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ABSTRACT

The ROSE balloon/AN-FPS-16 radar system is designed to report
small-scale winds and shears by polynomial smoothing of the radar tracking
data. The most successful mathematical technique for fitting the data and
computing winds and shears is presented along with other techniques which

were considered but ultimately rejected.

Analysis of the self-induced balloon motion is attempted by classical
physical methods and by a Power Spectral Density Technique.

A criterion for evaluating the effect of modification to the standard ROSE
is developed and applied to modified ROSEs and the newer small lightweight

balloon.
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INTRODUCTION

The standard ROSE balloon is a metalized nonexpanding sphere having a
diameter of two meters. When tracked by AN/FPS-16 radar, the space-time
coordinates of this rising balloon can be determined accurately at a

frequency of 10/sec.

This report is a chronological presentation of part of the work per-
formed under AF 19(604)-7450 sponsored by AFCRL. The first section
describes only the mathematics which were developed and used in an attempt
to accurately describe the balloon's velocity and acceleration. As the reader
will note, the author became increasingly aware that the velocities and
accelerations of the standard ROSE balloon did not represent the wind., In
particular, the acceleration of the balloon in no way represents the wind
shear. Consequently, Sections 2 and 3 deal with the unsuccessful effort to
eliminate '""noise'" (regardless of cause) from the balloon motion in order to
find the proper wind.,

Concurrent with the work described in Sections 1-3, Murrow and Henry
(working independently) dete rmined by physical experiments that the standard
ROSE balloon was definitely not a proper wind sensor--at least over the
first 200 feet of its ascent, Reid of AFCRL, who was also aware of this,
showed that unpredictable aerodynamic forces were acting on the standard
ROSE over at least the first 20, 000 feet of its ascent, Our study, especially
the work described in Sections 2 and 3, indicated that there was no good way
to mathematically separate the aerodynamic forces acting on the balloon
from those induced on the balloon by the wind. It thus became apparent to
all concerned that the standard ROSE was not an adequate wind sensor.

A physical modification of the standard ROSE balloon was therefore
undertaken by AFCRL. Such work had already been started by Scoggins of
NASA. His modified ROSEs are called "Jimspheres.'" Reid and Lenhard of
AFCRL devised several different modifications and developed some smaller
smooth ROSEs. The description of these balloons, the mathematical
treatment used in describing their motion, and the statistics employed in
comparing the modified balloons to the standard and to the smaller ROSEs is
described in Sections 4, 5, and 6.

The conclusion reached in these sections is that the modification has
improved the wind sensitivity and will permit use of the techniques for pre-
dicting wind and wind shear which are described in Section 1,



b MATHEMATICAL TECHNIQUES FOR COMPUTING WINDS AND SHEARS

That the ROSE balloon constituted a good wind sensing system was the
basic assumption for the various mathematical techniques developed for com-
puting winds and shears. Sections 1.1 and 1.2 describe two of these techniques
and the empirical basis on which they were rejected. Sections 1.3 and 1.4
describe the other techniques which szem preferable. Although none of these
methods were acceptable prior to balloon modification, it now appears that
the techniques described in Sections 1.3 and 1.4 will provide valid wind and
shear values when applied to radar tracking data from the modified balloon.

The mathematical rationale upon which all these techniques are based
is as follows. The standard equations of motion for a balloon moving in the
atmosphere without external forces are:

M = 1/2 p Ag Clvl(x - W ) (1)
My = 1/2 p Ag Cplvi(y - W) (2)
M‘z‘:1/2pABCDIvI(é-wx)+(m-pVB)g, (3)

where m is the mass of the balloon and M is the total effective mass (see
Appendix 1). Combining the first and third equations and then the second and
third gives the equations for the component wind in the x and y directions:

MX (y - W) My (2 - W_)
W o= %« cm b4 and W = y - —n : (4a)
x My - (m -pVg)g y Mz - (m - pVp)g  (4b)

The second term in both equations may be neglected because of its
insignificance when compared with the first term. The wind equations
modified in this way would be

s - § (5a)

Wx = X and Wy =y (5b)
Winds computed by this equation are known as point winds. The average wind
in a layer is given by the equations

X, = X e - 7
L 2: -: and W = tz-tl E (2ab)
g o R y 2" (6b)

where x., Y and t, are the space-time coordinates,

The wind shear in the component directions is defined by the equations

d(W_) d(w )
d : (7a)
s 0 8 (7b)

The chain rule of differentiation gives



S - d(wx) . ﬁ. and S 4 d(_wL) . d_t (88)
x _ _dt dh y dh dh (8b)

If the approximations x = W_, y = Wy. and z = h are made the equations are:

= i = i (93)

Quite often it is difficult to compute the second derivative accurately. In
such cases d(W,) is replaced by AW,, and dh is replaced by Ah which are
finite differences. The component s’fxear equations then become:

Woo-W W o-w
2 1 RS Y] (10a)
§ = and $ = , ™ .

1.1 NINTH-DEGREE POLYNOMIAL METHOD

It has been suggested by Scoggins (May, 1963) that a polynomial approx-
imation to the FPS-16 radar tracking data will yield valid accelerations and
velocities whilch will in turn give realistic values of winds and shears from a
rising sphere”, It is most economical to use the lowest possible degree
polynomial in approximating the radar tracking data. In order to determine
the lowest degree necessary the data was approximated by a zero degree
polynomial, and the residual was compared with the theoretical tracking error
inherent in the radar. The degree of the polynomial was then increased until
the residual was less than the tracking error. The maximum degree used was
the ninth degree even though the residual of the ninth was occasionally larger
than the tracking error., Since the radar tracking data is equally spaced at
one-tenth second, orthogonal polynomials are used in the approximations. The
orthogonal polynomials are especially desirable in this application because
they allow the next higher power term to be added without recalculating all
the previous coefficients as is the case with ordinary least-squares poly-
nomials, Later work indicated that it was also desirable to compute the anal-
ysis of variance (ANOVA) table to determine whether the higher degree
polynomial terms were statistically significant,

l1.1.1 ORTHOGONAL POLYNOMIALS

The general form of the orthogonal polynomial for ntl data points, eval-
uated at the i th point, is:
iii e AOPO.n(l) + Al l.n(x) + ... ¢ Aum.n(x) (11)

where itakes on all integral values from 0 to n, and q is x, y, or z depending
on which axis is being considered and m is the degree of the polynomial,

Am is the coefficient of the form



n .

L qum n(l)

i=0 ! . . .

A *® > where q; 18 the 1 th data point, (12)
£ p_ (i)
1=0

P n(i) is a Legendre polynomial of degree m, of the form

(k]
P o) =§ (-1" (7 (m;k) ‘[k] where (13)
m, . m. 14
L T et L e e B (k)R ((141))

The evaluation of these expressions for each degree from zero to nine is
given in Appendix 6.

The Legendre polynomials were generated in a computer program instead
of being obtained from standard tables so that transcription errors and costly
key punching might be avoided. The generating program was written in
BALGOL and run on the University of Dayton's Burroughs 220 computer.

Every foreseeable error-producing operation was eliminated. When possible,
integer arithmetic was used. When it was not possible to use integer
arithmetic, 18-digit, double-precision arithmetic was used. The orthogo-
nality of each set of numerical values of Legendre polynomials was checked

using this property of orthogonality:

n

P 0P ) =0 m=2, 5 (15)
and

n . )

i}io pb,m(l) . Pm’n(l) =0 m=7,10 (16)

The values of the coefficients used in the standard reduction program
were limited to 8 digits; therefore the results of the generating program were
truncated after the 8th digit., The maxingum deviation from zero occurring
in the largest sets was less than 9 x 107°, It was felt that these coefficients
would produce satisfactory results in the data reduction program,

n
The sums of squares of the coefficients I sz n(i) were also com-

i=0 !
puted in double precision and included at the end of the list of each set.

A sample printout of one set of coefficients is presented in Figure 1,
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The physical size of the computer used in the computation of winds and
shears imposes a practical limit on the maximum number of Legendre
polynomials that can be used in the approximation of the data, The maximum
number of data points to be approximated can be determined by considering
the vertical velocity of the balloon, The average vertical velocity of the
balloon is about 20 feet per second, producing an average of 50 tenth-second
data points per 100-foot layer. In order to include all reasonable vertical
velocities, the lower limit was set at 10 feet per sccond and the upper limit
at 40 feet per second. This corresponds to 100 points and 25 points for the
upper and lower limits respectively, The Legendre polynomials were com-
puted to cover the range of 25 to 100 data points per fit and the degrees from
one to ten.

It was desirable to associate an altitude in the layer with the meteoro-
logical parameters, The altitude chosen was the mid-point cf the 100-foot
layer., The accelerations and velocities were evaluated at mid-point of the
data, and these values were associated with the altitude 50 feet above the
bottom of the layer. It is much more convenient to evaluate the polynomials
at one of their original data than between two of them. The mid-point
coincides with an original data point only when there is an odd number of
data points in the layer. The program is designed to assemble an odd num-
ber of data points over the nominal 100-foct layer which might be as much as
103 feet in depth., Each layer was considered individually. That is, there
was no overlapping of data from layer to layer,.

1.1.2 TRACKING ERRORS

The theoretical tracking errors to be used in the determination of the
degree of polynomial approximating the data is a function of the errors in the
parameters reported by the radar, namely elevation and azimuth angles and
the slant range distance. These radar parameter errors are related to the
space-time coordinate errors by the geometry of the coordinate systems,

The space-time coordinate system used is earth fixed, Euclidian
3-space, such that

i) The x-axis is orientcd north - south, with north positive,

ii) The y-axis is oriented east - west, with east positive,
iii) The z-axis is perpendicular to the x - y plane with upwards positive,
iv) The x -y plane is tangent to the earth at the launch site.

The equations of transformation from radar parameters--Range (R),
Elevation (E), and Azimuth (A, positive clockwise from north)--to a Euclidian

3-space are;

x = R cos E cos A (17)
y = R cos E sin A (18)
z = Rsin E (19)



Since there exists an error inherent in the radar, the errors of x, vy,

and z with respect to the error in A, E, and R are given by

- -

o ¢ . RZ o -inz Ecole + 0 coozEnnzA + 0 ZcoszEcosZA (20)
X E A R

g ¢ . Rz a 2sinZ Esinz At+o ‘ cosZ EcosZA + 0 cosz EsinZA (21)
y E A k

ozz = Rz e cosz E + :IRZ sinz E (22)
2 2 2 : . :

where A+ °p and op are the errors in Azimuth, Elevation, and Range

respectively and are constant with respect to the radar system tracking the
balloon,

Since the data is given in x, y, and z, the transformation equation can be

used to give the errors o 0 T and czz in terms of x, y, and z and the

constant radar errors. The tracking errors in this more useful form are:

-y == = r— 1
az-r = 0'z+ -—xzzz 02+ . (23)
x “| T2 R 2— 2 |k y
x t+y +z X +y
[~ 2 ] 2 2 ] .
2 vy 2 z 2 2 2
o = 2 o + —L_-Z7 o - y c (24)
y x2+y2+zz " x“ +y £ A
¢ & _ ZZ k 2 2 e ~x + YZ | s 2 (25)
- xZ + yZ + 2° R i E

The errors must be computed for each layer since the errors are functions of
the x, y, and z values.

1.1.3 DETERMINATION OF DEGREE OF THE POLYNOMIAL

As outlined in a previous section, the lowest degree polynomial possible
in approximating the radar tracking data is determined by comparing the
residual of the m th degree polynomial fit with the independent, theoretical
tracking error described in Section 1.1.2. The residual of the zero-degree
fit is compared to the tracking error; if the tracking error is larger, a'"good"
fit has been obtained, in this case the mean, If the tracking error is smaller
than the residual, the sum of squares accounted for by the first-degree fit is
subtracted; this new residual is then compared with the tracking error, If
the residual is now smaller than the tracking error, the linear fit is "good";
if the residual is still larger, the next degree (the second) must be added.



This process continues until the residual is finally smaller than the tracking
error, or until the ninth degree has been reached. If the residual is still
larger than the theoretical tracking error, the process is discontinued, and
the ninth-degree polynomial fit is accepted as being '"good."

The equation of the residual of the zero-degree fit is

n 2
| (qi - q)
R = i=0 (26)

0,q n+l

where q, are the data points and § = A, since Pj (x) = 1. R, 3 is
compared to o, (in calculating cqz, the mean of q; in the 100 foot layer is
used), If RO q

’
""good" fit, If RO,q is greater than crq

q
is less than or equal to crqz, a zero-degree polynomial is a

2, a higher degree fit is necessary,

The expression for the residual of the j + 1 st degree fit is given by the
recurrence relation

2
(13
j+1
R. = R, AL TR (27)
jtl,q J»q n+1
where
r4 2
¢ _ : ~ 2 N .
j#l.q ‘i’Eo[Ajnpjn,n(‘)] ¥ e ifo[pju.n(‘)] (28)

The coefficients A}, A, ..., Aj;] are of course available from the
polynomial without further computation.

An alternate method of determining the lowest degree of the polynomial
is the standard s?tistical technique of the analysis-of-variance table (Crow,
Davis, Maxfield)®. This table is presented as Figure 2. The analysis of
variance is performed to test the significance of the terms AP, n(i) of the
polynomial, First, the total sum of squares (which is the sum of squared
deviations of q from the average q) is computed. As shown earlier in this
scction, the average q is just Ay the first term of the polynomial, Computed
next is that part of the total sum of squares accounted for by the linear,
quadratic, cubic, quartic terms, etc, up to the mth degree. These sums of

squares,

n . 2 n . 2
[ifo q Pm'n(x)] /20 [pm,n“’] ,

their degrees of freedom, and the corresponding mean squares are shown in
Figure 2. That part of the total not accounted for by the sums of squares of
the various degree terms is the residual sum of squares. An"F" value is
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computed for each term by computing the ratio of the mean square of each
term to the mean square of the residual. Each computed F value is then
compared with the tabular value of the "F Distribution' at the 5 percent sig-
nificance level, If the F of the jth term is larger than the corresponding
tabular value, then the data are significantly better represented by including
this term than by omitting it,

The analysis-of-variance criterion was not applied in this problem
because it was felt that the independent estimate of error was more meaning-
ful. In order to become familiar with the contribution to the fit of each term
in the polynomial, a modified form of this table was computed and printed
out for several early flights. The modification was to reduce the size of the
tables by printing out only the sum of squares of the residual after each term
had been added to the polynomial. Some "F'" values were then computed by
hand and checked for significance.

