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ABSTRACT

This project was undertaken to study earthquakes that occur in volcanic
regioas and which result from volcanic processes. The purpose was to deter-
mine whether or not these voicanic quakes are the same az ordinary earthe
quakes, and if not, Just how they differ and what seismic parameters can be
used to identify them.

Three areas were selected for investigation: Italy, Hawsii and Japan.
Volcanoes in Italy and Japan are explosive while those in Hawali are not.

The Italian volcanoes have been under investigation for many years and under
observation for centuries. Hawaiian Volcanology and Japanese Volcanology
are more recent but both have contributed greatly to the application of
modern geophysical techniques to Volcanology.

Seismic data from all three ar2as were analyzed. Crustal models and
seismic wave velocities, where available, were used as & bacis for locating
epicenters. Graphical methods such as the J P-H Arc-Distence Method and the
Hyperbolic Method were used to locate epicenters. A computer program was
set up for the same purpose. Severcl techniques were developed to augment
the use of data in the computer program. One of these was the technique of
supplying a fictitious arrival time at a seismic station and varying this
arrival time value until all the input data conversed to a solution. Results
of the graphical solutions and those from the computer program were in excel-

lent agreement.




Epicentral locations gave distances, azimuths and focsz depths which
were lumportant in analyzing various seismic parasmeters. Hawailan volcanic
qiakes show distinct tectonic characteristics. Quadrantal patterns of first
mo.ion can be delinested and related to tectonic features. Japanese quakes
show a mixed set of characteristics. Some patterns are quadrantal, indicat-
ing a tectonic relationship, while others show push or compressional motion
at all stations indicating an explosive mechanism. Vesuvius shows bu.n com-
pressional and dilatational first motion.

Amplitude distance relastionships fsil to show statistical significsnce
at Vesuvius hecause the observastions are =zll from a single station. In
Hawaii there is & significant relationship. Magnitude curves based on log A
versus log 4 rhow that the earthquakes are of low energy with magnitudes
from plus one, down to negative values and quakes are usually not recorded
at any great distance. Attenuation is high in the caldera region.

Volcanic quakes occur in swarms and sn analysis of the frequency of oc-
currence was made.  Tectonic and explosion quakes have characteristic values
for m in the eguation NA" = c. This parameter or ccefficient may depend or
a number of factors - such as focal mechasnism, focal depth, and stress ap-

lication. Stress application certainly is part of the focal mechanism but,
in the sense of an externally applied surface stress, it is vastly different
from any of the usual earthguaake mechanisms. It seems possible that such a

stress application might have a characteristic m value.



ANALYSIS OF THE RELATIONSHIP BETWEEN
ASSOCIATED VOLCANIC AND SEISMIC EVENTS

]
INTRONDUCTION

Perhaps one of the oldest associations of natural phenomera is that of
volcanoes and earthquakes. In the many regions of the earth ji=n which these
phenomena occur, man has puzzled as to their relationship. In more modern
times geophysicists have come to a recognition of tectoni: earthquakes as
distinct from volcanic earthquakes but even here the distinction becomes
vague in many cases.

Volcenic earthquakes could be loosely described &s earthquakes assoc-
iated with a volcanic eruption, leaving -unanswered many questions as to the
seismic events in both the pre-eruptive and post-eruptive periods. One set
of notable characteristics of volcanic earthquakes is that they are very
low in intensity and occur in swarms.

The nature of these seismic events can be better perceived when the
fundamental vclcanic process is known and understood. The cause and me-
chanics of a volcanic erurtion represent a very complex cubjecc which the
author prefers to leave to those who are better qualified. However, all
eruptions involve certain basic processes which can b» delineated here and

which will throw some light c¢n the resulting seismic events. First, there



is the pre-eruptive stage during which there is the movement of magmatic ma-
terial from depth toward the surface of the earth. Associated with the ver-
tical rise of the magma there may be significant horizontal movements as
well. Second, th~r~ is the actual eruptive stage in which volcanic material
is dischargesd &+ the surface. Tie eruptive stage may vary from a quiescent
outpouring of fluid lava at the one extreme to the violently explosive erup-
tion at the other extreme. Volcanologists have developed an impressive
classification of eruptive types and resulting eruptive materials. Finally,
there is the post-eruptive stage during which the processes that have been
active in producing the eruption are seeking an equilibrium condition.
During these various stages, seismic activity manifests itself as an
increasing swarm of very small earthquakes. These are probably assoclated
with the transport of magma either vertically or horizontally, resulting in
the splitting and rupture of the crustal rock layers and with the general
distention of the area. Closely associated with the actual eruptive stage
is the development of volcanic tremor which is a continuous vibration of the

crust.

2

AREAS INVESTIGATED

‘ne present project has as its immediate purpose the investigation of
seismic signals originating in volcanic esreas tc delineate if possitle
unique idzntifying charzc .eristics which will distinguish them from seismic
signals associated with other types of earthquakes whether natural or arti-
{icial. Originally two volcanic areas, Itzly and Hawaiil, were sele:cted for

investigetior, and then a third area, Japan, was added.

o



3
MOUNT VESUVIUS

The “tal.an investigation began with a visit to Professor Pietro Caloi,
Director orf the National Institute of Geophysics. Here data &nd information
on the local crustal structure and seismicity were gathered as background
information for the investigetions of Mount Vesuvius and Mount Etna which

were to follow.

3.1 THE VESUVIAN OBSERVATORY

At Mount Vesuvius, Professrr Guiseppe Imbo, Director of the Vesuvinn
bservatory and also Director of the Institute of Physics ¢ ' the Earth,
University of Naples, put the tacilities of the Observa >ry av my disposal.
Due to the lack of instrumental constents only data after 194k were useful
for the investigation. The instruments consisted of two horizontal conm-
ponent 200 kg W.echert Seismographs and a vertical component 80 kg Wiechert
Seismograph.

Free period and static magnification for the instruments are as follows:

Component Eg zg
NS 4.1 158
EW k.1 158

A 2.25 118

Magnification curves were available for each instrument. The approximate
distance from the Vesuvian Cbservatory to the center of the crater of Mount
Vesuvius is 2.5 kilometers. The elevation cof the Observatory is 609 meters,
that of the crater floor is 951 meters, and the rim of the crater is some

200 meters higher. This presents the interesting situation that seismic fozi

could be either above or below the Observatory level.




3.2 VESUVIAw EARTHQUAXES
In the following table, time is Central E ‘opean Mean Time, Amplitud=s A
is in millimeters as read from the record, period T is in seconds, and direc-

tion of motion is N-north, S-south, E-east, W-west, c-compression, and d-

dilatation.
TABLE I VESUVIAN QUAKES
Ne. Date Phase Time Direction Amplitude Period
1 11-3-61 iP 18-28-25.0 S 0.2 -
ip 25.0 - - -
iP 25.6 d 0.1 -
eS 25.9 N 0.7 =
eS 26.0 E 0.2 0.2
2 §-4-61 iP 01-50-27.7 S 0.4 0.4
iP 28.1 E 0.3 0.k
3 7-27-61 eP 13-01-36.3 N 0.2 0.4
iP 37.1 W 0.4 0.6
Y T7-6-61 iP 11-22-23.6 S 0.4 0.4
eP 23.6 E 0.4 0.6
eS 25.2 E 0.7 0.8
is 25.54 S 1.0 0.5
5 6-27-61 iP 05-02-08.3 S 0. 0.3
eP 08.3 E 0.3 0.6
6 5-19-61 iP 23.05-42.5 d - -
iP 42.6 N 0.2 0.5
eP 4z.0 W 0.4 0.6
7 5-11-61 iP 23-5%-28. . S 0.2 0.5
iP 28.5 R 0.4 0.5
iS 29.0 N 0.8 0.7
is 30.0 E 0.8 0.5
8 5-10-61 iP 17-16-38.8 E 0.3 0.1
e bi.7 W 0.7 0.4
i 42,6 S 1.0 0.6
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No. Date Phage Time Directigg égglitude Period

55  L4-16-48  eP  17-05-06.0 E 0.5 -
P 06.3 e 0.4 0.4
ip 06.4 N 1.0 0.2

3.3 ARALYSIS OF FIRST MOTIUN

An examination of the above data reveals that out of the fifty-three
events there were forty-two obeervations of vertical component first moticn.
These were distributed as eighteen compressions and twenty-four dilatatiocns
In those cases where no vertical component was recorded but where herizoutal
components indicated an azimuth direction, the sense of the motion is em-
biguous so that no conclusion could dbe drewn.

Combining the direction of motion and the compression-dilatation
nature of the first motion, there were thirty-four cases for which these
characteristics were known. Arreanging these in the general quadrants,
northwest, northeast, southeast, and southwest, as indicated by the moticns
above gives a picture of the relative frequency of dilatations end compres-
sions arriving at the observatory from each quadrant. This data is givex
in the foliowing table:

Quadrynt . W NE SE W
Compression 3 L 3 3
Dilatation 2 2 2. 6

The table shows that for eight earthquakes lying in the quatrant north-
west of the observatory, three of these had compressional first motion axnd
five had dilatational first motion. Similar results ere seen for the cther
qusdrants. This shows that for this type of low intensity volcanic quake

in the non-eruptive period, the first motion is not uniformly compressional.
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In fact, it shows for the limited number of quskes which occurr=u a slight
statistical preference for dilatational first motion.

Distance based on the (S-P) interval and a longitudinal wave velocity
of 1.79 km/second were computed and plotted on a graph with the ol “ervatory
as the center. No apparent relationship between distance, direction, and
compression~dilatation nature of the firsti motion is apparent. The results

are shown in Figure 1.

