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ABSTRACT 

The ROSE balloon/AN-FPS-16 radar system is designed to report 
small-scale winds and shears by polynomial smoothing ot the radar tracking 
data.     The most successful mathematical technique for fitting the data and 
computing winds and shears is presented along with other techniques which 
were considered but ultimately rejected. 

Analysis of the self-induced balloon motion is attempted by classical 
physical methods and by a Power Spectral Detsity Technique. 

A criterion for evaluating the effect of modification to the standard ROSE 
is developed and applied to modified ROSEs and the newer small lightweight 
balloon. 

iii 
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INTRODUCTION 

The standard ROSE balloon is a metalized i.onexpanding sphere having a 
diameter of two meter«.    When tracked by AN/FPS-16 radar,   the space-time 
coordinate« of thi« ri«ing balloon can be determined accurately at a 
frequency of 10/«ec. 

Thi« report i« a chronological presentation of part of the work per- 
formed under AF 19(604)-7450 »pon«ored by AFCRL.    The fir«t «ection 
describe« only the mathematic« which were developed and used in an attempt 
to accurately de«cribe the balloon'« velocity and acceleration.    A« the reader 
will note,   the author became increa«ingly aware that the velocitie« and 
acceleration« of the «tandard ROSE balloon did not repre«ent the wind.    In 
particular,   the acceleration of the balloon in no way represents the wind 
«hear.    Consequently,  Section« 2 and 3 deal with the unsuccessful effort to 
eliminate l,noi«e" (regardle«« of cau«e) from the balloon motion in order to 
find the proper wind. 

Concurrent with the work described in Section« 1-3,   Murrow and Henry 
(working independently) determined by phy«'.cal experiment« that the «tandard 
ROSE balloon was definitely not a proper wind «en«or--at least over the 
fir«t ZOO feet of it« a«cent.     Reid of AFCRL,   who wa« also aware of thi«, 
«bowed that unpredictable aerodynamic force« were acting on the «tandard 
ROSE over at lea«t the fir«t 20, 000 feet of it« ascent.    Our «tudy,   e«pecially 
the work de«cribed in Section« 2 and 3,   indicated that there wa« no good way 
to mathematically separate the aerodynamic forces acting on the balloon 
from those induced on the balloon by the wind.    It thus became apparent to 
all concerned that the standard ROSE was not an adequate wind sensor. 

A physical modification of the standard ROSE balloon was therefore 
undertaken by AFCRL.    Such work had already been started by Scoggins of 
NASA.    His modified ROSEs are called " Jimsphere«."    Reid and Lenhard of 
AFCRL devised several different modifications and developed some smaller 
smooth ROSEs.    The description of these balloons,   the mathematical 
treatment used in describing their motion,   and the statistics employed in 
comparing the modified balloons to the standard and to ihe smaller ROSEs is 
desc ribed in Sections 4,   3,  and 6. 

The conclusion reached in these sections is that the modification has 
improved the wind sensitivity and will permit use of the technique« tor pre 
dieting wind and wind «hear which are de«cribed in Section 1. 



I. MATHEMATICAL TECHNIQUES FOR COMPUTING WINDS AND SHEAPS 

That the ROSE balloon constituted a good wind sensing system was the 
babic assumption for the various mathematical techniques developed for com- 
puting winds and shears.    Sections  1.1 and l.Z describe two of these techniques 
and th»- empirical basis on which they were rejected.    Sections 1. 3 and 1.4 
describe the other techniques which seem preferable.    Although none of these 
methods were acceptable prior to balloon modification,   it now appears that 
the techniques described in Sections  1.3 and 1.4 will provide    alid wind and 
shear values when applied to radar tracking data from the modified balloon. 

The mathematical rationale upon >vhich all these techniques are based 
.-.  .!•>   tollovks.      Jhc  standard rquatiolU  '->!  ni.tior.  tor a  balloon  n.ownt;  in  thf 
atmosphere without external forces are: 

Mx   =   1/2   p   AB CD(v| (x  - Wx) (1) 

My   =   1/2   p   AB CDlv| (y - Wy) (2) 

Mi   =   1/2   p   AB CD|v| (z  - Wx)   +  (m -  p   VB) g, (3) 

uhere   m  is the mass of the balloon and  M  is the total effective mass   (see 
Appendix  1).    Combining the first and third equations and then the   second and 
third gives the equations for the component wind in the   x   and  y directions: 

Mx (y - W J My (i  - W J 
=     X    -   T-TT 

X 

v *  K z (4a) 
M>  - (m -  pVB) g y       7       Mz - (m - pVglg       (4b) 

The  second term in both equations may be neglected because of its 
insignificance when compared v^ith the first term.     The wind equations 
modified in this way ^ould be 

Wx   . i and Wy  =  y {J*} 

Winds computed by this equation are known as point winds.    The average wind 
in a layer is given by the equations 

w   . ^LÜL     and    w   . jLlp . IS! 
x      i^ • t| y    ^" 4 (6b) 

Nfchere x ,   y ,   and t   are the space-time coordinates. 

The wind shear in the component directions is defined by the equations 

d<Wx' "'V (7») 

The chain rule of differentiation gives 



1 

dt 
dt A 
dh       and y dh dh 

(8a) 
(8b) 

If the approximations    x   =   \\    ,   >   -   W   ,   and | ■ I are made the equations are: x y 

S     =  -^ and S    « X 
y     i 

(9a) 
(9b) 

Quite often it is difficult to compute the second derivative accurately.    In 
such case« d(Wx) is  replaced by AW      and dh i» replaced by Ah which are 
finite differences.    The component shear equations then become: 

W       - W 
x , x. 

S     = x 
2 

1 

w 

and S     * 
y 

w 
(10a) 
(10b) 

1.1      NINTH-DEGREE POLYNOMIAL METHOD 

It has been suggested by Scoggins (May,   1963) that a polynomial approx- 
imation to the FPS-16 radar tracking data will yield valid accelerations and 
velocities whirh will in turn give realistic values of winds and shears from a 
rising sphere   .    It is most economical to use the lowest possible degree 
polynomial in approximating the radar tracking data.    In order to determine 
the lowest degree necessary the data was approximated by a zero degree 
polynomial,  and the  residual was compared with the theoretical tracking error 
inherent in the radar.    The degree of the polynomial was then increased until 
the residual was less than the tracking error.    The maximum degree used was 
the ninth degree even though the  residual of the ninth was occasionally larger 
than the tracking error.    Since the radar tracking data is equally spaced at 
one-tenth second,  orthogonal polynomials are used in the approximations.    The 
orthogonal polynomials are especially desirable in this application because 
they allow the next higher power term to be added without recalculating all 
the previous coefficients as is the case with ordinary least-squares poly- 
nomials.    Later work indicated that it was also desirable to compute the anal- 
ysis of variance (ANOVA)   table   to  determine whether the higher  degree 
polynomial terms were statistically significant. 

1.1.1    ORTHOGONAL POLYNOMIALS 

The general form of the orthogonal polynomial for n-fl data points,  eval 
uated at the i th point,   is: 

3    =  AnPn     (i)   +   A.P,      (i) + ...   + A     P (i) Mi 0   0,n 1    1,^ ' m   m,^ (H) 

where i takes on all integral values from 0 to n,  and q is x,   y,   or z depending 
on which axis is being considered    ind  m   is  the degree of the polynomial. 

A      is the coefficient of the form 
m 



m 

E    q P 
i = 0    l   m'n 

(0 

n 
E 
i=0 

m, n (») 

where q   is the i th data point. (1^) 

P (i) is a  Legendre polynomial of degree m,   of the form 

[k] 
m, n k=o ^      k      ni

k3 
where 

i^   =   i(i-l)(i-2)(i-J).--(i-k+l)l   i^ r.  1 and (k) 
ml 

{m-k):k: 

(14a) 
(14b) 

I he evaluation of these expressions for each degree from zero to nine is 
given in Appendix 6. 

The Legendre polynomials were generated in a computer program instead 
of being obtained from standard tables so that transcription errors and costly 
key punching might be avoided.     The generating program was written in 
BALGOL and run on the University of Dayton's Burroughs 220 computer. 
Every foreseeable error-producing operation was eliminated.    When possible, 
integer arithmetic was used.     When it was not possible to use integer 
.irithmetic,   18-digit,   double-precision arithmetic was used.    The orthogo- 
nality of each set of numerical values of Legendre   polynomials was chet ked 
using this property of orthogonality: 

and 

n 
E 
i = 0 

P,      (i) I, n P (i) m, n 
=   0 m=2, 5 (15) 

n 
E 
i = 0 6, m 

(i) •    P (i)   =   0 x ' m, n 
m=7, 10 (16) 

The  values of the coefficients used in the standard reduction program 
v«.ere limited to 8 digits; therefore the results of the generating program were 
truncated after the 8th digit.      The maximum deviation from zero occurring 
in the largest sets was less than 9 x 10     .    It was felt that these coefficients 
would produce satisfactory results in the data reduction program. 

n 2 
The sums of squares of the coefficients    E       P 0) were also com- 

i=0 m'n 

puted in double precision and iru luded at the end of the  list of each set. 

A sample printout of one set of coefficients is presented in Figure  1. 
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The physical size of the computer used in the computation of winds and 
shears imposes a practical limit on the maximum number of Legendre 
polynomials that can be used in the approximation of the data.    The maximum 
number of data points to be approximated can be determined by considering 
the vertical velocity of the balloon.     The average vertical velocity of the 
balloon is about ZO feet per second,   producing an average of 50 tenth-second 
data points per 100-foot layer.    In order to include all reasonable vertical 
velocities,   the lower limit was set at 10 feet per second and the upper limit 
at 40 feet per second.     This corresponds to 100 points and 25 points for the 
upper and lower limits  respectively.     The  Legendre polynomials were com- 
puted to cover the  range of 25 to 100 data points per fit and the degrees from 
one to ten. 

It uas desirable to associate an altitude in the layer with the meteoro- 
logical parameters.     The altitude . riosen was the mid-point cf the  100-foot 
layer.    The accelerations and velocities were evaluated at mid-point of the 
data,   and these values were associated with the altitude 50 feet above the 
bottom of the layer.     It is much more convenient to evaluate the polynomials 
at one of their original data than between two of them.     The mid-point 
coincides with an original data point only when there is an odd number of 
data points in the layer.     The program is designed to assemble an odd num- 
ber of data points over the nominal  100-foct layer which might be as  much as 
103 feet in depth.    Each layer was considered individually.    That is,   there 
was no overlapping of data from layer to layer. 

1.1.2    I RACKING  ERRORS 

The theoretical tracking errors to be used in the determination of the 
degree of polynomial approximating the data is a function of the errors in the 
parameters reported by the  . id.ir,   namely elevation and azimuth angles and 
the slant range distance.     These  radar parameter errors are related to the 
8pa(.''-time coordinate errors by the geometry of the coordinate systems. 

The space-time coordinate system used is earth fixed,   Euclidian 
i-space,   such that 

i) The x-axis is orient« d north - south,   with north positive, 
u) The y-axis is oriented east - west,   with east positive. 

HI) The z-axis is perpendicular to the x - y piane with upwards  positive, 
iv) The x - y plane is tangent to the earth at the launch site. 

The equations of transformation from radar parameters--Range (R), 
Elevation (E),   and Azimuth (A,   positive clockwise from north)--to a  Euclidian 
3-6pace a re: 

x   =   R cos E cos A (17) 
y  =   R cos E sin A (18) 
z   =   R sin E (19) 



Since there exists an error inherent in the radar,   the errors of x,   y, 
and   z >fcith respect to the error in A,   E,   and R are given by 

■f a       cos    Ecos   A (<i0) 

r  2  r   R2  I <T   Z sin2 E sin2 A ^ a   2 cos2 E co82A   I i «r   2 cos2 E Bin2A ••"I ] 
2 2       2        2 2        2 

a       =   R     (T       cos     E + J-     sin     E (22) 

where a      .   r        and <rD     are the errors in Azimuth,   Elevation,  and Range 
At K 

respectively and are constant with respect to the  radar system tracking the 
balloon. 

Since the data is given in x,   y,   and z,  the transformation equation can be 
used to give the errors ^     ,   «^     ,   and <rz    in terms of x,   y,   and z and the 

constant radar errors.     The tracking errors in this more useful form are: 

L Z       1       1 
x    + y   + z 

y " [? f?; ? 

» Ls!      1 • ■p77nrp 

> 2    2 , " 2 x    z 2 2 
'R + -1—2.   *E +  y 

x     -f y 

>  r 2 ^ i  J r >' 2 y   z 2 2 
"R     *       2T      aE     *     y 

x    + y 

- 

2 2        2, 
'TR      +      x     +  y a    2 

U3) 

(24) 

(25) 

The errors must be computed for each layer since the erroro are functions of 
the x,   y,  and z valued. 

1.1.3 DETERMINATION OF DEGREE OF THE POLYNOMIAL 

As outlined in a previous section,   the lowest degree polynomial possible 
in approximating the radar tracking data is determined by comparing the 
residual of the m th degree polynomial fit with the independent,   theoretical 
tracking error described m Section  1.1.2.    The  residual of the zero-degr« • 
fit is compared to the tracking error; if the tracking error is larger,  a "good" 
fit has been obtained,   in this case the mean.    If the tracking error is smaller 
than the  residual,   the sum of squares accounted for by the first-degree fit is 
subtracted; this new  residual is then compared with the tracking error.    If 
the residual is now smaller than the tracking error,   the linear fit is "good"; 
if the  residual is still larger,   the next degree (the  second) must be added. 



This process continues until the residual is finally smaller than the trat king 
error,  or until the ninth degree has been  reached.     If the residual is still 
larger than the theoretical tracking error,   the process is discontinued,  and 
the ninth-degree polynomial fit is accepted as being "good." 

The equation of the residual of the zero-degree fit is 

0,q 

n 2 
I   h.  - «I 

i = 0     l —m— (26) 

K, is uhere q. are the data points and ^ =   Aft since   Pn      (»)  =   I« 
I j -U u,n "»q 

compared to «r       (in calculating W     ,   the mean of q-   in the 100 foot layer is 

used).    If R_       is less than or equal to a     ,   a zero-degree polynomial is a 9 0,q 2   q 

"good" fit.    If Rn       is greater than a     ,   a higher degree fit is necessary. 

I he expression for the residual of the j +  1 st degree fit is given by the 
recurrence relation 

Rj+i.q     Rj.q n +  I 
(27) 

\^here 

^ .i      ^   =   £   lA.   .P^,      (01 
j+i.q        jtol    J+1   J+1'n    J 

=   A i*l 
n 
I 

i = 0 

,2 
P. j+l.n (0 (28) 

The coefficients Aj,  A^i   . . .,   Aj+i   are of course available from the 
polynomial without further computation. 

