved performance at the ex- 

pense of an increase in equipment complexity. 
Recall from Eqs. (80) and (84) that the (y.(t)} are orthonormal and are "doubly orthogonal" 

at the channel filter output.    Because of these properties it is possible to substitute for the 

{<p.(t)} not just time translates of the single function y,(t) but instead time translates of the 
first few of the (y(t)}.    When this is done,    J can be increased and improved performance ob- 
tained.    More specifically,   consider the following situation.    Let J   be fixed,   assume that 

T = k'J with k an integer,  let the (<p.(t)} be replaced with time translates of the first N1 of the 

(7;(t)},   and let N' be chosen to maximize the error exponent.    It then follows from the discussion 

of Eq. (91) and Eqs. (32) and (35) that the value of C for this modulation technique,   say C   ,   is 

C3" =   2?   2    lo§2 B   (0)  bits/second (106) 
i=l 

where 

N' 
-1 

i=l 
By«))      - N» 

and 

XN,   > By(0) >XN, + 1 

and the {x.} are eigenvalues of Eqs. (92) and (93).    Equation (106) is plotted in Figs. 10 and 11 

for the n = 1 and n = 10 Butterworth channel,   respectively,   using the eigenvalues of Eq. (105). 

Observe from Fig. 10 that for the n = 1 channel and with  5= 1,  use the first twelve of the (y.(t)} 

gives a modulation system whose performance is within 1 db of ideal at S/2 = 10   .    Figure 11 
demonstrates a similar improvement for the n = 10 channel except that for this channel both J 
and N'   must be significantly greater than for the n = 1 channel to achieve the same level of 
performance. 
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In conclusion,  two points should be made concerning this modulation technique. 

(1) As suggested in Fig. 11,  it is possible by using increasingly large 
values of J  and N' to obtain a modulation system for which Cy is 
arbitrarily close to  C.    As a practical matter,   it appears that a 
value of   5 between one and twenty times the reciprocal of the 
filter 3-db bandwidth is sufficient to achieve most of the improve- 
ment possible. 

(2) Since the determination of the {yi(t)} becomes increasingly difficult 
for higher order channels,  and since a greater number of the {yi(t)} 
are required for efficient operation with these channels,  it is clear 
that this modulation technique can be considered practical only for 
low-order channels. 

B.    RECEIVER FILTER DESIGN TO ELIMINATE INTERSYMBOL INTERFERENCE 

The previous section has considered a suboptimum modulation technique that eliminates 

intersymbol interference by means of a suitable choice of the transmitted signal.    This section 

considers an alternate approach in which the receiver matched filter is replaced by a filter that 

has been designed to maximize SNR and eliminate intersymbol interference.' 

Consider again the channel of Fig. 1,  let N(f) be arbitrary,   and assume that a signal x(t) is 

given.    For this situation it is desired to design a receiver filter h.(t) so that when x(t) is trans- 

mitted the filter output will be zero at t = kj,  k = ±1, . . . , ±N,   and nonzero at t = 0.+   In this 

manner,   it will be possible to transmit time translates (by kj seconds) of x(t) without incurring 

intersymbol interference.    Since there are,   in general,   an infinite number of filters having this 

property,   it is desirable to choose the filter that maximizes the SNR at t = 0.    This problem is 

readily solved using standard techniques of the calculus of variations.    '   "    When x(t) is trans- 

mitted,  the signal portion of the output of h,(t),   say z(t) is 

z(t) = j       X(f) H(f) H^f) eJa,t df (107) 

where X(f),  H(f),   and H  (f) are the Fourier transforms of x(t),  h(t),   and h  (t),   respectively. 

Also,  the noise output,   say n (t),   is 

poo 

nQ(t) =   I       n(a) h^t - a) da      . 
*-' —OO 

For this problem,   a useful SNR definition is 

1/      X(f) H(f) H^f) df I 1/     X(f) H(f) H^f) df I 

OO        OO 

K(t)J /      /      n(a) n(p) h(t-a) h(t-p) dadp /      N(f)  iH^f) \* df 

■vl e\  iJle\  u   I e\   ,jf I v/ e \   zitr\  u   / r \   rifl 

z2(0) SNR = -g-^i— = —^ -^ (108) 
OO OO 

-OO -OO 

  93 
t To the author's knowledge, this problem was first considered by Tufts.        The work presented here represents an 

alternate and somewhat simplified derivation of his result and in addition provides some insight into the SNR deg- 
radation caused by the elimination of intersymbol interference. 

t The number  N  is arbitrary at this point.    Appropriate values will be indicated later when specific examples 
are considered. 
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Thus,  the problem is that of choosing H.(f) to maximize Eq. (108) under the constraints z(k3") = 

0,  k = ±1, . . ., ±N.    Use of Lagrange multipliers shows that H.(f) must be chosen to minimize 

the functional t 

■r N(f) 

N 

iH^fl^-XtOHtfjH^f)      2     2^ke
ja;kJ 

k=-N 

df 

This minimization is accomplished in the usual manner by substituting H.(f) = H (f) + eH,(f), 

where H (f) is the desired optimum filter,   and setting 

dl 
dt 

= 0 

dl 
dc 

, 1*0 

r = 0 J— 
df 

Upon performing the substitution it is found that 

N(f) (HQ(f) H*(f) + H*(f) H2(f)J - X(f) H(f) H2(f)   £   Wk ejwkJ 

k 

However,  since real-time functions are assumed and N(f) is a power spectral density, 

/-»oo /-»OO 

\       N(f) H (f) H*(f) df =   \ 

Thus,   Eq. (109) can be written 

(109) 

/-»OC 

N(-f) HQ(-f) H*(-f) df =   \ N(f) H* (f) H,(f) df 
o c 

d< 
= 2 

e=0 L H*(f) N(f) H* (f) - X(f) H(f)   YJ ß\< eJWk J df (110) 

Upon requiring that 

= 0 dl 
dc 

e = 0 

for all H2(f) it follows that the bracketed quantity in the integrand of Eq. (110) must be zero for 

all f,   i.e.,  H (f) must be given by 

N 

H,f, = ^<™    I    *,.-*«    . (Ill) 

k=-N 

It is interesting to note that H (f) can be realized as the cascade of the optimum detector for 

colored noise followed by a "zero forcing" tapped delay line. 

Next,   it is necessary to solve for the {ß, } that satisfy the intersymbol interference con- 

straints.    From Eq. (107) the output of h (t) at t = iJ is 

2 
t Observe that choosing H. (f) to minimize [n (t)]    with z(0) fixed is equivalent to choosing H.(f) to maximize 
Eq. (108). ' ° ' 
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rfiJj =  r   iX(f^fj
f)|2 2 ßk exp [><i - k) ?] df 

*-' —oo 

3 2 ^k wi* 
k 

where 

Wik = II   ^'"N"'"'
2
 exp [>U - k) Jl df      . 

Thus,   if the column vectors z and ß  are defined as 

z(-N3") 

z(0) 

z(N3") 

ß    * 

'-N 

UNJ 

(112) 

and if a matrix [W] is defined as 

[W]    ä 

W-N,-N   ••'    W-N, 0   ••    W-N, N 

W0,-N     •■     W0,0      ••     W0,N 

WN, -N    ' • •     WN, 0     • ' *     WN, N 

it follows that 

z = [W]£ (113) 

93 -1 Since [W] is known to be nonsingular,     the inverse matrix [W]      exists and Eq. (113) becomes 

[W]"1 z = (W]"1 [W]£ 

uv 

-1 ß = [W]      z       . (114) 

This is the desired expression that gives the tap gain settings ß  in terms of the constraint 

equations ' 

t Recall that in the maximization procedure z(0) was fixed but arbitrary.    Since the value of z(0) has no effect 

on the SNR,  the normalization z(0) = 1 has been assumed. 
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z(k3") = 
1 k = 0 

[0 k/0      . (115) 

Finally,   it is necessary to evaluate the SNR for this filter.    From Eqs. (108) and (115) this is 

i2 
SNR = 

i, k 

|X(f) H(f)|" ,.   ,.     , »q-,   .,1 • 
N(f)     ~ exp [jwd - k)3 ] df ] 

or,   from Eqs. (113) and (115) 

SNR = ß _1 (116) 

34 For comparison purposes,   it should be recalled      that the SNR at the output of the optimum 

detector for colored noise and an infinite observation interval is 

SNR |X(f) H(f)l 
NTU- df 

will be the ratio of the SNR for the 
-1 

Thus,   if X(f) is assumed normalized so that SNRl    = 1,0 'o o 
zero forcing filter to that for the optimum detector.    Since this interpretation of ß   a is quite 

useful,  the following examples assume X(f) to be so normalized. 