1.1.4 COMPUTATION OF WINDS AND SHEARS
1.1.4.1 Winds

There are two ways to describe the wind in the 100-foot layer: 1) the
average wind in the layer; 2) the wind evaluated at a given altitude known as
the Point Wind.

1.1.4,2 Average Wind

The average wind in the layer is determined by a simple finite difference
between the highest fitted coordinate point in the layer and the lowest point
divided by the time needed to traverse the layer. In terms of the evaluated
polynornial fit, the average wind is given by:

(29)

1.1.4,3 Point Wind

Using the equation developed in Section 1, the wind is given by
Wq, = 10 ﬁ‘i; the factor of 10 is necesrary because the points are 0.1
i .
seccond apart instead of 1.0 second apart. Note thatq. is the first derivative
of the polynomial evaluated at the point i. The mid-point of the layer was
chosen as the altitude to be assigned to the point wind. This corresponds to

evaluating the polynomial at the point {i=n/2) where n is always even.
The equation for the first derivative is

2 i n ' n C n
S = My W AP TPt et AR (S (30)

where j is an odd number either equal to m (if m is odd) or m-1 (if m is even).
The point wind is then given by

10



ne

wqn/z t e n/2 eh

Obviously, if m = 1 (the polynomial is of the first degree), then the

point wind, W , will be equal to the average wind, W .
/2 q

The derivatives of the Legendre polynomials are developed and
presented in Appendix 6,

1.1.4.4 Shears

During the examination of the results of preliminary computations
(particularly the ANOVA tables) it was decided that accurate second deriva-
tives of the polynomial would be difficult to obtain, especially in the higher
degrees. Therefore, the simplified form of the shear equations was chosen:

wa ) wxl = wyZ } wyl z:gi;;
x hZ - hl y h2 - hl

w
"

It was thought that the point wind (Section 1.1.4.3) was a better representation
of the wind at the center of the layer; therefore point winds were used in the
computation of the shears, The altitude layer was always 100 feet; conse-
quently the denominator, hZ - hl' always equals 100 feet.

The equations for shear then reduce to

(;(nlz) -(in/Z) ().’njz) °($’n/2) (32 )
£+1 ] 5 = 0+l 2 (32§)

$. = T00 y 100

where the subscript, t, denotes any glivcn layer and f+1, the layer immediately
above it, The units of shear are sec™*,

1.1.5 RESULTS AND CONCLUSIONS

The computer program was written to compute the winds and shears as
outlined in the previous sections. The program was written in FORTRAN 1II
for the IBM 7094 computer, checked out at the Wright-Patterson A, F.B.
facility, then forwarded to Eglin A. F.B. for operation on their system.
Through the very fine cooperation of PGVMS, Eglin A, F.B., Florida the
program with all of the polynomial coefficients was implemented. A test
ROSE balloon was launched and tracked, the data were reduced in manner
that has been outlined, and the results were forwarded to the University of

Dayton,

The results of this test run were quite surprising in that while the
average winds looked reasonable, the point winds (and therefore the shears)
were quite erratic and did not agree with the average winds. A sample of
this output is shown in Figure 3. As indicated on the tabulation shown in
Figure 3, the output parameters are:

11
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Altitude ft

Wind East ft/sec

Wind North ft/sec

Wind Total Knots

Angle degrees

M Highfst degree polynomial used
Shear FEast Sec”

Shear North Sec'l

Shear Total Sec'l

Point Wind East ft/sec

Point Wind North ft/sec

A s will be noted, the highest degree used by either component is quite
often the ninth, which was the maximum. The component data were plotted
vs. time and although ragged, they resembled a parabola--indicating a second-
degree polynomial fit, It was then decided to add monitor variables to the
printout to check intermediate computations and to add the Residuals of the
fits as successively higher degree terms were added. A sample of another
test flight is presented in Figure 4, The monitor parameters, indicated by
the *, are

-2 2
q ft
?1'2 ft (average space coordinate)
s Tracking error for this layer
Rg q Residual for zero degree
’
R, q Residual for first degree
’
RZ q Residual for second degree
’
R, q Residual for third degree
]
R5 q Residual for fifth degree
R. q Residual for seventh degree
’
R9 q Residual for ninth degree
’

The monitor parameters are always arranged: North East, and vertical. The
Residual for the Vertical is always zero because the Vertical is only used for
finite differences and therefore is not fitted. It can be seen that the only
significant reduction of the Residual occurs when the linear effect is removed,
i,e,, the linear fit is significantly better than the average. In order to verify
these results, the first flight was rerun. The sums of squares needed in the
ANOVA table were printed out with the altitude and number of points preceding
each group. A sample of this printout is shown in Figure 5. Each group con-
sists of 10 lines, These correspond to: the total sums of squares; that part
accounted for by the linear term; the part accounted for by the quadratic etc.,
up to the ninth, The criteria for stopping the fit at a certain degree was
removed for this, allowing each of the three coordinates to go to the ninth
degree. When the horizontal components of the entire flight were considered,
approximately 75% of the sum of the squares of the degree higher thanfirst
were small, i,e., (did not explain much of variation), and about 95% of the
sums of the squares of the degrees higher than the second were not significant,
The vertical component was almost never significant above the first degrce.

13
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With this in mind, the plots of the raw data were studied again. Almost
without fail, whenever the degree of the polynomial above the second was
required (by the tracking error criteria), the coordinate value plot showed
either a rough section of data or a relatively smooth section with one or two
elightly skew points.

These findings were the baeis for discarding this long and rather
elaborate method in favor of a simpler one. The ANOVA table indicated
that the degree of the polynomial fit should probably not be higher than two.

1.2 SECOND-DEGREE POLYNOMIAL METHOD

The study of the ninth-degree polynomial fit indicated that in 25% of the
cases the second degree polynomial term was statistically significant in the
approximation. Another program was then written to compute the wind and
shears based on the second degree fit., Similar expressions were used for the
winds, but the original form of the shear was used because the component
accelerations were significant in the second-degree fit, Furthermore, since
the degree of the polynomial was reduced, the sampling frequency was also
reduced to 0.2 second.

1.2.1 ORTHOGONAL POLYNOMIALS AND DERIVATIVES

The orthogonal polynomial for the second-degree fit will be repeated
here for ease of reference, and the second derivative will be added. The
number of points in the layer is n+l, and the index (i) takes on all integral
values from zero to n. The Lcgendre polynomials are:

. . 33a)
as b = 2i o 6i |, 6i(i-1 (
P o ol e i, g ¥ 1T Byl =g ¥ ﬁn—llr 83";
The first derivatives are:
. (34a)
g . 2 . - 121 (34b)
' = ' ... | ' g 2
¥ O.n(l) = P l,n(l) T n d Z.n(l) n n(n-I) +n(n-1) (34c)
The second derivatives are:
P % 0 P" =Q " i) = 12 (353)
0,ntt) = 1,n1 5 ¢ P o0 = onT 8?:;
The first derivative (the velocity) is:
g, = AP (i) + AP, () (36)
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T'he second derivative (the acceleration) is:

g = AP, 0) (37)

where in all cases

n
izo q, Pm. (1)

i=0 Pm’ - ™

1.2.2 WINDS

In the second-degree fit, as in the ninth, we can compute two values for
wind. One is an average over the layer, and the other is assigned to a
particular altitude point in the layer known as the average wind and point wind
respectively. In working with the second-degree polynomial, the values of
the two types of winds are exactly the same. This is due to the property of
the Legendre polynomial of the even degrees being zero when evaluated at
the mid-point, Thus, since

n
He=0 (38)

an/Z = Alp'l,n(%) (39)

The quadratic term is lost, and the answer is the same as if we had
fitted a linear equation. However, for the linear equation the slope is the
same at any point in the layer and is equivalent to the ratio of difference in
space coordinate to the difference in time, i.e.,

AA
lope = 3=W =w (40
slope = Z7 " a0 /2 )

The equations for the component winds are:

_-10 .10 (41a)
Ve " T M T My (41b)

where the 10 (instead of 2) is necessary to convert to the correct units of
ft/sec from ft/0.2 sec for 0.2 sec spaced data.
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1.2.3 SHEARS

Since the second degree was often found to be significant, it was decided
to use the following form for shear:

y (9a)
z

%
Sx = T and S = (9b)

This equation implies that within the layer there is a constant acceleration in
the horizontal components and a constant velocity in the vertical component.

The equations for shears of the component directions in terms of the polyno-
mial coefficients are:

= \ 2 3 " 3
< _AZx P'Z’n(x) 3 ~ - AZy P 2.n(x) . (42a)
) . P d = . PV i o
X Alz N < l.n(x) y Alz l’n(x) (42b)

where the factor 5 converts to normal shear units of sec-l. Substitution
for the Legendre polynomials gives:

¢ - .30 P s .. 30 Ay (43a)
x ~n-1 ° A, y = n-1° A, (43b)

where again -30 is used in place of -6 to correct for the 0.2 sec interval,

1.2.4 ERROR ANALYSIS OF WINDS AND SHEARS
The second-degree method does not compare the residual to the tracking
error, as does the ninth degree., The error in the value of a parameter was

included with the parameter itself in the output of the program to provide
confidence limits on the parameters,

1.2.4.]1 Standard Error of Estimate of the Coefficients

The standard error of estimate (U ) of the m th polynomial coefficient
(A ) is given by m

% = (44)

where o, 24 is the residual variance of the mth degree fit., Therefore, the
squares of the error in A  and A, are given by

17



o e
e
o ¢ = 1 o 2 = 2 (453)
Ay n 2 A, n 2 (45b)
= WY £ P, “6)
i=0 1=0

The expression for the residual variance of the first degree fit is given

2 e 2 jE 2 .
o ]l £ (q. - -A, T P, (i) n-1 46
e [i:O I ! js0 L ]/[ ] )

and for the second degree by

n n >
0, " = [.E @ - -a"E P fw-af 2 y b nz(i)]/[“'z]“?)
» 1= ’

i=0 i=0

by

1.2.4.2 Errors in Winds and Shears

If the errors in the coefficients of the fitting polynomial are known, the
errors in the wind and shears can be computed. The expression for the wind
is given by

= O — ' n
e = Ye = ML 19 (48)

and the error in the wind (Uw) is given by

since P! (.Z’l) = -2/n

l,n

The wind can then be reported as a value plus or minus the error by
using the following expression:
"

10
W = - [Al + U‘Al] (50)
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The expression for shear is given by

sq = q/2 (51)

Assuming that the interaction between the component acceleration and
the vertical velocity is zero, the error in shear (0'3) is given by

2 1 2 . 8 2
0’8 = ? U-q + -iﬂ‘ 0',:" (52)

The square of the error in the component acceleration (Uaz) is given by

2 12 A 2
% =[n i ] 2% (53)

since a =[;1(_nl-2—1)] AZq

The square of the error in the vertical velocity (ciz) is given by

2 _ 4 2 54
T '-—Z-UAIZ (54)
n
since i:-EA
n 1z

Making these substitutions the error (crs) becomes

[ 12 ] ik 2 [ 12 ] A 2
. I n(n-T) 2q s n{n-1) 2q 4 ix 2 (55)
s > 4 - 1z
2 2 ] :
2 a,) 2 »
n lz n 1s,
Simplifying this expression gives
A 2 178
29
= O’AZ 4 + Alz ‘ UAl k
g [_] q z (56)
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The shear can then be reported as a value plus or minus the error,
using the following expression:

A 2 1/2
2q
A CA 8 + 1A oA ¢
g = _[ 30 ]. 29 [ﬂ_] 2q lz lz (57)
q n-1 Al = Alz

1.2.4.3 ANOVA Table for Second-Degree Fit

The analysis of variance table was constructed to determine the signif-
icance of each term in the second-degree fit., A sample of an ANOVA Table
was given in Figure 2, For tlie second-degree, the table contains only four
lines: the total sums of g4uares, that part due to thc linear term, that part
due to the quadratic term, and the residual. Fnr ease of computation, the

linear and quadratic effect terms can be simplified by the following relation-
Bhipo

The sum of squares for the m th degree is given by
n 1 e / n 2
iZo 47 m, ) Zo Tminl) ]

2 N N
qipm.n(i)] / [{: Poa® (58)

since A - :[
m

. 2-
pm,n(l)

=

The sum of squares is just Amz[

" Ms

0

The A _'s are computed in the fits, The second factor is a constant for
a given number of points and will therefore be designated as SS1 for the first
degree and SSZ for the second. The sums of squares column then becomes

§ -2
(1) £ (q;-4) Total
i=0
2 .
(2) Ay SSl Linear
(3) Alz - 882 Quadratic

(4) Residual = (1) - (2) - (3)
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1.2.5 ELIMINATION OF STRAY DATA POINTS

It is always a problem with a completely automatic system to eliminate
the obviously bad data before it can contaminate the results of the analysis.
This obviously bad data can be the result of a variety of events such as
momentary radar failure, read-out failure, a bad spot on the radar tape,
computer error, etc. The condition usually exists for only one data point,
and the result is a value of a coordinate that bears little relationship to the
surrounding points. Iftheerror is in the radar system, the stray point
contaminates all of the coordinates; if it occurs in computer processing, it
usually contaminates only one of the coordinates.