3,4 AMPLITUDE-DISTANCE RELfTIONSHIP

With the distance values it is possible to inquire whether a sigrificant
relationship exists between the observed amplitude of motion and distance
from the epicenter. The medial test was used to determine if such a re-
lationship exists. This test consists of plotting the amplitude values as
ordinates versus the distance values as agbscissae. A horizontal medial line
is drawn so that half the points fall above the line and the other hslf
below the line. Next a vertical medial line is drewn so. that half of the
points lie to the left of the line and the other half lie to the right of
the line. Theoretically equal numbers of points should fall in opposite
quadrants such as quadrants one and three, and quadrants two and four. If
no significant relationship exists between the pasrameters the points will be
equally disiributed in the four quadrants or approximately so. If there are
too few points in any quadrant then a relationship between the parameters is
inferred. Points falling on a medial line are disregarded.

Amplitude-distance values for 28 events were taken from Table I using
the maximum smplitude value. Referring to Quenoilles table of significant

levels for numbers of points falling in any quadrant, the number depends on
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the probability level which is assumec For example, using 28 points and =
probab.lit; Hr significant level of .0l, the vpper and lower limits are 11
and 3 respeci.vely. Assuming that no relationship exists between the pa-
rameters, the probability that a quadrant will have as many as 11 or as few
as 3 points, the upper and lower limits, is less than .0l. A portion of

Quenoilles tables are reproduced here in Table 2.

TABLE 2 SIGNIF1CANT LEVELS FOR NUMBER CF FOINTS FALLING IN ANY QUADRANT

Lower Limit Upper Limit
Number of Points 5% 1% 5% 1%
10 - 11 0 0 5 5
12 - 13 0 0 6 6
1k - 15 1 0 6 7
16 - 17 1 0 7 8
18 - 19 1 1 8 8
20 - 21 2 1 8 9
22 - 23 2 2 9 9
2L - 25 3 2 9 10
26 - 27 3 2 10 11
28 - 29 3 3 11 11
30 - 31 L 3 11 12
32 - 33 4 3 12 13
k- 35 5 L 12 1
36 - 37 5 4 13 b
38 - 39 6 5 13 1k
Lo - 43 6 s 1k 15
h2 - 47 6 5 15 16
L - 45 7 6 15 16
46 - 47 7 6 15 17
L8 - L9 8 7 16 7
50 - 51 8 7 1 18
A0 - L 10 9 20 21
70 - T1 12 11 23 24
80 - 81 15 13 25 27
20 - 91 17 15 28 30
100 - 101 19 i8 21 32
110 - 111 21 20 3l 35
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When the medial test was applied to the twenty-eight points the
distribution, reading from Quadrant I through Quadrant IV was 5,4,%,6.
is indicates no significant relationship between amplitudes and dis-
tance. The mediul test is shown in Figure 2.
Ratios of amplitude over period were computed for these 28 points

and are given here in Table 3.

TABLE 3 AMPLITUDE OVER PERIOD vs DISTANCE, VESUVIUS

Event No. Amplitude/Period Distance (lou)
1 0.63 2.20
9 2.50 1.96

10 2.66 2 45
13 0.71 10.5k4
14 3.00 3.92
15 0.80 7.60
16 9.00 6.86
17 1.00 5.80
20 0.50 1.37
23 2.25 2.20
oL 1.75 2.45
26 0.33 3.19
27 1.16 1.96
29 2.25 6.86
31 2.00 1.37
32 0.83 5.6k
33 0.83 2.94
31 1.25 3.43
35 2.00 2.94
36 1.25 5.15
37 2.25 1.71
35 1.33 2.45
59 0.80 1.96
Lo 0.57 3.19
Ly 4.00 3,19
45 1.25 1.37
49 3.00 .51
52 1.60 3,19

The above values were plotted against distance. The medial test was
applied to determine if a significant relationship might now exist between

"amplitude/period" and distance. The results snown in Figure 3 give a
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distribution cver the Quadrants I through IV of ¢,8,6,8. While this is a
slight improvement it cannot be considered & significant relastionship.

The above test, though failing to show significance, does show a
tendency toward significance by the slightly improved quadrantal distribu-
tion over that of the amplitude-distance distribution. In the hope of
improvin~ the significance and as a further check on the smplitude-distance
relationship, the trace amplitudes were reduced to grow.d mction for the 20
events. This was done by dividing the trace amplitude by the magnification
factor =t the period of the observed wave. The ground motions are given in

Table L.

TABLE 4 GROUND AMPLITUDE vs DISTANCE, VESUVIUS

Event Mo. Ground Ampiitude 1077 m
1 3,06
9 6.27

10 5.02
13 3.C9
1L 16.36
15 4.80
16 33.53
17 4,22
ee 4.38
23 5.64
ek k.39
26 2.07
27 4.3l
29 6.34
31 5.02
32 3,11
33 3.11
3L L.03
35 5.67
36 3.1k
37 5.64
38 6.2k
39 T7.65
40 5.20
Ly k.2
L4s 3,14
L9 6.k2
52 5.66
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The ground amplitudes of Table 4 were plotted against distance and
the medial test again was aprlied as shown in Figure 4. The results give
a 7,7,7,7, quadrantal distribution for the 28 points showing the complete

lack of any significant relationship betwesn amplitude and distance.

3.5 MAGNITUDE TIVESTIGATZION
A somewhat different approach was attempted. Variations in trace
amplitude are observed and the above tests indicate that ithese are inde-
pendent of distance. A number of factors could be involved to explain
qualitatively at least why these variations occur. Factors such as azimu-
thal variations, differences in wave path, differences in instrumental
response, variations with change in source location, and finsally variations
in energy at the source. Since the source area is limited and the distances
are all small, the main factor would seem to be variation in energy at the
source. Assuming all other factors to be censtent, variations in energy
at the source will become manifest as variations in amplitude of the
recorded seismic waves. The seismologist deals with this problem by com-
puting a magnitude for the earthquake in question.
Richter, in dealing with local Californis quakes, developed an empirical
relationship of the type:
M = log A - log A_ (1)
Where AO = Amplitude in millimeters with which
a standard torsion seismometer with
characteristics (T_ =0.8, V =2800, h = 0.8)
should register an earthquake of magnitude
Zero.
The zero magnitude earthquake is further defined as a shock that would pro-

duce a trace amplitude of .ue-thousandth of a millimeter on a standard torsion

seismometer at a distance of 100 kilometers.
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Empirical values for log AO have been developed by Richter for Southern
Celifornia. These values are regicnal and are not meant to be applied in
other arees. However, in an attempt to determine approximately the magni-
tude involved in the Vesuvian quakes, the values from Richter's table were
used.

Figure 5 is a graph of log amplitude vs log distence with curves for
earthquake magnitudes 1, 2, and 3 computed from Richter's values for log AO
at the various distances. OGince the magnificstion of the Wiechert seismo-
graphs at Vesuvius is of the order of several hundred, the trace amplitude
values were multiplied by s factor of ten to bring the magnilication up to
+the same order of magnitude as that of the standard torsion seismometer.
The response curves for the three components were not identical and this
introduces a further approximation. %The results, however, are considered
to be of the right crder of magnitude and indicate that the m=gnitudes are
of the ordexr 2. This represents a relatively hLigh energy level for this
type of quake and indicates that seismic activity at Mount Vesuvius is
probably of a much higher level than that indicated by tue limited number
of quakes recorded from 1948 to 1961 by the low magnificatlon Wiechert
Seismographs. High sensitivity seismographs will undoubtedly reveal many
hundreds of lower intensity quakes. A magnitude of 2 is about the lower
limit of perceptibility and probably few of these quakes are felt. None
of the quakes were recorded anywhere but at the Vesuvian Cbservatory.

Several examples of Vesuvian records ere reproduced in Figure 6. The
extremely short duration and high frequency character of such shocks is

apparent in these records.
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FIGURE 6 VESUVIAN SEISMOGRAM




4
MESSINA

4.1 THE MESSINA OBSERVATORY

The Seismological Observatory located at Messina, Sicily is part of the
Institute of Geophysics and Geodetics of the University of Messina. Professor
Antonino Girlanda is Director of the Observatory assisted by Dr. Biagio
Federico snd a staff of technicians.

The Messina Observatory is approximately 90 kilometers north and slight-
ly east of Mount Etna. It is also approximately 300 kilometers south and
slightly east of Mount Vesuvius. It is unlikely that Vesuvien quakes would
be detected at this distance even by seismographs of intermediate magnifica-
tion in the thousands. Examination of Messina records failed to show any
activity that couid be correlaved with the quakes read at Vesuvius.

The greater proximity of Mount Etna however, gave promise that seismic
events associated with it might be recorded at Messina. Mount Etna is in a
state of almost continuous low intensity activity centered around small par-
asitic craters near the sﬁmmit. No significant eruptions had occurred in the

years prior to the examination of the reccrds.