Ideally,  the performance of this modulation technique would now be evaluated by comparing 

the value of C for this approach with that obtained for the optimum technique.    Unfortunately, 

when X(f),   H(f),   and N(f) are chosen so that the determination of ß    from Eq. (114) is feasible, 

it is impractical to determine  C for the optimum technique.    Conversely,   when H(f) and N(f) 

are chosen to simplify evaluation of C for the optimum technique,   it is impractical to evaluate 

ß    from Eq. (114).    Thus,   it is necessary to consider an alternate and simpler evaluation of the 

zero forcing technique.    A relatively simple approach is to choose X(f),   H(f),   and N(f) so that 

ß    can be readily determined from Eq. (114).    Then since ß       represents the SNR degradation 

caused by the elimination of intersymbol interference,   it seems reasonable to conclude that if 

for a given situation ß    is close to unity the performance of this technique would be acceptable. 
° -1 Conversely,   if a situation is found in which ß       is quite small,  this technique would be 

unacceptable. 

Recall from Eq. (Ill) that the zero forcing filter can be realized as the cascade of the op- 

timum detector and a zero forcing tapped delay line.    Viewed in this manner,   it appears that 

the zero forcing procedure should lead to an excessive SNR loss only if the intersymbol inter- 

ference at the detector output is in some sense large.    The following examples confirm this 

speculation. 

Let W(t) be the output of the optimum detector when x(t) is transmitted,   i.e., 

W(t) lX(f) H(f)l 
N7TJ- 

Jwt df 

and consider first the situation in which X(f),  H(f).   and N(f) are chosen so that W(t) appears as 

in Fig. 12.    Then the elements in the [W] matrix are 

W.,   = 
lk 

1 

1/2 

0 

i = k 

i = k ± 1 

otherwise 
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Fig. 12.   Example in which intersymbol 
interference is large. 

Calculations for N = 1, 2, 3 suggest that for this [W]   the {ß. } are given by 

ßk= (-l)lk|  [N+ 1- |k|]      . 

Substitution of Eq. (117) into Eq. (113) shows that 

N 

(117) 

(151 =    £    /3,w    M-i)11' [|i| - 
k=-N 

1 

0 

'k "ik 

if i = 0 

otherwise 

|   |i-l|-i|i+l| il <N 

li| <N 

which proves that Eq. (117) is valid for arbitrary N.    Observe from Eq. (117) that |ß±Nl = 1. 
Thus,   the intersymbol interference between x(t) and x[t ± (N + i)7] is independent of  N.    As a 
result,   it would be necessary to set N = °° before zero intersymbol interference would be ob- 

tained for all sampling instants.    However,   Eq. (117) shows that ß    = N + 1.    Therefore,   as 

N ■* °°,  ß       — 0,   i.e.,  the SNR loss caused by the elimination of intersymbol interference be- 
comes arbitrarily large as the intersymbol interference is eliminated for an arbitrarily large 

number of sampling instants.    Thus,   for this example,   zero forcing is completely unacceptable 

as a technique for eliminating intersymbol interference. 

Another example that gives some additional insight into the zero forcing filter is the following. 

Let X(f),   H(f),   and N(f) be chosen so that W(t) appears as in Fig. 13.    Then the elements of [W] 
are 

W.,   = lk 

For this [W] it is readily verified that the {/3, } given by the following relations satisfy Eqs. (113) 

and (115). 

' 1 i = k 

1) i = k ± 1 

-1/4 i = k ± 2 

.0 otherwise 
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Fig. 13.   Example in which intersymbol 
interference is small. 

-0.25 

^k = <*-k 

ß,   = 0, k odd 

^N-2 = 4/° 

^N.4 
= 15/D 

ß^ = 4ß^7~ß k+2     Fk+4 for  k even and 0 < k < N — 4 (118) 

D is determined from the relation ß    - J ß~ » 1.    Thus,   if N = 6,   for example,   the {ßk} are 

ß±i-
ß±3-ß±S-° 

ßo = 112/97,   ß±z = 30/97,   ^±4 = 8/97,   /3± fi =  l/97 

Two important results can be obtained from Eq. (118).    First,   observe that /3±N = l/D.    Although 

no general expression for D has been found,   calculations show that D grows rapidly with N.< 
Thus,   for only moderately large N,  the intersymbol interference between x(t) and x[t ± (N + 1)3"] 

will be negligible.    This implies that from a practical standpoint,   zero intersymbol interference 

can be obtained at all sampling instants by means of a finite length tapped delay line.    This result, 

which is of considerable practical importance,   should be contrasted with the analogous result 

in the previous example.    Second,   observe that ß    can be written as 

t 

?o = 

2  n0 

fFor example, the following results can be determined from Eq. (118). 

N:   2      4      6 8      10 
D:   7    15    48.5    181    675.5 
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where n    and n2 are the numerators of /3    and /3      respectively,   i.e.,  ß    = nQ/D and ßz - n2/D. 

Use of this result together with the iterative relations of Eq. (118) shows that,  to slide rule 

accuracy, 

ß    « 1.15 for all N 

Thus,  the SNR loss due to the elimination of intersymbol interference is negligible and it may 

be concluded that for this example zero forcing is a satisfactory technique for eliminating inter- 

symbol interference. 

In summary,   it appears from the previous examples that zero forcing is a suitable technique 

for eliminating intersymbol interference when the intersymbol interference at the optimum de- 

tector output is "suitably small," i.e.,   when the output has a ringing form as suggested by Fig. 13. 
Conversely,  when the intersymbol interference is "large" as suggested by Fig. 12,  the zero 

forcing procedure causes an excessive loss in SNR. 

C.    SUBSTITUTION OF SINUSOIDS  FOR EIGEN FUNCTIONS 

The previous sections have considered two approaches to the elimination of intersymbol 

interference in suboptimum modulation systems.    As indicated,  the first of these approaches 
appears practical for relatively simple channels (an n = 1 Butterworth filter and white noise) 

while the second appears practical for "almost flat and band-limited" channels,   i.e.,   channels 

for which the intersymbol interference at the optimum detector output is "relatively small." 

This section considers a third technique that appears practical for the range of channels be- 

tween these extremes. 

Recall that a study of suboptimum modulation systems involves finding "suitable substitutes" 

for the eigenfunctions of Theorems 1 to 3.    The present section considers the possibility that 

suitable substitutes are time translates of a set of sinusoids.    The motivation for this approach 
is provided in the following discussion. 

1.   Asymptotic Form of Eigenfunctions and Eigenvalues 

This section is concerned with an investigation of the form of the (<p.(t)} and {x.} of Theo- 

rems 1 to 3 for T — «5. Consider first the {cp-it)} of Theorem 1 and recall that they satisfy the 

integral equation 

X <p (t) =   \      <p As) K(t, s) ds 0<t<T (119) 
J0 ! 

t, s) 4  (    1  h(a-t) h(ff-s) da 

Since the interval over which the {<p.(t)} are defined has no effect on the form of the {^(t)},   it 

is convenient to consider the following equation instead of Eq. (119) 

fT/2 
X.<p.(t) =   \ <p.(s) K(t, s) ds 111 < X/Z (120) 

1   * J-T/2     l 

where now 

where 

K(t, 
^o 
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A  CTCT/Z 

K(t, s) ^   \ h(a-t) h(a-s) da 
J-T/2 

fT'/2 
=   \ h(a- t) h(a- s) da 

J-T'/2 

with T* £ T. - T/2.    The last equality follows from the fact that h(t) is physically realizable 

and T. > T is assumed.    Now,  let cp.{t) be represented by a Fourier series,   i.e.,   let 

J"kt 
«„=*£ |t| <X/Z       . (121) 

Substitution of this expression into Eq. (120) shows that 

pT/2     jwks 
*ik J_T/2  e xi £ aike" k = Z a
ik ' 

k k 

Multiplication of both sides by exp [— jco.t] and integration over [—T/2, T/2] gives 

i ^      rT/2 rT/2  )"ks -J^i1 

Vu = T Z a
ik j_T/2 3_n . -T/2 J-T/2 

(122) 

or,   from Eq. (120) 

A iv     rT'/2 frT/2 Jcoksdsl frT/2 -JV 
dt    da 

Since the bracketed terms are simply the output of the filter h(t) when the input is of the form 

exp [jwt],  -T/2 < t < T/2,   and since 

pT/2     jw.t . sin7r(f-f,)T 

ix/2e dt = T  «tf-'A   - T sinc(f"'"' T 

it follows that 

. pT»/2 r« 
Vii -  T  Z  aik iTl/2   [T.L   H(f)sinc(f-fk) 

x    T  f      H{v) BincO» + f^ T e^2™0" dJ da 

T eJ27rfa df 

or 

XiaU " TT' 2  a.k  \        \       H(f) H(y) sine (i/ + fj) T sine (f-ffc) T sine (f+ y) T" dfdi/    .       (123) 

Consider the integration over f and observe that unless v « —f,   the integral is approximately 

zero.    Furthermore,   if T' is assumed to be large enough so that H(f) is constant in both 
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amplitude and phase over a band of frequencies several times l/T' cps wide about f = —v,  it 

follows that when v ■*— f.,   Eq. (123) can be written"!" 