An alternate method of determining the lowest degree of the polynomial 
is the standard statistical technique of the analysis-o£-variance table  (Crow, 
Davis,   Maxfield)   .    This table is presented as Figure 2.    The analysis of 
variance is performed to test the significance of the terms AniFn,   n(i) of the 
polynomial.     First,   the total sum of squares (which is the sum of squared 
deviations of  q  from the average   q) is computed.    As  shown earlier in this 
section,  the average q is just AQ,   the first term of the polynomial.    Computed 
next is that part of the 'otal sum of squares accounted for by the linear, 
quadratic,   cubu ,  quartic terms,   etc,   up to the m th degree.    These sums of 
squares. 

f 
n " 

I q. P (0 
= 0 n rn, n 

T2 

m, n 

their degrees of freedom, and the corresponding mean squares .tre shov^n m 
Figure 2. That part of the total not accounted lor by the sums of squares of 
the various degree terms is the residual sum of squares.     An "F" value is 
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computed for each term by computing the  ratio of the mean square of each 
term to the mean square of the  residual.     Each computed F value is then 
compared \Mth the tabular value of the "F Distribution" at the 5 percent sig- 
nificance level.    If the F of the j th term is larger than the corresponding 
tabular value,   then the data are significantly better represented by including 
this term than by omitting it. 

The analysis-of-variance criterion >vas not applied m this problem 
because it v^as felt that the independent estimate of error N^as  more meaning- 
ful.    In order to become familiar vuth the contribution to the fit of each term 
in the polynomial,   a modified form of this table was computed and printed 
out for several early flights.     The modification was to reduce the size of the 
tables by printing out only the sum of squares of the residual after each term 
had been added to the polynomial.    Some "F" values were then computed by- 
hand and checked for significance. 

1.1.4   COMPUTATION OF WINDS AND SHEARS 

1.1.4.1    Winds 

There are two ways to describe the \Mnd in the 100-foot layer: 1) the 
average vund in th layer; 2) the wind evaluated at a given altitude known as 
the Point Wind. 

1.1.4.Z   Average Wind 

1 h« average wind in the layer is determined by a simple finite difference 
between the highest fitted coordinate point in the layer and the  lowest point 
divided by the time needed to tr.i\er8e the layer.    In terms of the evaluati-d 
polynomial fit,   the average wind is given by: 

M n        0 

1. 1. 4. 3    Point Wind 

Using .the equation devt-loped m Section 1,   the wind is  given by 
Wa     =   10 •  ^;; the factor of  10 is necesvary because the points are 0. 1 

1 . A second apart instead of 1. 0 second apart.     Note that c      is the first derivativ <• 
of the polynomial evaluated at the point i.     The mid-pomt of the layer v^as 
chosen as the altitude to be assigned to the point wind.    This corresponds to 
evaluating the polynomial at thf point (i-n/2) where n is always even. 

The equation for the first derivative is 

Kn - Aip'i.n<r> + *jp,j..<f» + ••• * VWi» oo) 
where j is an odd number either equal to m (if m is odd) or m-I  (if m is even). 
The point wind is then given by 

10 



w 
*nll 

=   10 •  ^ nil (31) 

Obviously,   if m   =   1  (the polynomial is of the first degree),   then the 
point \fcind,   W ,   will be equal to the average wind,   W . 

The derivatives of the Legendre polynomials are developed and 
presented in Appendix 6. 

1.1.4.4   Shears 

During the examination of the results of preliminary computations 
(particularly the ANOVA tables) it was decided that accurate second deriva- 
tives of the polynomial would be difficult to obtain,   especially in the higher 
degrees.     Therefore,   the simplified form of the shear equations was chosen: 

W x2 W 
xl 

■H7^7 h2-hl 

(10a) 
(10b) 

It was thought that the point wind (Section 1. 1.4. 3) was a better representation 
of the wind at the center of the layer; therefore point winds were used in th«- 
computation of the shears.     The altitude layer was always 100 feet; conse- 
quently the denominator,  h,   " h.,   always equals  100 feel. 

The equations for shear then reduce to 

(%/z> 
P+l 

(W ^n/P 
S     = 

y 
rW ^n/^ 

h o 

(32.) 
(32b) 

where the  subscript,  I,   denotes any given layer and ' + 1,   the layer immediatt-lv 
above it.    The units of shear are sec     . 

1.1.5   HtSULTS AND CONCLUSIONS 

The computer program was written to compute the winds and shears as 
outlined in the previous sections.     The program was written in FOR 1 RAN II 
for the IBM 7094 computer,   checked out at the Wright-Patterson A. F. B. 
facility,   then forwarded to Eglin A.F.B.   for operation on their system. 
J hrouj{h the very fine cooperation of PGVMS,   Eglm A. F. B. ,   Florida thr 
program with all of the polynomial coefficients was implemented.    A test 
ROSE balloon was launched and tracked,   the data were reduced in manner 
that has been outlined,   and the  results were forwarded to the University of 
Dayton. 

The  results of this test  run were quite surprising in that while the 
average winds looked reasonable,   the point winds (and therefore the shears) 
were quite erratic and did not agree with the avrr.i^t- winds.    A sample of 
this output is shown in Figure  3.    As indicated on the tabulation shown in 
Figure 3,   the output parameters are: 

11 



o • «     « 
• ■»    — 

•«     o     ^ o     ■      « 
»1      M      m 

*     *>     1* 

m     o     — 
o      ^-      ■# • O        « • «        " O       •>»       <" «        *        •to O • O 

•s      ♦      O 

i 

J-    *     * 

I 

o     o      o 
o     o      « 

"■     «    • 

■^     -.     ««, 
• 

—         >N         «• 
*        9         * 

—       (S       «• 
rf«      »       - 
«       I        « 

»to            <»            ^ 
-«            ►.             ^ 

»     ■#     o 
♦ *     - 

IT        O         • 
• r«.        • 

IT          #         «M 

1 

m     m    m 
IT         —        — 

#        »        l« 
«M          I         «M 
t                       1 

«M      •-      r» 
O         -5         -> 

■»     —     o 
i       m      m 

t         t 

n   #   * 

•M          1            1 
1 

%      »      s 
M.          O          W 

o      •*>       • 
«         M          « 

O         ■* 

1 

«to» 
—       ««        K» 

«       ^-         — 

•         IM         » 

■O                           1 

-     o     » 
-•       <^      in 

1                 1 

o      r»      ri 

«      o      ■# 
^      «     m 
"M        O        »M 

1 

#      «     1» 

♦     ♦     — 

! :  * 

«     —     w 

e   ^ 2   -   5   i   «    7 
.a     o     q     »      • 

•to       •>        ^        «        /t        o 

%   m   %  m   9   m 

•       #        1 
O         ^          O 
«     ^     e 
»            W»             to. 

m    19    m 
<*.       ^       m 

3  M   S 
#     —      ^ rf<     —     « 
•to             «V              ^ 

^     J»      * 
«     —     ^ 

* *      o 

• «      ■»     o 
^       ^       1^ 

w»        J»        • 
O        IM        • 

C      —      ^ 
".          -M          ■♦ 
C          ■»          C 
K     «    S 
r>       ^      ►. 
n      —      * 
^       *       « 

«        "M         T        r       »        O 

*       ^      *       *      ^      't 
o 

r     fe 

1 g 
o 
• 

o 
1 

o     o     o 

»     <"      * 
—    »>     » 
•n     o      ot 
»      ♦      — 

«     ««      * 
•       •        • 

O        3        O 
1 

^        »"■         - 

►-         *         ^ 

'S           >           J> 
<•«       o        ^« 
•     A      4 —      ^      » 
^        «.        rv 
^        ^        - 
■          •          • 

IM          »«          — 
I 

* -       - 

<M      ff       ^ 
X        f*^        «^ 
* <■>     * 
•to            O            rf« 
^         ■          <M «         *         ^ —        -          * 
J      «      o •          •           • 
* f     -to 

1 

^     ^     IM 

r*        ■»        if 
■       •       «« •»        *         - —        «        « 
3        —        «M 
r      IM       • 
^.      *        - 
o      —      r •       •        • 

■n      m      'M 
i                  i 

■0         to 

IM        ^        «M 
• IT        — 
»         «        »> 
* ■>          «M 
•MOO 
-■         #        — /-          -        to. 

•           •          • 
l           l 

o      >,      ^ 

is      »      *■ 
~.        r       o 
/«          O         IM 
->        •        « 
1».        -s       — 
••       /•       « m    «•   M •     •     • 
J      > 
i            t 

*         <"        IM 

O          «         IM 
^          ►.         m 
O        O         J 
«          ♦          IM 
«          »M            • 

IM          IM          IM •             •             • 

fc          IM          — 

IM        ►-         rf> 
to.         m         » 
/« IM ■► 
O         *<          # 
•- — s 
*     "-     # 
■^      r      « 
—      —      O •        •        • 
O       J      o 

1 

»■•^oo»     —     o* 
«•MIMUCW^ />        » 
«*«*Oi"ir*      ^IM 
^,        —        —       O        «M        — JO«*» 

* » i M o (? •to » J s J^ «,. » « 
c o O - • 1 << -rt » •to <M /• o 
■^ IS •v •# 1 * ■M » o «S * W » « IM »M « • « ■g ai • IM (^ * 
» «B « O o »M e 4 ■» ■0 i M » 

• 
<M 

■to 

T3 
0 

4) 

V 
Q 
J2 

z 

3 
0 

o w 
»      »      »      y 

■• 

^        r.        i» 
B — JO 

9      r-     *• o        IM 

O rf»      *»      o      »       ♦ 
*■         —                      — 

X i"      i^       /«      <"       » 
fc o     —      o      «       * 

•to     1«    *» ««     •     o •n         /n        ^. «          -          «C »         *        ^ -•     »     »     »     o 

*         »        3 
»>          »M         -• 

m            0            I* 
■to             go              ^> 

^        -f       *        O^-toffOOOiMmrr 
—         4)-0*)I         i         «•-«^•-o# 

It s 

« o     »s 

-        «        » 
—         1 
I 

§ § s 

»          •»>          O 
"M          1 

1 

—         ^        IM 
#          »         ♦ 

S   S   2 
1               1 

M      «      « 
•       0"        * 

•    i             * 

rf<         IN        »         O        -•        «> 
•       ^      e       «      —      « 

♦      I»A*_O      —      • 
'S         i        iM         l         m       —       —        | 

1                     1                      ill 

—        •-'MOOO^M 

o      « 

£ 
■ 

O        O        •*! 
"M 

«          IM        ^ o     »      o m       ^      «to IT         IM         ^ 
IM         —         — IM          IM           1 

»«     —     -«# 

o o o o 
3 ^ O ^ 

o o o o o o 
O i» o /» o ^ 
■M   «"»->♦♦ 

o o o o o ◦ 
O ir 3 A  3 ^ 
to /> e « *• ^ 

a o o o o o 
3^3^   3 /> 
»«•>>    J  3 

O O <3  O toi O 
3 <A O   /« O ^ 

O O 3 O o O 
i  .f   O   *   3   fi 
r     •          A   u  « 

o o o o o o 
O  ^ O   ^   J   /» 
•to ^   u  e T 'to 

00300030000 
Orf«0   />3^OA0A0 

m 

V 
hi 
3 
00 

U 



Altitude ft 
Wind East ft/sec 
Wind North ft/sec 
Wind Total Knots 
Angle degrees 
M 
Shear East 

Highest degree polynomial used 
Sec"1 

Shear North Sec-| 
Shear Total Sec'1 

Point Wind East ft/sec 
Point Wind North ft/sec 

As will be noted,   the highest degree used by either component is quite 
often the ninth,   which was the maximum.     The component data were plotted 
vs.   time and although ragged,   they  resembled a parabola--indicating a second- 
degree polynomial fit.    It was then decided to add monitor variables to the 
printout to check intermediate computations and to add the Residuals of the 
fits as successively higher degree terms were added.    A sample of another 
test flight is presented in Figure 4.    The monitor parameters,   indicated by 
the ♦,  are 

?J, ft (average space coordinate) 

o* Tracking error for this layer 

H Residual for zero degree 

R, Residual for first degree 

R, Residual for second degree 

H , Residual for third degree 3,q ■ 
Rc Residual for fifth degree 5,q ■ 
R- Residual for seventh degree 7,q 
H Residual for ninth degree 

9,q * 

The monitor parameters are always arranged: North East,   and vertical.     The 
Residual for the Vertical is always zero because the Vertical is only used for 
finite differences and therefore is not fitted.    It can be seen that the only 
significant reduction of the Residual occurs when the linear effect is   removed, 
i.e.,   the linear fit is significantly better than the average.    In order to verify 
these results,  the first flight was rerun.    The sums of squares needed in the 
ANOVA table were printed out with the altitude and number of points preceding 
each group.    A sample of this printout is shown in Figure 5.    Each group con- 
sists of 10 lines.     These correspond to:    the total sums of squares;  that part 
accounted for by the linear term; the oart accounted for by the quadratic etc., 
up to the ninth.    The criteria for stopping the fit at a certain degree was 
removed for this,   allowing each of the three coordinates to go to the ninth 
degree.     When the horizontal components of the entire flight were considered, 
approximately 75% of the sum of the squares of the degree higher than first 
were small,  i.e.,   (did not explain much of variation),  and about 95% of the 
sums of the squares of the degrees higher than the second were not significant. 
The vertical component was almost never significant above the first degree. 
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With this in mind,   the plot« of the raw data were studied again.    Almost 
without fail,  whenever the degree of the polynomial above the second was 
required (by the tracking error criteria),   the coordinate value plot showed 
either a rough section of data or a relatively smooth section with one or t^o 
elightly skew points. 

These findings were the basis for discarding this long and rather 
elaborate method in favor of a simpler one.    The ANOVA table indicated 
that the degree of the polynomial fit should probably not be higher than two. 