4.2 MOUNT ETNA - ABORTIVE ERUPTION

In December of 1945, however, Mt. Etna appeared to be preparing for a
major eruption. A number of quakes were recorded at Messina which appearad
to be centered near the volcano and an eruption sppeared imminent. No
eruption occurred, hcwever, and this has been referred to as the Abortive
Eruption of December, 1949. The recordings were made by low msgnification
Wiechert instruments and indicate fairly high source energy to be recorded
at the distances involved. Readings from the seismcgram are given in Table 5,

using the same quantities as defined for Table 1.
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TARIE 5 MESSINA - MOUNT EYNA QUAKES

Date Phase Time Direction Amplitude Period & (Sg-Pg)
12-2-49 ePg 0L-31-58.5 c 9.1 0.k 66.1 km
ePg 58.5 o 0.1 -
eP 32-00.1 N 0.1 coo
iSg 06.% E 0.3 0.4
iSg 06.3 S ~mo —==
i 18.1 E 0.7 2.0
12-2-4g  iPg  0OL-47-30.5 c 0.1 1.2 78.8 km
ePg 30.5 S 0.1 1.4
1p¥ 31.7 1B 0.2 0.6
eSg 39.8 E 0.3 0.6
1 48.8 W 0.5 2.0
12-2-49 ePg  05-39-45.L c —_ --- 88.9 km
ePg 46.2 c 0.1 0.
iPg 46.2 E 0.1 0.4
ePg LG.9 N 0.1 0.4
isg 55.9 W 0.2 0.6
i 40-08.7 W 0.8 c.2
12-2-49 iPg 06-02-36.6 ¢ 0.2 0.6 G1.5 lm
ePg 37.4 E 0.2 0.6
iPg 37.7 N 0.2 ---
i ho.2 W 0.5 oo
eSg L7.4 d Q.2 2.0
iSg 48.9 N 0.5 1.4
i €y, 7 W 2.0 3.3
12-2-49 ePg 06-22-14.8 c 0.1 —=- 50.8 ¥m
iPn 17.4 d 0.7 1.6
ePn 17.8 E 0.3 0.6
iPn 18.0 S 1.0 1.2
iSg 20.8 E 1.1 3.0
i 36.9 d L.7 3.2
12-2-49 ePg 06-43-41.3 c 0.1 1.2 59.3 km
iSg 48.3 S c.h 1.5
i Lh-03.7 W 0.5 2.8
12-2-49 e 06-48-13.2 W 0.1 1.}
e 23.9 W 0.4 2.6
12-2-49 ePg 06-58-37.8 E 0.1 1.0 26.3 km
eSg 10.9 S 0.1 1.0
i 4.5 y 0.3 1.6
12-2-49 e 07-22-01.0 c 0.1 1.0
e 0l1.4 S 0.1 1.2
i 21.4 E 1.0 2.4
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No. Date Ihase  Time Direction Amplitude Period 4 (Sg-Pg)
10 12-2-49 ¢Pg  08-00-3T.° e 0.2 c.6 59.3 km
ep¥ 37.5 N 0.2 1.2
eP¥ 38.2 E 0.1 ——-
ip* 38.3 c 0.5 1.0
iSg Ly 1 E 0.8 2.0
iSg 7.4 E 1.4 2.4
i 56.8 W 5.0 3.0
11 12-2-49 ePg 0R-15-26.6 N 0.1 1.0
iPg 26.7 a 0.1 -
ePg 2€.9 E 0.2 -—
i Gl Y S 0.7 3.0
i 16-24.2 g 4.0 %.0

Tae Jeftrey's Bullen Tables for near carthquekes are used at Messina and
+the distances listed above were computed from these teles,

Of these elaven quakes seven began with initiel compressional phases,
one with a dilatation. and three with indeterminate first motion. In th
case of the dilatational {irst motion, the horizontal comporent mctions
indicai: & source to the Wortheast of Messina away from lMount Etna. For
th= szven compressional first motions, three have horizorncel motions indicat-
ing a source to the Southwast ia the direction of Mount Etna. Thzs distunces
sre 838.9, 91.5, and 50.8 kilometers res,ectively. The two larger distances
would pl @ the source near the cent r of Mount Etna while the shorter dis-
tance for the third of these three quakes woulé place the source to the
Northegst of Mount Etna. Of the remsining four quakes one is a compression
from the South ai a disteace 66.1 kilometers away, again felliug to the north
of Mount Etna. The second quake was frorn the north of Messina and the two
remaining quekes were compressions with undetermired direction.

Tnese data are vary sparse and sny conclusions 4o be inferred therefrom
should ba vizwed in light of the paucity of the uata. TFirst motion from the

region of Mount Dtna is compressional In the few cases cdserved. O0OU er quskes
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which should probably be classified as regional tectonin quekes originate
in this general area off the flank of Mount Etna. These, too, displayed
compressional first motion. The data is 00 scarce however, for these
observations to be considered as more than observations.

A comparison of Messina Observatory records for quakes origZinating
near the center of Mount Etna, with those originating to the north of
Mount Etna between it and Messina, show a remerke ble similerity in

—

character. Seismograms of such quakes are shown in Figure
5

MOUNT ETNA

5.1 EXPERIMENTAL SEISMIC INSTALLATION

An experimental seismograpiic installation using a Willmore three
compouient system had been in operation on Mount Etna Jjust prior t- this
investig tors arrival there. Professor Alfredc Rittmann directs the
Volcanclogical Institute of Mount Etna at the University of Catania,
Sicily. The Willmore instruments were on loan to the Institute througl.
the cooperation of Professor J. P. Rothe of the Institute de Physique
du Globe in Strasbourg, France. Through the courtesy of Professor
Ri*tmann, Professor Rothe and Dr. Haroun Tazieff of the Centre Nsticonal
de Volcanologie, Belgium, the Willmore records were made available for
examination. The available records, however, showed very limited earth-
quake activity. Further, since the installation was experimental,
instrumental constants, direction "f motion s£nd time corrections were

usually not available.
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FIGURE 7 MESSINA SEISMOGRAMS
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5,2 ANALYSIS OF EXPERIMENTAL SEISMOGRAMS

Six quakes were read with S-P values ranging from 1.2 to L.S
seconds for five of the quakes while the sixth quake had an S-P of
24,5 seconds. This latter quake can be dismissed as a regional tectonic
quake since the distance is nt the oider of 210 kilometers. The other
five quakes renged in distance from 10.1 to 38.1 kilometers and represent
hypocenters located cutward along the volcano's flank. No conclusions
regarding first mction could be made since instrumental response was not
constant cue to the experimental nature of the instslletion.

The most prominent cheracteristic of the Mount Etna records however,
was the persistznt tremor. Tremor is usually associated with an eruptive
period and Mount Etna is in a state of almost continucus low intensity
activity. The tremor had & remarkedly sinusoidal character showing a
prominent beat phenomena. Readings were taken of the direction of motion
for this beat phenomena at the start of the beat at five stations on two
different days. Dircction of motion was constant at each station durirng

the period when readings were taken. For a total of 250 readings there

were 124 up end 126 dowr with the individual station readings showing similar

distributicns. This is a random pattern of motion and indicates that the
seismic signul is pronably a complex mixture of motions from many sources
within the volcano, and not a simple moticn resulting from a pair of

frequencies. A Willmore Seismcgram rrom Mcunt Etne is shown in Figure 8.
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6

REGGIO CALABRIA

Records examirned at Reggio Calabria through the courtesy cof
Professor Vittorio Barons-Adesi, Diractor of the Obszrvatory, were all
registerad by Wiechert Seismographs. The seismogrems represented

regional and local seismic activity and mno correlation could be

established with volcanic activity at Mount Vesuvius or at Mount Etna.
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HAWAIIAN VOLCANOES

7.1 THE HAWAIIAN VOLCANO OBSERVATORY

The Hawaiisn Volcano Observatory is situaied on the Island of Hawaii, the
largest of the eight major islands comprising the Hawaiilan group. It is on
the northwest rim of Kilauea Caldera approximately 500 feet above the caldera
floor. Almost due south of the Observatory in the southwesi portion of the
Caldera is Halemaumau, the fire pit or central vent of the Kilauea volcano.
Almost due east of the (bservatory is a smaller crater, Kilauea Iki, in which
an eruption occurred in Necvember, 1959.

At that time, Dr. Donald H. Richter was Scientist in Charge. Through
his cooperation and assistance and with permission from Dr. Thomas B. Nolan,
Director of The United States Geological Survey, under whose auspices the
Hawaiian Volcano Observatory is operated, seismic data from the Kilauea Iki

eruption were collected.

7.2 THE SETSMOVRAPH NETWORK

A retwork of nine stations is operated on the Island of Hawaii by the
Volcano Observatory. Directly in the Kilauea Caldera is the North Pit
Station. <Just outside the Caldera within a distance of several kilometers
are the stations Uwekahuna, Outlet, Desert, and Mauna Ioa. With the ex-
ceptions of Uwekshuna, these stations record by telemetering to the Observatory.
At distances measured in tens of kilometers are the stations Hilo, Naalehu,
Pahoa and Kamuela. These stations are shown on the map in Figure 9. Statian

locations and instruments are given in Table 6.
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TABLE 6

He V. O, SEISMIC NETWORK

Springnether Short Pericd, E, Z Components
Presg-Ewing Long Period, N,E,Z Components

Wood~Anderson, N, E Components

Loucks~Omori, N, E Compuanents

Ioucks-Cmori, N, E Components

Ioucks-Cmori, N, E Components

0.5 sec., maximum magnification

Station Coordinates Seismograph
North Pit 19° 24L.9' N HVO - 2, Z Component
155° 17.0' W  Remote recording
h = 1115 =
Uwekahuna 19° 25.4' N HVO - 1, Z Component
155° 17,0 W
h = i2k0 m
Outlet 19° 23.4* N HVO - 2, Z Component
155° 16.9* W  Remote recording
h = 1080 m
Mauna Ioa 19° 29,8' N HVO - 2, Z Component
155% 23.3' W  Remote recording
h = 2010 m
Desert 19° 20.2* N HVO - 2, Z Component
155° 23.3' W  Remote recording
h =815 m
Hilo 19° L3.2* N HVO - 1, Z Component
155° 05.3' W
h =20 m
Pshoa 19° 29,7' N
154° 56.87 W
h=205 n
Naalehu 19” 0%2.8' N
155° 35.2 W
h =205 m
Kamuela 20° 01.3' &
155° Lo.3' W
h=8l5 m
Seismographs
HVG-1, electromagnetic, T =
about 20,000
HVO-2, =lectromagnetic, TO =

about. 20,000

0.8 sec., maximum magnification
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Springnether, eiectromagnetic, T = 1.3 sec., maximum magnification
o
about 2,000

Wood-Anderson, torsion seismometer, T = 0.8 sec., maximum
magnification about 2,300

Loucks-Omori, mechanical seismograph, T = 3.0 sec., maximum
magnification about 200

7.3 DSeismograph Readings

Kilauea Iki began eruption on November 14, 1959 at about 8:00 P.M.
local time or 20 h GMCT. Trior to the eruption, earthquake activity began
and increased until about 20 h GMCT when the eruption occurred. At this
time earthqueke activity as such rceased and wes replaced by volcanic irewor,
a continuous high frequency oscillation. In the hours preceding the erup-
tion many hundreds of quakes occurred, 30 muny that frequently they became
masked and unr<adable by overriding of one guake onto the trace of ancther.
Beginning about 21 hr. GMCT on November 13, 1959, reacdings were made at as
many stations as possible up to the time of the eruption. These readings

are given in Table T

TABLE 7 SEISMOGRAPH READTNGS - XITAUEA IKI ERUPTION

Stetion Observations: U = Uwekahuna
NP = North Pit
0 = Outlet
D = Desert
ML = Mauna Loa
H = Hilo

S Phase readings are tabulated at Uwekahuna since this is the only station
with high sensitivity horizontal seismometers. Readings at all other
stations are exclusively P readings unless otherwise indicated.