Vu ■T \H(v)\     sinc( v + V T f T1 sinc(f - fR) T sinc(f + v) T! df dv    .   (124) 

Since T' > T, 

£ T' sine (f - fk) T sine (f + v) T! df = sine (fR + u) T 

and Eq. (124) becomes 

Vu ■T 2 •* £ |H(»/)|    sinc(y + ^) T sinc(i^ + fR) T du (125) 

|2 .. If the additional assumption is now made that  T is large enough so that |H(i>)|    is essentially 

constant over a band of frequencies several times l/T cps wide centered about u = — f.,   Eq. (125) 

can be written 

Vi! =  £ a
ik lH(V I2  f      T Binciv + f£) T sincU + fR) T du 

= a..    H(f.) if '       I ' 

94 
where the last step follows from the known orthogonality of sine functions.       From this it follows 

that either X. =  |H(f.)|     or a.. = 0,   i.e.,  both exp [jw .t] and exp [—jw.t] (or equivalently sina> t and 

cosoü.t) are eigenfunctions with eigenvalue  |H(f )|   .    Thus,   when T and T1 are large enough to 

satisfy the assumed conditions,   the {cp .(t)} and {\} of Theorem 1 are,   to a good approximation, 

given by + 

;2i-l(t) = 7? Si" ^ 

,.» /2 27rit </?2i(t) =  J7p  cos -^r- 

i = 1,2,... 
|t| <T/2 (126) 

and 

xU'*2l-tm IH<T»I 

This is the desired asymptotic form for the eigenfunctions and eigenvalues of Theorem 1.    Some 

additional insight into the value of T. required to make this result valid can be obtained by noting 

from Eq. (120) and Fig. 14 that if T    > T + T,,   where T,   is the "duration" of h(t),   to a good 

approximation,   and for — T/2 < t,   S < T/2, 

t Note that in a strict sense, Eq. (124) is true only in the limit T' -* °o.   However, it is clear that when T' is 
sufficiently large, the error will be negligible. 

{In this and subsequent discussions it is convenient to order the {X.}   in the manner of Eq. (126) rather than in the 
conventional manner of Xj > X2 ^ •.. .    It should be mentioned that other, closely related, asymptotic results 
have been obtained by Capon95 and Rosenblatt?0 for the case of arbitrary T and i -* ». 

84 



Fig. 14.   Concerning form of K(t,s) when 
T. is large. 

K(t, s) = K(t - s) 

where 

K(t |H(f)r exp(jw(t-s)J df      . 

Substitution of this result into Eq. (122) leads directly to Eq. (125). 

Consider next the {<p .(t)} and {x.} of Theorem 2 and recall that 

X^^t) =   \     <pJlT) K(t-r) dT 0<t<T (127) 

where 

K(t) A   r    |H(f)|/  Jet 2  ej<" 

As before,   it is convenient to shift the time origin so that the {<p.(t)} are defined over [—T/2, T/2] 

and therefore satisfy the equation 

fT/2 
\.<p.(t) =   \ <p.(s) K(t-s) ds 

J-T/2 
|t| < T/2      . (128) 

Following the previous procedure,  let <£.(t) be written as 

,.<t>=     I     ^ 
J"kt 

ik 
|t| <T/2 

k=-00 

and substitute this expression into Eq. (128).    This gives,  after multiplication by exp[-ju>it] and 

integration over f-T/2,   T/2], 

Vu ■ T I »a iT/2 • 
T/2      -jüJ#tfrT/2 

P-T/2 
jw, s 

K(t - s) e    K    ds I dt 

Since the bracketed term is simply the output of the filter K(t) when the input is exp [jw.t], 

-T/2 < t < T/2,   and since the Fourier transform of this input is  T sinc(f - f.) T,   it follows that 
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>Ai -1 aik £ Vrsinc(f- VT df £*,* exp|-^+ -i> 'idt 

|H(f)|2 

= T E aik   )       ' XN(f)     sinc (f " fk) T sinc (f + V T df 

k 

Assume now that T is large enough so that |H(f) |   /N(f) is essentially constant about f = —f.. 

Then,   with negligible error, 

|H(f 
Vii = u a

ik    N(f )     J      T sinc (f " V T sinc (f + V T 

= a. 
iHtyl2 

II      Mty 

Thus,  by analogy with the discussion preceding Eq. (126),   it follows that when T satisfies the 

assumed condition,  the {^(t)} and {\J of Theorem 2 are,  with negligible error,   given by 

« 2i-lW ■ 
/ 

N/T 
sin . = 1, 2, 3, . . . 

*2i(t> = si T cos ^   |t| <T/2 

X
2i = X2i- 1 = 

|H(^)|2 

N(^r) 
(129) 

which is the desired asymptotic form.    At this point,   it is sufficient to state that arguments 
similar to those used above show that for  T and T. sufficiently large,  the {<p(t)} and {\.} of 

Theorem 3 are also given by Eq. (129).    From this the important conclusion is reached that in 

all cases the (<p.(t)} become sinusoids when T -*■ °°.    Furthermore,   some idea of the value of T 
required to make this approximation valid has been obtained.    This result together with the re- 
sulting simple form of the eigenvalues will prove useful in deriving a "good" suboptimum modu- 

lation system.    Before proceeding with such a derivation,   however,   it is important to obtain 
some insight into the manner in which the <p.(t) differ from sinusoids when T is finite;   this 
difference,   although quite small,   has been found to be important in an experimental system. 

For this discussion,   let T    be infinite,   consider the {q> .(t)} of Theorem 1 and recall from 

Sec. II-D-4 that the (</>.(t)} are self-reproducing (over the interval (0, T)] when passed through 
the cascade of h(t) and h(—t),   i.e.,   when passed through a filter whose impulse response is the 

autocorrelation function Rh(t) of the channel filter.    Next,   observe as suggested in Fig. 15,  that 
when  T  is long relative to the duration of Rh(t) and a sinusoid of length  T  is passed through 

R, (t),  the output signal differs from a sinusoid only near the ends of the interval.    Thus,   since 

the previous work has shown that for large T the {<p .(t)} are approximately sinusoids,   and since 

sinusoids are self-reproducing except near the ends of the interval,   it follows that for large but 

finite  T the (<p.(t)} differ from sinusoids only near the ends of the interval. 
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Fig. 15.   Concerning form of the {<}>.(t)} when  T is large. 

2.   Modulation System 

This section is concerned with the derivation of a third suboptimum modulation system 
based on the results of the previous section and those in Appendix B. 

Consider first the analysis of Appendix B and,   for a given |H(f) |   /N(f),   let T     be chosen _ m 
so that |H(f)|   /N(f) is essentially constant over an interval of l/T    cps.    Then,   from the dis- 

cussion preceding Eq. (B-5),   it is clear that for T > T     the sums in the error exponents for 
finite T will differ negligibly from the limiting integral forms.    Next,   recall from Sec. IV-C-1 

that for T > T     the (<p.(t)} are,  to a good approximation,   sinusoids.    Thus,   since  T might typ- 
ically be on the order of days,   weeks,  or months and since,   at least for telephone channels, 

T     is on the order of 0.01 to 0.1 second,   it seems reasonable to attempt to substitute for the m 
(<p.(t)} time translates of a set of sinusoids approximately T     seconds long.    In other words, 

if a set of {a .(t)} are defined as 

«2i-l<« = 

a2i(t) ■ 

Jf sin | 27TJt 
3" 

27Tit /f cos[   , 

|t| < 7/2 

elsewhere 

|t| < y/2 

elsewhere 

3" «T 

(130) 

the (<p.(t)} would be replaced by time translates (by kJ seconds,   k an integer) of some number 

of the (a.(t)}.    However,   when this is done two forms of intersymbol interference are encountered. 