1.2   SECOND-DEGREE POLYNOMIAL METHOD 

The study of the ninth-degree polynomial fit indicated that in 25% of the 
cases the second degree polynomial term was statistically significant in the 
approximation.    Another program was then written to compute the vMnd and 
shears based on the second degree fit.    Similar expressions were used for the 
winds,   but the original form of the shear was used because the component 
accelerations were significant in the second-degree fit.    Furthermore,   since 
the degree of the polynomial was  reduced,   the sampling frequency was also 
reduced to 0.2 second, 

1.2.1   ORTHOGONAL POLYNOMIALS AND DERIVATIVES 

The orthogonal polynomial for the second-degree fit will be  repeated 
here for ease of reference,  and the second derivative will be added.    The 
number of points in the layer is n+1,  and the index (i) takes on all integral 
values from zero to n.     The Ltgendre polynomials are: 

0, n 
P.     (i) =  1 - Ü 

1, rr n '»..« n 
6i(i 
n rft 

|3UJ 
{33b) 
(IScI 

The first derivatives are: 

P'0tn(0 = o P,l,n^ 
2 
n 2, n «•^- 

12i 
rTf^ry +n7?rTT 

(34a) 
(34b) 
(34c) 

The second derivatives are: 

P"n  M = 0        P"!   J1) ■ •        PS   M   = 0,n l.n 2,n' 
12 

nTTT) 
(35a) 
(35b) 
(35c) 

The first derivative (the velocity) is: 

%   -AlP,l.n^   + A2P,2,n<1) (3b) 

15 



I he second derivative (the acceleration) is: 

sphere in all cases 

.   n     l      m» n 

  (12) , 
r  P     (i) 

l = 0      ni,nw 

1.2.2    WINDS 

In the second-degree fit,  as in the ninth,   we can compute two values for 
wind.    One is an average over the layer,  and the other is assigned to a 
particular altitude point in the layer known as the average wind and point wind 
respectively.    In working with the second-degree polynomial,   the values of 
the two types of winds are exactly the same.     This is due to the property of 
the  Legendre polynomial of the even degrees being zero when evaluated at 
the mid-point.    Thus,   since 

P'^^)  -.   0 (38) 

then 

K/i   -   Vl.n'l' '39' 
The quadratic term is  lost,  and the answer is the same as if we had 

fitted a linear equation.     However,   for the linear equation the slope is the 
same at any point in the layer and is equivalent to the ratio of difference in 
space coordinate to the difference in time,   i.e., 

slope   =  ^9 =  W      =   W (40) 

The equations for the component winds are: 

m    mZii A VJ -l0 A <41a) 
x n Ix y n ly (41b) 

where the 10 (instead of 2) is necessary to convert to the correct units of 
ft/sec from ft/0.2 sec for 0.2 sec spaced data. 
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1.2.3   SHEARS 

Since the second degree was otten found to be significant,   it was decided 
to use the following torn, for shear: 

and S     = | 
(9a) 
(9b) 

This equation implies that within the layer there is a constant acceleration in 
the horizontal components and a constant velocity in the vertical component. 
The equations for shears of the component directions in terms of the polyno- 
mial coefficients are: 

2x 

1 
n n»    •    5 

l,n y      A 
^L 
Iz 

P"2.n(*> 
P1" 

where the factor 5 converts to normal shear units of sec 
for the Legendre polynomials gives: 

l.n 

-1 

(«) 

(42a) 
(42b) 

Substitution 

x n-1 1l 
30 

n Tz 

(4ia) 
(43b) 

where again -30 is used in place of -6 to correct for the 0.2 sec interval. 

1.2.4   ERROR ANALYSIS OF WINDS AND SHEARS 

I he second-degree method does not compare the residual to the tracking 
error,  as does the ninth degree.    The error in the value of a parameter was 
included with the parameter itself in the output of   he program to provide 
confidence limits on the parameters. 

1.2.4.1   Standard Error of Estimate of the Coefficients 

The standard error of estimate (cr.      ) of the m th polynomial coefficient 
m (ArT1) is given by 

m n 2 
L    P       ^(i) 

(44) 

2 . 
where «r      is the  residual variance of the  m th degree fit.     Therefore,  the 
squares of the error in A.  and A, are given"By 
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•l 
■ 
L    P 
i = 0 

n 

l.n (0 2      P,     "(i) 

(45«) 
(45b) 

i=0 2,n 

by 
I he expression for the  residual variance of the first degree fit is given 

r    * H   E   (q, -ÄV -A/ L    P.     (0 
ej     Li=o i=o   i,n 

n-l (^.) 

and for the second degree by 

n — L 2    n 

I      (qi  -  q)     -  A.      E        P 
i = 0        l l     1 = 0 l.n (l) * A2      E     P2   ■ W 

r      i 
n-Z (47) 

1.2.4.2    Errors in Winds and Shears 

If the errors in the coefficients of the titting polynomial are knov^n, the 
errors in the wind and shears can be computed. The expression for the \K imi 
is  given by 

W qn/Z 
n 

AlP,l.n(2> 
(48) 

and the error in the uind ('     ) is given by 

• =    P'. (^)   »     • =(--)<! W l,nv2' Aj ^n'Aj (49) 

n 
since P',      ( T)   s 

1, n    c 
- 2/n 

The wind can then be reported as a value plus or minus the error by 
using the following expression: 

W « k -..,] (50) 
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The expreision for shear is given by 

S      =   q/i 
q 

(51) 

Assuming that the interaction between the component acceleration and 
the vertical velocity is zero,  the error in shear jf J is given by 

, z = 
s 

1 I 

z M I   '. (52) 

The square of the error in the component acceleration («r*   ) is given by 

V s [sjpm ^      A       2 
Zq (53) 

sine e ^ S[Ä] '^q 

The square of the error in the vertical velocity {a.   ) is given by 

2 4     .A      2 

z ~1 Iz n 
(54) 

since z   = •2   A, n       lz 

Making these substitutions the error (a   ) becomes 

s ^E-aJ rA [^TTJ 

t-l Au] 1 A, n        lz 
r [M- lz 

(55) 

Simplifying this expression gives 
-I 1/2 

s        Ln-U 

^•'♦l A"^"]    •    rA. * 
lz 

(5b) 
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The shear can then be  reported as a value plus or minus the  error, 
using the following expression: 

S     * 
«1 ■t^j-Jg * mi 

<TA, 

L  2s 
^3 
lz 

U 

»A lz 

1/2 

(57) 

1.2.4.3   ANOVA   I able for Second-Degree Fit 

The analysis of variance table vias constructed to determine the signif' 
icance of each term in the  second-degree fit.     A sample of an ANOVA Table 
was given in Figure 2.     For »I*e second-degree,   the table contains only four 
lines:    the total sums of r^uares,   that part due to the  linear term,   that part 
due to the quadratic term,   and the  residual.     For ease of computation,   the 
linear and quadratic effect terms can be simplified by the following relation- 
ship» 

The sum of squares for the m th degree  is given by 

n 
£ 

i = 0 
q P      (i) u   m, n / I     P (i)Zl J        L £• m'n   J 

since A 
m 

n 
E 

i = 0 
m, n (») ] 

n 
E 
i=0 

m ..-*]' (58) 

The  sum of squares  18 just A m 

n 

i=0 m ..*] 
The A    '* are computed in the fits.    The second factor is a constant for 

a given number of points and will therefore be designated as SSI for the first 
degree and SS2 for the second.    The sums of squares column then becomes 

(1)     I      (q:  - q)Z 

i=0 
Total 

(2)    A.      '     SSI 

(3)    Aj     *     SS2 

Linear 

Quadratic 

(4)     Residual   =    (1)  -  (2)  -  (3) 
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1.2. 5   ELIMINATION OF STRAY DATA POINTS 

It is always a problem with a completely automatic system to eliminate 
the obviously bad data before it can contaminate the  results of the analysis. 
This obviously bad data can be the result of a variety of events such as 
momentary radar failure,   read-out failure,  a bad spot on the radar tape, 
computer error,   etc.     The condition usually exists for only one data point, 
and the result is a value of a coordinate that bears little relationship to the 
surrounding points.   If the error is in the  radar system,   the stray point 
contaminates all of the coordinates; if it occurs in computer processing,  it 
usually contaminates only one of the coordinates. 

Scoggins uses the common technique of fitting a simple function to the 
data and rejecting a point if it falls outside a tolerance,   replacing it by a 
predicted value.    As he points out,   this method is adequate and  requires 
little computer txme. 

In our previous work with radar tracking data,  we have developed a 
simpler and faster method of editing the  radar tapes*,    it it based on the 
idea that,   in the great majority of cases,   there are only one or two con- 
secutively bad points,  and the surrounding data is normal.    If the maximum 
velocity in all components is known,   then the maximum average change in any 
component from one point to the next can be computed.     This point-to-point 
difference is multiplied by 10 as a safety factor against discarding valid data 
to establish a maximum,   reasonable point-to-point change.     This maximum 
value is called the tolerance.    In the editing process,   finite differences are 
computed and compared to the component tolerances.    If the difference is 
less than the tolerance,   the point is accepted as valid.    If the difference is 
greater,   the point is discarded,   and the     ext point is  read in and checked to 
see if the new differences are less than twice the tolerances  (the time interval 
has no* doubled).     If the difference is still larger this point is discarded; the 
next point is then  read in,   checked against three times the tolerance,  etc. 
until a "good" point is found.     The discarded values are then replaced with 
values computed by linear interpolation between two good points.    Even if 
only one coordinate is in error,   the complete data point is replaced.    If a 
maximum number (50) of interpolated points is exceeded,   the technique 
considers that a loss of track had occurred; the flight is therefore processed 
in separate batches each having continuity of track.     This method also allocs 
the program to discard data in a time inversion or to fill in a small portion 
of missing data. 

While this method has less statistical basis than the method commonly 
employed,   it has proved very satisfactory in our use and takes very little 
time to perform. 

1.2.6   RESULTS AND CONCLUSIONS FOR SECOND-DEGREE METHOD 

The basic program uas written as outlined in this section.     It contains 
the editing procedure an^ the computations for the wind and the  shears.    Two 
minor modifications were made to the basic program in actual operation:    one 
was the addition of the errors in the coefficients and the variables necessary 
for the ANOVA Tables; the other was the addition of the errors in winds and 
shears to the computer output. 
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A printout of a te«t flight with the  modifications of computing the errors 
in the coefficients and parameters in the ANOVA Table is presented in 
Figure 6.     Each altitude layer presented has four lines of output associated 
with it (except the first 10l>0 feet,   which has only two lines).     The first two 
lines of each printout are bracketed and are the variables for use in the 
ANOVA   lable (these two lines are missing for the first printout).     The last 
two lines contain the normal printout. 

The variables printed out for use in the ANOVA Table are: 

1st line A.    ,    A,,   A,,   A,   .A, 
Ix Z*        ly        2y lz 

2nd line 1)   Total sums of Squares lor x   =   £ (x - x) 
Z)   Total sums of Squares for y  =  E (y - y L 
J)    lotal sums of Squares for x   =   S (z  - T) 

n I 
4)   E      P,      (i)"   =  SSI 

i = 0 l.n 

n 
5)   L      P.  Ji)Z   ■ SS2 

isO      d'n 

The ANOVA Table can be constructed using this information and the 
value of "N" in the normal output.     The normal printout consists of two lines: 
the fist line having its title at the top of the figure,  and the second line having 
its title at the bottom of the figure. 

The ANOVA Tables were constructed for the first 46 altitude layers for 
each coordinate,   with the following results: 

33 38 first degree only significant 
13 6 both first and second degree significant 

0 Z second degree only significant 

This indicates that since the second-degree term is not significant in 
at least 70% of the layers,   the second derivative is not  representative of the 
balloon's acceleration. 

Further evidence of this is provided by examining the one sigma level of 
the shears.    These va ues are printed out as normal output in the second 
modification of the basic program.    A sample of this output is presented on 
Figure 7.    The sigmas of the shears appear as the sixth and seventh data 
fields in the second card whose title,  as before,   appears at the bottom of 
the figure.    Upon examini ig the  relative magnitude of the shear and its one 
aigma level,   it becomes evident that in some cases the one sigma value is 
larger than the value of the shear itself.    In fact,   in most levels,   the value 
of sigma is much too large to produce confidence in the values of shear. 
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The winds computed by the »econd-degree fit agree,   for the most 
part,   with the winds produced by the ninth-degree method,   but the shears 
produced by the two methods do not agree with each other or with values 
generally thought to be realistic. 

In general,   if the second degree is not significant,   the accelerations 
predicted by the fit are smaller in magnitude than the noise level of the data. 
The noise can be attributed either to the actual random motion of the 
balloon itself or to the  random tracking errors of the  radar which will 
produce an apparent random motion of the balloon.    It is impossible to 
determine which of these factors is the primary cause of the noise.    Thus, 
we must conclude that with the present data,   only linear smoothing is valid. 

1.3      LINEAR FIT ME I HOD 

The  results of the work with the second-degree polynomial indicated 
that,   in most cases,   the linear fit was sufficient to describe the motion of 
the balloon.    Since an acceleration term could no longer be computed,   it was 
necessary to go back to the finite difference between winds to compute the 
shear.    In computing the linear fit,   one of the steps produces the mean over 
the interval.    A finite difference between this mean and the one from the 
previous layer gives a type of average wind over a 200-foot layer,    A shear 
can then also be computed from these winds.    It was also desired to compute 
the one sigma level of the linear winds and include it in the printout.    The 
sampling frequency was 0.2 sec for this degree also. 

1.3,1    WINDS 

The orthogonal polynomials for the first-degree fit were given in 
Section 1,2,1, 

In the linear fit the point wind and the average wind in the layer,   as 
defined in the section on the ninth-degree polynomial are identical.    In this 
section,   we will introduce a slightly different definition of the average wind 
which will include data from a deeper layer and will be different from the 
point wind. 

I, 3, I, 1    Point Winds and Errors 

The point wind is the first derivative evaluated at the mid-point of the 
layer.    The equations for the component winds,   derived in Section  1,2,2,   are 

W     =   -   1°   A. w     =  -    i°    A, Hla) 
x n        lx y n ly (41b) 

The errors derived in Section 1,2.4 are 

(r,.r     = er er =    <T /SQi 
W n A, W n        A. ^y' x lx y ly 
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The point wind can then be reported as a value plus or minus the 
error using the following expression 

W   ■ n        1 
10 
n (50) 

1.3.1.2   Average Winds 

When a linear fit is performed,  the simple mean of the data points in 
the layer is obtained.    It was decided to compute a wind from the finite 
differences of these values from consecutive layers.    Hence,  for this sec- 
tion the definition of the average wind will be: 

\     'IMIOO-V'*' (60) 

sphere   f   is the altitude of the center of a certain layer,  and t -f  100 is the 
altitude of the center of the next lOO-foot layer.    At is of course the time 
difference between ^f+lQQ and q-.     The value reported for the wind is then 
actually using data over a 200-foot layer.    As one would expect,   this deeper 
layer has a smoothing effect on the winds which also reduces the magnitude 
of the shear. 

1.3.2   SHliARS 

Since there are two distinct types of winds computed by this method,   it 
was desired to compute the shear associated with each type wind. 

1.3.2.1    Shears from Point Winds 

Since the second derivative is not obtained in this method,   the alternate 
method of computing shears  is used: 

W W 
t+ 100 

Ah (61) 

where again the  I is the altitude of the mid-point of the layer. 

The component shears are given by the equations: 

W W 
t-t-  100 

w 
s   = ♦  100 

100 
(62a) 
(62b) 

The point winds are computed for the mid-point of the layer--for example,   at 
altitudes of 1050,   1150,   1250 feet,   etc.     The shears are then assigned an 
altitude exactly between the two winds used in their computation.    For the 
example above,   the shears will be reported at 1100,   1200 feet,   etc. 
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1.3.2.Z   Shear« from Ave ra^e Wind» 

The equations for the shears from average winds are identical to the 
shears from point winds.     However,   the altitudes to which the winds and 
shears are assigned are  reversed.    Since the wind.^ a r«-  confuted from the 
mean space-coordinates assigned to the mid-point of the  I. y   r (e.g.,   1050, 
1150,   1250 etc.),   the average winds are assigned to alti.udes of 1 1 00,   1200 
etc.    The shears are then assigned to the mid-point of the wind data so that 
the altitudes of the shears are 1150,   1250 etc. 