Scoggins uses the common technique of fitting a simple function to the
data and rejecting a point if it falls outside a tolerance, replacing it by a
predicted value. As he points out, this method is adequate and requires
little computer time.

In our previous work with radar tracking data,_we have developed a
simpler and faster method of editing the radar tapes®, It is based on the
idea that, in the great majority of cases, there are only one or two con-
secutively bad points, and the surrounding data is normal. If the maximum
velocity in all components is known, then the maximum average change in any
component from one point to the next can be computed. This point-to-point
difference is multiplied by 10 as a safety factor against discarding valid data
to establish a maximum, reasonable point-to-point change. This maximum
value is called the tolerance. In the editing process, finite differences are
computed and compared to the component tolerances. If the difference is
less than the tolerance, the point is accepted as valid. If the difference is
greater, the point is discarded, and the next point is read in and checked to
see if the new differences are less than twice the tolerances (the time interval
has now doubled). If the difference is still larger this point is discarded; the
next point is then read in, checked against three times the tolerance, etc.
until a '"good" point is found. The discarded values are then replaced with
values computed by linear interpolation between two good points. Even if
only one coordinate is in error, the complete data point is replaced. If a
maximum number (50) of interpolated points is exceeded, the technique
considers that a loss of track had occurred; the flight is therefore processed
in separate batches each having con’inuity of track. This method also allows
the program to discard data in a time inversion or to fill in a small portion
of missing data.

While this method has less statistical basis than the method commonly
employed, it has proved very satisfactory in our use and takes very little
time to perform.

1.2.6 RESULTS AND CONCLUSIONS FOR SECOND-DEGREE METHOD

The basic program was written as outlined in this section. It contains
the editing procedure and the computations for the wind and the shears. Two
minor modifications were made to the basic program in actual operation: one
was the addition of the errors in the coefficients and the variables necessary
for the ANOVA Tables; the other was the addition of the errors in winds and
shears to the computer output,
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A printout of a test flight with the modifications of computing the errors
in the coefficients and parameters in the ANOVA Table is presented in
Figure 6. FEach altitude layer presented has four lines of output associated
with it (except the first 1050 feet, which has only two lines). The first two
lines of each printout are bracketed and are the variables for use in the
ANOVA Table (these two lines are missing for the first printout). The last
two lines contain the normal printout.

The variables printed out for use in the ANOVA Table are:

lst line Alx' AZx' Aly' A?.y' Alz
2nd line 1) Total sums of Squares for x = ¥ (x - Y);:
2) Total sums of Squares fory = ¥ (y - y)z
3) Total sums of Squares forx = ¥ (z - )
2 \2
4) P, (i)~ = ssl
: , N
1=0
Hy 2
5) £ PZ (i)~ = SS2
i=0 11

The ANOVA Table can be constructed using this information and the
value of "N" in the normal output, The normal printout consists of two lines:
the fist line having its title at the top of the figure, and the second line having

its title at the bottom of the figure,

The ANOVA Tables were constructed for the first 46 altitude layers for
each coordinate, with the following results:

X b {

38 38 first degree only significant

13 6 both first and second degree significant
0 2 second degree only significant

This indicates that since the second-degree term is not significant in
at least 70% of the layers, the second derivative is not representative of the

balloon's acceleration,

Further evidence of this is provided by examining the one sigma level of
the shears. These values are printed out as normal output in the second
modification of the basic program. A sample of this output is presented on
Figure 7. The sigmas of the shears appear as the sixth and seventh data
fields in the second card whose title, as before, appears at the bottom of
the figure. Upon examining the relative magnitude of the shear and its one
sigma level, it becomes evident that in some cases the one sigma value is
larger than the value of the shear itself, In fact, in most levels, the value
of sigma is much too large to produce confidence in the values of shear,
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The winds computed by the second-degree fit agree, for the most
part, with the winds produced by the ninth-degree method, but the shears
produced by the two methods do not agree with each other or with values
generally thought to be realistic,

In general, if the second degree is not significant, the accelerations
predicted by the fit are smaller in magnitude than the noise level of the data.
The noise can be attributed either to the actual random motion of the
balloon itself or to the random tracking errors of the radar which will
produce an apparent random motion of the balloon. It is impossible to
determine which of these factors is the primary cause of the noise. Thus,
we must conclude that with the present data, only linear smoothing is valid.

1.3 LINEAR FIT METHOD

The results of the work with the second-degree polynomial indicated
that, in most cases, the linear fit was sufficient to describe the motion of
the balloon. Since an acceleration term could no longer be computed, it was
necessary to go back to the finite difference between winds to compute the
shear, In computing the linear fit, one of the steps produces the mean over
the interval, A finite difference between this mean and the one from the
previous layer gives a type of average wind over a 200-foot layer, A shear
can then also be computed from these winds, It was also desired to compute
the one sigma level of the linear winds and include it in the printout. The
sampling frequency was 0.2 sec for this degree also.

1.3.1 WINDS

The orthogonal polynomials for the first-degree fit were given in
Section 1.2.1.

In the linear fit the point wind and the average wind in the layer, as
defined in the section on the ninth-degree polynomial are identical. In this
section, we will introduce a slightly different definition of the average wind
which will include data from a deeper layer and will be different from the
point wind.

1.3.1.1 Point Winds and Errors

The point wind is the first derivative evaluated at the mid-point of the
layer, The equations for the component winds, derived in Section 1,2,2, are

10 10 (41a)
W, v - e A N o= 8% a
x n “lx y n “ly (41b)

The errors derived in Section 1.2.4 are

10 10
Uw = -T UA Uw = -'—11— a (59)
x 1x y ly



The point wind can then be reported as a value plus or minus the
error using the following expression

10 10
A S Y -

1.3,1.2 Average Winds

When a linear fit is performed, the simple mean of the data points in
the layer is obtained. It was cdecided to compute a wind from the finite
differences of these values from consecutive layers, Hence, for this sec-
tion the definition of the average wind will be:

W, = (@,, 100" 9, /8¢ (60)

where ! is the altitude of the center of a certain layer, and ¢ + 100 is the
altitude of the center of the next 100-foot layer, At is of course the time
difference between T4+100 and q,. The value reported for the wind is then
actually using data over a 200-foot layer. As one would expect, this deeper
layer has a smoothing effect on the winds which also reduces the magnitude

of the shear.

1.3.2 SHEARS

Since there are two distinct types of winds computed by this method, it
was desired to compute the shear associated with each type wind.

1.3.2.1 Shears from Point Winds

Since the second derivative is not obtained in this method, the aiternate
method of computing shears is used:

Y Y
& t+ 100 L
Sq - Ah (61)
where again the t is the altitude of the mid-point of the layer,
The component shears are given by the equations:
Wx - Wx w - W
& = £+ 100 1 § =z —pFl00 % (62a)
x 100 y 100 (62b)

The point winds are computed for the mid-point of the layer--for example, at
altitudes of 1050, 1150, 1250 feet, etc. The shears are then assigned an
altitude exactly between the two winds used in their computation. For the
example above, the shears will be reported at 1100, 1200 feet, etc.
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1,3.2.2 Shears from Average Winds

The equations for the shears from average winds are identical to the
shears from point winds. However, the altitudes to which the winds and
shears are assigned are reversed. Since the winds are comnuted from the
mean space-coordinates assigned to the mid-point of the lay:r (e.g., 1050,
1150, 1250 etc.), the average winds are assigned to altitudes of 1100, 1200
etc. The shears are then assigned to the mid-point of the wind data so that
the altitudes of the shears are 1150, 1250 etc.

1.3.3 RESULTS AND CONCLUSIONS FOR THE FIRST DEGREE

The computer program was written as described in the previous sec-
tions; it included the Technique for Eliminating Stray Data Points given in
Section 1.24.5. Also, a test run of the check-out flight was made. A sample
of the result is presented in Figure 8. The title at the top of the page is for
the data appearing on the odd lines (those with 50 foot altitudes), while the
title at the bottom is for the data on the even lines (those with 100 foot
altitudes). The parameters for the 50 foot altitudes are:

Parameter Description
Alt Altitude
Wind East Point wind in Fast direction
Wind North Point wind in North direction
Wind Total Point wind Vector
Wind Angle Angle of wind Vector
Average East Mean of East components in this layer
Average North Mean of North components in this layer
Sigma East One sigma level of wind East
Sigma North One sigma level of wind North
N Number of 0.2 sec data points in this layer

The parameters for the 100 foot altitudes are:

Parameter Description
Alt Altitude

East Shear Shear from East Point wind

North Shear Shear from North Point wind

Total Shear Magnitude of Vector sum of East and
North Shears

Avg WE Average wind in East Direction

Avg WN Average wind in North Direction

Shear Avg WE Shear from Avg WE

Shear Avg WN Shear from Avg WN

N Number of 0.2 sec data points in this layer

The point winds of this method are identical to the point winds of the
second-degree method, as they should be. The shears from the point winds
seem to be less erratic than the shears obtained from the second-degree
method, but they are still sufficiently unstable to cause some questions about
their reliability, The average winds are smoother than the linear winds- -
mainly due to the deeper layer over which the wind is racasured. The shears
from the average winds are also smoother (as expected)but still somewhaterratic,
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Since the data was shown to be linear for the most part, it was decided
to compute the winds from first finite differences of the 0.2 sec x, y, 2
coordinate data and to compare them with this linear method.

1.4 FINITE DIFFERENCES

The conclusions reached in the previous sections indicated that the data
were linear for the most part with respect to time. If the data were truly
linear, the slope with respect to time would be identical to the first finite
difference. It is faster (and therefore cheaper) to compute finite differences
than to fit a linear function and evaluate the first derivative. The finite
difference winds and shears should be similar to the linear method.

l.4.1 WINDS

The winds in terms of finite differences are given by:

X =X y -y 63

n 0 n 0 (63a)

W B gy R 63b
& tn t0 y tn t0 ( )

I~

since the data are equally spaced (0.
rewritten as:

sec between points) equations can be

n 0 n ; 64
patou® . s . L F 5 (64a)
wx n wy n (64b)

where the "5 ' is to convert to units of ft/sec.
1.4.2 SHEARS
The shears are computed using the alternate method:
w - W

_ 924 100 Qe
b © Ah (61)

where again? is the altitude of the mid point of the layer.
The component shears are given by:
w - W w - W

__X14100 X d 0§ = Jt+loo Y (62a)
o 100 o y - 100 (62b)

for a 100-foot layer.
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1.4.3 ELIMINATION OF STRAY DATA POINTS

The routine used to eliminate stray data points in the finite difference
method is identical to that used in the quadratic and linear methods. The
inclusion of a stray data point in a least-squares fit will cause a very bad
value. In the finite dif‘erence method, however, a stray point will have no
effect on the value of the winds and shears provided it is not the first or
last point, There are on the average about twenty-five data points in a
100-foot layer; hence the probability that one data point is stray is 1/25
or .04, Since there are normally few stray points in the data, the elimina-
tion of stray data could have been skipped without great harm to the results,

1.4.4 RESULTS AND CONCLUSIONS FOR FINITE DIFFERENCES

The computer program was constructed as indicated in this section.
A sample of the output is presented as Figure 9. As before, the title at
the top of the figure is for the odd (100 foot) lines, while the title at the
bottom is for the even (50 foot) lines. The results agree well with the linear
method which indicates that this cheaper method can be used instead of the
linear method with little change in the results. We base this conclusion,
however, on examination of only a few soundings by unmodified ROSEs.
Such opinion is therefore subject to possible future revision,

1.5 GENERAL COMPARISON OF ALL FITS

In order to summarize the results of the various type fits, two portions
of the test flight processed by each method have been listed side by side for
easy comparison. The two portions chosen were: 1) the lowest part of the
flight which was the most erratic; 2) a portion near 50, 000-feet altitude which
was the smoothest. The east component was selected because its magnitude
was larger, and it was generally smoother. Tables 1 and 2 are wind com-
parisons, while Tables 3 and 4 are shear comparisons. Tables 1 and 3
are the low altitude, and Tables 2 and 4 are the high altitude. I Tables 1
and 2, the column '""Deg" indicates the highest degree used by the m th degree
polynomial; the column "ANOVA" indicates the highest significant degree,
The one sigma level is included for the linear and quadratic winds and the
quadratic shears.

The values for the winds obtained by all the fits agree well with each
other and with rawinsonde data. Since the method of finite difference is the
quickest, it was decided to use this method in future work. The values for
the shears seem to depend completely upon the fitting method used. No
method seemed to produce values which were consistent from point to point
even within that method.
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2. SELF-INDUCED BALLOON MOTION

Wind and shear values produced by tahe various smoothing techniques
indicated that the winds were very erratic at the bottom of the flight, This
condition persisted until about 40, 000 feet, where it suddenly vanished and
the wind became smooth, Concurrently with our work, Murrow and Hepry
repeated an experiment first performed in 1958 on Radiosonde balloons .
The new experiment consisted in releasing ROSE and other smooth ballcons
in still air and tracking them with cameras. The results indicated that the
spherical balloons experienced self-induced motions similar to those
experienced by the earlier Radiosonde balloons., The direction of these
motions is apparently random, but their magnitude seems to be a function
»f the vertical terminal velocity, A plan view of six balloon ascents pre-
sented in Murrow and Henry's paper shfws that the balloon behaves very
erratically and generally unpredictably™. When these results were made
known, we plotted several actual ROSE launches from Eglin AFB. From
concurrent Radiosonde releases we expected a predominantly westerly
wind, The East vs North plot showed that superimposed on the eastward
motion were various loops and spirals similar to those found by Murrow

and Henry.

The reason for the self-induced motion has not been completely
explained, but it is generally thought to be due to a type of turbulence in
the wake of the balloon. Some work has been done on this problem and is
presented as Appendix 2 and Appendix 5, but a satisfactory explanation has
not been achieved.