One form occurs because the {a .(t)} are only approximations to a set of {<p At)} of length   3"  and 
therefore are only "approximately" orthogonal at the channel output.    The second form arises 

from the nonorthogonality at the channel output of nonequal time translates of any two of the 

(ar.(t)}.    Both forms of intersymbol interference can be reduced significantly in the following 

manner. 
Let white noise and an infinite observation interval be assumed' and recall from Sec. II-D-4 

that the "coordinate filters" for this situation may be realized as the cascade of a filter with 

t The assumption of white noise is made here only to simplify the subsequent discussion.    The results obtained can 
be applied to the colored noise problem by simply replacing the filter with impulse response h(-t) by a filter with 
transfer function H*(f)/N(f).    The assumption of an infinite observation interval is made because it is usually quite 
easy to make the interval long enough to be infinite for all practical purposes and because implementation prob- 
lems are simplified when this is done. 
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impulse response h(—t) followed by a multiply and integrate operation.    Also,   observe that if 3" 

in Eq. (130) is considerably greater than the duration of the impulse response of the cascade of 

h(t) and h(—t) [if   3"  is considerably greater than the duration of the filter autocorrelation function 

R, (t)] when o-.(t) is transmitted the corresponding signal at the output of h(—t) will be essentially 

an undistorted sinusoid except near the ends of the interval.    Thus,   if 3"   is the approximate 

duration of R, (t) and if the {a-.(t)} are redefined as 

»a..<»4 

«21<t> = 

In 

3"-3\ 

9"-3\ 

sin 

127TJt      1 

3"-3" J 

In 

|t| <3/2 

elsewhere 

|t|  < V2 

elsewhere (131) 

it follows that by observing the output of h(—t) only over the "inner interval" of 111 < (.T — 3   )/2 

the orthogonality of the (o.(t)} at the channel output will be greatly improved.    In addition,   when 
time translates of any two of the {a .(t)} are transmitted,   this same technique gives a significant 

reduction in the intersymbol interference between successive signals.    The following example 

provides some quantitative insight into the effectiveness of this procedure.     [Note that if Rh(t) 

were identically zero for |t|  > 3"  ,   all intersymbol interference would be completely eliminated.] 
Consider a channel for which 

h(t) = 

f e_t t >0 

t < 0 

and let I.,   denote the magnitude of the number obtained when the output of h(—t),   assuming a.(t) 
is transmitted,   is multiplied by a, (t) and integrated over the interval  |t| < (3 — J   )/2.     (Observe 

/ g 

that for i/ k,   I.,   provides a measure of the intersymbol interference caused by the nonorthogo- 
nality of the (a.(t)} at the channel output.)  For this channel and for i ^ k,   L^ can be upper 

bounded by 
lk 

*ik < (J - J ) 
-J/2 

Thus,   the intersymbol interference decreases almost exponentially with increasing  3   and is 
inversely proportional to the duration   3 of the (a.(t)}.    For this channel,   reasonable values of 
3"    and 3"   might be 8 and 80 seconds,   respectively.t   For these values, 

I.,  <  5.2 x 10 
lk 

,-1 

-4 

and since I.. = [1 + a;.]      <  1,   it follows that the intersymbol interference can be considered 
negligible except for extremely high SNR conditions. 

t The selection of values for  ')   and 3g involves a trade-off between equipment complexity,  intersymbol inter- 
ference reduction, and loss in effective signal power.    This point is considered in more detail  later for telephone 
channels.    The values assumed here are of the same order of magnitude (after an appropriate bandwidth scale 
factor is  introduced) as those selected for the telephone line modulation system. 
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As the next step in the evaluation of this modulation system,   it is of interest to investigate 
+ 34 the performance that might be expected when it is used with a telephone channel.'   Yudkin      has 

found that for several different circuits the autocorrelation function of the channel impulse re- 
sponse is essentially confined to an interval of 1 msec,   i.e.,   R, (t) ^ 0 for |t|  > 500 fjtsec.    Thus, 

a value of  3"   = 1 msec should prove satisfactory for such a system.    Given this value of  'S , J 
i 12 . 8 

should be chosen so that |H(f)|    is approximately constant over an interval of 1/J cps and also 
so that 'J »  3" .    However,   from the standpoint of equipment complexity,   CS   should be as small 

as possible.    A reasonable compromise is 3" = 11msec.    With these parameters,  the {«.(t)} are 

sinusoids spaced at 100-cps intervals throughout the telephone line passband.    To proceed fur- 

ther,  consider a telephone line having a nearly flat amplitude characteristic over a band of 

2.5 kcps and assume a SNR of 30 db.*   For this line,   approximately 50 of the {«.(t)} would be 

used.    If the situation is considered in which the modulation system is used without coding,   it 

would be practical to assign equal energy to each of the (a.(t)} and to let each signal carry  n 
binary digits of information.    The number  n would be made as large as possible without causing 
an excessive error probability due to low level noise and intersymbol interference.    Assuming 
negligible intersymbol interference,  the value of n can be determined in the following manner. 

By assumption,  the transmitted signal (for one interval of lS  seconds) is of the form 

x(t) =   YJ  x^t) |t|  < 3/2 (132) 
i 

where the {x.} are statistically independent and can assume the equiprobable values 

x. 
~ = ±1,±3 , ±2n- 1       . (133) 

The constant k is chosen to satisfy the input power constraint.    From Eqs. (131) and (132)   k 

must satisfy 

s = E1* Czx2(t> dtl= ? l ^ -Ca "i(t) °J(t) dt 

=
 ?  E  Xi   IT/2 " <0 dt =   f(r3V  ? "   J-T/2 [1 + COS2Witl dt 

A ^ —ö   I •  sinw.Jl 

g   i l i       J 

-T^T"2xi2   • (134) 

t Since it is possible to effectively eliminate phase crawl at a negligible cost in signal power, its effects are not 
considered in this discussion. 

t In defining the SNR it is assumed that the actual input signal power is scaled to compensate for any flat loss on 
the line.    For example,  if a particular line has a minimum loss of 10 db at some midband frequency, the actual 
input power would be decreased by 10 db in determining the SNR.   Also, the noise power is considered to be the 
average power of the line output signal when the input signal is removed.    (For analytical purposes,  it is assumed 
later that the channel noise is white and Gaussian with double-sided noise spectral density N   and that the noise 
power has been measured at the output of a 2.5-kcps ideal filter.) 
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where the last step follows from the fact that the low-frequency cutoff of the telephone line 

requires co. > 27r(400) and therefore w.3" > 8.871-.    From Eq. (133) it follows that 

,n-l 

x.2 - kVn+1 

1=1 

all i 

or,   from Series 25 of Ref. 99, 

x2 =  |-k2[22n-l] all i 

Assuming that 50 of the {o-.(t)} are used,   it follows from this and Eq. (134) that k must satisfy 

,3 
S = k 2  5 X 10" [22n-ll (135) 

Next,   it is necessary to determine the signal and noise components at the receiver output 

when the transmitted signal is given by Eq. (132).    Since the k      "coordinate filter" for this 

system is realized as the cascade of the filter h(— t) followed by multiplication by a, (t) and in- 

tegration over the interval  |t| < CT  —  CS )/2,   it follows that the signal portion of the k     filter 

output,   say s, ,   is 
8 

a,(t) 
J-tf-SJ/2     k      [J-'S/2 

X(T) R, (t - T) dr    dt 
-(J-3-g)/2 

Upon substituting Eq. (132) and recalling that zero intersymbol interference is assumed,   it 

follows that 

sk=  |H(fk)|2xk 

where f,   £ [k + l/2(3" -   7 ) ],   if k is odd and f,   A k/2(3" -   J) if k is even. 
g th g 

Similarly,   the noise portion of the k     filter output,   say n, ,   is 

(136) 

r(3--3" J/2 \r 1 
n.   =   \ g a At)    \       n(r) h(r - t) dr k      J-CJ-y   )/2     k      l^-co J 

dt 

and since n(t) n{r) = N 6(t — T),   it follows that 

n. n. = N    \ g a.(t)   \ g        a .(T) R. (t - T) dT dt 
-(3"-3"  >/2 

«N     |H(fj|26l (137) 

where the last step follows from the assumption of zero intersymbol interference. Thus, if 

|H(f,)| « 1 is assumed, it follows from Eq. (133), Eqs. (135) to (137), and the assumption of 