1. 3. 3    RESULTS AND CONCLUSIONS FOR  TH£ FIRS I   DEGREE 

The computer program was written as described in the previous sec- 
tions; it included the Technique for Eliminating Stray Data Points given in 
Section l.L,5.    Also,  a test run of the check-out flight was made.    A sample 
of the result is presented in Figure 8.    The title at the top of the page is for 
the data appearing on the odd lines  (those with 50 foot altitudes),   while the 
title at the bottom is for the data on the even lines (those with  100 foot 
altitudes).     The parameters for the 50 foot altitudes   ir.-: 

Parameter Desc riptio'i 
ÄTt Altitude 

Wind East Point wind in East direction 
Wind North Point wind m North direction 
Wind  Total Point wind  Vector 
Wind Angle Angle of wind Vector 
Average East Mean of East components in this layer 
Average North Mean of North components in this  layer 
Sigma  East One bigma level of wind East 
Sigma North One sigma level of wind North 
N Number of 0.2 sec data points in this layer 

The parameters for the 100 foot altitudes are: 

Parameter Desc nption 
ÄTt Altitude 

East Shear Shear from  East Point wind 
North Shear Shear from North Point wind 
Total Shear Magnitude of Vector sum of East and 

North Shears 
Avg WE Average wind in East Direction 
Avg WN Average wind in North Direction 
Shear Avg WE Shear from Avg WE 
Shear Avg WN Shear from Avg WN 
N Number of 0.2 sec data points in this layer 

The point winds of this method are idrntual lo the  point winds of the 
«econd-d'egree method,  as they should be.     I he shears from the point winds 
seem to be  less erratic  than the shears obtained from the second-degn e 
method,   but they are still sufficiently unstable to cause some questions about 
their reliability.     The average winds are smoother than the linear winds-- 
mainly due to the deeper layer over whi* h the wind is measured.    The shears 
from the averagewinds arealso smoothe r (as experteri) but still somewhat o rratu . 
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Since the data was shown to be linear for the most part,   it was decided 
to compute the winds from first finite differences of the 0, l sec x,   y,   z 
coordinate data and to compare them with this linear method. 

1.4      FINITE DIFFERENCES 

The conclusions  reached in the previous sections indicated that the data 
were linear for the most part with respect to time.    If the data were truly 
linear,   the slope with respect to time would be identical to the first finite 
difference.    It is faster (and therefore cheaper) to compute finite differences 
than to fit a linear function and evaluate the first derivative.    The finite 
difference winds and shears should be similar to the linear method. 

1.4.1    WINDS 

The winds in terms of finite differences are given by: 

w = ""'"o        w - y""yo ua 
*    •„ ■ 'o y   \- 'o (63b, 

since the data are equally spaced (O.i  sec between points) equations can be 
rew ritten as: 

W     =  Xn " X0     -5 W     = Tllll   •    5 (64a) 
x n y n (64b) 

where the '• 5 " is to convert to units of ft/sec. 

1.4.^   SHEARS 

The shears are computed using the alternate method: 

W                     - W 
^l+IOO         qt 

Sq   =   ÄH  I«! 

where again (   is the altitude of tne mid point of the layer. 

The component shears are given by: 

W                     - W                                           W                     - W 
^              Xt+100          Xt            .          c               yl  f 100         yf (t)2a) 

x   = TOO       and Sy  = TOS  (62b) 

for a 100-foot layer. 
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1.4. 3    ELIMINATION OF STRAY DATA POINTS 

I he routine used to eliminate stray data points in the finite diffe reni < 
method is identical to that used in the quadratic and linear methods.    The 
inclusion of a stray data point in a least-sqjares fit viill cause a very had 
value.    In the finite difference method,   however,   a stray point will ha\c no 
effect on the value of the winds and shears provided it is not the first or 
last point.     There are on the average about twenty-five data ooints in a 
100-foot layer; hence the probability that on»« data point is stray is 1/25 
or .04.    Since there are normally few  stray points in the data,   the elimina- 
tion of stray data could have been skipped without great harm to the  resulcs. 

1.4.4   RESULTS AND CONCLUSIONS FOR FINITE DIFFERENCES 

The computer program was constructed as indicated in this section. 
A sample of the output is presented as Figure 9.    As before,   the title at 
the top of the figure is for the odd MOO foot) lines,   while the title at the 
bottom is for the even (50 foot) lines.     The  results agree well with the luu-.tr 
method which indicates that this cheaper method can be used instead of the 
linear method with little change in the  results.    We base this conclusion, 
however,   on examination of only a few  soundings by unmodified ROSL's, 
Such opinion is therefore subject to possible future  revision, 

1.5     GENERAL COMPARISON OF ALL FITS 

In order to summarize the results of the various type fits,   two portions» 
of the test flight processed by each method have been listed side by side for 
easy comparison.     The two portions chosen were:    I) the lowest part of the 
flight which was the most erratic;   2) a portion near 50, 000-feet altitude whu h 
was the smoothest.     The east component was selected because  its magnitude 
was larger,   and it was generally smoother.     Tables  I and Z are wind com- 
parisons,   while  Tables  3 and 4 are shear comparisons.     Tables  1 and  < 
are the low altitude,   and Tables 2 and 4 are the high altitude.     J .  Tables  1 
and 2,   the column "Deg"  indicates the highest degree used by the m th dr^r. ■ 
polynomial; the column "ANOVA" indicates the highest sigmfii ant degree. 
The one sigma level is included for the linear and quadratic v.irds and the 
quadratic shears. 

■ 

The values for the winds obtained by all the fits agree well with each 
other and with rawinsonde data.    Since the method of finite difference is the 
quickest,   it was decided to use this method in future work.     The values for 
the shears seem to depend completely upon the fitting method used.    No 
method seemed to produce values which were consistent from point to point 
even within that method. 
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Z, SELF-INDUCtn BALLOON MOTION 

Wind and shear values produced by t.ie various smoothing techniques 
indicated that the winds svere very erratic at the bottom of the flight.     This 
condition persisted until about 40, 000 feet,   where it suddenly vanished and 
the "xind became smooth.    Concurrently with our work,   Murrow and Henry 
repeated an experiment first performed in 1958 on RaJiosonde balloons   . 
The new experiment consisted in releasing ROSE -tnd other smooth balLons 
in still air and tracking them with cameras.    The results indicated that the 
spherical balloons experienced self-induced motions similar to those 
experienced by the earlier Radiosondr balloons.     The direction of these 
motions is apparently random,   but their magnitude seems to be a function 
of the vertical terminal velocity.    A plan view of six balloon ascents pre- 
sented in Murrow and Henry's paper shows that the balloon behaves very 
erratically and generally unpredictably   .     When these results were made 
known,   we plotted several actual ROSE launches from Eglin AFB.     From 
concurrent Radiosonde releases we expected a predominantly westerly 
wind.     The Fast vs North plot showed that superimposed on the eastward 
motion were various loops and spirals similar to those found by Murrow 
and Henry, 

The reason lor the self-induced motion has not been completely 
explained,  but it is generally thought to be due to a type of turbulence in 
the wake of the balloon.    Some work has been done on this problem and is 
presented as Appendix 2 and Appendix 5,   but a satisfactory explanation has 
not been achieved. 

The mathematical techniques selected for computing wind and shear 
values were based on the initial assumption that the balloon motion was 
very nearly the same as the motion of the wind.    The self-ind'iced motions 
caused this initial assumption to be invalid.    It is felt that the mathematical 
techniques do -.'escribe the motion of the balloon; unfortunately,   the values 
are not also the wind and shear values. 

Two corrective approaches were taken to make the ROSE balloons 
useful wind sensors.    The first corrective approach was an attempt to 
measure and analyze the self-induced motions by means of a Power Spectral 
Density Technique.     The aim of this approach was to develop a model of the 
self-induced behavior for the purpose of removing its effect from the data. 
The result of this approach is presented in Section 3.    The second (and 
eventually more successful) approach was a physical modification of the 
balloon itself to control the wake turbulence. 
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3. POWER SPECTRAL ANALYSIS OF BALLOON MOTION 

The  East v» North plot» of the  ROSE data indicated that the balloon 
motion was generally unpredictable in a small interval.    However,  when a 
plot of an entire flight was viewed there appeared to be a type of fairly 
regular oscillation.     The technique commonly used to determine oscillatory 
changes in data is the Power Spectral Density Analysis.     The basis for this 
technique is given in the standard work on time series analysis by Blackman 
and Tukey   .    An excellent Time Series Analysis program has been prepared 
by Healy and Bogert    at Bell Telephone Laboratories and is available through 
SHARE'.     The final output of the program is a table of Power atspecitu 
frequencies vs the frequencies.    A spike in the curve indicates a predomi- 
nance of that frequency in the data. 

3. 1      TIME SERIES ANALYSIS COMPUTER PROGRAM 

Because of the sizable programming effort required to prepare a Time 
Series Analysis for a computer,   a search of the available program libraries 
was made.     From the several good methods available,    •'" the one by 
Healy and Bogert    was selected because their approach seemed easiest to 
tailor to our particular problem.     The time series analysis involves a large 
number of computations on a fairly large quantity of data.    Healy and Bogert 
broke down the computations into separate numerical processes and wrote one 
FORTRAN subroutine for each process.     I he method was then to use each 
subroutine (with the necessary linkages) as a high le.el command.    For 
example,   to  read the data into the machine the main program uses merely 
CALL READIN (A,   NA,  ANAME)    to transfer the data to the array "A" where 
it is  ready for computation.     The main calling sequence gives the overall con- 
cept of the computation steps without  -egard to all of the FORTRAN mechanics 
necessary for the actual computer operation.    This makes modification of the 
program very easy.    One merely writes and debugs a new independent sub- 
routine including only the "CALL" line in the main program. 

The original version of the program contained 17 subroutines which may 
be found in Reference 6.    For our analysis we decided to use just 5 of 1 7 
subroutines.     These 5 subroutines are presented as Appendix 3 with descrip- 
tions of their individual prcu esses. 

3. 1. 1    MODIFICATIONS TO THE HEALY-BOGERT PROGRAM 

There were two major changes made to the basic program:    the con- 
version of the compiler language and an increase in size.    The original 
compiler language used w.ts FORTRAN II,   and all of the input,   output,   and 
computations were coded in FORTRAN.    The program was converted to 
FORTRAN IV and operated undt r the IBSYS system in order to use the 
techniques provided by this more advanced system.     The original program 
was limited to a maximum of 1500 points per analysis.    By using fewer sub- 
routines,   we were able to increase this maximum to 5000 points per analysis. 
The other minor changes were the addition of different trend-removing tech- 
niques and the addition of pre-whitening and post-darkening subroutines.     The 
input subroutine READIN was also changed to conform to our data.    The 
additional subroutines are described in Appendix 4. 
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3.1.2   PROCEDURE TO TEST PROGRAM USING SIMULATED DATA 

The programs received through SHARE are normally well documented 
■ind perform satisfactorily; therefore the program Aas tested by simulating 
Jata \fc ith known frequencies and processing it by using the PSD program. 
I he manufactured data v^e re .» linear function NMth  frequencies  superimposed 

on it.     The frequencies viere:    1/187,   i/131,   1/43,   1/41.   1/37,   1/17.   1/7, 
and 1/(1  +'v3) cycles per second.    The main calling sequence used the 
following subroutines:     READ1N,   DETRND (over the whole data set), 
AUTGOV (with 100 lags),   FOURTR (using the hanned cosine transforms), 
and OU 1 PUT.    The program performed very well m  reporting all of the 
frequencies we  had  manufactured.      The output from the test v^as plotted on 
rectangular scales  (presented as  Figure 10) and on semi-log scales 
(presented as Figure  11). 

The  ROSE data seemed to be essentially quadratic  rather than linear; 
hence the same eight frequencies were superimposed on a parabola,   and the 
PSD program was  re-run with the QTRND subroutine  (Appendix 4).     All of 
the frequencies were reported again,   and the shapes of the   P   (<}>) vs $ curves 
were identical to those  shown in  Figures  10 and  11. 

Since the program seemed to perform well on "clean" data,   it v^as 
next decided to add to the quadratic data random noise ot approximately 10% 
of the amplitude of the data.     I he pre-whitening (WHITN) and post-darkening 
(PDRKN) subroutines (Appendix 4) were then added in an attempt to remove 
the noise.    The output again uas almost identical to that shown in Figures  10 
and 11. 

The next step was to see if a method simpler than the least squares 
linear,   or quadratic methods could remove the general trend and still pro- 
duce results which would be satisfactory.    The first method (TRNDR) was to 
remove a line determined by the first and last points of a five-second section. 
Then by using the  last point of a  section as the first point of the next section, 
continuity could be produced through all of the data.     The results were again 
almost identical to those shown in Figures  10 and 11. 

It was thought that perhaps a moving average would better remove the 
general trend from the data than a series of straight lines as in TRNDR. 
The subroutine MOVAVG was written and used with both 51-  and 81-point 
averages.    The number of lags was then reduced to 50--first because the 
number of points was  reduced and secondly,   in order to determine how the 
lower resolution would aliect the  shape and placement of the  spikes.     The 
result of the 51-point average is  shown as Figure  12.     This  result is identical 
to the output   from the 81-point average method.     Ii will be noticed that the 
peaks have broadened slightly but are still very satisfactory in returning the 
frequencies known to be present in the data. 

The  results  of these tests indicated that the program was performing 
satisfactorily and could be applied to actual data. 
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3.2   ANALYSIS OF ROS£ DATA BY PSD PROGRAM 

The vertical motion of a ROSE balloon is very smooth and does not 
exhibit any of the oscillatory motion found in the horizontal plane.    Because 
of this the Azimuth angle of the  radar vnas selected for analysis  rather than 
the Elevation angle or Range.    The program \Aas set up for a computer run 
so that a ROSE packed binary tape was the input,   and the PSD table with 
the history and identification of the run was the output. 

3.2.1 STANDARD ROSE BALLOONS 

The standard ROSE balloon results were achieved in two steps.    The 
first was a control study using only one flight (16021) chosen at random.     The 
second step was to apply the techniques developed in the first step to a 
series of standard balloons flown at nearly the same time as some of the 
modified balloons. 

3.2.1.1    Control Study of Flight 1602 1 

In order to obtain a better understanding of the actual ROSE data,   a 
plot of Azimuth vs Time for flight 16021 was made.    A portion,  from 
23 thousand to 33 thousand feet altitude,   is presented as Figure 13.    This 
portion of 400 seconds is essentially a quadratic with the familiar oscilla- 
tions superimposed on it. 