Initial motion is indicated: ¢ = compression, d = dilatation
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Quake U. N.F 0. T. .L. .
No. h m P S P P P P P
1 21-%9 19.4 ¢ 20.4 18.3 ¢ 19.6 ¢ 21.9 4
2 21-k 05.2 ¢
3 21-45  10.6 4 16.9 ¢ 13.2 ¢
L 21-50 53.4 a
5 22-00 56.7 ¢
6 22-05 21.7 4
7 22-09 20.3 ¢ 20.9d 21.74 22.14d
8 22-09 25.9 4
9 22-09 ho.2 4
10 22-18 27.9 ¢
11 22-18 46,5 ¢ 47.1 L6.7 4 50.1 ¢
12 22-42 19.14 23.6 ¢
13 23-23 29.1 ¢
1k 23-35 19.6 ¢
J15  23-39 03.0 -
16 23-50 55.7a 56.5 55.9 d 5T.T ¢
.17 00-Uh 26.1 ¢
18 00-09 56.6c¢ 57.9 49.0 4 50.6 ¢
19 00-10 5S7.5c¢ 58.3
20 00-15 16.3 ¢
.21 00-18 38.7 4
2z 00-19 26.2 c¢ 26.8 28.2 4 28.6 ¢
23 00-22 12.9 4
2L 00-27 31.74d 32.h4
25 00-28 06.4d OT.4 08.3 ¢ 08.8 ¢
26 00-29 52.34d 53.2
27 00-30 6.4 4
28 00-32 32.54d 33.5 3.1 c 35.3 4
29 00-35 L45.04 L5.9 Lh.9 ¢ L8.4 4
30 00-3% 08.84 10.2 09.4 ¢ 11.h ¢
31 00-37 51.2d4d 51.5 56.5 ¢
32 00-39 U45.2 ¢ U6, 48.9 4
33 00-39 58.54 59.3
34, 00-4b2 06.7da 07.8 06.6 ¢ 09.7 d
%5 00-43 25.4 ¢ 26.0
36 00-Uk 23.6 ¢
37 00-45 41.6 4
38  00-46 09.6 ¢ 10.7 11.5 ¢
39  00-47 15.5a 16.2
40 00-47 50.9 ¢ S1.k4
L1 00-48 50.94da 91.4 53.4 4 53.6 ¢
o  00-49 53.34 54.3
43 00-51 33.1c 33.6 35.2d 35.64
Ly  00-52 L4.0 ¢ L45.4 47.0 ¢
Ls  00-34 02.04 02.9 02.1 ¢ 05.9 ¢
L6 00-Sk 43.8 ¢
47  00-54 5S5.4 ¢ 56.3 sk.8 ¢ 02.4 ¢
48 00-55 b56.0c 97.1 56.3 4 58.5 ¢
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uU. N.P. 0 D M.L. H.
h m P S P P P P 3
00-58 05.04 05.7
00-59 09.5
01-00 L49.2d 5Su.0
01-01 49.2d4d 50.0 51.5
01-03 13.4 a4 1kL.4 12.4 ¢
01-0% 50.0 ¢
01-05 Lk -
01-11 25.5d 24.6
01-11 59.9 d
0l-12 25.24 26.1 26.9 d 28.5
01-14 38.5 4 39.2 Lo.s Li.2
0l1-21 s8.4La 59.3 58.9c¢c 58.3¢
01-23 29.6 4 %0.3
c1-28 12.94 13.4 11.9 ¢
01-28 39.7d4 L40.5 3%9.2 ¢
01-32 08.0c 065.8 0T7.kc
01-31 Lk4.,0 4 5.0 k3.1 c
01-33 15.4
01-41 Ok.l1 ¢ 05.1 06.9 07.0
01-41 30.0 ¢ 31.3 29.k ¢
01-4k2 233.04d 38.9 37.hLc¢ 38.54
01-43 32.8 ¢ 33.8 32.3c¢ 32.8c¢ 35,7
01-44 17.6 ¢ 17.9 ¢ 21.6
01-45 24.3d4 25.0 23%3.5d 23.7c
01-49 o 10.3 d 11.2
01-49 56.9c¢ 57.6 55.9¢ 56.5c¢ 58.7c 59.7
01-5] Y7.h ¢
01- 56. 4
01-55 3%.7d 37.4 35.9c¢ 36.4c
01-56 38.3d 39.1
02-C0 53.4 ¢
02-01 26.2 ¢
02-05 22.8 ¢ 2%3.6 22.4d 23.1c 24.9 25.2 29.7 ¢
0.1-06 47.5 4
02-09 6.1 ¢
02-12 59.6d 00.3 59.0c 59.% c 01.6 02.4
02-16 . b2.7 a
02-18 sSk.9c 56.1
02-22 Ll k4 ¢
02-24 .3 ¢
02-26  43.4 ¢ LL4.3 43,14 L3.7 Lok
02-28 3%8.84d 39.7 38.3c¢
02-3% L47.1 ¢ U48.6 L6.L 4 Lg.2 hg.2 53.8 4
02-34 31.k c
02-36 22.2 ¢
02-36 hg.2 ¢
02-37 59.1c¢ 00.1 56.8 c 59.4 c 00.€ 01.6 ¢
02-39 19.3 ¢ 20.h 18.0 c
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Quake _ U NoP. 0 - D RSN H.
P P

g7 02-41 25.2a 26.1 24.Cc 25.3c27.hda 28.1 ¢
98 02-L2 03.4 ¢
9 02-bk4 07.6 ¢
100  C2-Lb Li.5 a
101  02-48 17.0 ¢ 17.4 4 19.34d 19.5 ¢
102  02-49 11.4 ¢
103  02-5 16.7 ¢ 16.7c¢c 18.9 4
104 03-00 22.7c¢c 23.8 22.6d 23.0c 26.Tc 25.64d
105 03-0I. 12.7d 13.5 12.3 ¢
106 03-03 26.2 4
107 03-10 15.9 d
106  03-12 00.2 ¢
109 03-12 52.0 d
116 0%-13 15.0d4 16.5 15.2 ¢ 15.7 ¢
111 03-15 36.24 37.5 35.7¢& 36.1c 38.0c 38.24
112 03-17 36.95c¢ 37.3 35.9 d 38.9 ¢ 39.04& L43.04d
113  03-21 39.2 ¢
11k 03-22 09.6 d
115 03-22 24.6 4
116 0323 2464 25.1 23.9c 2hk.dc 26.hd 28.1 ¢
117 03-2h  14.7 ¢ 16.0 1.3 ¢ 17.1d 21.6 4
118 03-25 51.5¢ 51.8 ¢
119  03-27 L5.9 ¢
120 03-28 t.8c 31.4 30.2c 33.2 ¢ 33.3d 37.%c
221 03-31 06.64d 08.0 06.44 08.5 12.6 ¢
22 03-31 37.9 ¢
123  03-35 27.0 ¢
12h 0738 50.8d 53.3 50.4c 53.2d 53.6c 59.04d
125 03-49 53.1c¢ Skl  s52.5 ¢ sh.b c 55.24 58.84
126  03-43 <s0.hb e 51.2 50.14
127  03-48 29.9d 30.3 ¢ 35.7 c
28  03-51 5.8 a57.1 ¢
129 03-54 23.9 ¢
130 03-54 53.6 d
131 03-55 52.5 d
122 03-56 34,2 ¢
133  03-57 13.1 ¢
134  0k-01 31.9 d
135 04-02 L49.0 ¢  50.0 .5¢c 50.2 d 51.6 @
136 0L-0k 76.0 ¢
137 0L-05 05.0 d
138 0Lk-05 2h.6 ¢
139 0L4-07 08.% ¢
21 oL-08 22.1 ¢
14 ou-1v 00.6 ¢ 02.0 c
1k2  0k-10 22.6 ¢
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Quake U N.P. 0. D M.L. H.