Gaussian noise that the probability of error is given by 
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P .»-_!= J" exp(-i(l)2]dt 
V   27TO-    ^-li 

\T2TF ^/a 
= 1 — \ exp[-ir] dt 

where 

-*SlV* -1/2 
*      U(22n-1)J 

= [_JLIXJ<ri(22n_irl] (138) 
o 

Finally,  since a SNR of 30 db is assumed and since the SNR definition is 

SNR =  ^- x 10"3 

o 

it follows that 

o 

or 

|-=5X106 

o 

Thus,   from Eq. (138), 

t=|3X 103(22n-irV/2 

and it follows from a table of the Gaussian distribution that if P    < 10      is required,   n  must 
be such that 

[3 X  103(22n-l)-1]l/2>4.42 

or 

n<|-log2155 

Thus, n < 3 and the conclusion is reached that it should be possible to transmit three binary 

digits of information on each of the {a At)} without exceeding a P of 10~ . Since the {a .(t)} 

are 11 msec long and fifty of them are used,  this implies a data rate of 

R = 3 X 50 X (0.OH)"1 = 13,600 bits/second      . (139) 

When this result is compared with the rates of 2500 to 5000 bits/second attainable with commer- 

cial equipment (see Sec. I-C),   it is clear that the present modulation system offers a significant 

potential improvement in performance.    Furthermore,   use of a "powerful" coder-decoder such 

as the SECO machine      would lead to a 10 to 20 percent rate increase while giving virtually 

error-free transmission. 

91 



13-64-31091    1 

10 

0.8 

■( 

\ 

~_   0.6 

■ 
\ 

I \ 
04 

; 
\ 

02 

1                   1                   1                   1     ^^-U 
08 I 6 

f(kcps) 

Fig. 16.   Amplitude characteristic of simulated channel. 

Fig. 17.   C and C^ for channel in Fig. 16. 
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As a practical matter,  however,  it must be emphasized that this result is based on several 

assumed conditions that may be only approximately realized in practice     Most important of 

these is the assumption of negligible intersymbol interference.    (Recall from Sec. I-D that inter- 

symbol interference is the primary factor limiting the rate of present modems.)   Since R, (t) is 

not identically zero for |t| > 500 jxsec,   it is clear that some intersymbol interference must be 
34 present in an actual system;  however,  the form of RyJt) found by Yudkin      indicates that a sig- 

nificant reduction will be obtained.    In view of the potential rate improvement with this modula- 

tion system and because of the impracticality of analytically determining the actual intersymbol 

interference level as well as the effects of other departures from assumed conditions,' an experi- 

mental program was undertaken to demonstrate that the theoretical rate improvement could be 

realized in practice.    The results of this program are presented in the following section. 

As a final evaluation of the telephone line modulation system,   it is of interest to compare the 

value of C for this modulation system,   say C<p  to the value obtained with the optimum modula- 
tion system for a channel whose amplitude characteristics are similar to those of a telephone 

line.    Figure 16 presents the amplitude characteristic of a simulated channel used in the exper- 

imental work.    Assuming white noise,  the value of C for this channel is presented in Fig. 17 and 

has been obtained by graphical integration of Eq. (38).    Assuming negligible intersymbol inter- 
ference,   it is readily found from the previous discussion and Eq. (35) that, 

cj- j   I   loS2 
iel 

N^rJ 
B^or bits/second (140) 

where B   (0) is chosen to satisfy 

S 
2 J- 3" I 

iel 
B^O) 

HT±T) 
and 

■ hKhj) > B   (.) 

Equation (140) is plotted in Fig. 17 for the channel of Fig. 16 using the values 3" = 11 msec and 

!T    = 1 msec.    Observe that the effective loss in signal power is only 3 db at S/2 = 3X10    which 

corresponds to a SNR of approximately 30 db. 
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CHAPTER V 
EXPERIMENTAL PROGRAM 

The experimental program described in this section was undertaken to demonstrate that the 

performance predicted for the telephone line modulation (TELMOD) system in Sec.IV-C-2 could 

be realized in practice.    As described previously,  the transmitter portion of the TELMOD sys- 

tem consists of approximately fifty different 11-msec duration sine and cosine signals spaced 

at 100-cps intervals throughout the telephone line passband.    The receiver portion consists of 

filtering by h(—t) followed by multiplication by the desired sine or cosine function and integration 

over the inner interval of 10 msec.    In other words,   with {a.(t)} and x(t) defined as in Eqs. (131) 

and (132),  respectively,  this system has the form indicated in Fig. 18 for the interval |t| <   T/2. 

Recall that the fundamental assumption of the previous analysis was that intersymbol interference 

for all signals was negligible relative to the assumed noise level of 30-db SNR.    Thus,  the pri- 
mary goal of the experimental program was to demonstrate that this intersymbol interference 

level could be achieved in practice;   a secondary goal,  of course,   was to demonstrate that other 

differences between the model and the real channel have a negligible effect on the predicted 
performance. 

When considering the intersymbol interference level to be expected with the TELMOD system, 

two points should be noted.    First,  observe that if a.(t) and a.(t) differ in frequency by several 

hundred cycles per second,  their spectra have virtually zero overlap.    Thus,   it would be ex- 

pected that the orthogonality of these signals would be quite good at the channel output,   i.e.,  the 
intersymbol interference at the output of a particular co-ordinate filter should be caused pri- 

marily by a few immediately adjacent tones.    Second,  recall from Sec.IV-C-1 that an eigen- 

function is closely approximated by a sinusoid only if |H(f)|    is essentially constant over an 

interval several times l/J cps wide centered about the frequency of the sinusoid.    Thus,   it is 

to be expected that the orthogonality of immediately adjacent tones will be good (the intersymbol 
interference will be small) for tones in midband where | H(f) |    is nearly constant while the 

orthogonality will be poor near the band edges. 
Based upon these considerations,   an experiment was undertaken,   which involved construction 

of transmitting and receiving equipment using ten of the {a.(t)} discussed above with J = 11 msec 

and 3"   = 1 msec.    The amplitude of each a.(t) is determined by a five-digit binary number;  this 

number is obtained from either manual switches or a random source.    The frequencies of the 
{a.(t)} were variable and covered with ranges of 0.5 to 0.9kcps,   1.5 to 1.9kcps and 2.5 to 2.9kcps 

with both sine and cosine signals being used at each frequency.    The block diagram for this sys- 

tem is shown in Fig. 19. 
Using this equipment,  the following experiments were performed. 

A.    SIMULATED CHANNEL TESTS 

On a simulated channel with white Gaussian noise and the filter amplitude characteristic 

presented in Fig. (16),  the zero rate error exponent was evaluated by measuring the probability 

of error for two orthogonal signals.     The measured performance was 0.8 to 1.0 db from theo- 
retical which is well within the loss attributable to measurement inaccuracies and  slight equip- 

ment imperfections.     The intersymbol interference level for various tones was investigated by 

measuring the error rate due to intersymbol interference in the absence of noise.     Using the 
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Fig. 18.    Block diagram of TELMOD system. 
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approximation that the intersymbol interference was Gaussianly distributed^ it was possible to 

calculate an effective intersymbol interference variance for various tones in the frequency bands 

of 0.5 to 0.9,   1.5 to 1.9 and 2.5 to 2.9kcps.    The results of these measurements can be sum- 
marized as follows.t 

(1) In the region of 0.6 to 2.0kcps,   where |H(f)|    is flat,  the intersymbol 
interference variance between a particular reference tone and adjacent 
tones decreased approximately as l/n,  where n is the frequency dif- 
ference between the tones in units of 100 cps.    For n > 6,  the intersymbol 
interference variance caused by a single tone was too small to be 
measured. 

(2) In the frequency range of 0.9 to 1.9kcps,  the total intersymbol inter- 
ference variance^  was less than 6.25 x 10-2.    For 16-level output 
quantization,  this implies that Pe < 3 x 10'5.    Thus,  to within the ac- 
curacy of the Gaussian approximation to the intersymbol interference 
distribution,   it would be possible to transmit four binary digits of in- 
formation on each of the tones. 