The data were processed four times,   each using a different trend- 
removing technique.     The main program used the following calling sequence: 

1. READIN (400 points) 
2. One of the trend-removing routines 
3. WHITN (ALFAl  =   - 1/2.  ALFA2   s   +1) 
4. AUTCOV (50 lags) 
5. FOURTR (Manned cosine transform) 
6. PDRKN (ALFAl   =   - 1/2,  ALFA2   =   + 1) 

The four trend-removing routines used were: 

1. Q1RND over the whole interval 
2. TRNDR over 50 point lines 
3. MOVAVG over 51  points 
4. MOVAVG over 81 points 

The  results of all four runs were almost identical,  and a representative 
plot of P(4>) vs (p is shown in Figure  14.    The plot indicates that in this por- 
tion of the flight there was a much greater predominance of low frequencies 
than high frequencies,   and as frequency increases the power diminishes 
approximately as the log of the frequency.     It is interesting to note that the 
very slight peak at a frequency of 0. 1  cps  repeats itself in all four attempt». 
However,   it is believed that the peak does not rise high enough above its 
surroundings to enable one to say that there is a predominant oscillation at 
a frequency of 0. 1 cps. 
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To determine the effect of the oscillating azimuth angle on the 
horizontal con.ponent«,   tvto analyse» vtere  run (each vwth a different trend 
remover) on each of the  East and North component« for the same altitude 
band.    Although the balloon vias launched near the radar site,   a strong 
westerly at the time of this flight had pushed the balloon (at an altitude of 
23,000 ffet) much farther to the east but at about the same latitude.     This 
resulted in tht* North component being more noticeably oscillatory than the 
East component.     The different trend-removing routines again had no 
visible effect in producing a power curve of different shape.    A typical 
result for the North component is presented as Figure IS; a result for the 
East component is  shown as Figure 16.     The slight increase in power is 
again noticed in the North component at 0. 1  cps; because of the  location of 
the balloon vuth  respect to the  radar,   such increase is not percei/ed in thf 
East component. 

The next step was to work with various parts of the flight analyzing 
only the azimuth angle.     First,   the entire flight was analyzed (0 to 63,000 feet). 
The result was a very noisy linear function on semi-log scale similar to those 
shown in Figures  14 and  17.     1 his function was not only noisier than those 
di-pu ted in Figures  14 and 17,   it also lacked the prominence at 0. 1 cps. 
Analysis of the first half of the flight (0 to 33,000 feet) gave the same result 
as the analysis of the whole flight.     When the Azimuth vs Time plot of the 
entire flight was  studied,   it was noticed that at about 42,000 feet the 
oscillations vanished (which coincided with the smoothing of the winds 
mentioned earlier).    An analysis of the last portion of the flight (43,000 to 
63,000 feet) was made.     The  results,   presented as  Figure 18,   indicate the 
presence of very low frequency (below 0.03 cps) oscillations and essentially 
white noise at all frequencies above .this --a  result quite different from any 
obtained in previous analyses.     This agrees with the observed fact that the 
winds suddenly became smooth at 42,000 feet.    In order to check this  result, 
the portion of the flight from 34,000 feet to 45,000 feet was analyzed.    The 
result iv presented as Figure I 7 in which the whole first portion of the flight 
seems to confirm that the oscillations  really do vanish above 42,000 feet for 
the standard ROSE balloon. 

3.2.1.2   Series of Standard Flights 

The results of the control study indicated that Azimuth should be 
analyzed and that the flight should be broken into two sections:    1) the portion 
containing the oscillations  (the first of the lower half of the flight); 2) the part 
that is smoother (the second or upper half of the flight).    The flights of 
several standard balloons were chosen for analysis of the azimuth both in 
the two altitude bands and over the entire flight.     The flight numbers of the 
balloons chosen were 16053,   16074,   16083,   lbll4,  and 16116.     The output 
is presented as Figures  19,   20,   21,   22,   and 23 respectively.     The analysis 
of the entire flight is not shown because it is very similar to the lower-hall 
analysis.    It can be seen that while the general trend of the upper and lowwer 
portions are similar,   the upper portions have none of the small peaks found 
in the lower portions.     These small peaks are not sufficiently prominent to 
give assurance that these frequencies are always present in the data.    If the 
frequencies are not always present,   attempting to remove them could cause 
even more erratic data. 
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Figur« 19.    Raiulta of Two PSD Analyaoi o( Aitmuth ol Flight 1601} 
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3.2.2 MODIFI ED BA LLOONS 

The »econd approach to eliminating self-induced balloon motion was to 
physically modify the balloons.    These modifications will be discussed in 
Section 4; for now it will be sufficient to indicate that there were basically 
three types of modified balloons:   tails,  fences,  and roughening--plus two 
flights by a one-meter sphere with corner reflectors known as the ROBIN 
Balloon.    Power spectral density analyses we.-e performed on the two halves 
of at least one flight of each type of modified balloon.    The   P(t>) vs  $  plots 
are presented for these representative flights: 

Flight No. Modification Type Figure 

16055 belts 24 
16073 roughening 25 
16081 belts 26 
16113 tails 27 
16115 tails 28 

Upper portions of flights of modified balloons and standard balloons are 
very similar,  but the similarity between the lower half-portions of flights of 
these balloons varies with the type of modification used.    In all cases at 
least some of the smaller peaks were removed and in general the modified 
balloons resulted in a smoother PSD result. 

3.2.3 MODIFIED ROBIN BALLOONS 

In addition to the variously modified ROSE balloons two smooth,   one- 
meter ROBIN balloons were also tested.    The first had a two-inch inflation 
valve and a five-mb pressure-relief valve.    The second had a two-inch 
combination inflation and relief valve.    The flight was divided into tv^o 
portions with the division at 23, 000 feet.     The results of the PSD analysis 
of the upper portion is very similar to the flight pattern shown in Figure 17. 
Except for the very low frequency peak,   the data contained the same power 
at all frequencies.     The lower portion is similar to the lower portions of the 
other flights with one distinction.    There is a broad peak m the power curve 
from about 0.22 to 0.245 cps which rises high enough above its surrounding 
to give it a degree of credibility.     The rise  rate of the ROBIN is about 
15 ft/sec in this  region; therefore the oscillation covers 60 to 70 feet of 
altitude.    However,   the presence of the large amount of power at lower 
frequencies (as seen in Figure 29) makes this discovery impractical to 
apply in a data reduction technique. 

3.3   GENERAL CONCLUSIONS 

The purpose of this approach was to find a predictable periodicity which 
could be eliminated from the data ii order to produce  reliable winds and 
shears.    We have not been able to find (with any degree of certainty) such a 
predictable periodicity since the motion of the balloon apparently contains 
no prominent frequencies. 
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4.        PHYSICAL MODIFICATION TO THE STANDARD ROSE BALLOONS 

The second approach to making the ROSE a more  reliable >vind sensor 
was to make various physical modifications to the shape of standard ROSE 
balloons in an attempt to control the wake separation. 

The standard ROSE,  as described previously,   is a smooth sphere. 
A photograph of a standard ROSE taken immediately after launch is shown 
in Figure 30.    The modifications were of three basic types:    tails,  orthogonal 
fences,   and over-all roughening.     The tail modifications were devices similar 
to those used with ordinary kites to improve the stability without changing the 
shape of the standard ROSE balloon.    The orthogonal fence modifications 
(shown in Figure 31) consists of two orthogonal great circle strips of poly- 
film with lightweight drinking cups attached with their open end toward the 
balloon.    The over-all roughening modification (shown in Figure 32) is 
popularly known as the "Jimsphere" and is generally attributed to Jim 
Scoggins.    It consists of lightweight cups attached to the balloon in a fairl 
symmetrical design similar to a golf ball that had been turned inside ou 

ny 

In addition to these modified ROSE balloons there were also two 
ROBIN balloons.    The ROBIN balloon is a one meter diameter smooth sphere, 
as shown in Figure 33.     They were modified from standard configuration by 
the addition of a pressure-relief valve so they could rise higher without 
bursting. 

Each modified balloon was flown and tracked in a program testing 
the effectiveness of the modification.    The testing program is described in 
Section 5. 
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5. TESTING OF MODIFIED ROSE BALLOONS 

In order to evaluate the effects of the ROSE modifications,   a series of 
89 test flights were flown at Eglin AFB   where  a   standard and a modified 
ROSE balloon were flown at about the same time.    A comparison involving 
the variances of the winds was made. 

5. 1      COLLECTION OF DATA 

Each flight of a balloon was tracked with the AN/FPS-16 radar,  and 
the data was processed by Egiin's standard xyz  reduction program.     When 
a group of processed flights was completed,   they were stored serially on 
a binary magnetic tape.     The binary tape was  then forwarded to the 
University of Dayton Research Institute together with a BCD listing of 
every tenth point {in order to reduce the volume of the paper).    An inven- 
tory of this test program is presented as  Table 5 and includes all the 
pertinent information concerning the flights. 

5.2      COMPUTATION OF WINDS AND THEIR VARIANCES 

The conclusions  reached in the studies of the various fits indicated that 
the finite-difference method of computing wind is normally adequate.     Finite- 
difference Winds over 100-foot layers of altitude were computed for each 
flight of the series.    When the mean winds over the  1000-foot layer were 
computed,   the variances of both components and the wind vector over the 
same  1000-foot layer were also computed.    This was done in order to quanti- 
fy the effect of the modification.    A sample of this type of printout is pre- 
sented as Figure 34.    A plot of the Wind Vector vs Altitude was drawn for 
each flight.    Samples of portions of tl> :se plots are shown as Figures  35 to 38. 
The large dot shown in these figure!  represents the average over 1000 feet 
altitudes while the x'ed,   dashed line is the value  reported by standard 
rawinsonde balloon launched at about the same time as the test balloon. 
Figure 35 describes the wind reported by a standard ROSE balloon at the 
altitude at which oscillations disappear.   Figures  36 to 38 are plots of the 
variously modified ROSE balloons which present a general view of the effect 
of the modifications on the computation of the Wind Vector. 

5. 3      COMPARISON OF VARIANCES 

A representative variance of the wind vector over a 10000-foot altitude 
layer was computed using the following equation: 

o 
2      U*vE)Z ♦ EKWN)' 

E ■ 
n (65) 

where EtrWjr     and   L ^Wjvj     are the sums of the individual 1000-foot variances 
over each 10000-foot layer.     These variances were computed for four layers 
from 0 to 40000-foot altitude and are presented as Table 6.    The comparison 
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of variances was performed by computing the Ratio (IT)  given by the follow- 
ing equation: 

I 2 
Std modified 

Std 

(66) 

where  <r „„ . and o" ....    .are the variances over 10000-foot altitude layer Std modified ' 
of a standard ROSE and a modified ROSE respectively,  flown at nearly the 
same time.    The ratio for each of the four altitude layers for each modified 
bailoon is presented as Table 7.    The Ratio {Tr)is a type of percent-reduction 
equation,  and the values of   R tor a modified balloon can be interpreted as 
follows:   a small value for  R  indicates that there is very little difference 
between a standard balloon and this modified balloon; a large value for  IT 
indicates that there was a significant change due to the modification.    When 
the value of  R   approaches 1.0 the variance of the modified balloon approaches 
zero--which is just about as unrealistic as the winds reported by the unmodi- 
fied ROSE balloon.    It vias determined that a 0. 7 to 0. 9 reduction in variance 
would indicate a successful modification.    Some of the more successful 
modifications would then be applied to the remaining standard ROSE balloons 
in the Air Force storks so they could be used to produce reliable wind values. 
Care must be used in the selection of the modification because the balloon's 
wind response can be adversely affected.    ® 
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AU Nprth       East At WN WE WT I ID 

3200. ""-3605. -3618. 4.4 -31.59 -29.32 43.10 22. 50 16004 
33J1. -3718. 

-3833. 
-3716. 4.1 -2^.56 

-26.14 
-21.90 
-27.96 

36.48 24 .63 16004 
34C0. -3839. ^ • ^ 16C04 
35C0. -3940*_ -3967.. 4i f ■ -30.97 .-31,22_ 

-28.18 *» «> 
26.39 
22 .73 

16004 
36C0. -4069. -4091. ^ • ^ -24.77 16004 
>7r?,_ -4181. -4224. -27.32 -32.44 _16004 
3800. -4276. -4323. j •" -24.36 -25.39 c 5 . 1 3 16004 
39C0. -4410. 

-A511. 
-4450. ^ • * -31.16 -29.53 »f *» C  J * CJ 

. ^ • 6% 
16004 

4001. -4550. ^ •» -24.64 -24.39 16004 
41C0. -*62U_ 

-27.47 
-4643. 
38.88 23.82 

-26.19 -22.14 34,29 23. 57 16004 
•27.45 3.36792 2.81500   3.16505   1.02967 
4200. -4728. -4708. -27.44 -16.67 -IMI. _;6op.4 
4300. -483f. -4780. 5 • ▼ -27.95 -18.46 33,50 16004 
4403. -4957, -4859. ^•3 -27.91 -18.37 33,41 16004 
4500. -5082. -493«. 4 • 2 -29.76 -18.81 35,21 16004 
4601. -5170. 

-5244. 
-5016. 
-5048. 

y • Q _ -22.00 -19.50 29,40 
22,39  »* *«ft  

16004 
47C0. -20.55 -8.89 16004 
48C0. -5327. -5U1. % • ^ -18.86 -14.32 23,68 16004 
4900. -5436. -5178. ^ • • -25.95 -15.95 30.46 16004 
5CC2. -5544. -5185. 3 • 5 -30.86 -2.00 30,92 16004 
5100. -5671. -5181. % • * -30.24 0.95 30,25 16004 
•13.20 -26.15 30.13   {5.01 7.38435 4.23666   4.14293   2.06504 
5201. -5757. -5216. 4.3 -20.00 -8.14 21,59 23.49 16004 
53C0. -5874. -5176. 4.3 -27.21 9,30 28.76 23.02 _J6004 
540 1. -5972. -5130. 4.2 -23.33 10.95 25.77 24.05 16004 
5501. -6089. 

-6204. 
-5140. 
-5145. 

4.3 
4.1 

-27.21 ^.33 27.31 
28.07 

16004 
56C0. -28.05 -1.22 16006 
5702. -6320. 

-6420. 
-5141. 4.2 -27.62 0.95 27.63 

21.29 ~~fi »ii  
16004 

5802. -5144. 4.7 -21.28 -0.64 16004 
5901. -6407. -5167. 4.1 -16.34 -5.61 17.28 

24.05 
16004 

60C2. -6538. -5188. 4.2 -12.14 -5.00 13.13 16006 
61C0. -6593. 

-21.63 
-5190. 

22.39 
4.2 -13.10 -0.48 13.10 23.33 16004 

-0.22 23.51 6.12064 6.10848   6.10956   0.90063 
6200. -6647. 

-6711. 
-5190. 
-5192. 

4.3 
4.0 

-12.56 -1.40 12.63 23.25 16004 
6301. -16.00 1.00 16.03 25.25 16004 
6404. -6775. -5174. 4.3 -14.88 4.19 15.46 23.95 

22.86 
16004 

65C0. -6837. -5141. 4.2 -14.76 7.86 16.72 16004 
66C0. -6901. -5129. 

4.1 
-15.61 
-14.88 

2.9} 
7.32 

15.•• 
16.58 

24.39 
25.12 

16004 
6703. -6962. -5099. 16004 
68C0. -7017. 

-7061. 
-50tt2. 
-5049. 