No. h m g S P P P P P

143 04-11 2.5 d

144 oik-15 25.14 26.0 25.6 4 27.2d 27.7 ¢

145  0k-17 30.2 ¢

146  04-18 46.0c 473 L45.7d  U47.0 4 8.8 ¢

1y ohk-23 20.8 ¢ 22.1 20.74 23.b. 4 23.5 4

148 ok-24 s52.5d 53.6 52.2d S2.2¢ 5.8 4

"9 ok-25 32.9 ¢

150 Ok-26 L45.6c L46.6 L45.2d LS5.hc 4T.1c U8.14d 91.5 c
151 04-28 16.7 ¢

152  0Ok4-32 18.4 4

153  OL-34 18.4 1

154  o4-3L 39.7 ¢

155 Ok-3h sk.3¢ 55.8 5h.3ada sSk.ha

156 04-35 59.9 ¢

157 0k-38 14.9 ¢

158 04-39 16.5c 17.7 16.9 ¢ 18.94d 19.1d 2%2.24
159 04-43 02.1 ¢ 03.6 02.4 ¢ 04.3da 0OL.7 4

160  Ol-Lk 0l.bda 01.5¢

161  Ok-l4 26,04 26.8 25.7c 25.9c 28.94 28.14

162 0Ok-Ls5 18.4 a

163  0L-48 38.9 ¢

164 0L4-148 55.4 d

165 Oh-L9 23.4 4 25.3 ¢

166 0Lk-51 17.2d21.3 ¢

167 0b-52 25.94d 28.5¢

168 oOob-52 32.6c 33.8 32.54 35.1 ¢ 3%5.14d 38.9 ¢
169 04-56 07T.6 ¢ 08.14d

170  0L-59 56.5 c

171 05-00 33,7 d

172  03-01 08.9 ¢

173 05-0b 39.24 L0.8 39.4 4

17k 05-05 03.Lbc Okh.6 ok.2 4 05.1 ¢ 05.54d 09.2 ¢
175 05-06 38.5 ¢

176  05-07 22.h ¢

177 05-07 58.94 59.7 58.6 ¢

173 05-20 06.5c¢ 07.6

179 05-1b 1€.34 17.6 19.3 ¢

180 05-15 L0.3c¢ k1.2

181 05-18 36.1c 3%6.9 37.9 ¢ 38.24d

182 05-22 37.3 4 38.6 4 39.7 ¢ 39.9 d

183  05-2% 08.4 ¢

184  05-24 33.9 4

185 05-26 05.8 d 13.4 ¢ 09.3 4 17.2 d
186 05-28 25.0 ¢

187 05-% 15.8 ¢ 19.7 4

188 05 0 27.1 ¢

19  05-31 33.4 ¢
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Quake U N;P- O- Dt MCL- H0

No. n m P S P P P P P
190 05-33 17.6 ¢ 18.7 20.5 d
191 05-33 43.6 ¢
192 05-34 _ 09.9 ¢
193 05-38 3%.9 c
194 05-k2 06.6 d
195 05-43 b1.7 ¢ Ls.o
196 05-47 05.7 4 06.7 07.24 07.8¢ 1l.2 ¢
197 C5-48 23.1 ¢
198 05-49 17.2 d
199 05-50 08.2 c
200 05-56 6,0 ¢
201 05-58 12.9 ¢
202 06-01 il.7 d
203 06-03 05.3 ¢
204 06-03 56.2 d 57.1 59.1 d
205 06-05 39.7 ¢
206 06-0¢ 51.8 ¢ sh.2d sSk.0d 58.34
207 06-12 28.4 ¢ 29.2 30.9d4d 35.2 ¢
208 06-14 08.0 d
209 06-19 55.7 d
210 06-39 29.4 ¢
211 07-35 17.k ¢ 18.9 20.2 ¢
212 08-20 51.8 ¢ 53.4 54,5 ¢
213 08-33 13.7 ¢ 15.2 16.6 d
21k 08-41 03.3d 04.3 07.2 ¢
215 10-16 53.2 ¢ 5Skh.S 56.0 ¢
216 17-59 k7.7 4 u48.4

The acti.ity at the North Pit Station far exceeded that of any other
station. From 22h GMCT until Clh 2um GMCT nothing could be read because of
the number and size of the quakes. After Olh 20 m GMCT the magnificetion of
the instrument was reduced by a factor of ten from 20,000 to 2,000 after
which the records became readable.

A simple numerical couat of first motion dilactations &nd compressions
at esch station iz given in Table 8. TlLe distributions for Uwekahuna, Maua=
loa, and Hilo are random. At North Pit and Outlet there is a significant

preponderance ~f compressional motion. At Desert a weak preference for dila-
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TABLE 8 FIRST MOTION COMPRESSION VS DITATATION

Station U NP 0 D ML H
Compression 1 55 01 20 39 9
Dilatation 50 33 34 29 s 8

tational motion is apparent. This possibly indicates a critical zone in
which motion may originate with s preferentisl direction.

A group of quakes, sixty-four in number, was selected on the basis
of being recorded at three or more stations. First motion comprassions
and dilatations were tabulated for this group giving the results shown

in Teble 9.

TABLE 9 SELECTED QUAKES - FIRST MOTION DISTRIBUTION

No. of No. of
Station No. of Quakes Compressions Dilatations
Uwekahuna 58 30 28
North Pit 36 19 17
Outlet 39 27 12
Desert L1 16 25
Mauna Loa 54 26 28
Hilo 15 10 8

This dstribution shows a preferential pattern at Outlet and Desert
and a random pattern at Uwekshuna, North Pit, Masuna Ioa, and Hilo. The
preferential pattern at Outlet shows a dominance of compressicnal first
motion, while at Desert there is a dominance of dilatational first motion.

Regrouping these data into two sets, one with first motion exclusive-
ly compressional at Uwekshuna and the other with first motion exclusively
dilatational at Uwekahuna, the first motion distributions at the remaining

stations were reexamined. These groupings are shown in Tables 10 and 11l.
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TABLE 10 SELECTED QUAKES - UWEXANUNA FTRST MOTION COMPRESSIONAL

Station No. of Quakes No. of No. of
Compressions Dilatations
Uwekahuna 30 30 0
North Pit 16 5 11
Outlet 16 10 6
Desert 21 9 12
Mauna Iosa 29 12 17
Hilo 11 6 5

TABLE 11 SELECTED QUAKES - UWEKAHUNA FIRST MOTION DILATATIONAL

No. of No. of
Station No. of Quakes Compressions Dilatations
Uwekahuna 28 0 28
North Pit 15 10 5
Outlet 20 16 b
Desert 15 5 10
Mauna Ioa 21 12 9
Hilo L 2 2

Table 10 for compressional motion at Uwekehuna shows a significant
dominance of dilatational motion at North Pit and of compressional motion
at Outlet. Mauna Ioa shows a weaker dominance of dilatational motion.
Table 11 for dilatstional motion at Uwekahuna nov shows a reversal at
North Pit with a dominance of compressional motion. At Cutlet, however,
the compressional motion dominance is very significantly strengthened.
Desert which showed only a slight dominance of dilatationsl motion in
Table 10 is also strengthened.

These observations lend strength to the ccncept of a critical zone
in which seismic motion may originate with preferentisl first motion patterus.

The relative positions of these quakes can te somewhat indicated by the

S-P values. These were computed for Uwekshuna for the 57 quakes in the
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selected group. The S-P values are given in Table 12.

TABLE 12 S-P VALUES AT UWEKAHUNA
S-P No. of Quakes
0.1 1
0.2 1
0.5 3
0.6 N
0.7 5
0.8 5
0.9 11
1.0 9
1.1 L
1.2 3
1.3 5
1.4 2
1.5 3
2.5 1

More than half of the quakes fall in the S-P range 0.8 to 1.1
which would produce a distance variation of approximately one kil-
ometer. Hence, the quakes should te. 2 to cluster together. Varia-
tions in S-P, however, may indicate increase In depth rather than
an increase in horizontal distance. In order to evaluate the real
significance of first moticn, distance and position of the station

relative to the earthquake location must be known.

7.4 THE EPICENTER PROGRAM

In locating epicenters of local earthquakes one must lmow
something about the crustal structure and seismic velocities of
the area. Scientists at the Volcano Observatory have developed
a crustal model with appropriste P and S wave velocities that fit
the seismic observations of the Hawaiian area. This structural

picture is shovm in Figure 10. Using this structure and assuming
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zero focal depth, travel time equations have been computed as follows:

TP, = 0.26 4 TSl =0.l14 2

TP2 = 1.0 + 0.204 S =1.6 +0.324 3
2

TP = kb o+ 0.124 5 = 6.8 + 0.214 4

Travel time curves based on these equations are shown in Figure 11.
The P phase does not appear befcreM = 7.7 km and P not before
2 3

17.65 km. Similarly, S does not appear vefore @ = 7.6 km and S
2 a

not before 20.2 km. Travel time tables for zero focal depth are

given in Table 13.

TABLE 135 TRAVEL TIMES FOR Z¥RO FOCAL DEPTH

4 Knm Pl-H P-E P-H Sl-H S -4 S -H
2 3 2 3
0.0 .000 .000
0.1 .026 .0kl
0.2 .051 .082
0.3 .OT7 124
.4 .102 .166
0.5 .128 .207
0.6 154 .248
0.7 179 .290
0.8 .205 .331
0.9 .2%0 .373
1.0 .256 bk
1.1 .282 .455
1.2 .307 g7
1.3 .333 .538
1.k .358 .580
1.5 .38L4 .621
1.6 .410 .662
1.7 .4z .T04
1.8 L6l .Ths
1.9 .486 .87
2.0 .512 .828
2.1 .538 .869
2.2 .563 .911
2.3 .589 .952
2.4 614 .99k
2.5 640 1.04
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Trevel times were also computed for focel depths of 3, 4, 8, 12.5,

Travel

and 32.5 kilomcters and these values are given in Table 14.

time curves based on these computed values are shown in Figure 12, for

the P-phase arrivala.
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TABLE 14 TRAVEL TIMES FOR FCCAL DEPTH

32.5

22.5
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h 0 3 I 8 12.5 22.5 32,5
injm P S L £ 2 &£ £ S8 ¢ & P S P 8
19.1 k.90 T7.96 L4.96 8.05 L4.%32 €.59 L.47 T.25 4.83 8.62 L4.91 8.32 5.86 9.39
19.2 .92 8.00 4.98 8.09 4.3h 6.59 L.L49 T.27 L4L.85 8.65 L.92 8.33 5.86 9.39
16.% L.95 8.0k 5.06 8.13 L4.36 6.60 L.51 7.2% L.86 8.68 4.93 8.35 5.87 9.L4o
10.4 4,97 8.08 5.03 8.17 4.38 6.60 L.53 T.31 4.88 8.71 4.9k 8.37 5.87 9.4
19.5 5.00 8.12 5,06 8.22 4.k 6.60 k.55 T.33 4.0 8.74 L.96 3.38 5.88 9.L40
19.6 5.03% 8.17 5.08 8.26 L.k2 6,80 4.57 T7.35 L4.92 8.78 L4.97 8.4 5.89 9.L4o
19.7 5.05 &8.21 5.10 8.30 L4.k4 6.61 &.59 T7.37 4.94 8.831 L4.98 8.4 5.89 9.k
19.8 5.8 8.25 5.13 8.34 L.b6 6,61 L.61 T.39 k.95 8.84 k.99 8.44% 5.90 9.4
19.9 5.10 829 s5.16 8.38 L.48 6.61 L4.6% T.41 4,97 8.87 5.00 8.45 5.90 9.M1
20.0 5.13 .33 5.16 8.43 L.50 6.61 k4.65 7.43 4,99 8.90 5.01 £.47 5.91 9.4

With these calculstions completed the task of locating epicenters was begun.
The data as presented in Table 7 represents an initial correlation of arrivais et the
various stations based on time. A number of these eyeball correlations failed to be
consistent when the datawere used to locate an epicenter.