(3) For frequencies in the range of 0.5 to 0.9kcps,  the total intersymbol 
interference variance increased from a level of less than 6.25 x 10~2 

at 0.9kcps, to 0.2 to 0.7kcps,  to 1.0 at 0.5kcps.    The corresponding 
information rates at a Pe < 3 x 10-5 would be 4,   3,  and 2 binary digits 
per tone for the frequencies of 0.9,  0.7,  and0.5kcps,  respectively. 

(4) In the 1.9- to 3.0-kcps frequency range,  the intersymbol interference 
variance increased from 6.25 x 10~2 at 1.9kcps to 0.16 at 2.5kcps, 
to 0.5 at 2.7kcps, to 1.25 at 2.9kcps. The corresponding information 
rate at a Pe < 3 x 10-5 would be 3, 2, and 1 binary digits per tone for 
the frequencies of 2.5,  2.7,  and2.9kcps,   respectively. 

The significance of the measurements on the simulated channel can be summarized as follows. 

(1)   As predicted theoretically,  the intersymbol interference level is small 
for signals in the frequency range where |H(f)|2 is constant (in the 0.9- 
to 1.9-kcps range) while it is significantly large near either band edge, 
where |H(f)|2 changes considerably over an interval of a few hundred 
cycles per second. 

t The justification for this assumption is the fact that the intersymbol interference for a given tone is a sum of the 
(small) random interferences from a number of adjacent tones.   Thus, to a first approximation it would be expected 
from the Central Limit Theorem that the total interference would be Gaussianly distributed.   Clearly, the fact 
that only 10 to 12 tones contribute significantly to the intersymbol interference for a given tone implies that this 
is a highly approximate assumption.    However, it is a convenient engineering approximation which led to con- 
sistent results. 

t All the results presented in this section are based on an extrapolation of measurements made in the indicated 
frequency bands.   For example, the intersymbol interference variance for a tone at 0.9 kcps was obtained by 
measuring the intersymbol interference variance due to the signal-s in the 0.5- to 0.8-kcps band and adding this 
to the variance obtained for the 0.9-kcps tone when aM signals were transmitted with random amplitude. 

§ The intersymbol interference variances given in this section are expressed in normalized form, the reference 
being taken as the amount by which an integrator output changes when the amplitude of the corresponding input 
signal is changed by one level.   Thus, for a given intersymbol interference variance o*-, the probability of error, 
assuming 32-level quantization of the integrator output, is 

Pe = 1 - (2,ra2r1/2  X]/2 exp [-1 (x/a)2] dx      . 

Similarly, if 16-level quantization is assumed 

Pe = 1 - (2ira2f1/2  f_\ exp [-^ (x/a)2] dx      . 
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(2) On the basis of midband measurements,  the intersymbol interference 
level for the TELMOD system on this channel is equivalent to a noise 
level of approximately 31-db SNR.t   Thus,  for a noise SNR less than 
about 30 db,  the intersymbol interference level could be considered 
negligible,   and furthermore,  the performance would be within 1 db of 
theory.    Conversely,   for a noise SNR significantly greater than 30-db 
intersymbol interference would be the primary factor in determining 
probability of error. 

(3) If a noise SNR considerably greater than 30 db is assumed and if a 
Pe < 3 X 10 "5 is desired,   it would be possible to achieve a data rate 
of approximately 14,000 bits/second over this channel.    This number 
is based upon the measurements given above and assumes the following 
relation between the tones and the quantization levels. 

Frequency 
(kcps) 

Binary 
Digits/Tone 

0.5  ,    0.6 
0.7  ,   0.8 
0.9 to 1.9 
2.0 to 2.4 
2.5 to 2.7 
2.8 to 3.0 

2 
3 
4 
3 

1 

Furthermore,   if the noise SNR were sufficiently good,   it would be 
possible to do amplitude equalization prior to the h(—t) filter and thus 
to extend the flat portion of the channel to 3.0 kcps.t   Such equalization 
would lead to a rate of 15,000 bits/second and would greatly simplify 
instrumentation problems. 

B.    DIAL-UP CIRCUIT TESTS 

Intersymbol interference measurements were made on a local dial-up line whose amplitude 

characteristics are given in Fig. 20.    For this channel,   it was found that the severe amplitude 

ripple gave an unusually long autocorrelation function R^(t) of approximately 10-msec duration. 

Because of this,  the observed intersymbol interference levels were large and the assumption 

of a Gaussian distribution for the intersymbol interference could not be made.    Thus,  the only 
measurements possible for this channel were probability of error vs number of amplitude levels. 

The results of these measurements indicate that only two levels per tone (or equivalently about 

1800 bits/second) can be transmitted at an acceptable error rate using the TELMOD system 

presented in Fig. 18.    However,   it was found that the low-level noise SNR for this line was better 
than 50db.§    Thus,   amplitude equalization of the channel before filtering by h(— t) could be done 

t From Eq. (138) and the subsequent discussion, it follows that if n  is the number of binary digits that can be 
transmitted at a Pe <^ 3 X 10"" 5 due to intersymbol interference, the effective intersymbol interference SNR is 
given by 

SNRX 

22n - 1 

1/2 
4.0 

| As a practical matter, it has been found during the experimental work that the SNR for many leased data circuits 
is on the order of 50 db rather than the frequently quoted 30 db.    Thus, such a procedure of amplitude equaliza- 
tion, although not optimum from the standpoint of detection theory, would lead to significantly reduced inter- 
symbol interference and thus to an increased rate. 

§ It must be emphasized that this SNR was observed only in the absence of impulse noise.   For this line, the 
impulse noise was both large and frequently occurring; the observed probability of error due only to impulse noise 
was on the order of 10"3. 
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Fig. 20.    Amplitude characteristic of local dial-up line. 

to give a flat response over the band of approximately 0.6 to 1.6kcps.    On the basis of the tests 

on the simulated channel,  this would give a capability of transmitting at least eight levels on 

each tone and thus of realizing a data rate of approximately 6000 bits/second. 

C.    SCHEDULE 4 DATA CIRCUIT TESTS 

The third series of tests were made on a Schedule 4 Data Circuit looped from Lincoln Labora- 

tory via Springfield,   Massachusetts,  whose amplitude characteristics are given in Fig. 21.    As 

with the simulated channel,  the intersymbol interference level for various tones was investigated 

by measuring probability of error due to intersymbol interference and then calculating an ef- 

fective intersymbol interference variance assuming a Gaussian distribution^   The results of 

these measurements can be summarized as follows. 

(1) As before,  the intersymbol interference between a reference tone 
and adjacent tones was found to decrease approximately as l/n where 
the frequency difference between tones is n X 100 cps.    For n > 6,  the 
intersymbol interference due to a single tone was too small to be 
measured. 

(2) In the frequency range of 0.5 to 0.9kcps,  the intersymbol interference 
variance was 0.74 at 0.5kcps and 1.56 at 0.7 and 0.9kcps.$   The cor- 
responding data rate at a Pe < 3 X 10"5 is 2 binary digits per tone at 
0.5kcps and 1 binary digit per tone at 0.7 and 0.9kcps. 

(3) For the frequency range 1.5 to 1.9kcps,  the measured variances were 
0.12 at 1.5kcps,   0.15 at 1.7kcps and 0.21 at 1.9kcps.    The correspond- 
ing data rate would be 3 binary digits per tone. 

t For this line, the low-level noise SNR was 50 db and impulse noise activity was extremely small; the measured 
probability of error due only to impulse noise was on the order of 10~6.    Thus, the effects of both low-level noise 
and impulse noise were neglected in the intersymbol interference measurements. 

t Observe here that the intersvmbol interference increases for tones further away from the band edge.    The cause 
of this is the rapid change in | H(f) p around 1.0 kcps. 
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Fig. 21.    Amplitude characteristic of Schedule 4 Data Circuit. 

(4)   In the 2.5- to 2.9-kcps frequency range,  the variances increased from 
1.32 at 2.5 kcps to 2.1 at 2.7kcps,  to 3.3 at 2.9 kcps.    The corresponding 
data rate at a Pe < 3 x 10-5 is 1 binary digit per tone. 

The significance of these measurements can be summarized as follows. 

(1) As predicted theoretically,  the fact that this channel is not flat causes 
the intersymbol interference level for the TELMOD system to be sig- 
nificantly higher than it was on the simulated channel.    However,  the 
high observed SNR for low-level noise would allow amplitude equali- 
zation of the channel prior to filtering by h(-t) and thus would allow 
a significant reduction in the intersymbol interference level. 