4.2 
4.1 

-13.09 
-10.73 

6.05 
1.05 

13.71 
13.41 

23.09 16004 
6901. 24.63 16004 
70C0. -7100. -5036. 4.3 -9.07 3.02 9.56 23.02 16004 
7101. -7145. -^998. 4.4 -10.23 8.64 13.39 22.96 16004 
4.56 -13.18 

-7161. 
14.34 
-4957. 

23.85 
3.8 

3.34717 
-6.21 

2.45280   2.i 
10.79   11.58 

3882  0.93670 
7200. 26.05 16004 
7300. -7211. 

-7269. 
-4901. 
-4849. 

4.0 
4.4 

-12.50 14.00 18.77 25.00 16004 
7400. -13.18 11.82 17.70 22.73 16004 
75C0. -7270. -4808. 4.5 -0.22 9.11 9.U 22.22 _16004 
76C1. -7303. -4765. 4.2 -7.86 10.24 12,90 24.05 16004 
7703. -7323. 

-7341. 
-4732. 
-4669. 

3.9 -5,13 8.66 9.§9 26.15 16006 
78C1. 1.8 -4,76 16.58 17.26 25.79 16006 
7900. -7372. -4574. 4.3 _-I.21 22.09 2}«?« 23.02 16004 
8000. -7398. -4481. 4.1 -6,16 22.69 23.55 24.39 16004 
8103. -7423. 

-6.78 
-4 381. 3.9 -6.41 25.64 26.43 26.41 16004 

IS.14 17.04 24.58 6.26976 3.82808   6.08491   1.54065 

^E ^N ^T WE WN WT 

Figure 34.    Sample Output of Program to Compute Winds for the Evaluation 
of the Modified ROSE'« 
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TABLE 7.    Comparison of Variances for Modified ROSE Balloons 

Modified Std Alt.   Layar Alt.   leaver Mt.   Us.r Alt.   l-^.r 
0.10,000 11-20,000 ^1 .)(). 000 )1 .40. ooo 

1600^ 16001 0   500 0. 760 0   S69 0. 074 
16004 16003 0.763 0. 809 0  s;. 0. 328 iton 16012 N.G. 0. 287 0. 40», 0. 1 79 
16013 16015 0. 130 0. 148 0. )62 0. 095 
IbOiJ 16021 0.806 0. 904 0.926 o   . 44 
16031 16035 0.919 0. 9)5 0. 907 N   i. 
1603J 16037 0.717 0. 606 0. 710 0. 397 
1603) 16037 |7| 0.897 0.892 0. 21 1 
16034 16039 NO. N.G. 0. .10 0. 426 
16038 16039 0. 507 0.274 N.G. N  (i 
1604J 16041 N.G. N.G. 0.638 0   1 Si 
16043 16041 0. 736 0.659 0.671 0,  389 
1MI4S 16044 N.G. 0. 535 0. )77 N 
16047 16046 0. J29 0. 555 0.686 0   H56 
IbOSi 16051 0. 256 0.216 0. 150 0. 649 
I'OM 16053 N.C, 0.452 0   501 0. «»42 
16055 16053 0. 735 0. 705 0. 768 0. 657 
16056 If 057 0. 356 0. 248 N.G. N  (., 
16061 1t ( t», n. 894 0. 882 0  814 N  G. 
1606^ 16066 0. 559 0.428 0.401 N.G. 
16063 l-    • - 0.429 0. 501 0, 49) 0. 421 
16064 16068 0.659 0. 778 0. 708 0. 270 
16065 16068 0. 118 N.G. 0. 119 •.     , 
16071 16072 0. 191 0.201 0. 155 N  <". 
16073 16074 0. 690 0.618 0. 599 0. 961 
16075 16074 0. 955 0.860 0.885 0. 988 
16081 1-         H. 0. 475 0.450 0. 586 0. 274 
1-    * ■ 16083 0.874 0.871 n  M \ 0. 889 
16085 !■     ^4 0. 759 0. 771 0.670 0   50J 
16091 16092 0. 625 0.670 0. 596 0. 536 
16093 160<»4 N.G. 0.218 N.G. 0. 4>>9 
16095 |609(. 0. 514 0. 745 

■ N.G. 
16101 16102 0. 630 o. 607 0. 596 0. 5)6 
IfciOl 16104 N. G. 0.218 N.G. \   ( , 
16106 16109 N.G. N.C, N.G. 0. 91 3 
16111 1M 1 2 N. G. 0. 913 0.922 0. 842 
16113 161 H 0. 4H9 0. 549 0. 54» 0. 5S4 
16115 16166 0. 519 0. 916 0. SS) N. G. 
16123 16124 N.G. 0. 221 0. 838 N. G 
16125 16126 N.G. N.G. N.d. 0. 616 
16U9 16130 N.G. N.G. N.C. 0. 9 34 
16132 16131 N.G. 0. 80) N.G. N. G 
16134 16133 0.835 0.665 0. S9| 0. <»)1 
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b. SMALL LIGHTS EIGHT ROSE BALLOONS 

The two appi oaches initially suggested to make the ROSE systerri 
reliable wind sensors met with limited success.    A new approach which 
involved designing an entirely new balloon sensor was suggested by Reid. 
Experiments tend to confirm that the self-tndut «d balloon motion can be 
related to the Reynolds Number,  a unitless  ratio of inertial to viscous forces. 
When the Reynolds Number is greater than 250000 the balloon experiences 
considerable instability,   but when the Reynolds Number is less than 250000 
the instability is negligible.     The value of 250000 will be known as the 
critical Reynolds Number.     The change from supercritical to subcritical 
occurs at about 42, 000 feet altitude for the standard ROSE balloon.    Reynolds 
Number for a sphere is given by 

Re   S  l^ifi^ (67) 
M 

| v|   is the velocity with respect to the surrounding air mass,    p   is the density 
of the air mass,   D  the diameter,  and M   the coefficient of viscosity.    Since 
the density or coefficient of viscosity of the air mass    is obviously uncontrol- 
lable,   Reynolds Number must be affected by changing the velocity or the 
diameter of the balloon.     The velocity could be decreased by adding weight 
to the balloon,  but this is not practical because it also increases the lag 
distan   K and the length of time  required for a sounding.    Decreasing the 
diameter of the balloon lowers the maximum altitude the balloon can attain 
but improves its wind response.     Reid has shown that a balloon having a 
diameter of approximately    1   meter and weighing less than 100 gms should 
produce detailed winds from altitudes of 10000 to 50000 feet*".     A series 
of 12 such balloons,   designated as GT baMoons,   were fabricated for testing 
in comparative flight tests with standard two-meter ROSE balloons. 

6. 1      COMPUTATION OF WINDS,   VARIANCES AND 
REYNOLDS NUMBERS OF GT BALLOONS 

The program to test the G I  balloons was identical to the one used to 
test the modified ROSE balloons.    A list ot the GT balloons and the standard 
ROSEs flown in the test series is presented as  lable 8.    Wind values were 
computed by the finite-difference method for 100-foot layers of atmosphere. 
Average winds for the 1000-foot layers with their variances were then com- 
puted. 

In addition to the normal output (Figure  34),   two extra parameters Rise 
Rate and Reynolds Number,   were added to the printout shown in Figure  39. 
Rise Rate was computed by finite-differences,   and Reynolds Number was 
c omputed from the following equation: 

(Rise Rate) •    p       •   D 
Re  - 2   . (68) 

'm 
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votiere   p       and u       are the density and the coefficient of viscosity respec- 
tively.     Tney were obtained from the 1962 Model Atmosphere     . 

In addition,   four flights (16141.   16142,   16143.   and 16144) were recom- 
puted using the linear fit method of computation described in Section 1. 3, 
Values obtained by these various methods were then compared. 

6.2     COMPARISON OF "ARIANCES 

The method used to compare the variances for the GT balloons was 
identical (computing the  H   values) to that used for the modified ROS£ 
balloons.     The values for the  ratios are presented as  Table 9.     The  values 
for the ratios for flights 16141  to 16144 are presented as Table 10. 

The tables show a generally high reduction in the wind variance.    Based 
on these values and their own independent calculations,   the scientists at 
AFCRL have made a tentative selection of a new standard ROSE balloon.    It 
was the balloon designated as GT59 in the test series and is a 0.25-mil, 
40-inch balloon with a standard pop-out valve. 
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4*01. 

560*. 
4/0^. 
5Ä0?. 
b<*0l. 
6000. 
610). 
6205. 

-I^.fcl 
6)0). 
6*0C. 
650*. 
6605. 
6 701. 
6400. 
6900. 
I0OC, 
1102. 
7201. 

-15.62 
7)0*. 
7*07. 
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7t0l. 
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-12.1* 
«)0C. 
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Figure 39.    Sample Output of Wind Computation for Standard and Modified 
Test Series 
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TABLE 8.    Flight« ConducUd In Compmriton T««t« of GT Balloon« 

night« Conducted in Comparlaon T««t of GT Balloon« 

Flight Balloon Otarrclar Gaug« Weight Valv« Tim« and Date of Lau 
Inch«« mil gm« 

16141 GT.6Z * .25 48. 1 Wei |htle«a 1242 26 May »4 

16141 GT.59 40 .25 7). 1 Std 1429 26 May 64 
1614) 1) 78. 5 .5«/ )50 Std 1742 26 May 64 
16144 M) 78. 5 . 50 )50 Std 1406 26 May 64 
1614« 19 78. 5 .50 )50 Std 1528 26 May 64 

16146 GT.56 )6 ,25 29. ) Wei ghtl««« 1629 26 May 64 
16147 GT.ii 36 .15 74. 9 Std 1608 26 May 64 

161fl GT-61 40 . 50 7). 7 W«l ghtle«« 1237 27 May 64 

Iblti 41 78. 5 .50 )50 Std 1428 27 May 64 

16153 19 78. 5 . 50 3 50 Std 1532 27 May M 

161M GT-58 40 . )5 84. 8 Std 1659 27 May 64 

161** CT-55 " .50 62. ) Wei ghtle«« 1451 27 May 64 

161*6 GT-5) M .25 67. 2 Std 1926 27 May 64 

16157 48 78. 5 .50 350 Std 1114 11 May 64 

16161 GT-57 40 . 50 100.6 Std 1346 2N May 64 

1616^ Zi 78.5 .50 350 Std 1251 21 May 64 

1616) 14 7«. 5 .50 350 Std 1409 28 May 64 

16164 CT-60 ♦ .50 97. 5 Std 1244 ^8 May 64 

16171 7 78. 5 .50 350 Std 1332 1 Jun« 64 

1617i GT.54 )6 .50 85. 5 Std 1443 1 Jun« 64 

1617) 46 78. 5 .50 350 Std 1610 1 Jun« 64 

16174 GT.51 M . 50 89. 9 Std 1327 1 Jun« 64 

Table 9 

Currparlaon of Variance« for GT Balloon« 

Alt Alt Alt Alt 

GT Balloon« Std. 0-10,000 11-20.000 20-30,000 31-40,000 

16141 (GT 62-11) 16144 0.037 0. 942 0. 894 0, 739 
•16142 (GT 59-9) 16144 0.812 0. 947 0.954 0.842 

16146 (GT 56-6) 16145 0.834 0,950 0.896 0,810 

16147 (GT 52.i) 16145 0.928 0.953 0. 940 0,691 

16151 (GT 61-12) 16152 0.892 0. 903 0.817 0. 740 

16154 (GT 48-8) 16157 0.890 0.965 0.961 Ö.yl5 

16155 (GT 55-5) 16152 0.771 0.891 0. 821 0.870 

16156 (Gr 53-3) 16153 0.894 0. 963 0. 972 0. 904 

16161 (GT 57-10) 16163 0,733 0.945 0.958 0. 056 

16164 (GT 60-7) 16162 0.863 0.920 0.960 0.934 

16172 (GT 54-4) 16171 0.784 0.926 0. 765 N. G. 

• Indicate« th« type that 1« tentatively cho««n a« th« new «tandard ROSE 

balloon. 

Table 10 

Companaon of Variance« for GT Balloon« Ualng Lin«ar Wind« 

Alt Alt Alt Alt 

GT Balloon« Std 0-10,000 1 1 -20,000 11 -30,000 11 -40,000 

16141 (GT 62-11) 16144 0.945 0.953 0,929 0. 769 

16142 (GT 59-9) 16144 0, 770 0, 929 0, 965 0.879 

16146 (GT 56-6) 16145 0,988 0,963 0. 957 0.860 

16147 (GT 52-2) 16145 0.940 0. 962 0,950 0. 784 

63 



7. GENERAL CONCLUSIONS 

The highest degree polynomial necessary to desc ribe the motion of 
the ROSE balloon is in almost all instances the first degree.    If the data 
contains extraneous points,   they should either be eliminated before fitting 
a linear function or the method of finite-differences can be used--the  latter 
being faster and more economical. 

The Po\*er Spectral Density Analysis Technique when applied to the 
balloon data produced no useable results.    It was therefore suggested that 
physical methods of reducing the oscillations be pursued rather than trying 
to remove them mathematically from the radar data. 

Some of the modified ROSE balloons show significant reductions of 
self-induced motion.     Extreme care must be used in selecting the type of 
modification to be applied to the remaining standard ROSE balloons.     With 
the proper modifications,   the  standard ROSE balloon can be used to measure 
the detail winds with fair reliability. 

The smaller lightweight balloons seem to reduce wind variance most 
consistently.     They also ha\e better wind response and are much simpler 
to manufacture than the modified ROSE balloons. 

8. FUTURE WORK 

Future work will be in two areas:    The first will be a more complete 
analysis of the modified ROSE balloons selected by scientists at AFCRL to 
be flown for a study which >Aould determine a typical wind profile.     The 
second will be to develop a more convenient data-handling system for the 
new lightweight ROSE  balloons.    Such a system will permit computations 
at the sounding site and will eliminate the delay involved in data reduction at 
a  remote loc ation. 
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APPENDIX 1 

INDUCED MASS 

The values presented by Leviton for the wind response errors in the 
spherical balloon technique for measuring winds were questioned by Reed      ' 
The basis for the difference between values computed by Leviton and Reed was 
attributed to the fact that Leviton assumed the apparent mass term to be zero. 

A basic  reference in aerodynamics,  "Theory of Flight" by R.   von Mises, 
page 573, provides the basis for the additional term in the expression for mass. 

"In this argument, as well as  in the preceding section, it has been assumed 
that the air reactions on a moving body depend on the instantaneous state of 
velocity only,   not on the accelerations (and higher derivatives).   It is obvious 
that this can be only an approximation and that some influences on the accelera- 
tion must exist.    The theory of irrotational flow of a perfect fluid gives a certain 
answer to this question.    According to this theory,   a body moving in a fluid 
originally at rest behaves like a body of increased inertia:    There is a term of 
apparent mass to be added to its real mass w/g,   the reaction of the surround- 
ing fluid would be taken intoaccount when the sphere is assumed to have the mass 

— +   ■*•   ir  pa 
g J 

and to move under the influence of the other forces (weight,   etc.) alone.   This 
includes  (for the case of a sphere) the result expressed  in   D'Alembert's 
paradox (Sec.   IX. 3) that no reaction exists if the motion is uniform." 