Two graphical methods were used in locating epicenters &t this point. The
first metaod was based on 4 (P-H) arc distance values for each station. A trial
1 (Hypocentral. time) value was computed with t.ie equation:

P-H = 1.37 (S-P) (5)

Using this H value, P-H values were calculated for easch station and the corres»on-
ding distances, 4 (P-H) were t keu from the travel time tables. These distance.
values were then plotted on a map of the area. Intersection of the distance arcs
at a point determined the epicenter. If the distance arcs failed to intersect'
at a point the H value was adjusted until such an intersection was achieved.
Should adjustment of H fail to »ffect an intersection, focal depth was adjusted.

™ second method used was the hyperbolicilocus method. The time difference
between a rivals at any pair of stetions will determine g hyverbolic locus by

arbitrarily choosing hypocentral times. For a given H, distance arcs from each
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station of a chosen peir intersect at a point which is a point on the
hyperbolic locus. Additional points on the locus are determined by
successively chosen values of H. A second pair of stations gives a
second hyperbolic locus and similarly for a third pair. The hyper_olic
loci should intersect at a point which is the epicenter. Both the
hyperbolic method and the arc-distance m2thods require a mirimum of
three stations to determire an epicenter. Table T lists 216 separate
quakes but only sixty-five of these are recorded at three or more
stations. Of these sixty-five quakes, epicenters were located for forty-

two. These quakes and their epicenters are listed in Table 15 and shown

in Figure 13.
TABLE 15 EPICENTERS KILAUEA
Quak: Max. Ampl.

Number Epicenter Station Distance “in mm.
z 19° 24.2' N U 3.8 1.10
155° 19.4' W 0 4.6 .52
H = 21-39-18.4 M,L. 12.4 .05

h =0k
3 19° 24.4' N U 3.3 .15
155° 19.2' W 0 k.5 .22
H = 21-45-09.7 M.L. 12.3 .03

h =0 km
7 13° 24.8' N 0 6.8 .10
155° 20.5' W D 10.C .03
H = 22-09-19.1 M,L. 10.4 .20

h =0 km
16 19° 24.2' N U 5.1 .30
155° 20.2' W ¢ 5.8 .bo
H = 23-50-54.4 M.L. 11.7 07

h =0 km
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Quake

Number Epicenter Station Distance
22 19° 25.0' N U 3.3
155° 19.4' D 11.1
H = 00-19-25.4 M.ZL. 11.4

h = 0 km
25 19° 24.7' N U 3.4
155° 19.4' W D 10.8
H = 00-28.85.5 M.L. 11.6

h =0 kn
28 19° 22.9' N U 5.2
155° 18.9' W 0 3.5
H = 00-32-31.2 M.,L. 15.0

h=0km
29 19° 24.9' N U £.0
155° 14.2' W 0 5.4
H = 00-35-43.3 M,IL. 18.4

h = 3.0 km

30 19°27.7T'*' N U 6.2
155°15.0' W 0 8.5
= 00-36-07.2 M.L. 15.1

h=0xm
34 19° 23.9' N U 2.8
155° 18.0' W 0 2.2
H = 00-42-05.6 M.L. 14.3

h = 3.0 km

L1 19° 25,1' N U 2.2
155° 18.8* w D 12.0
H = 00-48-50.3 M, L. 11.6

h =0 km
43 19° 24.9' N U 3.0
155° 19.2' W D 11.2
H = 00-51-32.3 M,L. 11.7

h =0 km
L4 19°24.6' N U 3,3
155° 19.3' 0 4.6
H = 00-55-55.1 M.,L. 12.0

h =0 km
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Quake Max. Ampl.

Number I_?.Licenter Station Distance in mm.
59 19° 24.5' N U 3.1 7.50
155°°19.0' W D 10.8 .35
H = 01-14-37.7 M.L. 12.4 .40
h=0Ik
67 19° 25.3' N U 1.6 3.00
155° 18.6' W D 12.2 .10
H = 01-41-03.8 M.L. 11.5 .32
h =0
0 19° 24.0' N U 3,3 .70
155° 18.7' W o} 3.3 .20
H = 01-43-32.0 M.L. 13.4 .05
h =0 km
Th 19° 23.9' N U 3.0 2.00
155° 17.8' W D 1.7 .05
H = 01 49-55.5 M.L. 14.6 ---
h = )"‘00 m
81 19° 25.0' N U 1.9 5,70
155° 18.5' W o k.0 1.00
H = 02-05-21.7 D 12.0 .36
h - lho m M.L 1200 082
84 19° 23.7' N U 3.2 1.10
155° 16.5' W o} 1.2 1.20
H = 02-12-58.4 D 13.7 .9
h = 4.0 km M.L. 16.2 .1k
89 19° 24.5' N U 2.3 1.80
155° 18.5' W 0 3.4 .15
H= 02-26-42.8 M, L. 12.9 .20
h =0 km
91 19° 25.8' N U 3.1 16.00
155° 15.9' W D 16.6 .30
H=02-33-45,2 M,L. 15.0 .10
h =8.0 km
95 19° 24.3' N U L.o 3,00
155° 19.5' W o} 5.0 .35
H = 02-37-58.1 D 10.3 .06
h=0km M. L. 12.1 .16
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Quake Max. Ampl.

Number Epicenter Station Distance in mm.
97 19° 24.4' N U 2.2 1.50
155° 18.1' W o ‘2.8 e
H = 02-41-24.2 D “11.9 .02
h = 3.0 kn M.L. 13.5 .0k
101 19° 25.3' N 0 k7 .70
155% 18.8' W N.P. 3.2 .20
H = 02-48-16.2 D 12.1 .06
h =0k M, L. 11.6 .06
103 19° 2k.1* N o 2.7 .bo
155° 18.3' W N.P 2.7 .80
H = 02-57-16.0 D 11.3 .50
h =0kn
104 19° 26.8' N U 6.9 1.60
155° 13.9' W 0 8.2 .80
H = 03-00-20.8 M.L. 17.5 .05
h = 3.0 km
116 19° 25.0' N U 4.0 6.30
155° 15.4'w 0 L.h .25
'H = 03-23-23/6 D 16.6 .15
"h=0hkn M.L. 16.5 .15
117 19° 25.4' N U 6.7 15.80
155° 13.7' W D 19.2 .35
H = 03-24-12.4 M.L. 18.7 .30
h = 8.0
120 19° 25.3' N U 2.6 12,00
155° 19.0' W D 11.9 .45
H = 03-28-30.1 M.L. 1.1 .60
h=0kn
125 19° 23,9' N U 2.7 3.00
155° 17.5' W D 12.1 .80
H = 03-Un-51.2 M.L. 14.9 .10
h = 8.0 knm.
135 19° 23.4' N v .4 3.50
155° 18.9' W D 9.6 .76
H = 04-02-47.6 M.L. 1k.1 .16
h = 3.0 km
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Quake Max. Anpl.

Number Epicenter Station Distance in um.
k4 19° 24.8' N U 2.9 3,50
155° 19.1" W D 11.1 .13
H=04-15-24.3 M.L 11.9 .16
n=0kn
147 19° 25.6' N U 6.4 6.10
155° 13.9' W N.P 5.6 8.00
H=04-23-19.0 D 19.0 .11
h = 4.0 km M.L 18.1 .25
150 19° 23.6' N 4] 3.3 2.30
155° 17.5' W D 11.8 .31
H=04-26-L4k4,2 M.L. 15.3 .20
h = 5.0 km
158 19° 25.2' N 4] 1.7 36.00
155° 18.5' W 0 4.2 ---
H=0k4-39-15.6 D 12.4 .80
h = 3.0 km M.L. 12.0 1.60
159 19° 24.8' N U 2.1 14.00
155° 18.6' W 0 3.8 .55
H=0k-43-01.2 D 11.9 .09
h = 3.0 km M.L 12.3 T
168 19° 25.8¢' N U 4.0 6.50
155° 15.3' W N.P. 3.2 13.00
H=04-52-31.1 D 17.4 .21
h = 500 km M.L. 16-0 -J-2
174 19° 24.9' N U 3.6 2.70
155° 19.6' W D 10.9 Lo
H=05-05-02.2 M.L 11.3 .18
h = 3.0 km
181 19° 25.0' N U 3.9 .70
155° 19.8' W D 10.9 .05
H=05-18-35.1 M.L 10.9 .09
h =0 km
182 19° 25.4' N U 4.0 1.70
155° 15.2' W D 16.9 .07
H=05-22-35.8 M.L. 16.3 .0h
h = 5.0 km
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Quake Max. Ampl.
Number Epicenter Station Distsnce in mm.
196 19° 2L.4' N U 1.9 2.80
155° 17.3' W D 13.0 .91
H=n5-47-03.9 M.L. 14.6 .20
h = 8.0 km
206 19° 25.7' N U 3.0 8.00
155° 1.4kt W D 12.4 .90
H=06-09-51.0 M.L. 10. k4 .18
h =0 km

A number of difficulties arose in the epicenter program. There were a
number of instances where the data were incompatible and no epicenter could
be located. In these instances arrivai times at the various stations were
not from the same quake but were arrivals from different earthquakes that
occurred almost simultaneously. If arrivals from both events reached a par-
ticular station, one of the arrivals was overridden and lost. Arrivals fre-
quently failed to reach a particular station because the energy was atten-
uated and absorbed due to its high frequency character and low energy at the
source.