The mathematical techniques selected for computing wind and shear
values were based on the initial assumption that the balloon motion was
very nearly the same as the motion of the wind., The self-ind'iced motions
caused this initial assumption to be invalid. It is felt that the mathematical
techniques do ‘‘escribe the motion of the balloon; unfortunately, the values
are not also the wind and shear values.

Two corrective approaches were taken to make the ROSE balloons
useful wind sensors. The first corrective approach was an attempt to
measure and analyze tne self-induced motions by means of a Power Spectral
Density Technique. The aim of this approach was to develop a model of the
self-induced behavior for the purpose of removing its effect from the data.
The result of this approach is presented in Section 3. The second (and
eventually more successful) approach was a physical modification of the
balloon itself to control the wake turbulence.
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Bs POWER SPECTRAL ANALYSIS OF BALLOON MOTION

The East vs North plots of the ROSE data indicated that the balloon
motion was generally unpredictable in a small interval. However, when a
plot of an entire flight was viewed there appeared to be a type of fairly
regular oscillation, The technique commonly used to determine oscillacory
changes in data is the Power Spectral Density Analysis. The basis for this
technique gs given in the standard work on time series analysis by Blackiman
and Tukey~. An ex é:llent Time Series Analysis program has been prepared
by Heal %' and Bogert® at Bell Telephone Laboratories and is available through
SHARE The final output of the program is a table of Power at specific
frequencies vs the frequencies. A spike in the curve indicates a predomi-
nance of that frequency in the data.

3.1 TIMg SERIES ANALYSIS COMPUTER PROGRAM

Because of the sizable programming effort required to prepare a Time
Series Analysis for a computer, a search of the avallag (»qurogram lipraries
was made. Fronz) the several good methods available, the one by
Healy and Bogert” was selected because their approach seemed easiest to
tailor to our particular problem. The time series analysis involves a large
number of computations on a fairly large quantity of data. Healy and Bogert
broke down the computations into separate numerical processes and wrote one
FORTRAN subroutine for each process. The method was then to use each
subroutine (with the necessary linkages) as a high level command. For
example, to read the data into the machine the main program uses merely
CALL READIN (A, NA, ANAME) to transfer the data to the array "A'" where
it is ready for computation. The main calling sequence gives the overall con-
cept of the computation steps without ~egard to all of the FORTRAN mechanics
necessary for the actual computer operation. This makes modification of the
program very easy. One merely wriles and debugs a new independent sub-
routine including only the "CALL'" line in the main program.

The original version of the program contained 17 subroutines which may
be found in Reference 6. For our analysis we decided to use just 5 of 17
subroutines. These 5 subroutines are presented as Appendix 3 with descrip-
tions of their individual processes.,

3.1.1 MODIFICATIONS TO THE HEALY-BOGERT PROGRAM

There were two major changes made to the basic program: the con-
version of the compiler language and an increase in size. The original
compiler language used was FORTRAN II, and all of the input, output, and
computations were coded in FORTRAN. The program was converted to
FORTRAN IV and operated undcr the IBSYS system in order to use the
techniques provided by this more advanced system. The original program
was limited to a maximum of 1500 points per analysis. By using fewer sub-
routines, we were able to increase this maximum to 5000 points per analysis,
The other minor changes were the addition of different trend-removing tech-
niques and the addition of pre-whitening and post-darkening subroutines. The
input subroutine READIN was also changed to conform to our data. The
additional subroutines are described in Appendix 4.

33



3.1.2 PROCEDURE TO TEST PROGRAM USING SIMULATED DATA

The programs received through SHARE are normally well documented
and perform satisfactorily; therefore the program was tested by simulating
lata with known frequencies and processing it by using the PSD program,
The manufactured data were a linear function with frequencies superimposed
on it, The frequencies were: 1/187, 1/131, 1/43, 1/41, 1/37, 1/17, 1/7,
and 1/(1 +°/3) cycles per second. The main calling sequence used the
following subroutines: READIN, DETRND (over the whole data set),
AUTCOV (with 100 lags), FOURTR (using the hanned cosine transforms),
and OUTPUT. The program performed very well in reporting all of the
frequencies we had manufactured. The output from the test was plotted on
rectangular scales (presented as Figure 10) and on semi-log scales
(presented as Figure 11).

The ROSE data seemed to be essentially quadratic rather than linear;
hence the same eight frequencies were superimposed on a parabola, and the
PSD program was re-run with the QTRND subroutine (Appendix 4). All of
the frequencies were reported again, and the shapes of the P () vs & curves
were identical to those shown in Figures 10 and 11.

Since the program seemed to perform well on '"clean'' data, it was
next decided to add to the quadratic data random noise of approximately 10%
of the amplitude of the data. The pre-whitening (WHITN) and post-darkening
(PDRKN) subroutines (Appendix 4) were then added in an attempt to remove
the noise. The output again was almost identical to that shown in Figures 10

and 11,

The next step was to see if a method simpler than the least squares
linear, or quadratic methods could remove the general trend and still pro-
duce results which would be satisfactory. The first method (TRNDR) was to
remove a line determined by the first and last points of a five-second section,
Then by using the last point of a section as the first point of the next section,
continuity could be produced through all of the data. The results were again
almost identical to those shown in Figures 10 and 11,

It was thought that perhaps a moving average would better remove the
general trend from the data than a series of straight lines as in TRNDR.
The subroutine MOVAVG was written and used with both 51- and 81-point
averages. The number of lags was then reduced to 50--first because the
number of points was reduced and secondly, in order to deterrnine how the
lower resolution would afiect the shape and placement of the spikes. The
result of the 51-point average is shown as Figure 12. This result is idertical
to the output from the 81-point average method. Ii will be noticed that the
peaks have broadened slightly but are still very satisfactory in returning the
frequencies known to be present in the data.

The results of these tests indicated that the program was performing
satisfactorily and could be applied to actual data.
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3.2 ANALYSIS OF ROSE DATA BY PSD PROGRAM

The vertical motion of a ROSE balloon is very smooth and does not
exhibit any of the oscillatory motion found in the horizontal plane. Because
of this the Azimuth angle of the radar was selected for analysis rather than
the Elevation angle or Range. The program was set up for a computer run
so that a ROSE packed binary tape was the input, and the PSD table with
the history and identification of the run was the output,

3.2.1 STANDARD ROSE BALLOONS

The standard ROSE balloon results were achieved in two steps. The
first was a control study using only one flight (16021) chosen at random. The
second step vas to apply the techniques developed in the first step to a
series of standard balloons flown at nearly the same time as some of the

modified balloons.
3.2.1.1 Control Study of Flight 16021

In order to obtain a better understanding of the actual ROSE data, a
plot of Azimuth vs Time for flight 16021 was made. A portion, from
23 thousand to 33 thousand feet altitude, is presented as Figure 13. This
portion of 400 seconds is essentially a quadratic with the familiar oscilla-

tions superimposed on it,

The data were processed four times, each using a different trend-
removing technique. The main program used the following calling sequence:

. READIN (400 points)

. One of the trend-removing routines

. WHITN (ALFAl = -1/2, ALFA2 = +1)
. AUTCOV (50 lags)

. FOURTR (Hanned cosine transform)

6. PDRKN (ALFAl = -1/2, ALFA2 = +1)

U W BN =

The four trend-removing routines used were:

« QTRND over the whole interval
. TRNDR over 50 point lines

. MOVAVG over 51 points

. MOVAVG over 81 points

B W e

The results of all four runs were almost identical, and a representative
plot of P(¢) v8 4 is shown in Figure 14, The plot indicates that in this por-
tion of the flight there was a much greater predominance of low frequenciecs
than high frequencies, and as frequency increases the power dimir.ishes
approximately as the log of the frequency., It is interesting to note that the
very slight peak at a frequency of 0.1 cps repeats itself in all four attempts.
However, it is believed that the peak does not rise high enough above its
surroundings to enable one to say that there is a predominant oscillation at
a frequency of 0.1 cps.
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To determine the effect of the oscillating azimuth angle on the
horizontal components, two analyses were run (each with a different trend
remover) on each of the East and North components for the same altitude
band. Although the balloon was launched near the radar site, a strong
westerly at the time of this flight had pushed the balloon (at an altitude of
23,000 feet) much farther to the east but at about the same latitude. This
resulted in the North component being more noticeably oscillatory than the
East component, The different trend-removing routines again had no
visible effect in producing a power curve of different shape. A typical
result for the North component is presented as Figure 15; a result for the
East component is shown as Figure 16, The slight increase in power is
again noticed in the North component at 0.1 cps;because of the location of
the balloon with respect to the radar, such increase is not perceived in the

Fast component.

The next step was to work with various parts of the flight analyzing
only the azimuth angle. First, the entire flight was analyzed (0 to 63,000 feet),
The result was a very noisy linear function on semi-log scale similar to those
shown in Figures 14 and 17. This function was not only noisier than those
depicted in Figures 14 and 17, it also lacked the prominence at 0.1 cps.
Analysis of the first half of the flight (0 to 33, 000 feet) gave the same result
as the analysis of the whole flight, When thke Azimuth vs Time plot of the
entire flight was studied, it was noticed that at about 42,000 feet the
oscillations vanished (which coincided with the smoothing of the winds
mentioned earlier). An analysis of the last portion of the flight (43, 000 to
63,000 feet) was made. The results, presented as Figure 18, indicate the
presence of very low frequency (below 0.03 cps) oscillations anc¢ essentially
white noise at all frequencies above this--a result quite different froin any
obtained in previous analyses. This agrees with the observed fact that the
winds suddenly became smooth at 42,000 feet. In order to check this result,
the porticn of the flight from 34, 000 feet to 45, 000 feet was analyzed. The
result iv presented as Figure 17 in which the whole first portion of the flight
seems tc confirm that the oscillations really do vanish above 42, 000 feet for
the standard ROSE balloon,

3.2.1.2 Series of Standard Flights

The results of the control study indicated that Azimuth should be
analyzed and that the flight should be broken into two sections: 1) the porticn
containing the oscillations (the first of the lower half of the flight); 2) the part
that is smoother (the second or upper half of the flight). The flights of
several standard balloons were chosen for analysis of the azimuth both in
the two altitude bands and over the entire flight, The flight numbers of the
balloons chosen were 16053, 16074, 16083, 16114, and 16116. The output
is presented as Figures 19, 20, 21, 22, and 23 respectively. The analysis
of the entire flight is not shown because it is very similar to the lower-half
analysis, It can be seen that while the general trend of the upper and lower
portions are similar, the upper portions have none of the small peaks found
in the lower portions., These small peaks are not sufficiently prominent to
give assurance that these frequencies are always present in the data., If the
frequencies are not always present, attempting to remove them could cause

even more erratic data.
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3.2.2 MODIFIED BALLOONS

The second approach to eliminating self-induccd balloon motion was to
physically modify the balloons. These modifications will be discussed in
Section 4; for now it will be sufficient to indicate that there were basically
three types of modified balloons: tails, fences, and roughening--plus two
flights by a one-meter sphere with corner reflectors known as the ROBIN
Balloon. Power spectral density analyses were performed on the two halves
of at least one flight of each type of modified balloon. The P($) vs ¢ piots
are presented for these representative flights:

Flight No. Modification Type Figure
16055 belts 24
16073 roughening 25
16081 belts 26
16113 tails 27
16115 tails 28

Upper portions of flights of modified balloons and standard balloons are
very similar, but the similarity between the lower half-portions of flights of
these balloons varies with the type of modification used. In all cases at
least some of the smaller peaks were removed and in general the modified
balloons resulted in a smoother PSD result,

3,2.3 MODIFIED ROBIN BALLOONS

In addition to the variously modified ROSE balloons two smooth, one-
meter ROBIN balloons were also tested. The first had a two-inch inflation
valve and a five-mb pressure-relief valve. The second had a two-inch
combination inflation and relief valve. The flight was divided into two
portions with the division at 23, 000 feet. The results of the PSD analysis
of the upper portion is very similar to the flight pattern shown in Figure 17.
Except for the very low frequency peak, the data contained the same power
at all frequencies, The lower portion is similar to the lower portions of the
other flights with one distinction. There is a broad peak in the power curve
from about 0,22 to 0.245 cps which rises high enough above its surrounding
to give it a degree of credibility, The rise rate of the ROBIN is about
15 ft/sec in this region; therefore the oscillation covers 60 to 70 feet of
altitude, However, the presence of the large amount of power at lower
frequencies (as seen in Figure 29) makes this discovery impractical to
apply in a data reduction technique.

3.3 GENERAL CONCLUSIONS

The purpose of this approach was to find a predictable periodicity which
could be eliminated from the data i1 order to produce reliable winds and
shears., We have not been able to find (with any degree of certainty) such a
predictable periodicity since the motion of the balloon apparently contains
no prominent frequencies,
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4. PHYSICAL MODIFICATION TO THE STANDARD ROSE BALLOONS

The second approach to making the ROSE a more reliable wind sensor
was to make various physical modifications to the shape of standard ROSE
balloons in an attempt to control the wake separation.

The standard ROSE, as described previously, is a smooth sphere.
A photograph of a standard ROSE taken immediately after launch is shown
in Figure 30, The modifications were of three basic types: tails, orthogonail
fences, and over-all roughening. The tail modifications were devices similar
to those used with ordinary kites to improve the stability without changing the
shape of the standard ROSE balloon., The orthogonal fence modifications
(shown in Figure 31) consists of two orthogonal great circle strips of poly-
film with lightweight drinking cups attached with their open end toward the
balloon. The over-all roughening modification (shown in Figure 32) is
popularly known as the '""Jimsphere' and is generally attributed to Jim
Scoggins. It consists of lightweight cups attached to the balloon in a fairlg
symmetrical design similar to a golf ball that had been turned inside outl?,

In addition to these modified ROSE balloons there were also two
ROBIN balloons. The ROBIN balloon is a one meter diameter smooth sphere,
as shown in Figure 33. They were modified from standard configuration by
the addition of a pressure-relief valve so they could rise higher without
bursting.