The volume of radius  a   is given by 

VB   = |     " a3 (69) 

Solving for  a     gives 

3      ^   VB 
a     =-— (70) 

Substituting in the expression for mass by von Mises gives 

w        i. 3 •   VB 
M = I + T^ p Hn— (71) 

simplifying 

i M = irf z p ' VB (72) 

The term  -j p   •    V_  is equal to one half the mass of the air displaced by 
the sphere.    The equations of motion must therefore include the mass of the 
balloon and the mass of the air that is accelerated as though it were part of 
the body. 
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APPENDIX L 

AN ANALYSIS OF THE OSCILLATORY MOTION 
OBSERVED IN THE RISE OF A SPHERICAL BALLOON 

In the course of this work it has become apparent that certain assump- 
tions must be made if the analysis is to be mathematically tractable. 

From wind-tunnel pressure measurements it is well known that th«* 
fluid flou at the front of a spherical object is essentially incompressible and 
inviscid for Mach Numbers appreciably less than one.    However,  at the 
rear of a sphere the wake is turbulent or at least rotational for Re greater 
than 100-200.    In the case of ROSE,   Re   :   106 after the first 0.5 second or 
so of travel.    Because of this turbulence,   we must resort  to approximate 
methods since not even the simplest turbulent motion has yet lent itself to 
a strict mathematical analysis. 

However,  a certain amount of information may be obtained by a consider- 
ation of the supposedly potential flow at the front of the balloon.    In doing this, 
of course,  no information as to the causes of any oscillatory motion is obtained 
since these causes are tied up (apparently) in the unstable wake. 

What is done to overcome this lack of information is to accept the 
oscillation as a fact and to apply it as a boundary condition to the equations 
governing the flow at the front of the balloon.    Due to a lack of experimental 
data, the precise form of the balloon's oscillation is not known; it has,  how- 
ever,  been assumed that this oscillation is in the form of a helical spiral. 

We take axes at the center of the balloon as shown: 

The x-axis is horizontal, and the 
y-axis is vertical. The z-axis is 
normal to the helical axis. 

1 he angular velocity of the balloon is denoted b>   fij,    the vertical 
velocity of rise by W,   and the radius of the spiral by «T.    The radius of the 
balloon is   R.    Hence,   the axes are translating with velocity W and rotating 
with angular velocity  ::,    The velocity of the air relative to axes fixed in 
space is given by the gradient of the velocity potential,   U.    The velocity of 
the fixed axes relative to the moving axes is -   W   -  Hx (T -f  3)   where T is 
the radius vector from the moving axes to the point in question.    Hence,   the 
velocity of the fluid relative to the moving axes   (V)  is given by 

V = V U - W - ß x (r  +  J) (73) 



Since we have assumed the flow to be inviscid,   the boundary condition 
on the surface of the balloon is 

V     =   0 r (74) 

where Vr  =   the radial component of velocity relative to balloon,  and on the 
surface   r   =   R.     The above vectors have the components; 

W   =   (0,   W,   0) 

d   =   (0.  0.  d) 

n = (o, a o) 
7 =   (x,   y,   z) 

?? x   (3" +   r)   =  [n(7   +  d),   0,  fix j 

We use spherical coordinates defined by x  s   r sin 9  cos  ^, 
y   s   r   sin  9   sin  ^,   z   =   r cos 9.    Now,   V     s   0 on r   r   R,   so 

Vr  =   0=VrU-rW  +  nx(7+a')1      atrsR. 

We have the general relationship: 

v     s  v    sin 9 cos d>  +   v     sin 9   sin  A  +   v     cos 9 r x y z 

(75a) 

(75b) 

(75c) 

(75d) 

(75e) 

(76) 

(77) 

Hence V   U   = 8U 
W r  r  R 

= iJ(z   +   d) sin 9 cos  ^ + W sin 0 sin 4> -12 x cos 9      (^S) 

au 
or      JF ■  nd   sin 9   cos   :    •   W   sin 9 sin p (79) 

r = R 

This last condition along with the fact that U-*0 as r—»somakes up the 
boundary conditions on U. The velocity potential (U) must satisfy Laplace's 
equation: 

V" U   =   0 (80) 

A solution to this equation which satisfies the above boundary conditions 

I 

i» 

U   =  -y    (A sin  9   cos ^  +   B sin 9 sin  $). 
r 

It follows that 

(81) 

8U 
37 =   - -*■     (A sin 9   cos   <}>  -f   B sin 9   sin  <t») 

r = R R 

■  fjd sin  9  cos   5   +   W   sin  0  sin   5 

(82) 
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The above equality must hold for all  0  and 4>,  hence: 

? A   =   Od and ? 
or  A   =   - r"3 ßd and       B 

B   =   W 

■R'W 

Thus,   the final expression for the potential become^ 

1      H i 
U  =   -  j    ~j    (^d  sin 6  cos  4>   +   W sin  0  sin   ;.) (83) 

Two equations connecting the four unknowns:  Q,   d,   0,   and  ^   may be 
obtained by finding the coordinates of the stagnation point.     We do this by 
finding V    and   V     at   r  =   R and equating them to zero. 

Ü 5 

ve = vQu - [w +nx (7 + 1)] 
8 

(84) 

In general,  v     =   v     cos   6  cos  <$>  +   v     cos   0  sin 4) - v    sin 9 (85) 

Hence,    V„   =  —    -5-    -  n{r cos 0   +   d) cos 9   cos   £ - W cos   9   sin <(> -ßr sin  0 cos 0 
(86) 

V =     - j (ßd cos   9   cos   4»  +   W   cos   9  sin 4,)   -fl R cos D        (87) 
r  =   R 

V    - V     U   - fw f   fix fF + 3")1 (88) 

in general,   v     =   v    cos A - v     sin  ^ B 4) y ^        x r 

1 3Ü 
therefore   V     =    •—-r    -r—   -   W cos  <|)   4    n(r cos   0  +  d) sin   j) 

$)        r s 1 n (j     0{j) 

(V   ) =  T ßd sin «D   - W cos  <J) 1   +   OR cos  9  sin  4> 
^ r = R       Z     ^ J 

(89) 

(90) 

(91) 

We now equate expression (87) and ((M ) to zero and obtain: 

3 cos  9  (Qd cos  <> +   W sin 4))   +  2i2R cos  $  =  0 

HURd  sin  ((> - W cos 4»)   +  ZßR cos   0   sin $   =  0 

(9<i) 

(93) 
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These two equations contain the four unknowns;   Q (balloon angular 
velocity),   d (radius of spiral),  and   9,  $ (coordinates of stagnation point). 

As is well-known,   however,  two equations  in four unknowns are a 
rather useless bit of symbolism in themselves.    With this in mind,  we 
come to the main problem of this paper:   How to find something which 
occurs at the stagnation point,  and how to express this something in the 
form of two or mere analytic expressions. 

We have at our disposal another hydrodynamic equation,  namely Euler's 
equation of motion or,   in its first integral form,   Bernoulli's equation.    For a 
system of rotating and translating axes such as those employed in this 
problem,  Bernoulli's equation takes the form: 

P = i  p   nZDZ 0  pgy - i  p   VZ   +   f(t) (94) 

where   p  =   pressure,    p   =   density,   fft)  =   function of time,   y  =  height above 
center of balloon,   D  =   [(d  +   z)     +   xn  '"   s   perpendicular distance from 
axis of spiral. 

There are good physical reasons for believing that the pressure is 
maximum at the stagnation point (where   V  =   0).     This may be rationalized 
by considering that the stagnation point is the most physically significant 
point on the top-half of the balloon.    Since the pressure has a maximum at 
some point on the balloon,   we would expect that this maximum would occur 
at the stagnation point.     Furthermore,   it is generally known that in the case 
of any solid body moving in an airstream with constant velocity the stagna- 
tion point and pressure maximum occur at the same point.    With this bit of 
justification behind us,   we now proceed to maximize the pressure: 

The pressure is a maximum if 

H = H = o °"' = «• 
Substituting for  D and   y  in   (3)  we get 

P   = T     Pß   (d     +   3 rd cos  9  + r    cos    9  +  r    sin  9 cos    $) (95) 

-p  gr sin  9   sin  <J>   -  j  p   V     +   f(t) 

n 1 2 ^ 7 7 
•gfr  =  T     P A     (-«2  rd sin 9 -Zr" sin 9 cos 9 + 2r    sin 9 cos 9 cos   0)     (9b) 

-  p  gr cos 9 sin $ 

aD I Z Z Z 
■jr-  =  7     PH     (~^r    s^n     0   cos  4» "n  : )  "P   gr "n 3    "9 <t> (97) 
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These last two exprefsions,   when evaluated at r   -   R and equated to zero, 
give 

Q    sin  0   (R cot  e  sin     :   ♦  d)   .   ^ cos 6 sin 4>   ■   0 (98) 

12  R sin 0 sin $ + g  -   0,   provided sin 0 cos   $   ^   0 (99) 

We nov. have at our disposal four equations:    namely,   92,   93,   98,  and 
99 in the four unknowns fj,  d.   9,   and ^.    It is possible,   in principle,   to solve 
these lour equations for t'»e unknowns. 

Equations 93,  98,  and 99 are easily solved by eliminating 0 and <j).    However, 
the inevitable conclusion reached is that 

\idZ   =   0 (100) 

and upon further analysis we see that this implies that  1.'   /    0,   but that d = 0. 
ihis is interpreted as meaning that the balloon is  rotating about its axis and 
rising vertically.    We can only conclude from this that (1) a rising balloon 

<. annot spiral or {Z) the assumption made about the pressure at the stagnation 
point is false.    If we accept cone lusion (2) as more likely and shelve our con- 
ceptual misgivings,  we can search for another set of relationships. 

If the pressure is not a maximum at the stagnation point as defined above, 
where is it a maximum?    There is one other physically significant point on 
the upper half of the balloon.     This point,   which we might call the null- 
disturbance point,  is that point at which the hydrodynamic disturbance in 
the air due to the oalloon is zero.    That is to say,   it is the point at which the 
air motion relative to the balloon axes is purely helical.    The fact that the 
disturbance is zero at this point is expressed mathematically by the equation 

W   =   0 (101) 

This implies that   VV   =VU=VU   =  0,  and that   V   U ■   0 identically 
on r  =   R. » ♦ r r 

V U   =   - T    co* 9 («d cos  <>   +   W sin 4,) (102) 

V U   = i  (Od sin  4) - W cos  4) (103) 

The above two expressions when equated to zero yield: 

cos   0 (i2d cos 4> -f W sin  4»)   =   0 and (104a) 

Qd sin   $ - W   cos  ^  =   0 (104b) 

These two equations will be supplemented by the two pressure conditions 
used before,   namely 

-^B   =   S" =   0       at the null-disturbance point. 
30        oi) 9+ 
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The pressure if given aa before by 

p  =  y p f7   (d2   =   2dr co» 9  + r    co«    9   +   r    »in     9  co»    4,) (105) 

-p  gr sin  0   »in  <)>   - » p  V    +   f(t) 

j£ =   pO     (-dr »in  9   -  r    »in  9  co»   9   +   r    »in 9 co» 9 co»     4») (106) 

-p  gr co«   9   »in <j> - pV •   «• 

and     ix =   - p ft  r    »in  9 »in ^ co» 4» - p  f - »in 9 co» <t> - p V * -x— (107) 

A little algrebra give»: 

V  •   I? =   - i- n2Rd »in 0 co»2<l> - j VKi R Bin Q »in $ co» <t> (108) 

and 

2   2 .2 
- 12   R     »in 9 co» 9 »in  <p 

V -   ^ = I  WfiR co» 9 co»Z 4 -n2R    »in $ co» <p (109) 

3 2 2   2 2, 4 T  WQR cos   9 »in    (j> +   12   R     cos     9   sin $ co» 4» 

These substituted into equations  106 and 107 give,  along uith the condition that 

E =  £  =  0,   that 
0       $ 

2 3      2 2 
-ft d sin 0 - g co» 0 »in $  + y   ft d »in 9 co» <*> (110a) 

+  7   WO  »in 0 »in 4) co» 4»   =  0 

g »in 9 co» 4) +  I  WQ  co» 9   =   0 (110b) 

The preceding four equations (104a,   104b,   110a,  and 110b) are analogous 
to 92,   93,   98,  and 99 of the previous analysis although it i» apparent there is 
little similarity between the forms of the two sets of equations. 

Equations  104a and  104b yield one physically significant solution, namely, 

W 
co»   0  =   0 and tan  4  * an 
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These two conditions when substituted in equations 1 1 OH and 110b yield 

i/d   =  0 (111) 

which is identical with the  result obtained under the assumption that the 
pressure is maximum with V  =   0. 

Thus,   two essentially different sets of assumptions  lead to the same 
physically insignificant  r.-suit --namely that the balloon does not spiral.     We 
arc- again left with the two alternate conclusions  mentioned previously: 
(1) that the balloon can't spiral and (2) that the pressure assumption is false. 

If \*e again accept conclusion (2) as correct, we are once more left with 
but two valid equations (either 92 and 93 or  104a and  104b),   and the problem 
again is to find two more.     This could easily be done if an expression could 
be found for the pressure in the vicinity of the stagnation point (or null- 
disturbance point).     First,   we recall Bernoulli's equation is 

1 
P " T P^V * pgy + 

i 
2 P v2 . m (112) 

The above-mentioned expression for the pressure could be substituted 
in Bernoulli's equation,   and the entire system of equations  could be differ- 
entiated with respect to the space coordinates of the balloon and equated to 
zero. 

This method depends upon the fact that f(t) is only a function of   t   and 
therefore: 

8f      a*. _ 11 
M       84)       8r 

»ft 
ao ar 9(1) a r 

32f 

80 

St 
ar 

=   0    (113) 

Although all the above equations are not independent,   at least three of them 
would most likely be so.    It is therefore possible that they could yield at 
least three more equations in the unknowns. 
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APPENDIX 3 

TIME SERIES ANALYSIS BY HEALY AND BOGERT 

1. READIN(A,  NA. ANAME) 

This Subroutine  reads in NA values of the sequence A from punch cards. 
NA is read fron, columns 1-6 of the first card and the BCD characters in 
columns 7-80 are stored in the vector ANAME for future references.    ANAME? 
must be given the dimension 13 in the main program.    The second card of the 
deck carries the format of the data cards in ordinary FORTRAN form omitting 
the Nfcord FORMAT but including the parentheses. 

2. OUTPUT (A.  NA, ANAME,   INDIC) 

This Subroutine prints NA values of the sequence A in floating form 
(without starting a new page).     The printout is preceded by the name held in 
r3CD characters in the vector ANAME which must be given the dimension 1 3 
in the main program.    If INDIC is negative,  the series will be punched out 
five to a card with the two preceding cards required by READIN; if INDIC 
is a positive number,   the series will be written on the corresponding tape 
as three binary records--the first containing NA,   the second ANAME. 

3. DETRND (A,   NA,   B,   NDEG) 

The mean (NDEG   =   0) or a least-square linear trend (NDEG   =   1) is 
subtracted from the NA values of the sequence  A,  and the residuals are 
stored as the sequence B. 