This latter condition was very noticeable at the North Pit Station where
the number of quakes recorded was much larger than at any other station. In
spite of this, there were very few instances where the North Pit data were
coupatible with that pf.tpe,other stations. It also seems likely that there
may be a local velocity.anomaly at North Pit which effects the arrivals.

In a number of cases it was not possible to achieve a unique epicenter.
By varying the focal depti an epicenter could be found at any one of several
depths varying from the surface on down. As the focal depth changed the
epicenter shifted. This naturally gave rise to the question, which epicenter

to use? If there was nothing in the character of the seismogram to indicate
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focal depth, then the surface focus was accepted as the proper one on the
basis that these seismic events are associated with the volcanic action
which was within a matter of hours of erupting. Hence, the activity was

certainly very near to the surface.

7.5 THE COMPUTER PROGRAM

While the graphical location of epicenters was going on, a computer
program was being developed to process the data. The program is based on
the assumption of rectilinear paths for the seismic waves since the dis-

tances are very small. The basic equation of the program is the distance

formula:
(x-x)2% + (3-9)% + (z2-2)% = v (p, -H)? i=1,2,34  (7)
Where X, = latitude of the station
Yy = longitude of the station
zi = elevation of the station
V = velocity of the longitudinal wave
Pi = observed arrival time of P wave
H = hypocentral time

For local quakes a suitable origin point is selected to encompass the
network of observing stations and the possible epicentral region. For the
earthquakes under investigation in Hawaii, the origin point selected was
19° 20' N and 155° 10* W. Latitude and longitude for each station lo-
cation were then converted to distance in kilometers fiom the origin using
the conversion factors for one minute of arc of meridian and one minute of
arc of parallel at this latitude. Station elevation, given in metexrs above

sea level, is converted to kilometers.
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Equation 7 involves four unknowns for which we wish to solve x, vy, z,
and H. Your equations are required so that observations at four stations
are necessary for a solution. In order to program the solution it was
necessary to express the equations in linear form. A mathematical reduc-
tion of the four Equations T by elimineting the variable H results in a

linear system of three equations of the form:

A

i

x + By # Cz + D =0 i=1,2,3 (8)

x3) = (P4 - P3)(xq - x2)]

L
[

Where Al 2 [(pg - Pg)(X4

B, =2 [(Pg - P2)(ya - ¥a) - (Pg - P3)(ya - ¥2)]
Cl =2 [(P4 = Pz)(zd - 23) - (P4 - Pa)(z4 - 22)]
D, = (P4 - Po)(xa® + ya© + z5°)

(Pg - Da)(x22 + y22 + z5%)
+ Py = Po)(x® + y4& + 242) -
+ V2 (Bg - P3)(Pg - P2)(P5 - Po)

Similar values of the
coefficients occur for

Ao B2 C2 Do and Az B3 C3 D3

Unfortunately the system 7.52 is not an independent system. Any pair
of Equations 8 is independent but the third equation is always dependent.
Geometrically each Equation 8 represents a plane and if the system were in-
dependent the solution would be a point which represents the epicenter.
Since the system is dependent the solution will be a line solution.

When solutions of Egquaticns 8 were attempted the results were erratic.
This was disturbing but since the equations represented three planes deter-

mined by the station coordinates and the observed arrival times, it was at
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first felt that the result might be legitimate. The coei{ficients are Je-
termined by the observational data which is limited in its accuracy and the
resulting numerical values for the coefficients did not reveal the depen-
dent neture of the equations. A reexamination of the theoretical solution
of Equaticne 8 revealed the dependent nature of the system.

This meent that our solution set of eguations consisted of two equa-
tions in three unknowns, so a metnod had to be devised to handle this. 'The
three unknowns in Equacions 8 are x, y, and z. The method consisted of the

following steps:

l. Assume & value for z.

2, Substitute z in Equations 8 and compute
the values of-x and y.

3. Substitute the assumed val' - -of 2 and the
computed velues of x and y in the four
‘“quations 7 and compute a velue of H for
each equation.

If the four values of H agree then the set of values x, y, 2z, and H are the
solution. The usual circumstance is that the H values will not egree. If
they do not agree then a new value is sssumed for -2 end the process repeated.
In practice, valuee of z were chasen for every 0.5 kilometers. As the 2
values are varied, the H velues for each station will cunverge to a common
value which represents the solution. As this convergence occurs, the in-
dividual values of H for a given equation will rise through & maximum value
and then fall off. This maximum velue is the convergence value. The full
import of this rise to a maximum is not clear at this time.

This method worked very well and yilelded epicentral solutions which

gave an independent check on the graphical solutions previously achieved.
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It should be pointed out that in the computer solution, values for 2z the
focal depth, can legitimately be positive since the elevation of the Xilauea
Crater is about one kilometer.

In the graphical solutions when difficulty was experienced in obtain-
ing an epicentral fix due to an incorrect P errival at one of the stations,
it was not always clear which station was in error. However, in the com-
puter program if there is an incorrect value, this will stand out wery :lear-
1y in the print out result, since the legitimate values will produce conver-
gence to a common value for H but the incorrect value will not.

This result led to a further adaptation of the computer prograu to
quakes which were recorded at only three stations. When an incorrect P ar-
rival time value occurred which failed to rroduce a convergence for H, this
incorrect arrival was adjusted until its H value did converge. OCbviously,
this adjusted arrival time is fictitious and does not exist. For the quakes
for which only three stations had P arrivals, a fictitious P arrival was
fabricated for the fourth station. This set of data with the one spvrious
value was put into the computer, and this spurious value was adjusted until
the computer produced a convergent solution. This procedure is not as
arbitrary as it might seem. Basically it smounts to asking the computer to
find a fourth P arrival that will fit the other thre¢ observed arrivals,
given the crustal structure, velocity and coordinates of the stations.
Another way of looking at it is that normally the computer is supplied withk
sixteen pieces of information and asked to compute four cthers. In the new
scheme the computer is supplied with only fiiteern pieces of information and

asked to compute five others.
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As a result of this we have been able to check the graphical epicenters
and the computer epicenters against each cther and find that there is excel-

lent agreement.

7.6 FIRST MOTION PATTERNS

By combining the firs. motion data with the epicenter data the first
motion pattern for easch quake was obtained. The data showed a fairly high
consistency, with three patterns resulting. When the compression - dilata-
tion data were plotted at each station, quadrantal lines were drawn through
the epicenter to separate the areas of dilatation from the areas of com-
pression. In some cases the position of these lires could be varied by as
much as ten to fifteen degrees of rotation about the epicenter but this did
not fundementally change the pattern. In other cases the pattern was rigid-
ly fixed.

One of the quadrantal lines shcws a trend Northeast - Southwest, and
the other at right angles to this shows a Northwest - Southeast trend. The
Mortheast - Southwest Airection coincides with the direction of the South-
west Rift Zone and the coincidence o these directions probably represents a
relationship between this tectonic feature and the seismic motion.

If we asswi= that this Northeast - Southwest direction represents the
line aloug which the seismic motion occurs then in fifteen cases the North-
west side of the block shifted to the Southeast. In fourteen cases thg
Northwest side shifted to tk- ilortheast. These represent two of the three
main trends observed. They represent opposite direction of motion and seem

almost equally likely to occur.
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As the epicenters snift from the area Southwest of Kilsuea Csldera to
an area Northeast of it, the epicenters tend to get deeper and the trend of
the quadrantal line shifts from a Northeast - Southwest direction to a dir-
ection more East - West. Here again, a general correlation can be msde bet-
ween this direction and that of the East Rift.

The coincidence of these quadrantal lines with the Southwest Rift and
with the East Rift seems more than accidental and augurs for a mechanistic
connection. However, if the seismic moticn occurs along the other quadran-
tal line which tre:.ds Northwest - Southeast, motion along the Southwest
part <" the block would be Northwesi or Southeast.

In seven cases horizontal motion could not explain the d‘stribution of
motion. For these a vertical motinn was assumed with two hlocks separated
by a Northwest - Southeast trending line. The Northeast block was char-
acterized by upward motion and the Southwest block by downward motion. The

three patterns of motion are shown in Figure 14, 15, and 16.

7.7 AMPLITUDE - DISTANCE REIATTIONSHIPS

Maximum amplitude values at each station for each earthquake were com-
bined with the corresponding distances computed in the epicenter program.
The medial test was used to determine whether or no£ a significant relation-
ship existed between amplitude and distance. It will be recalicd that in
the case of Vesuvian quakes no significant relationship was found. The
medial test is shown in Figure 1T.

On the strength of the medial test indicating a relationship between

amplitude and distance an investigation into magnitude for these Hawaiian
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volcanic quakes was begun. Richter's relationship for shallow earthquakes
in California between magnitude M, maximum trace amplitude A, and distancez

is

M=1log A+ 3 logh - 3.37 (9)

When data for individual quakes were plotted as log A versus log 4 ,
the points tended to scatter, slope values were difficult to determine and
showed a wide variation. At this time it appears that the use of data from
a single quake is not reliable. Conclusions based on a single evcont should
be avoided until individual station corrections have been computed.