Each modified balloon was flown and tracked in a program testing

the effectiveness of the modification. The testing program is described in
Section 5,
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5. TESTING OF MODIFIED ROSE BALLOONS

In order to evaluate the effects of the ROSE modifications, a series of
89 test flights were flown at Eglin AFB where a standard and a modified
ROSE balloon were flown at about the same time. A comparison involving
the variances of the winds was made.

5.1 COLLECTION OF DATA

Each flight of a balloon was tracked with the AN/FPS-16 radar, and
the data was processed by Eglin's standard xyz reduction program. When
a group of processed flights was completed, they were stored serially on
a binary magnetic tape. The binary tape was then fcrwarded to the
University of Dayton Research Institute together with a BCD listing of
every tenth pcint (in order to reduce the volume of the paper). An inven-
tory of this test program is presented as Table 5 and includes all the
pertinent information concerning the flights.

5,2 COMPUTATION OF WINDS AND THEIR VARIANCES

The conclusions reached in the studies of the various fits indicated that
the finite-difference method of computing wind is normally adequate. Finite-
difference Winds over 100-foot layers of altitude were computed for each
flight of the series. When the mean winds over the 1000-foot layer were
computed, the variances of both components and the wind vector over the
same 1000-foot layer were also coinputed., This was done in order to quanti-
fy the effect of the modification. A sample of this type of printout is pre-
sented as Figure 34, A plot of the Wind Vector vs Altitude was drawn for
each flight, Samples of portions of th:se plots are shown as Figures 35 to 38,
The large dot shown in these figures represents the average over 1000 feet
altitudes while the x'ed, dashed line is the value reported by standard
rawinsonde balloon launched at about the same time as the test balloon,
Figure 35 describes the wind reported by a standard ROSE balloon at the
altitude at which oscillations disappear. Figures 36 to 38 are plots of the
variously modified ROSE balloons which present a general view of the effect
of the modifications on the computation of the Wind Vector,

5.3 COMPARISON OF VARIANCES

A representative variance of the wind vector over a 10000-foot altitude
layer was computed using the following equation:

2 2
Lew_ ) + Xow_ )
2
ot = = S (65)

n

where oW & and ¥ trWN2 are the sums of the individual 1000-foot variances
over each l%OOO-foot layer. These variances were computed for four layers
from 0 to 40000-foot altitude and are presented as Table 6. The comparison



of variances was performed by computing the Ratio (R) given by the follow-
ing equation:

2 . t,,Z

- _ Std modified

R = 2 (66)
Std

g

2 :
where o Std and o modified 2T¢ the variances over 10000-foot altitude layer

of a standard ROSE and a modified ROSE respectively, flown at nearly the
same time, The ratio for each of the four altitude layers for each modified
bailoon is presented as Table 7. The Ratio (R)is a type of percent-reduction
equation, and the values of R for a modified balloon can be interpreted as
follows: a small value for R indicates that there is very little difference
between a standard balloon and this modified balloon; a large value for R
indicates that there was a significant change due to the modification, When
the value of R approaches 1.0 the variance of the modified balloon approaches
zero--which is just about as unrealistic as the winds reported by the unmodi-
fied ROSE balloon, It was determined that a 0.7 to 0.9 reduction in variance
would indicate a successful modification. Some of the more successful
modifications would then be applied to the remaining standard ROSE balloons
in the Air Force stocks so they could be used to produce reliable wind values.
Care must be used in the selection of the {nodification because the balloon's
wind response can be adversely affected. 0
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Alt North East At WN WE WT h ID

3200, ~3608. <=3618. 4.6 =31.59 =29.32 43,10 22.50 16004
__331le __=3718., =3T16. Qo) =27.56__=23.90 _ 36.48 _ 24,8) 16006
34C0, =3833. -3839. 4.6 =26.14 =27.96 -38,27 22.50 16C04
__35C0.____~=3960.___ =3967, o) =30.97__-31,22 43,98 24,39 16004 _
36C0. =6C69. =4091. 4ot -zl. 77 -28.18 371.%2 22.713 16004
32, - - 4 -32,4 8 16004 __
3800, =4276. =-4323. 3.9 -zl. 36 =-25.39 35,18 25.13 ° 16004
__39C0. =4410.  =648%0., 4.3 -31.16_-29.%) 42.9) 23.2% 16004
‘00‘0 -ASllo "5500 ‘ol -2‘ 6‘ -24039 3‘.67 2‘06‘ 16006

41C0. ___ =4621,  =4643, 4.2 =260]9_=22.146 36,29 23,37 16004 _
=27.45 <=27.47 38.88 23.82 3.36792 2.81500 3.84509% 1.02967

4200, -4728, -4708, 3.9  =2T7.44_ -16,67 32,10 25,64 16004

43C0. -6837. -4780. 3.9 -27.95 =18.46 33.50 2%5.64 16004
_ &4C3,_ =4987, _ -4859, 4¢3 =27.91 =18.37 33,41 23,95 = 16004 _
45C0. -5082. -4938., 4.2 -29.76 -10.81 35.21 23.10 16004
46Cle _ ~-5170.__ -5016. 4.0 =-22.00_ -19.50 29.40  25.25 16004
47C0. 5244, -5048. 3.6 -20.55 -3.89 22.39 27.50 16004
48C0.  =8327, =Sl1l., 4.4 =18.86 =14.32 23,68 22,13 16004_
4900, ~5436. -5178. be2 ~25.95 ~-15.9% 30.46 23.81 16004
$0C2.  =5564. _ -5185, 3.5 =30.86  =2.00 _ 30.92 _ 29.14 16004
$1C0. ~56171. -5181.," 4.2 =30.264 0.95 30.25 23.3) 16004
=13.20 =-26.15  30.13 _25.01  7.38435  4.23666 4.14293  2.06506 -
5201. -57570 ‘52160 ‘03 -20 00 '80“ 2l059 230" 16006
__%3C0.__ =5874s =5 4.3 =27, 9,30 28.76 _ 23.02 16004 _
54Cl. -5972. -5130. 4.2 =23.33 10.95 25.77 26,08 16004
_ 88C1, -6C89.  -5140. 603 =27.21  -2.33 _ 27.31 _ 23.26 16006
56C0. -6204. =5145. 4.1 <-28.05 -1.22 28.07 24,15 16004
57020__‘-93200._ °5161. 6.2 '27 62 0395 2136} 2&;}. 16005_
s8ce. ~-6420. ~5144. 4o7 <=21.28 <-0.6% 21.29 21.28 16004
5901. -6487., -5167. 4.1 16,34 -5.61 l702! 2‘0‘} 16006
60020 -6538. -5188. b2 -12.14 -5.00 13.1) 2‘005 16006
61C0.  =6593.  -5190. 4.2 =13.10 _=0.48 13,10  23.33 16004
-0.22 =21.63 22.39 23.51 6.12064 6.108648 6.10956 0.90043
6200,  =6647.  =519Ge 4¢3 =12.56 =]1.40__ 12,63 __23.25% 16006
63Cl1. -6711. -5192. 4.0 ~-16.00 1.00 16.03 2%.29 16006
__ 6404, =6775. =5174, bhed =164,88 hoel9 15.46 23.99 16004
T 65C0. -68137. -5141. 4.2 ~14.76 7.86 16.72 22.86 . 16004
66C0.  =6901.  =5129. 4.1 =15.61 _ 2.93  15.88 _ 24.39 16006
6703. -6962. ~-5099. 4.1 -14.88 T.32 16.58 25.12 16004
68C0. =7017.  =-5082. 4.2 =13.09 4,05 _ 13.71 23,09 16004
89C1. -7061. -5049. 4.1 <=10.73  8.05 13.41 246.6) 16004
70C0. =-7100, ~-5036. 4.) -9,07 3.02 9.56 23.02 16004
71C1. =7145, -4998. b4 ~-10.2) B.064 13.39 22.96 16004
6,56 =13.18  14.36 23.85 _ 3.34717  2.45280 2.23882 0.93670 B
72000 '7‘610 ‘59570 3.6 -‘021 10079 ll 50 26005 16006
73C0. __~-17211. -490l.. 4.0 -12.50 14.00 18.77 - 25.00 16004
7‘000 -7269. -4849. 4.6 °l3ol. llo’z 17070 22073 16006
75€0. _ =-1270. _ -4808. 4.5 =0.22  9.11 9.11  22.22 16004 _
T6C1. -1303., -4765. be2 ~T.86 10.24 12.90 264.095 16004
7703,  =7323.  =4732. 3.9 =5.13  8.46___ 9.89 26,15 16006 _
78C1. =7341. -4669. 3.8 L TRA) 16.58 17.24 2%.79 16006
79C0. =T7372. =45T4e  4e3d  =7,21 22.09 23.26_ 23,02 16006
8000. -7398. -44R1, b.1 -6.34 22.69 23.55 26.39 16004
OIQ}. -7Qg3o “35‘0 309 '60“ z 64 26 ‘3 26 ‘l — ‘600‘
15.16 -6.78 17.06 24.58 6.26976 3.82808 6.08491 1.54065
U.
WE WN wT R CWE CWN “WT g

Figure 34. Sample Output of Program to Compute Winds for the Evaluation

of the Modified ROSE's
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Figure 35, Wind Vector vs Altitude Fiight 16021; 40, 000 to 50, 000 Feet
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Wind Vector vs Altltude Flight 16055; 28,000 to 38,000 Feet
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Figure 37, Wind vector vs Altitude Flight 16073; 22, 700 to 32, 700 Feet
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Figure 38. Wind Vector vs Altitude Flight 16081; 23,600 to 33, 600 Feet
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TABLE 7. Comparison of Variances for Modified ROSE Balloons

Modifled Std Alt, Layer Alt. laver Mt Laver Alt. laver
0-10, 000 11-20,000 21.30, 000 11-.40, 000

16002 16001 0. 500 0. 760 0. 569 0,074
16004 16003 0,763 0. 809 0.52¢4 0.328
16011 lenli2 N. G. 0. 287 0. 400, 0.179
16013 16015 0.130 0.144 0. 362 0,095
16023 16021 0. 806 0. 204 0. 924 0. 644
16031 16035 0.919 0.935 0,907 NG
16032 16037 0.717 0. 606 0.710 0. 397
16033 16037 0.878 0. 497 0.892 0,211
16034 16039 N. G. N. G. 0.%10 0. 426
16038 16039 0. 507 0.274 N.G. NG
16042 16041 N.G. N.G. 0. 638 0,151
16043 16041 0.73 0. 639 0.671 0. 3R89
16045 16044 N. G. 0. 535 0.1377 N.G.
16047 16046 0. 329 0,555 0. b8 0. H56
16052 16051 0.25¢6 0.216 0.150 0.649
14054 16053 N.G 0. 452 0. 501 0,94
16055 16053 0. 738 0. 705 0, 768 0. 657
16050 16057 0. 356 0. 248 N. . N G.
16061 1€Cob 0,894 0, 8B 0.814 N. G.
16062 16066 0.559 0,428 0. 401 N, G.
16063 16067 0. 429 0. 501 0, 493 0.42]
16064 16068 0.659 0.778 0. 708 0.270
16065 16068 0.118 N.G. 0.119 N. G.
16071 16072 0.191 0.201 0.155 N. G
16073 16074 0. 690 0.618 0. 599 0.901
16075 16074 0. 955 0. 860 0. 845 0. 988
1608] 16083 0,475 0.450 0. 844 0,274
16082 16083 0.874 0.871 0. A6} 0, 8R9
16085 16084 0.7%9 0.773% 0.670 0,502
16091 16092 0.625 0,670 0. 59¢ 0. 536
16093 16094 N. G. 0,218 N.G 0. 4069
16095 16090 0.514 n. 745 N. G. N G,
16191 16102 0.630 0. 607 0. 59 0. 53
16103 16104 N. G. 0.218 N. G N. G
16106 16108 N. G. N. G. N. G. 0.9113
16111 16112 N. G. 0.913 0.922 0. R4
16113 16114 0. 489 0. 549 0, 548 0. 554
16115 lel6h 0. 519 0. 916 0. 553 N, G,
16123 16124 N. G. 0,221 0. 8138 N. G
16125 16126 N.G N. G N. G. 0.616
16129 16130 N. G, N G. N. G, 0.934
16132 16131 N. G. 0.80} N. G. N.G.
16134 16133 0.835 0. 665 n,59) 0.93)
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6. SMALL LIGHTWEIGHT ROSE BALLOONS

The two appioaches initially suggested to make the ROSE system
reliable wind sensors met with limited success. A new approach which
involved designing an entirely new balloon sensor was suggested by Reid.
Experiments tend to confirm that the self-induc:d balloon motion can be
related to the Reynolds Number, a unitless ratio of inertial to viscous forces.,
When the Reynolds Number is greater than 250000 the balloon experiences
considerable instability, but when the Reynolds Number is less than 250000
the instability is negligible. The value of 250000 will be known as the
critical Reynolds Number., The change from supercritical to subcritical
occurs at about 42, 000 feet altitude for the standard ROSE balloon. Reynolds
Number for a sphere is given by

Re = -—2——le D (67)

[v] is the velocity with respect to the surrounding air mass, p is the density
of the air mass, D the diameter, and p the coefficient of viscosity, Since
the density or coefficient of viscosity of the air mass is obviously uncontrol-
lable, Reynolds Number must be affected by changing the velocity or the
diameter of the balloon. The velocity could be decreased by adding weight

to the balloon, but this is not practical because it also increases the lag
distance and the length of time required for a sounding. Decreasing the
diameter of the balloon lowers the maximum altitude the balloon can attain
but improves its wind response. Reid has shown that a balloon having a
diameter of approximately 1 meter and weighing less than 100 gms should
produce detailed winds from altitudes of 10000 to 50000 feet!0, "A series

of 12 such balloons, designated as GT bal!loons, were fabricated for testing
in comparative flight tests with standard two-meter ROSE balloons.