4. AUTCOV (A,  NA,  B,   L) 

This Subroutine calculates the series B as the autocovariances of the 
series A (of length NA) from lags 0 to L.    Owing to the nature of FORTRAN 
indexing,   B(J) corresponds to lag (J -  1),   and the sequence B is of length 
L  +   1.    The formula used is 

NA - J+l , 
B(J)   = L A(I)*A(I + J -  1)   /   (NA  - J   +   1) - AVE   , (114) 

1=1 J = 1,   L  4   1 

when AVE denotes the average values of the sequence A, 

5. FOURTR (A,   L,   B, INDIC) 

Form the sequence B as the Fourier transform of the sequence A of 
length L + 1.    For INDIC   =   1, 

B(K)  =  A(l)   +    L   A(I)*cos (I" LIÜLÜ , +   (.1)K-1A(L+1)  /   L.        (115) 
1 = 2 L K = l.   L+l. 
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For INDIC   =  Z the cosines are replaced by sines,   and the end terms are 
omitted.     INDIC   =   3 or 4 provides these same transforms smoothed 
("hanned") vwth coefficients  1/4,   1/2,   1/4,  the end terms being found 
from symmetry considerations.    Note that the sequences are not of length 
L+l to match AUTCOV and CRSCOV.    N must not exceed 1500. 
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APPENDIX 4 

ADDITIONAL SUBROUTINES ADDED BY WILLIAM E.   BROCKMAN 
TO THE ORIGINAL PROGRAM BY HEALY AND BOGERT 

1. QTRND (A,   NA,   B) 

The least-squares quadratic trend is subtracted from the NA values of 
the sequence A, and the n-siu lals are stored as the sequence B. Orthogonal 
polynomial coefficients are used. 

2. WHITN (A,  NA,  ALFAl. ALFA2,   B) 

The data in the sequence A of length NA is prewhitened using the coeffi- 
cients ALFAl and ALFA2; the whitened data is then stored in sequence B. 
The prewhitening equation is given by: 

B(I)  =  ALFAl ♦A(I)   + ALFA2*A(I +1)       1   =   1.  N-l (116) 

3. PDRKN (A,   NA,   ALFAl,  ALFA2,   B) 

The data in the sequence A of length NA is post-darkened (also known 
as "recoloring") using the coefficients ALFAl and ALFA2; the post-darkened 
data is then stored in sequence B.    The post-darkening equation used is 

B(i). ±2!  (ii7) 
ALFAl2 ♦ ALFA22  +  2* ALFAl * ALFA2*cos (Tr*(I-l) / N) 

1=1,   N-l 

4. TRNDR   (A,  NA,   L,   B) 

Straight line segments containing L points are subtracted from corre- 
sponding points in the sequence  A  of length NA; the residuals are stored as the 
sequence B. 

5. MOVAVG (A,  NA,   L,   B) 

Moving averages over   L  points are subtracted from the point corre- 
sponding to the mid-point of the L points of sequence  A of length   NA.    Again 
the residuals are stored as the sequence B. 
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APPENDIX 5 

APPROXIMATE VALUES OF AERODYNAMIC FORCES 
ACTING ON THE ROSE BALLOON 

The results of our work thus far in explaining mathematically the 
balloon's »elf-induced motion have yielded very little useful information. 
The plots of the space coordinates of a ROSE sounding which first revealed 
loops and spirals in an altitude band which rauinsonde reported to be calm 
were indeed surprising.    Curiosity was the motivation for our attempt to 
t ompute the magnitude of the forces necessary to produce such motions. 

The equations of motion for the three coordinates can be written as: 

Mx   =   1/2 p  •   A   •   CD   |v|   (x - Wx)   ♦ Ax (118) 

My   .  1/2 p •   A  '   CD   M   (y - Wy)   ♦  Ay (119) 

Mz « -Ml p •  A   •   CD   lv|   (z - Wz)   +  Az   +   mg - gp Vg (120) 

M is the total (system plus induced) mass, and A is the Aerodynamic 
Force in the q component. We can assume that Wz r r = A =0, and w t« 
have shown that a good approximation for M (the total mass) is 

M   =   m  +   1/2   p   VB (121) 

where   m  is the mass of the system. 

Making the substitutions and rearranging the equations become: 

(m+l/2pV   )*x - A 
-1/2 p  '   A •   CD   |v|   =      3r--H 1 (122) 

(m+l/2pV   ) y - A 
-1/2 p  •  A •  CD   |v|   =      y-^ ü- (123) 

-mg  +  gp  V 
-1/2 p  *  A •   CD   |v|   =      : P (124) 

z 

Since the left side of all three equations are now identical,   the right sides can 
be equated: 

(m+1/2 p VB) *x - A -mg + gp  V 
 1     =      :  (125a) 

x - W z 
X 
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(m +  1/2  p   VB)V - A - mg + gp   VB 

 r— l   =    :  (I25b| 
>   - Wy z 

and solving these Z equations for  A     and A     respectively gives: 
x y 

(x - W   ) 
Ax   =   (m  +   1/2 p  VB) x  +   (mg - gp   Vg) •    -^L. i^^) 

z 

(y - w ) 
A     =  (m  +   1/2 p  VB) y ♦   (mg - gp  V   ) •    ^-i- {Ubb) 

y z 

The values used for the accelerations and velocities v^ere obtained from 
a randomly selected standard ROSE flight.     The data was fitted with a second- 
degree orthogonal polynomial.    The first derivative evaluated at the mid- 
point of the 100-foot interval produced the velocities,  and the second 
derivative produced the accelerations.     The density (p) was obtained from the 
1962 Model Atmosphere,  and the gravity (g) was taken to be -9.8 m/sec   . 
The v^inds (Wx and Wy)  v*ert' average value of the winds on the layer 500 feet 
above and below the particular altitude.     The vector sum of Ax and Av was 
then computed.     The  results were as follows: 

Altitude (feet) Aerodynamic Force (nektons) 

500 27.5 
5,000 45.1 
10,000 28.1 
20,000 10.4 
30,000 11.5 
40,000 3.2 
50,000 5.5 

The values seem to agree v^ith the spirals in the data,  but tneir 
accuracy is suspi-ct because of approximations and assumptions.    The trend 
of louer forces at the higher altitudes also agrees viith the theory  that the 
critical value of Reynolds Number occurs at about 40,000 feet. 

This approach was not pursued because of reasoning similar to that 
given for not pursuing thv questionable results of Power Spectral Density 
Analysis. 
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APPENDIX 6 

LEGL'NDRE POLYNOMIALS 

This appendix is included in order to give the  reader easy access to the 
actual numbers used in the polynomials.     P (i) is a  Legendre polynomial 
of degree m,  of the form 

"•" k=0 [k] 
I! 

^here   i^k^   =  i (i-1 )(i-Z). . . (i-k+1) and J0^=   1 

.m. m; 
and       (k)   ^   (m-k)!   k! 

(13) 

(14a) 

(14b) 

The first few polynomials are: 

(Ha) 

(3Jb) 

p       (i, .  1 - 6i   4   6 iÜ^iL 
<i, n n M(n-l) 

(33c) 

Now  make the following substitution: 

1        n 

c2 = ci <^r> 

C3 = c,( i - Z 
i ^irrr 

(127a) 

(U7b) 

(127c) 

c     = c     .( l-mi {) 
m m-1   n-m 4   1 (lZ7d) 

gives this simpler form for the polynomials, 

P0,n<''  '   ' 

P2iii(i)  .  1.6C,   *   6C, 

(128a) 

(128b) 

(128i ) 
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p.     (i) = 1  -  12C.  + 30 C,   - 20C, (lZ8d) 3n, 12 3 

P4  n(i) ' l  ' 20C1 + 90 C2   * UOCj + 70C4 (128e) 

P    n(i) = 1  - 30CJ ♦ 210C2 - 560C3 + 630C4 - 252C5 (128f) 

P6  n^ ' 1  " 42CJ + 4Z0Cz - 168OC3 + 3150C4 - 2772C5 + 924C, (128K) 

p,     (i) = 1  - 56C. + 756C, - 4200C, + 11550C. - 16632CC+ 12012C. - 3432C, 
7,n 12 3 4 5 6    jU8h)7 

P0     (i) =   1 - 72C. + 1260C, - 9240C, +34650C. - 72072C-+64084C.-51 480C, 8, n 1 c 3 4 5 b 7 

♦ 12870C8 (128i) 

pn     (i) = 1  - 90C.  + 1980C, - 18480C, ♦ 90090C,  - 252252C- + 420420C^ 
9,n 12 3 4 5 0 

- 411840C_ + 218790Co  - 48620Co (^Sj) 
7 ö 9 

The first derivative of the orthogonal polynomial 

%   -   A0.n(') + A.Pl,n<" * ^^.n«1» + •••  + An,Pm.nV (") 

ia given by 

h-   •  AnP'        (i)   ♦  A.P',      (i)   4   A^',     (i) + ...   -fA    P' (i) (30) ^1 0     O.n' 1      l.n' ' 2     2,n m     m, n* ' 

where P' (i) is the first derivative of the Legendre polynomial m, nw B r     / 

It is a characteristic of Legendre polynomials that if  m   is even and the 
first derivative is evaluated at the mid-point (n/2) of the interval with length   n, 
then 

P' (£)   =   0 (38) 
m, n   c 

Therefore,   the derivative of an even degree polynomial is equivalent to 
the derivative of a polynomial of one degree less.    For example,   if m  =  2, 
then 

.2 
P       (i)   =   1-61+6 VJL (33c) 

Z'n n nZ - n 
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p.       (,)   =   -6.i+6.i^-L (34c) 
n     - n 

and the first derivative v^ith respect to  i    is given by 

'z.n 

At i   r  nil 
n 

m       /n» 6        6(2   •   7  - n 
P l.u^   =   -   n   +    n   (n - 1) (12^) 

/p-i 6       6 ln-1) 6       6 
P,2.n<l)   ^n^n^T^n^n^0- O^b) 

The derivatives are taken with respect to the index (i); therefore the 
denominator which contains only functions of n  does not change.     To simplify, 
the following substitution will be made:    Let 

NB   (1)   «   n (liOa) 

NB  (2)   =  n (n-1) (130b) 

NB  (3)   =  n   (n-1)  (n-2) (130c) 

NB (j)   =   n(n-l) . ..   (n+1 - j) (130d) 

The  Legendre polynomial general derivatives and the derivatives evaluated at 
i   =   n/2 are listed below: 

p.        m--    J  P'        in\ *  (131a) Pl.n(l)-     NlTHT P Ln^   "   ■ frem (Ulb) 

p,3.n^ • ■l2 vm + 30 Fnni) -l0 {lx\'hV)l) (13Z^ 

P,5.n<l> = - 30m^T) + 2105^iy[^ -  •]  - 560NBT3)[^ + I (-l^)](ma) 

* 630 NF(T)[- b + x(u + 2l(-9 + 2l»] " lbl NS1T)  ' 

[24 + y  ( - 800 + 2i   (420 + 2i( - 80 ♦ 10i)))l 

P,5.n(l»=   -30NBTÜ    W10NF(^)[n-1]-5fe0NF(T)[^?(-Ut5",](133,>, 
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♦ 630 P  .   . " . 
NB(4)    L"6*!^2 + n(-9 + nnl     -   252        1 

L^^(-800 + n(420+n(.80 + 5n)))J 

7'n 2 : "56 NBTTT  + 756 —i—. r ,     i i NBn) NP (2)   1-1  + n     . 4200—L_ 1   '   L J NB (3) (134) 

[^T(-l2 + 3n)]   fll50   ^l r n 
J NB(4)   [    -6+7(22*n(-9^n))] 

NB(5)    L24+-rr(-800*n(420.n(.8o + 5n))) 

+ 12012       i_   r   ,,„      n  ,, 

32   NBl7)[    720+6V-^W6 + n(77952 + 7(_l20oo + n 

(3500 ♦ n(252 ♦ 7n)))))] 

-34^ , 

N'FTITtl980^f-,t"J-'-o^-,n5) NB(3) 

" imlsT f24ti?'-8ootn;420tn(.80t      , 

MB (6)    t-120t-i>384t„,.2700tn(.75t , 

^522 

♦ 420420 

■411840 
NB(7)      [      720+ii ^112896 + n(77952 + n 

^^00 + n(350o.n(252 + 7n)))))]    +2i879o 

r n NB'0' 

f-5040+^(20'0M-'-'"^-(M.« + n(.,80 + o ,966+n,-9tn,,,,,,J—^^„^ 
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(-217728 f n(15288 + n(-576 ♦ 9)))))))] 

A «till more convenient form for computing can be obtained by the following 
substitution: 

Let (FCR) 

(FCR) 

(FCR) 

(FCR) 

(FCR)C 

(FCR) 

(FCR) 

1 
1 NB (1) 

I  
2 =NB (2) 

1 
3 NB (3) 

1  
4 =NB (4) 

1  
-      MB (5) 

1 

-1 + 

-12 4 

■] 

■ 

6     NB (6) 

I 

n 
-6 + -(22 + n(-9 + n))   1 

n n)))j Z4 +-1L (-800 + n(420 + n(-80 -f 5 
16 

-120 +--    (4384 + n(-2700 + n(680 - n(-75 + 3 
16 

n 

(136a) 

(136b) 

(136c) 

(136d) 

(136e) 

(136f) n))))j 

^     N        , 720 +— (-112896 + n(77952 + n(-l2000 + n (136g) 

(3500 ♦ n(252 ♦ 7n))))) 

(FCR)0 = 
1 

8      NB (8) 

] 
5040 ♦ r^- (209088 ■ n(-157584 + n(54152 + n(-9800 (1 36h) 

+ n(966 ♦ n(-49 ♦ n)))))) 

(FCR) 
I 

] 
n 

4032C  -^T (-28054504 + n(22679808 + n(.8612352 (136i) 
265 9    NB (9) 

f n(1795920 + n(-217728 ♦ n( 15288 + n(-576 + 9n))))))) 

The polynomials evaluated at the midpoint (n/2) then become: 

P',     (7) =  -2 (FCR), 1, n 2 1 

P',     (T) =  -12 (FCR), ♦   30 (FCR), - 20 (FCR), 
3, n 2 1 2 3 

n 

] 
(137a) 

(137b) 

P,5  n(2 ) =  "30 (FCR)l + 210 (FCR^ " 560 <FCR)3 + 630 (FCR)4     (137c) 

-252 (FCR)C 
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P',  (-) = -56 (FCR) + 756 (FCR) - 4200 (FCR) + 11550 (FCR)  (137d) 
7, n 2 1 2 3 4 

-16632 (FCRL + 12012 (FCR). - 3432 (FCR), 
5 6 7 

P'  (7) '  -90 (FCR) ♦ 1980 (FCR) - 18480 (FCR) = 90090 (FCR) (137«) 

-252252 (FCR). + 420420 (FCR). - 411840 (FCR) 
5 6 7 

+ 218790 (FCR) - 48620 (FCR) 
8 9 
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