(2) If a Pe < 3 X 10"5 is desired,   it would be possible without amplitude 
equalization of the line to achieve a data rate of approximately 8400 bits/ 
second.    This is based upon the measurements given above and assumes 
the following relation between the tones and the quantization levels. 

Frequency 
(kcps) 

0.5 to 1.0 
1.1 to 1.3 
1.4 to 1.9 
2.0 to 2.4 
2.5 to 3.0 

Binary 
Digits/Tone 

If,  however,   amplitude equalization of the line was performed,   the tests 
on the simulated channel indicate that a rate of approximately 15, 000 
bits/second would be possible. 

100 



APPENDIX A 

PROOF THAT THE KERNELS OF THEOREMS 1 TO 3 ARE £2 

.,65 A kernel K(t, s) is said to be an itL -kernel if 

T       T 
||K||

2
 ^f     f     K2(t, s) dtds 

Jo   ^o 
<    oo 

For the kernel of Theorem 1,   it follows that 

||K||2=   f     f        f   '   h(a-t) h(a-s) da      dtds 

and thus from the Schwarz inequality 

-   (a-t) da dt 

2 

h2(t) dtl 

which proves that the kernel is £2.    Next,  to prove that the kernel of Theorem 2 is £? define a 

function K. /2(t) by 

:i/2(t) £ y       |H(f)|  [N(f)]"l/2 e-Jwt df      . 

Then 

K(t - s) = £      Kl/2(t - a) Kl/2(s - a) da 

and, therefore 

T       T    r     oo 1 7 

"K"2=I     I        I       Kl/2(t-a)Kl/2(s-a)da       dtds 

which,   from the Schwarz inequality,  becomes 

|K||
2
^ C/Jt-alda K;/9(B 

■ [J: - r. K2
/2(a)da[ 
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Thus,  from Parseval's theorem, 

|K||\<[T£ |H(f)r [N(f)] •4 
and the kernel is £».    Finally,  to prove that the kernel of Theorem 3 is £ 7 define a function 

kl/2(t' s) by 

00 Pvn>T, 

i=i ^i 
y^s) 

where 

T ' 
(ht,y )       4  f    *  y(a) h(a-t) da 

1       ^o 

and y.(t) and ß. are defined as in the proof of Theorem 3.    Then 

T                                                              (bt,yi)T    (hg, y.)T 

lo * kl/2(t. a) kl/2(s, a, da =   £ -±= * ,„, y^ 

■M 

= 2 
(Vri)Ti(h8.y1)Ti 

0T 

■vT,   ^T 

♦^O        «-'O 
E 
i=l 

y^tf) y^p) 
h(p — s) da dp 

= K(t, s) 

Thus, 

K ^TJr
0[Ck^°)k^ (s, a) da I    dtds 

which becomes,   from the. Schwarz inequality, 

IlKl :i|HT[ioTik^(t-H[rk^ (s, a) dal  dtds 

T   -    Pyy^ 

i=l 

98 However,   it is known      that 

,2 

'H(f)!2 df 

i=i     *      J- 
N(f) 
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Thus, 

|K||\<[T£ |H(f)| 
N(f) 

212 
<   * 

and the kernel is £   . 
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APPENDIX B 

DERIVATION OF ASYMPTOTIC FORM OF ERROR EXPONENTS 

This Appendix is concerned with a derivation of the limiting form of the error exponents of 
Eqs. (34) to (36) and Eq. (58) for T -* ».    Consider first the standard random coding exponent 

given by 

ET(P) = (r±-/ | BT(P) 

N „ \ E   (p) 

i=l x 

R(1)^R^R(0) 

04p4 1 (B-l) 

and 

N x. 
ET(R) = -±   YJ    

lnB~7l)~R 0<CR.<R(1) 

where 

i=l 

N ST   ♦   s   x.-1 

B^p) 

i+P    „i=i     i 

N 

and N is chosen to satisfy \„ > BT(p) >, *N+1-    Recall from Sec.IV-C-1 that for large  T the 

{\.} are given by 

X2i " X2i-1 
|H(^)|2 

i = 1, 2, 3, . . . (B-2) 

and assume temporarily that | H(f) |  /N(f) is a continuous monotone nonincreasing function for 

f ^.0.    Also,   recall from Fig. 5(a),   or observe from Eq. (B-l), that BT(p) is chosen to satisfy 

(B-3) 
N/2 r 

-S_ = ±   V 
1 + p)       T    u 

i=l 
2(1 +p) 

N(^) 
BT<»>       |H(i,)|2 

where now N/2 is the largest integer such that 

Observe,   as suggested in Fig. B-l,  that the quantity 

N/2 

T     LJ 

N(^) 

,H(^)|2 
(B-4) 

is an approximation to the area under the curve N(f)/|H(f)|   ,   while the quantity 
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Fig. B-l.    Concerning interpretation i 
ofEq.(B-3). BTI,) 

N-1    N_ 
2T    2T 

2T   *   BT(p) 

,-1 is precisely the area under the line [Brp(p)]     .    Viewed in this manner,  it is clear that for arbi- 

trarily large  T,  BT(p) will always be adjusted to make the difference in these two areas equal 
|2 . 

finite interval,     and since it is readily shown      from the definition of a Rieman integral that 

to S/2(l + p).    Thus,   since N(f)/|H(f)|    is continuous and therefore Rieman integrable over a 

finite interval,     and £ 

when N = 2TW(W > 0) 

N/2 
N

<T->      rw   N(f) 
|H(^)|2       ^o     |H(f)| 

1    y       ^T>      _  r™ 
llm     T    h    ", TT2   "   \ 
T-«   l    .   A      H(-i) Jo 

df 

it follows that in the limit T — °°,   BT(p) or,   more simply,   B(p) must be chosen to satisfy 

2(1 
§_ _   fw [_L_ _    N(f)    1 
+ P>      Jo    lB^       |H(f)|2J 

df 

where W is defined by 

1H(W)|" = B(p) N(W) 

From this discussion and Eq. (B-l) it follows that 

E(p) ä   Um   ET(p) = (-7-P—)2 | B(p) 04P<1 

where B(p) is given by Eq. (B-6).    Similarly,  from Eqs. (B-l),   (B-2),   and (B-5) if follows that 

(B-5) 

(B-6) 

(B-7) 

lim   R(p) =    lim 

=   lim 
T-oo 

N/2 
1    y          |H(i/T)r     _N   lnE   (o)_ 
T    L    ln    N(i/T) 2TlnBT(p)- 

ET(p) 

i=l 

'     N/2 ? 

1 y   m lH(i/T)r_ N_ lnB( . 
T    L    in    N(i/T) 2T Lna[p> 

i=l 

E(p) O^p« 1 (B-8) 

From Fig. B-l it is clear that for T - <»,  N/2T - W where W is defined by Eq. (B-6).    Further- 

more,   since ln(- ) is a continuous function of its argument,   it follows from above that 
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N/2 
lim   i    V     ln  lH(i/T)|2  _   fW ln|H(f)|2 
lim   T    £    in    N(i/T) ^    in    N(f)      df 

Thus,  from Eq. (B-8), 

lim   R(p) = i. '^Irf.-.M,,.™ 

■I In |H(f)| 
N(f) B(p) df- E(p) 

04P4 1 (B-9) 

Equations (B-7) and (B-9) are the desired asymptotic forms when |H(f)|  /N(f) is monotonic. 

When |H(f)|  /N(f) is nonmonotonic an analogous derivation shows that for T -*»,   B(p) is chosen 

so that 

where 

S f     [    1 N(f)    1 
2d+P)  ~ JW lB<<>>        |H(f)|2J 

wM+f:Iw->B(^ 

df (B-10) 

The corresponding values of E(p) and R(p) are given by 

0^p<: 1 E
«» = (T^>

2
!

B
«» 

and 

R(P) ■i In lH(f)| 
w 

xllN(f) B(p) df- E(p) o^p^: l 

which is the result presented in Eqs. (37) and (38). 

When 0 >£ R<: R(l),   it follows from Eq. (B-l) and the previous discussion that 

N/2 

Um   ET(R) =    Hm   i     I    ^NIVTYB^I) - R 

■L In 

i=l 

|H(f)l df-R 

where B(l) and W are defined by Eq. (B-10).    This is the result presented in Eq. (39). 