6.1 COMPUTATION OF WINDS, VARIANCES AND
REYNOLDS NUMBERS OF GT BALLOONS

The program to test the GT balloons was i1dentical to the one used to
test the modified ROSE balloons. A list of the GT balloons and the standard
ROSEs flown in the test series is presented as Table 8, Wind values were
computed by the finite-difference method for 100-foot layers of atmosphere.
Average winds for the 1000-foot layers with their variances were then com-
puted,

In addition to the normal output (Figure 34), two extra parameters Rise
Rate and Reynolds Number, were added to the printout shown in Figure 39,
Rise Rate was computed by finite-differences, and Reynolds Number was
computed from the following equation:

(Rise Rate) - p D
R, = Ll : (68)
pm
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where p__ and b, are the density and the coefficient of vilcY!ity respec-
tively. ey were obtained from the 1962 Model Atmosphere” ",

In addition, four flights (16141, 16142, 16143, and 16144) were recom-
puted using the linear fit method of computation described in Section 1. 3,
Values obtained by these various methods were then compared.

6.2 COMPARISON OF VARIANCES

The method used to compare the variances for the GT balloons was
identical (computing the R values) to that used for the modified ROSE
balloons. The values for the ratios are presented as Table 9. The values
for the ratios for flights 16141 to 16144 are presented as Table 10,

The tables show a generally high reduction in the wind variance. Based
on these values and their own independent calculations, the scientists at
AFCRL have made a tentative selection of a new standard ROSE balloon. It
was the balloon designated as GT59 in the test series and (s a 0.25-mil,
40-inch balloon with a standard pop-out valve,
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Alt N E At WN WE WT Z h Re ID

5301. =1640C. -1850. 5.9 -11.87 -8,04 14.3) 16434 16,33 266903, 16147
5401. 1725, -1940. R0 =-10443 ~-11.99 15.89 12.%2 12.51 205460. 16147
5503, -1786. -2054., T.1 =1.66 <=15.47 17.26 16,33 14.33 234528, 16147
S004. =179, =2174. Tee -12.33 -17.19 2l.16 13.09 13.68 223411, 16147
5705, = 1959, =-2296. Tet -9.87 -16.63 19.3¢ 13.57 13.57 220916. 16147
SAR02. -2022. -2413. 7.2 9,50 <16.40 12.9% 13.45 13.645 218350, 16147
5901, =2109, =253, Tel =11.27 <=16.20 19.73 12.86 12.86 20R220. 16147
6000C. =21176. =2654. 6.4 <=10.77 ~-168.41 2l1.67 15.53 15.53 250772, 16147
6103. =2252. -2832. 9,7 =142 =17.45 14.90 10.63 10.63 171126, 16147
6205, -2325. -2959, T.1 =11.10 =-17.99 21.07 14.33 14,32 229971, 16147
=1%.61 -16G.20 16.R)3 13.72 3.23062 1.6795%4 2.37866 1.58765

6303, =239¢6. -3085. 1.3 “B.9 =~=171.70 19.8)3 13.5C 13.50 216118, 16l¢e7
6400, ~24465, -3208., Gl -1.02 -1T.46 18.81 164.46¢0 160 ¢30909. lole?
6504, -2502., -3339, A.2 =7.98 =16.21 18.07 12.¢1 12.61 200767. 16147
6605, -2551. =344, 6.H ~6.43 -15.44 16.72 14,85 14.8% 235748, 16147
6701. -2622. =3531. 6.6 =-10.3v -13.77 17.25 14.55 16,564 230300, 16147
€800, -2676. =321, 6.1 =T.43 ~164.1R 16.01 16.29 16.29 257236. 16147
6700. =-2750, -3723. Se7 =13,717 -11.35 22.15 16.9¢4 16.93 2660699, 16147
1000, =2834. -3g21. 9 =14,70 -16.12 21.82 16.99 16.98 2066698, 16147
1102, =2924, =344, 1.2 =11.96 -14.20 18.57 14.15 164.15 221550, 161e7
1201, -3006. -4Cus, 8.1 -10.23 ~-13.79 17.17 12.15 12.14 189688, 16147
-15.62 -9.84 18.64 16.65 1.5698¢ 2.861178 2.07954 1.68174

T306. =3095. 4145, Ted ~-12.59 -13.50 l8.46 14.32 14,31 22¢937. 16147
7407, -32034. K245, T.4 =-13.90 -12.0% 18,40 13.22 13.21 20S5192. 16147
7501, -31320. -434C. 8.2 -14.10 ~-ll.72 18.3¢4 l1.46 1l.66 177148, 16147
1601, =3617, -4411, 6.2 -15.06 -13.41% 20.18 16.21 16,20 250250. 16147
T803. = 3543, -4t31. 8.0 -16.59 -12.40 1v.15 12.2¢4 12.23 187875, 16147
1904, -3753. =4715. 1.3 -la.b6 -12.36 19.16 13.8% 13.88 212686, 16147
802°0, LR N -4b07. A.0 =-12.02 ~-11.37 16.56 12.02 12.02 183571, 16147
8101. =3346, -649, Te2 =12.67 -11.49 16.96 14.00 164.00 213252, 16147
8205. -4062. -4987. 8.0 -15.16 ~-10.78% 18,60 12.98 12.97 197038, 16147
-12.16 ~-13.7¢6 18.37 13.28 G.H8611 1.16707 1.05807 1.38660

g3o00. -4187, -5072. 8.5 =-15.45 ~-10.52 18.69 11.22 11.22 1569928, 16147
8408. -430C0, -5134. 7.0 ~-15.9%92 “0ett 11.68 15.34 15.34¢ 231704, 16147
8500. -443C, -5199. 7.9 -15.42 -T.15 17.00 11.76 11.73 176802, 16167
8600, -45640. -5251. 7.8 -16.19 =T.4l 18.35 12.03 12.83 192737, 16147
8702, -46R0, -53013. 7.8 -16.28 =%.9 17.32 13.01 13.01 194881, 16167
8401, -4304, -5351. T.6 =16.95 ~6.63 18.20 13.01 13.01 194369, 16147
8900, -492%. =53v3, T.2 -16.93 -6.171 17.R4 13.36 13.83 206132, 16147
9001. -%350. =5445, 8.5 -15.01 -5.84 luell 11.86 11.86 176217, 16167
9105%. -51¢60. =5506. 1.9 -12.83 =7.49 le. 6o 13.10 13.10 194068, 16147
92v3. -5266., =5560. T.4 =13.76 -6.67 15.29 12.5%¢ 12.55 185499, 16147
=7.217 -15.41 17.09 12.85 1.37133 1.641739 1.39190 1.16702

9301. =5368, -5624. B.0 -13.74 ~H.6H 16.25 12.25% 12.264 180431. 16147
9404, -5462. -5081. Te =12.27 -8.0¢4 14,67 13.57 13.57 199393, 161e7
95013. -55A80, =5140. 8.0 =lb,vl -1.02 16.48 12.643 12.642 182098, 16147
9601, -5697, -581«. 7.9 =15.3¢6 =9.65 18.15 12.51 12.51 182816, 16147
9703, -5815., -5940. ls1 -lo.13 ~H.65 18.A3 16.42 lesel 210076, 16167
1802, =595, =5935. T.6 =1%.71 -H.00 17.68 13.06 13,05 189727, 16147
9901. -6064. =5996., 6.9 -18.23 -8.06 19.92 14,20 14.2% 206557, 16147
10000C. =02« -6C7s. Te& -18.88 -10,.46 21.54 13.46 13.643 194131, 16147
101v3. -61513, -6173, T.5 -19.18 -12.91 23.11 13.6% 1V.66 196701. 16147
10201. -L501. =6210, Te6 =20.57 =~=12.8A 26,217 12.7) 1¢.92 135786, 16167
=9.43 -16.506 19.10 13.25 2.05403 2.62858 J. 11266 O.T0837

o ag .
WE WN WT o TWE WN WT Ty

Figure 39. Sample Output of Wind Computation for Standard and Modified
Test Series
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TABLE 8. Flights Conducted In Comparlson Tests of GT Balloons

Flights Conducted in Comparison Test of GT Baiicons

Flight Balloon Diameter Gauge Weight Valve Time and Date of Launch
Inches mil gma
lel4l GT-62 40 . 25 48. 1 Weightless 1242 26 May 4
16142 GT-59 40 .25 73.1 Sud 1429 26 May b4
16143 13 78.5 1" 350 Std 1742 26 May b4
16144 3o 78.5 . 50 350 Std 1406 26 May 64
16145 29 78. 5 . 50 350 Std 1528 26 May b4
16146 GT-56 36 .25 29. 3 Weightless 1629 26 May 64
16147 GT-52 36 .35 74.9 Sud i608 26 May 64
16151 GT-61 40 . 50 73.7 Weightless 1237 27 May b4
16152 41 78.5 . 50 350 Std 1428 27 May 64
16153 19 78.5 . 50 350 Std 1532 27 May 64
16154 GT-58 40 .38 84,8 Std 1659 27 May 64
16155 GT-55 36 . 50 62.3 Weightless 1451 27 May 64
16:56 GT-53 36 .25 67.2 Std 1926 27 May 64
16157 48 78. 5 . %0 350 Std 1814 27 May 64
16161 GT-57 40 . 50 100. 6 St¢ 1346 28 May 64
16162 23 78.5 . 50 350 Std 1251 28 May b4
16163 14 74. 5 . 50 350 Sid 1409 28 May u4
16164 GT-60 40 . 50 97.5 Sid 1244 28 May 64
16171 7 74.5 . 50 350 Std 1332 1 June 64
16172 GT -54 36 . 50 85, 5 Std 1443 1 June 64
16173 46 78.5 .50 350 Std 1610 1 June 64
16174 GT-51 36 .50 89. 9 Std 1327 1 June 64
Table 9

Comparlson of Variances for GT Balloons

Alt Alt Alt Alt
GT Balloons Std. 0-10,000 11-20,000 20-30,000 31-40,000
16141 (GT 62-11) 16144 0.0137 0.942 0.894 0.739
*16142 (GT 59-9) 16144 0.812 0. 947 0.954 0. 842
16146 (GT 56-6) 16145 0.834 0.950 0.896 0.810
16147 (GT 52-2) 16145 0.928 0.953 0. 940 0.691
16151 (GT 61-12) 16152 0.892 0.903 0.817 0. 740
16154 (GT 58-8) 16157 0. 890 0.965 0. 961 U.9i5
16155 (GT 55-5) 16152 0.771 0. 891 0. 821 0.870
16156 (Gr 53-3) 16153 0.894 0.963 0.972 0.904
16161 (GT 57-10) 16163 0.733 0.945 0.958 0. 756
16164 (GT 60-7) 16162 0.863 0.920 0.960 0.934
16172 (GT 54 -4) 16171 0.784 0.926 0. 765 N. G.

* Indicates the type that ls tentatively chosen as the new standard ROSE
balloon.

Table 10

Comparlson of Variances for GT Balloons Using Llnear Winds

Alt Alt Alt Alt
GT Balloons Std 0-10,000 11-.20,000 21-30,000 31-40,000
16141 (GT 62-11) 16144 0.945 0.953 0.929 0. 769
16142 (GT 59-9) 16144 0.770 0.929 0. 965 0.879
16146 (GT 56-6) 16145 0.988 0.963 0.957 0. 860
16147 (GT 52-2) 16145 0.940 0. 962 0. 950 0. 784
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7. GENERAL CONCLUSIONS

The highest degree polynomial necessary to describe the motion of
the ROSE balloon is in almost all instances the first degree., If the data
contains extraneous points, they should either be eliminated before fitting
a linear function or the method of finite-differences can be used--the latter
being faster and more economical,

The Power Spectral Density Analysis Technique when applied to the
balloon data produced no useable results. It was therefore suggested that
physical methods of reducing the oscillations be pursued rather than trying
to remove them mathematically from the radar data.

Some of the modified ROSE balloons show significant reductions of
self-induced motion. Extreme care must be used in selecting the type of
modification to be applied to the remaining standard ROSE balloons. With
the proper modifications, the standard ROSE balloon can be used to measure
the detail winds with fair reliability,

The smaller lightweight balloons seem to reduce wind variance most
~onsistently, They also have better wind response and are much simpler
to manufacture than the modified ROSE balloons.,

8. FUTURE WORK

Future work will be in two areas: The first will be a more complete
analysis of the modified ROSE balloons selected by scientists at AFCRL to
be flown for a study which would determine a typical wind profile. The
second will be to develop a more convenient data-handling system for the
new lightwe:ght ROSE balloons. Such a system will permit computations
at the sounding site and will eliminate the delay involved in data reduction at
a remote location,
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APPENDIX 1

INDUCED MASS

The values presented by Leviton for the wind response errors in thel3 14
spherical balloon technique for measuring winds were questioned by Reed™ ™’ " 7,
The basis for the difference between values computed by Leviton and Reed was
attributed to the fact that Leviton assumed the apparent mass term to be zero.

A basic reference in aerodynamics, '"Theory of Flight" by R, von Mises,
page 573, provides the basis for the additional term in the expression for mass.

"In this argument, as well as in the preceding section, it has been assumed
that the air reactions on a moving body depend on the instantaneous state of
velocity only, not on the accelerations (and higher derivatives). It is obvious
that this can be only an approximation and that some influences on the accelera-
tion must exist. The theory of irrotational flow of a perfect fluid gives a certain
answer to this question. According to this theory, a body moving in a fluid
originally at rest behaves like a body of increased inertia: There is a term of
apparent mass to be added to its real mass w/g, the reaction of the surround-
ing fluid would be taken intoaccount when the sphere is assumed to have the mass

£+£ﬂpa3

g 3

and to move under the influence of the other forces (weight, etc.) alone. This
includes (for the case of a sphere) the result expressed in D'Alembert's
paradox (Sec. IX. 3) that no reaction exists if the motion 18 uniform."

The volume of radius a is given by
4 3
VB =g Tma (69)

Solving for a’ gives

; 3" Vp
a’ 2 ——— (70)

4

Substituting in the expression for mass by von Mises gives

3V
_w 2 B

simplifying

—w l .
M-E«i’zp Vg (72)

The term l p + Vg is equal to one half the mass of the air displacedby
the sphere., The equations of motion must therefore include the mass of the
balloon and the mass of the air that is accelerated as though it were part of

the body,
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APPENDIX 2

AN ANALYSIS OF THE OSCILLATORY MOTION
OBSERVED IN THE RISE OF A SPHERICAL BALLOON

In the course of this work it has become apparent that certain assump-
tions must be made if the analysis is to be mathematically tractable.

From wind-tunnel pressure measurements it is well known that the
fluid flow at the front of a spherical object is essentially incompressible and
inviscid for Mach Numbers appreciably less than one. However, at the
rear of a sphere the wake is turbulent or at lgast rotational for Re greater
than 100-200. In the case of ROSE, Re = 10° after the first 0.5 second or
so of travel, Because of this turbulence, we must resort to approximate
methods since not even the simplest turbulent motion has yet lent itself to
a strict mathematical analysis,

However, a certain amount of information may be obtained by a consider-
ation of the supposedly potential flow at the front of the balloon, In doing this,
of course, no information as to the causes of any oscillatory motion is obtained
since these causes are tied up (apparently) in the unstable wake,

What is done to overcome this lack of information is to accept the
oscillation as a fact and to apply it as a boundary condition to the equations
governing the flow at the front of the balloon. Due to a lack of experimental
data, the precise form of the balloon's oscillation is not known; it has, how-
ever, been assumed that this oscillation is in the form of a helical spiral,

We take axes at the center of the balloon as shown:
The x-axis is horizontal, and the

y-axis is vertical. The z-axis is
normal to the helical axis,

A0 00

The angular velocity of the balloon is denoted by 1, the vertical
velocity of rise by W, and the radius of the spiral by d. The radius of the
balloon is R. Hence, the axes are translating with velocity W and rotating
with angular velocity . The velocity of the air relative to axes fixed in
space is given by the gradient of the velocity potential, U. The velocity of
the fixed axes relative to the moving axes is - W - {ix (F + d) where T is
the radius vector from the moving axes to the point in question, Hence, the
velocity of the fluid relative to the moving axes (V) is given by

V=VYU-W-0x(r +d) (73)
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Since we have assumed the flow to be inviscid, the boundary condition

on the surface of the balloon is

Vr =0 (74)
where V, = the radial component of velocity relative to balloon, and on the
surface r = R. The above vectors have the components:

w - (0, w, 0) (75a)

d = (0, 0, d) (75b)

g = (0, Q 0) (73c)

T = (x, y, 2) (75d)

Ox @+ 7T =(Q(7+d), o,m) (75¢)

We use spherical coordinates defined by x = r 8in 8 cos ¢,

y = r 8in 0 sin ¢, 2 = rcos 8. Now, V = Oonr = R, so

Vr:O:VrU-[W+QxG+3)]ratr=R. (76)
We have the general relationship:

v z=v 8infBcoséd + v s8in@ sin ¢ + v. cos 0 (77)

r X y z
Hence VrU z -g-rg =z + d) sin 6 cos ¢ + W 8in 0 8in 4 -2 x cos § (78)

r=R

au . . .
or 3 = 2d sin 8 cos ¢ + W 8in 0 sin & (79)

r=R

This last condition along with the fact that U—0 as r—seomakes up the
boundary conditions on U. The velocity potential (U) must satisfy Laplace's
equation;

viu = o0 (80)

A solution to this equation which satisfies the above boundary conditions
is

U :% (A sin 0 cos & + B sin 9 sin o). (81)
r
It follows that

%}q :-% (A 8in 8 cos ¢ + B sin 8 sin o) (82)
R

Qd sin 6 cos ¢ + W sin 0 sin ¢
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The above equality must hold for all 0 and ¢, hence:

2 _ 2 _

-—IA-Qd and —;B-W

R R
orA:-%—R3 Qd and B=-é—R3W

Thus, the final expression for the potential becomes

<)
U=-';- R (2d sin O cos ¢ + W sin 0 sin &) (83)
r

Two equations connecting the four unknowns; @, d, 0, and ¢ may be
obtained by finding the coordinates of the stagnation point. We do this by
finding V_ and V_at r = R and equating them to zero,

0
v0=au-[W+nx(’r‘+E)] (84)
0 0
In general, Vg T Vi COS 0 cos ¢ + vy cos 0 sin ¢ - v, sin 0 (85)
_ 1 au ‘ . .2
Hence, V0 T 3 2(r cos 0 + d) cos 0 cos $ - Wcos 0 siné -Qr sin“gcos ¢
(86)
v0 z --Z- (2d cos 0 cos p + W cos 0 sin ¢) -QR cos % (87)
r = R
vV =V U-[v—v+ ﬁx(?+?f)] (88)
® ¢ b
in general, Ve T vy cos ¢ - v sin $ (89)
therefore V. = l 3 W cos ¢ 4+ rcos 0 + d)sin (90)
& r sin 9 9%
(V@) =-Z- [(2dsin¢>-Wcos ¢>] + QR cos B sin § (91)
r =R

We now equate expression (87) and (91) to 2ero and obtain:
3 cos 0 (Rd cos & + W sin¢) + 22R cos & = 0 (92)

3(2Rd sin & - W cos &) + 292R cos 0 sin o

0 (93)
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These two equations contain the four unknowns: 0 (balloon angular
velocity), d (radius of spiral), and 6, ¢ (coordinates of stagnation point).

As is well-known, however, two equations in four unknowns are a
rather useless bit of symbolism in themselves. With this in mind, we
come to the main problem of this paper: How to find something which
occurs at the stagnation point, and how to express this something in the
form of two or mcre analytic expressions.

We have at our disposal another hydrodynamic equation, namely Euler's
equation of motion or, in its first integral form, Bernoulli's equation, For 3
system of rotating and translating axes such as those employed in this
problem, Bernoulli's equation takes the form:

2 B2 1 2
p D Opgy-?PV + f(t) (94)

o =

P =

where p = pressure, p_= density, f(t) .=, function of time, y = height above
center of balloon, D = [(d + z)° + x 1/2 perpendicular distance from
axis of spiral.

There are good physical reasons for believing that the pressure is
maximum at the stagnation point (where V = 0)., This may be rationalized
by considering that the stagnation point is the most physically significant
point on the top-half of the balloon. Since the pressure has a maximum at
some point on the balloon, we would expect that this maximum would occur
at the stagnation point, Furthermore, it is generally known that in the case
of any solid body moving in an airstream with constant velocity the stagna-
tion point and pressure maximum occur at the same point. With this bit of
justification behind us, we now proceed to maximize the pressure:

The pressure is a maximum if

ap _ 9p _ _
3%_ ¢,-Oonr-R.

Substituting for D and y in (3) we get

P = -;- pQZ(dZ + 2 rd cos 6 + x'2 cos2 8 + ré sinzo cos2 é) (95)

-p Br sin 0 sin ¢ --;-p V2+f(t)

_gg = é. pQZ (-2 rd sin 0 -2r" 8in 0 cos 6 + 2r’ sin 8 cos 0 cosz¢>) (9¢)
- p Bgr cos 6 sin ¢
.g(_‘;. = é, pQZ (-Zx'Z sin2 8 cos $ sin ¢) -p gr sin O cos ¢ (97)
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These last two expressions, when evaluated at r = R and equated to zero,
give >
QZ sin O (Rcos 0 sin ¢ +d) + gcos 8 sing = 0 (98)

QZR sin 0 sin$ + g = 0, provided sin 0 cos ¢ # 0 (99)

We now have at our disposal four equations: namely, 92, 93, 98, and
99 in the four unknowns 7, d, 8, and ¢. It is possible, in princi,le, to solve
these four equations for the unknowns,

Equations 93, 98, aad 99 are easily solved by eliminating 0 and 4. However,
the inevitable conclusion reached is that

Qd® = 0 (100)

and upon further analysis we see that this implies that Q # 0, but thatd = 0,
I'his is interpreted as meaning that the balloon is rotating about its axis and
rising vertically, We can only conclude from this that (1) a rising balloon
cannot spiral or (2) the assumption made about the pressure at the stagnation
point is false. If we accept conclusion (2) as more likely and shelve our con-
ceptual misgivings, we can search for another set of relationships.

If the pressure is not a maximum at the stagnation point as defined above,
where is it a maximum? There is one other physically significant point on
the upper half of the balloon, This point, which we might call the null-
disturbance point, is that point at which the hydrodynamic disturbance in
the air due to the valloon is zero. That is to say, it is the point at which the
air motion relative to the balloon axes is purely helical. The fact that the
disturbance is zero at this point is expressed mathematically by the equation

JU =0 (101)

This implies that VOU = V¢U = Eru = 0, and that 6rU % 0 identically
onr = R,

VOU = -—é— cos O (S2d cos ¢ + W s8in ¢) (102)

l (Qd sin & - W cos ¢) (103)

o

The above two expressions when equated to zero yield:
cos O (Q2d cos & + Wsin ¢) = 0 and (104a)
NNdsin p - W cos ¢ = 0 (104b)

These two equations will be supplemented by the two pressure conditions
used before, namely

g% = %E =0 at the null-disturbance point,
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The pressure is given as before by

P = % sz(dZ = 2dr cos 6 + r'2 cosZ 0 + r2 sinZ 0 conZ &)

-p gr sin 0 sin § -%—pV2+ f(t)

pQ" (-dr sin 6 - rZ sin 0 cos 6 + r2 sin 6 cos 8 co»Z é)

-p grcos 0 sin ¢ - pV ° -g-g

35 =

) 2.2 .2, . : = . oV
and FE--pQr sin O sin¢p cos d - p r-8inBcos ¢ -pV B%

A little algrebra gives:

= oV _ 3 2 . 2. 3 : .
Vv 8—0---Z-QRdsmOcos¢-z-\mRsmOsm¢cos¢

-QZRZ sin 0 cos 6 sin2¢

and
v . 0V _ 3 | 2 2.2 .
\Y -7 VR cos 8 cos™ ¢ -2 R 8sin ¢ cos ¢
+% WQR cos 0 sinZ ¢ + QZRZ cosZ 8 sin ¢ cos ¢

(105)

(106)

(107)

(108)

(109)

I'hese substituted into equations 106 and 107 give, along with the condition that

P _ P - 0, that
6 o
de sin 0 cosz¢>

*% WQ sin O sin & cos ¢ =

-desinO-gcosOsin¢+%
0

gsinecos¢,+%wn cos 0 = 0

(110a)

(110b)

The preceding four equations (104a, 104b, 110a, and 110b) are analogous
to 92, 93, 98, and 99 of the previous analysis although it is apparent there is

little similarity between the forms of the two sets of equations,

Equations 104a and 104b yieldone physically significant solution, namely,

cos 0 = 0 and tan ¢ =%
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These two conditions when substituted in equations 1102 and 110b yield

a’d = 0 (111)

which is identical with the result obtained under the assumption that the
pressure is maximum with ¥ = 0,

Thus, two essentially different sets of assumptions lead to the same
physically insignificant result--namely that the balloon does not spiral. We
are again left with the two alternate conclusions mentioned previously:

(1) that the balloon can't spiral and (2) that the pressure assumption is false.

If we again accept conclusion(2)as correct, we are once more left with
but two valid equations (either 92 and 93 or 104a and 104b), and the problem
again is to find two more. This could easily be done if an expression could
be found for the pressure in the vicinity of the stagnation point (or null-
disturbance point). First, we recall Bernoulli's equation is

1 2.2 1 2
P-3p QD + pgytypV =I()

(112)
The above-mentioned expression for the pressure could be substituted

in Bernoulli's equation, and the entire system of equations could be differ-

entiated with respect to the space coordinates of the balloon and equated to

zero,

This method depends upon the fact that f(t) is only a function of t and
therefore:

af _ of _ 8f _ 8¢ 9%t 8°s . 9’ - . 8%t 3

20 © 9 8r 80 dp 90 or 04 Or

(113)

Although all the above equations are not independent, at least three of them
would most likely be so. It is therefore possible that they could yield at
least three more equations in the unknowns.
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APPENDIX 3

TIME SERIES ANALYSIS BY HEALY AND BOGERT

1, READIN (A, NA, ANAME)

This Subroutine reads in NA values of the sequence A from punch cards,.
NA is read froni columns 1-6 of the first card and the BCD characters in
columns 7-80 are stored in the vector ANAME for future references. ANAME
must be given the dimension 13 in the main program. The second card of the
deck carries the format of the data cards in ordinary FORTRAN form omitting
the word FORMAT but including the parentheses.

2. OUTPUT (A, NA, ANAME, INDIC)

This Subroucuine prints NA values of the sequence A in floating form
(without starting a new page). The printout is preceded by the name held in
BCD characters in the vector ANAME which must be given the dimension 13
in the main program. If INDIC is negative, the series will be punched out
five to a card with the two preceding cards required by READIN; if INDIC
is a positive number, the series will be written on the corresponding tape
as three binary records--the first containing NA, the second ANAME.