Finally,  the similarity of the expurgated bound given in Eq. (58) to the standard bound given 

in Eq. (B-l) together with the above results leads directly to the asymptotic form of the ex- 

purgated bound presented in Eq. (59). 
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APPENDIX C 

DERIVATION OF EQUATION (63) 

This Appendix proves that the function y(t) which maximizes the functional 

T  i T r i 
I- I        -Xx2((7) + |    x(a) x(p)    Rh(a - p) +   2     2/3kRh(a - p - k3")    dp 

is a solution of the integral equation 

*y(t) =  \     y(T) K(t-T) dT     0<;t<c J 

da       (C-l) 

(C-2) 

where 

N 

K(t - r) i Rh(t - T) +    YJ   ^k [Rh(t-s +k3") + Rh(t-s-k!T)] 

k=l 

Following standard variational techniques,    '      let x(t) = y(t) + € f(t),  where y(t) is the desired 

solution,  and set 

i1! 
df 6 = 0 

= 0 

From Eq. (C-l),  this gives 

dT L=0 =   \        -2Xy(a) f(a) +   C     [y(a) f(p) + f(a) y(p)] 

r N 

Rh(a-p)+    I 
1 k=l 

dp da 2/3kRh(a - p - kj) 

However,   since R^(a — p) = Rh(p — a),   it follows that 

f      f     y(a) f(p) RhCa - p) da dp =   f      f     f(a) y(p) Rh(a - p) da dp 
»J ~T 

and 

j     j N cj-      j N 

j1     j*     y(a)f(p)    £    ßkRh(a-p-ky)dffdp= j*     y     y(p)f(a)    £ 

N 

E 
k=l 

3"   pJ 

o   ^o k=l 

x /3kRh(a - p + k!T) da dp 

Thus,   Eq. (C-3) can be written as 

de  Ie=0     c r  -we) + r -Xy(a) +   \      y(p) K(a - p) dp     f(a) da 

(C-3) 

(C-4) 
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where K(a - p) is defined in Eq. (C-2).    Finally,   setting 

de   |e = 0 

for all f(t) leads to the result that the bracketed quantity in the integrand of Eq. (C-4) must be 

zero for all 0 ^ a ^ 'J,   i.e., y(t) must be a solution of Eq.(C-2). 
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APPENDIX D 
DERIVATION OF EQUATION (70) 

This Appendix proves that if Q  (p) is a polynomial differential operator of order n,   if v(t) 

has a continuous (n — 1)     derivative and satisfies the boundary conditions of Eq. (68),   and if K(t) 

is n times differentiate,  then 

f     [Q (p) v(a)]K(t-a) da=   f     v(a) [Q (-p) K(t - a)] da      . (D-l) 
^o Jo 

The definition of Q (p) implies that 

Qff(p) v(a) =    £   biv(i)(CT) 

i=0 
Ox a<£ 3" 

where 

and 

Thus 

da1 

Q(s) £   Y   b/      ■ 
i=0 

j 3" 
f      [Q  (p) v(a)]K(t-a) da =    E   bi   r    v(l)(a) K(t-a) da 
J° i=0 ° 

For i > 0,   integration by parts and substitution of the boundary conditions of Eq. (68) shows that 

) K(t - a) da = K(t - a) v(l_1)(a) = 0 -  \     v(i_1)(ff) £ K(t-a) da 
^o 

= - f     v(i"1)(a) A K(t-a) da 

Repeated application of this result leads to 

f    v(l)(a) K(t-a) da = (-1)1  f     v(a) -^U K(t - a) da 
^o ^o da1 

Thus, 

,3"     ,. 
Y   b.  j"    v(i)(a) K(t-a) da = J     v(a) 

i=0 

and Eq. (D-l) is proved. 

E v-1)1-^ w-^ 
i=0 dax 

da 

=   \      v(a) [Q (-p) K(t - a] da 
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APPENDIX E 

PROOF OF EVEN-ODD PROPERTY OF NONDEGENERATE EIGEN FUNCTIONS 

It is desired to prove that all nondegenerate eigenfunctions of the eigenvalue differential 

equation 

[N(p2)-\.D(p2)]v.(t) = 0 5" T — — < t < — 
2 ^l ^ 2 (E-l) 

v^i-i-o 

vf-^f, =0 (E-2) 

2 2 are either even or odd functions.    Observe first that since N(p ) and D(p ) contain only even 

order derivatives and since 

,2k ,2k 

^Sk vi(t) = "Sk Vi<-t) k = 0, 1, . . . 
dtZk     l dt^k    1 

(E-3) 

it follows that if v.(t) is an eigenfunction with eigenvalue X., then v.(-t) is also an eigenfunction 

with eigenvalue X.. Thus, if v.(t) is a nondegenerate eigenfunction, there must exist a constant 

b  such that 

v.(t) + bVi(-t) = 0 (E-4) 

However,   if v.   (t) and v.   (t) denote the even and odd parts of v.(t),   respectively,  that is, 
16 lO 1 

v.(t) + v.(-t) 
vie" - 

and 

v.   (t) = 
iov ' 

v^-v^-t) 

it follows from Eq. (E-4) that (1 - b) v.   (t) = -(1 + b) v.   (t) and therefore that either b = 1 and 

v.   (t) = 0 or b = — 1 and v.   (t) = 0.    In other words,   a nondegenerate eigenfunction is either even 
lO X" 

or odd. 

110 



APPENDIX  F 

OPTIMUM TIME-LIMITED SIGNALS  FOR COLORED NOISE 

This Appendix presents a generalization of the results of Sec. IV-A to channels with colored 

noise.    Since a derivation of the results for colored noise follows the previous work quite closely, 
only the final results are presented here. 

The problem considered is that of choosing a fixed energy,  time-limited (to [0, 3"]) signal to 
54 give at the optimum detector      output both zero inter symbol interference at t = kJ,  k = ± 1, 

±2, . . .,   and a maximum SNR at t = 0.    Under the restrictions that h(t) is a lumped parameter 
system and N(f) is a rational spectrum,  the following result is obtained.    As before,  let 

H(s) H(-s) ^ ^^ 
D(s^) 

Let 

N(f) £ ^f> 
D(s^) 2     A   2,2 

s   =-47T   f 

2 2—2 —    2   and assume that the orders of the polynomials N(s  ),  D(s  ),   N(s  ),   and D(s  ) are 2m,   2n,   2m, 

2n,   respectively.    Then the maximization problem previously outlined leads to the boundary 

value differential equation given by 

[N(p2) D(p2) - X.D(p2) N(p2)] v.(t) =0 0 < t < J 

v^O) = v.m = 0 

Vi(n+m-l)(0) m     (n+m-1)^ = Q (F_1} 

The corresponding channel input signals {y.(t)} are 

y^t) ^ 4r Q(P) VjCt) (F-2) 
vc 

where 

n+m 
Q(s) A     n     (s-z.) 

i=l 

z. = ±s. i = 1, 2, . . ., n + m 

RHP zeros of D(s2) for i = 1, . . ., n 
s.-= 

l 

RHP zeros of N(s  ) for i = n +1, . . ., m + n 
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and therefore 

Q(s) Q(-s) = cD(s2) N(s2) 

These solutions have the following properties: 

(1) The choice z^ = si or z. = — s^ in the definition of Q(s) is arbitrary. 

Thus,  there are 2n+m equally valid solutions to the maximization 

problem. 

(2) The {y.(t)} are orthogonal and may be assumed normalized,   i.e., 

in the notation of Sec. IV-A, 

(v., y.)cr = 6.. 

This normalization is assumed hereafter. 

(3) If K1(t) is defined as 

K (t) A  f°°    _±_    jut df 
1      = J_oo N<f> 

and if the generalized inner product is defined as 

it ̂ g)«, 4  f      f(t)   f      g(o) K  (t - o) der 
J _0O J -oo 

dt 

then the {y.(t)} are "doubly orthogonal" (in the sense of Sec.IV-A) at 

the channel output with respect to the generalized inner product,   i.e., 

if r..(t) is the channel filter output when y.(t — j!T) is transmitted,   then 

(r..,K,r, .)     = 
[X. if i = k and j = i 

otherwise 

(4)   The eigenvalues {\.} are the "generalized energy transfer ratios" of 

the filter for the corresponding eigenfunctions,   i.e.,   with r..(t) as 

previously defined, 

X. = 
l 

'rio-Klrio>~ 

The importance of this result lies in the fact that the SNR at the 

optimum detector output at t = 0 is given by 

r |X(f) H(f)| 
N(f) df 

when x(t) is the transmitted signal.    Thus,   yAt) is the solution to 

the original maximization problem. 
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