3. DETRND (A, NA, B, NDEG)

The mean (NDEG = 0) or a least-square linear trend (NDEG = 1) is
subtracted from the NA values of the sequence A, and the residuals are
stored as the sequence B.

4. AUTCOV (A, NA, B, L)

This Subroutine calculates the series B as the autocovariances of the
series A (of length NA) from lags 0 to L. Owing to the nature of FORTRAN
indexing, B(J) corresponds to lag (J - 1), and the sequence B is of length
L + 1. The formula used is

NA - J+1 B
B(J) = p)) AD*A(I+J-1) / (NA-J + 1) - AVE®", (114)
I1=1 J=1, L +1

when AVE denotes the average values of the sequence A.

5. FOURTR (A, L, B, INDIC)

Form the sequence B as the Fourier transform of the sequence A of
length L + 1. For INDIC = 1,

L
B(K) = A(1) + I A(1)*cos “'IL(K") w4 (-E-!
=2
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For INDIC = 2 the cosines are replaced by sines, and the end terms are
omitted., INDIC = 3 or 4 provides these same transforms smoothed
("hanned') with coefficients 1/4, 1/2, 1/4, the end terms being found
from symmetry considerations. Note that the sequences are not of length
L+l to match AUTCOV and CRSCOV. N must not exceed 1500.
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APPENDIX 4

ADDITIONAL SUBROUTINES ADDED BY WILLIAM E. BROCKMAN
TO THE ORIGINAL PROGRAM BY HEALY AND BOGERT

1. QTRND (A, NA, B)

The least-squares quadratic trend is subtracted from the NA values of
the sequence A, and the residuals are stored as the sequence B. Orthogonal
polynomial coefficients are used.

2. WHITN (A, NA, ALFAl, ALFA2, B)

The data in the sequence A of length NA is prewhitened using the coeffi-
cients ALFA]l and ALFAZ2; the whitened data is then stored in sequence B.
The prewhitening equation is given by:

B(I) = ALFAl1*A(I) + ALFA2*A(I +1) I =1, N-1 (116)
3. PDRKN (A, NA, ALFAIl, ALFAZ, B)
The data in the sequence A of length NA is post-darkened (also known

as '"recoloring') using the coefficients ALFA]l and ALFAZ2; the post-darkened
data is then stored in sequence B. The post-darkening equation used is

Al) (117)
4

B(I) =
+ 2¥*ALFAl *ALFA2*cos (n*(I-1) / N)
I=1, N-1

ALFA1% + ALFA2

4, TRNDR (A, NA, L, B)

Straight line segments containing L points are subtracted from corre-
sponding points inthe sequence A of length NA; the residuals are stored as the

sequence B.

5. MOVAVG (A, NA, L, B)
Moving averages over L points are subtracted from the point corre-

sponding to the mid-point of the L points of sequence A of length NA. Again
the residuals are stored as the sequence B.
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APPENDIX 5

APPROXIMATE VALUES OF AERODYNAMIC FORCES
ACTING ON THE ROSE BALLOON

The results of our work thus far in explaining mathematically the
balloon's self-induced motion have yielded very little useful information.
The plots of the space coordinates of a ROSE sounding which first revealed
loops and spirals in an altitude band which rawinsonde reported to be calm
were indeed surprising. Curiosity was the motivation for our attempt to
compute the magnitude of the forces necessary to produce such motions,

The equations of motion for the three coordinates can be written as:

MX = 1/2p - A Cp lvl (X-W )+ A (118)
My =1/2p - A CD | vl (y-Wy) + Ay (119)
MZ=-1/2p. A . CD|v| (i-Wz)+Az+mg-ngB (120)

M is the total (system plus induced) mass, and Aq is the Aerodynamic

Force in the q component. We can assume that W, = "z = A = 0, and we
have shown that a good approximation for M (the total mass) i8

M=m#+1/2p Vg (121)

where m is the mass of the system.

Making the substitutions and rearranging the equations become:

(m+l/ZpV ).)Z-A
vl = " X (122)

x-Wx

-1/2 p* A CD
(m+1/2p vB) y - Ay

— (123)
y Wy

-1/2p - A CD vl

-mg + gp VB

(124)

-l/Zp‘A‘CD|V| ;
Since the left side of all three equations are now identical, the right sides can
be equated:

(m+l/2 pV, )X - A -mg + gp V
B = = B (125a)

X - W z
X
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(m+l/ZpVB));-A -mg+ngB

. Y - . (125b)
y - W z
y
and solving these 2 equations for Ax and AY respectively gives:
: (x - W) 9%
z ¢ - . — a
A = (m 4 1/2 p Vgl x + (mg - gp Vp) 3
) 5 - W)
A, =(m + 1/2p Vp)y + (mg -gp Vp) - —L (126b)
Z

The values used for the accelerations and velocities were obtained from
a randoinly selected standard ROSE flight. The data was fitted with a second-
degree orthogonal polynomial. The first derivative evaluated at the mid-
point of the 100-foot interval produced the velocities, and the second
derivative produced the accelerations. The density (p) was obtained fro‘{n the
1962 Model Atmosphere, and the gravity (g) was taken to be -9.8 m/sec®,
I'he winds (Wy and Wy) werce average value of the winds on the layer 500 fect
above and below the particular altitude. The vector sum of A, and A), was
then computed. The results were as follows:

Altitude (feet) Aerodynamic Force (newtons)

500 27.5

5,000 45,1

10, 000 28.1
20,000 10. 4
30,000 11.5

40, 000 3.2

50, 000 5.5

[he values scem to agree with the spirals in the data, but their
accuracy is suspect because of approximations and assumptions. The trend
of lower forces at the higher altitudes also agrees with the theory that the
critical value of Reynolds Number occurs at about 40, 000 feet,

This approach was not pursued because of reasoning similar to that

given for not pursuing the questionable results of Power Spectral Density
Analysis,
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APPENDIX 6

LEGENDRE POLYNOMIALS

This appendix i8 included in order to give the reader easy access to the
actual numbers used in the polynomials, P n(i) is a l.egendre polynomial
of degree m, of the form !

. m k m mtk 1 (k]
P (1) =T (-1 ) ) — 13
m, n k:O( ) (k k n[k] (13)
where i[k.l =1 (a-1)(1-2),,. (i1-ktl) and i[0]= l (14a)

m!

m
and (k) = m (l4b)

The first few polynomials are:

Fo,ntt) = ! (33a)

Py () = b - 2o (33b)
-1 -6l i-1) 3

pZ.n(l) = L 6n 0 b n{n-1) (33¢)

Now make the following substitution;

i
C, =3 (127a)
i-1
C, = ¢ (——) (127b)
i-2
C-3 = CZ (F—z—) (127(‘)
: _ t-m + |
Cm - (m-l(;-m 4 l) (127d)

gives this simpler form for the polynomials,

Po nft) =1 (128a)
pl.n(i) =1-2C, (128b)
P, i) = 1-6C + 6C, (128¢)
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Py, (i) =1- 12c, +30C, - 20C, (128d)
p4.n(i) =1-20C, +90C, - 140C, + 70C, (128e)
Ps'n(i) =1 - 30C, +210C, - 560C, + 63oc4 - 252C, (128f)
p6'n(1) = 1 - 42C, + 420C, - 1680C, + 3150C, - 2772C, + 924C, (128g)
P.’.n(l) =1 -56C, + 756C, - 4200C, + 11550C, - 16632C+ 12012C,- 3432C,
(128h)
Pe'n(i) = 1- 72C, + 1260C, - 9240C, +34650C,, - 72072C+64084C -51480C,
+ 12870C8 (12 8i)
pg.n(x) =1-90C, + 1980CZ - 18480C, + 9oo9oc4 - 252252C + 420420C6
- 411840C,, + 218790C8 - 48620C9 (128))

The first derivative of the orthogonal polynomial

L 3 AO.n(i) 2 Alpl.n(i) * Asz.n(i) LA Ampm.n(i) (11)

is given by

’qi = AP )+ AP () 4 AP, )4+ A P! () (30)

where P'm n(i) is the first derivative of the Legendre polynomial

It is a characteristic of Legendre polynomials that if m is even and the
first derivative is evaluated at the mid-point (n/2) of the interval with length n,
then

P'm n(%) x 0 (38)

Therefore, the derivative of an even degree polynomial is equivalent to
the derivative of a polynomial of one degree less, For example, if m = 2,
then
2

. , 1 1 -1 .
Pz'n(l) =1 - OrT+ 6 ?Tn— (33(,)
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and the first derivative with respect to 1 18 given by:

: S ] 21 -1
Pz’n(l) = -6 ;+ 6 —nz—.—n— (34(:)
At1 = n/2
n

, n, 6, 6227 -n

pz’n(_z.) = F‘.+ n noT) (129a)
. n, 6 6 (-1)_ 6 6

Ponld) = gt e aT s R tRc O e

The derivatives are taken with respect to the index (i); therefore the
denominator which contains only functions of n does not change. To simplify,
the following substitution will be made: Let

NB (1) = n (130a)
NB (2) = n(n-1) (130b)
NB (3) = n (n-1) (n-2) (130c)
NB (j) = n(n-.l) ee. (ntl =) (130d)

The lLegendre polynomial general derivatives and the derivatives evaluated at
1 = n/2 are listed below:

! - \ n, 2 (131a)
P all) = - B Py alz) = - mey (131b)
P (e 12 ol 43p2icl 50 0i% - 6i42) 3

3,n") © NB(I) NB?) NB (3) (EESY)
P, (Mye2i g0 ] 1]- 20— [z+2 (-12 + 3n) (132b

3,n'2' " NB(T) *+ m)["’ ]' NB(3) 4 ] )

: O | | ) 1 1 .
P 5’n(l) = 30m + Zlom[ll - l] - Sbom[z + 5 (’12*61)](1333)

1
NB (4)

1

+ 630 NB (5)

[- 6+ i(22 + 2i(-9 + zl))] - 252

[24 +g (- 8004 2i (4204 2i( - 80 4 lOi)))]

. on. 1 l o
Py (3] = 30 4 zlom[n-n]-soom[u%(-1z+3n)](133b)
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'-' L - o
5

1

n 1
+630NB(4) [-6+E(22+n(-9+n))] | 252 gy

[24 " ;’~6( - 800 + n(420 + n( _gg , 5n)))]

P, (3= -56 m;m + 756 -1‘7571(7) [-1 + n] - 4200 NBI(”- (134)
(z +42(-lz + 3n)] + 1150 m -6+ g(zz +n(-9 + n))]
- 16632 NB’ 5 [24 *Te(-800 + n(420 + n(_go , 5n)))]
+ 12012 NB’ s [-120 + 12 (4348 + n(_2700 + n(-75 + 3n))))]
-343; NBI(7) { 720 + =~ (-112896 4 (77952 + 7(-12000 +

(3500 + n(252 + 7n)))))]

1 1
-] ¢+ -1
NE(I * 1980 ) [ ] n] 8480

' 2 =1 _
p9.n(2) 90

NB (3)" (135)

n H 90090 n
[Z+z(-12+3n)1+m [-6+z(22+n(-9+n))]
1 n
-252252 m [24 + E (-800 + n{420 + n(-80 + 5n)))]

1 n
- —— + - 7 + - +
+ 420420 D5} [ 120 +== (4384 + n(.2700 n(-75 3n))))]

| [ n
- 720 + — -11289¢6 4 77952 4
411840 m 2 64( n(77952 4+ n

(-12000 + n(3500 , n(zs; 4 7n)))))] + 218790 NBI (8)

(—5040 + lnT (209088 - n(-157584 4 n(54152 4 n(-980 + n

(966 + n(-9 4 n))))))] -48620 I‘TBI(T) [40320 +—



(217728 + n(15288 + n(-576 + 9)N)))]

A still more convenient form for computing can be obtained by the following
substitution:

1

Let (FCR), = Tgy (136a)
(FCR), = Tv';_(z_)' [ 14 n] (136b)
(FCR), = ﬁll_(T) [ 12+ 3n] (136¢)
(FCR), = m;_u')' - -6+ % (22 + n(-9 + n)) ] (136d)
(FCR), = m; =) [ 24 + T (800 + n(420 + n(-80 + 5n)))] (136e)
(FCR), = N; e -120 +-l-% (4384 + n(-2700 + n(680 - n(-75 + 3n))))](l36f)
(FCR),, = N'BI_T'_IT r 720 »,-(;'l4 (-112896 + n(77952 + n(-12000 + n  (136g)

(3500 + n(252 + 7n))))) ]

(FCR)g NB‘ ) [ -5040 + — (209088 = n(-157584 + n(54152 + n(-9800 (136h)
+ n(966 + n(-49 + n)))))) ]
(FCR)g = 5B T9y [ 40320 +73—5 (-28054504 + n(22679808 + n(-8612352 (136i)

+ n(1795920 + n(-217728 + n( 15288 + n(-576 + 9n)))))))]

The polynomials evaluated at the mid-point (n/2) then become:

. By
P'| ()= -2 (FCR), (137a)
' L = - o
P', (3) = -12 (FCR) + 30 (FCR), - 20 (FCR), (137b)

' 2y - -
P 5, n(z = -30 (FCR)l + 210 (FCR)Z 560 (FCR)3 + 630 (FCR)4 (137¢)

-252 (l“CR)5
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(=) = - -
P 7, n(Z) 56 (FCR)l + 756 (FCR)Z 4200 (FCR)3 + 11550 (FCR)4 (137d)

-16632 (FCR)5 + 12012 (FCR)6 - 3432 (FCR)7
n
' -) = o - = 137
P 9, n(Z) 90 (FCR)I + 1980 (FCR)Z 18480 (FCR)3 90090 (FCR)4 ( e)

-252252 (FCR)_ + 420420 (FCR), - 411840 (FCR)
5 6 7

+ 218790 (F‘CR)8 - 48620 (F‘CR)9
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