The data for all the quakes of known epicenters were grouped together
on a single graph of log A versus log A. The result was a fairly homo-
geneous picture. A center line was eyeballed through the data and the equa-

tion of this regression line was computed to be
log A + 2.3 logA = 1.64 (10)
Expressing magnitude M as a function of A and & gives the relationship
M=1ogA+23logA- 1.6k (11)

Applying Richter's definition of a zero magnitude earthqueke, namely M = O,
A= 10-3mm, A = 100 km to Equation 11 indicates that the quantities deter-
mined empirically from the observed data are in reasonable agreement with -
the magnitude concept.

For an earthqueke of given magnitude, Richter's equation indicates
that the amplitude varies inversely as the cube of the distance in Southern
California. For Hawaiian quakes, Equation 11 indicates that for a shock of

given magnitude, the amplitude varies inversely as the 2.3 power of the
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distance. Thus, amplitude seems to attenuate less with distance in Hawaii
than in Celifornia. This may be correlasted with the foided and faulted
nature of the rocks in the California region. It is, however, somewhat sur-
prising since high attenuation does seem to occur in the Kilauea Summit
Fegion, particularly in the area of the North Pit Station which lies in the
caldera. This fact probably accounts for a large part of the attenuastion
since the rocks in the caldera region are probably weak. The high frequency
character of the volcanic - seismic events probably also accounts in part
for the attenuation. These factors seem, therefore, to have a pronounced
local effect which drops off with the distance.

Using Equation 11, curves for magnitude M = +1, M = 0, and M = -1 were
computed and plotted on the graph of the log A versus log & . Practically
all the quakes fell between these magnitude values which indicates the very
low energy level of such shocks. The graph of these data is shown in

Figure 18.
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8

JAPANESE VOLCANOES

The Japanese Islands possess many volcanoes and these have become the
object of intensive research. Many of the volcanoes are explosive in char-
acter and excellent observatories covering practically all aspects of geo-
physical science applicable to volcanoes have been set up to investigate
the volcanic phenomena.

One such observatory is located at Mount Asama. Through the courtesy
and kindness of Professor Ryutaro-Takahasi, Director of The Earthquake
Research Institute, The University of Tokyo, preliminary arrangements were
made to visit the Institute and exesmine the seismic data from Mount Asams.
Final arrangements were completed through the kindness of the new Director,
Professor Hirosi Kawasumi. Professor Takeshi Minakami, Director of The
Mount Asema Observatory and Professor of Physical Volcanology and his As-
sistant, Dr. Kiyoo Mogi, rendered invaluable assistance in making the seis-

mic records available for analysis.

8.1 MOUNT ASAMA VOLCANO OBSERVATORY

Mount Assma is located approximately one hundred kilometers west and
slightly north of Tokyo. The Asama Volcano Observatory is located on the
eastern flank of the volcano approximately four kilometers from the sumnmit
crater. Asama is one of the most active of the Japanese volcenoes and
eruptions are frequently explosive. Such an explosive eruption occurred on

August 18, 1961. The seismic activity associated with this event is the
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material investigated here.

At the time of the 1961 eruption a seismic network of seven stations
was operating. Seismic signals are telemetered from the instruments to the
Asama Observatory where they are recorded on smoked paper which gives a
very fine definition of the high frequency movion. The seismographs are
electromagnetic and are oriented as vertical or horizontal radial compo-
nents. The station designations and seismographs located st each are given

in Table 16.

TABLE 16 MOUNT ASAMA SEISMOGRAPH STATIONS

Station Seismograph Coordinates
North East Z (km)
A HR 36° 23,9  138° 32.,2! 2.2
B HR,Z 36° 24,1 138° 32.9! 1.8
C HR,Z 36° 24k.0' 138° 34,0 1.4
D HR 36° 22.6' 138° 32.2! 1.5
E HR 36° 23.3'  138° 33,3! 1.6
F HR 36° 25.6'  138° 32.7! 1.5
G Z 36° 23,6 138° 29.8! 2.0
HR = Horizontal Radial component
Z = vertical component

In the investigations at Mouni Asama, the Japanese scientists are
primarily interested in the question of prediction of volcanic eruptions.
Professor Minakami has developed a statistical method for such prediction
based on observation of the number of seismic events cccurring. The Ques-
tion of hypocentral depth is important and is determined from the char-
acter of the seismogram. Since the seismic events sre considered as orig-
inating in the volcano structure, location of epicenters is not carried out
and gseismic velocities and local structure apparently have not beer. invest-

igated. Two types of quakes, A and B, are distinguished by Minakami.
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A-type quakes are deep with the hypocenters from one to ten kilometers. B-
type quakes are shallow with the hypocenters from zero to one kilometers.
Earthquakes of A-type are similar to tectonic quakes and show distinct P and
S phases. B-type quakes frequently begin with large motions and show char-
acteristically large surface waves.

Minaskemi refers to explosion earthquakes as resulting from individual
explosions originating in the volcano. The hypocenter of such an explosion
is situated not much deeper than the active crater floor. Initial motion

is a push in all directicns.

8.2 SEISMOGRAPH READINGS

Prior to the August 18th eruption, seismic activity began tc increase.
Volcanic explosions occurred intermittently with increasing intensity and
frequency, culminating in the paroxysm at 147 SOS local time August 18,
1961. At about 1000 hours, seismic recording was switched off because of
the interference coming from electrical phenomena associsted with the erup-
tion. Recording was resumed at aprroximately 1500 hours after the parox-
ysmic eruption.

The following seismic readings are given only in seconds, with hours
and minutes omitted. Direction of motion is indicated as dilatation or com-
pression for all components. For the vertical component this has the usual
meaning. For the horizontal radial components, a push is designated as a

compression and a pull as a dilatation.
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TABLE 17 SEISMOGRArH READINGS
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Station A B C D E ¥ G

Quake H H % H Z H H H Z
130 25.7T ¢ 26.0 d 26.24d 25.7Tc 25.9c¢c 26.54
131 b, 7da 46.7c U47.0c U4T.04 b47.5c L47.64 L47.3c UT.3¢c
132 17.8 4

133 33.6 4

13k 55.0 ¢ 56.5 ¢ 55.8 ¢ 56.6 ¢ 57.3c¢c 56.5c 50.6c
135 27.5 d

136 47.6 ¢

137 b2,6 ¢ 42.8 ¢ L2.3 ¢

138 29.2 ¢ 3%0.2 4

139 20.5 ¢

140 37.7 ¢

141 29.0 ¢

142 55.7T ¢ 55.2 d 54,7 ¢ 55.3¢ 56.0 ¢
143 19.4 ¢

144 51.7 c

145 56.8 & 56.9 ¢ 57.6 d

146 13.6 ¢ 13.8 ¢ 14.8 ¢ 15.6 ¢
147 16.1 d 17.1 4
1.8 18.4 ¢ 18.2 4 19.2 ¢ 19.6 ¢ 19.1 4

August 13

149 03.2 ¢

150 07.2 ¢

151 12.8 ¢

152 8.4 ¢

153 08.8 4 09.1c

154 16.54 16.14 16.24 16.6 4 16.4 4 16.0c 16.2 : 16.4 ¢ 15.5 4
155 bs.2 ¢ 45.8 ¢ b45.1 ¢ k7.5 4

156 34.8 4 38.1 4

157 51.5 ¢ S1.5 ¢

158 6.4 ¢ 1T.bc 17.04 17.6 ¢ 17.5 ¢

159 23.9 ¢ 24.5d4 24k.3c 25.7 4

160 8.2 ¢ 49.6 ¢

The total number of push and pull motions, labeled ¢ and 4 respectively
in Table 17, for the horizontal radial component of motion were counted,

giving the results shown in Table 18.

TABLE 18 HORIZONTAL RADIAL MOTION

D
Push] T2 o 17 30 24 23 10
Pull] 68 54 13 12 15
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These figures show that in all cases the push motion.predominates at all
stations and for stations D and E the predominance is very large. However,
the significant point is that the pull type motion occurs vcry frequently.
Just how many of these quakes are volcanic quakes and how many are explo-
sion quakes is unknown, but on the basis of the quakes examined, it is ev-

ident that the seismic motion is not exclusively push or pull.

8.3 EPICENTERS

Although no crustal model or velocities were available for the Mount
Asesma Region, it was decided to assume values for these quantities and at-
tempt to locate epicenters. A velocity to 2.0 kilometers per second was
used for the computation and was assumed to apply to focal depths of sev-
eral kilometers. Epicenters were located both graphically and by the com-
puter method. There were sixty-six such cases in the observed data. Forty
of these were chosen on which to attempt epicenter locations. Twenty-seven
of these cases failed and only thirteen gave sacisfactory epicenters. These

epicenters are shown in Table 19.

TABLE 19 EPICENTERS - MOUNT ASAMA

Quake Epicenter Station
L 36° 23.9' N
138° 320.0' E

H = 13.5

h=+1.0 km

7 36° 23.2' N
138° 33.1' E

H = 55.9
+1.5 km

e e s o B H O

h
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Quake
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Quake Epicenter Station
130 36° 24 .4 N
138° 30.0' E

H = 23.3

0 km

=YW

h

142 36° 23.1' N
138° 33.3' E

H = 54.8
h = +0.5 km

e Moo el ee)

These locetions were plotted individually with first motion data for the
ilorizontal radial component. The results were not very satisfactory. In
five cases a quadrantal pattern of motion could be ouserved but the pat-
terns were not allsimilar. There were four other cases of push and pull
motions for which no quadrantal pattern could be observed. Finally, there
were four cases in whi~h all motion was push or compressional, three of
which were logical patterns. In the fourth case, the pattern of motion
could not be reconciled with the location of the epicenter.

The seismic stations at Mount Asama are all located on the flanks of
the volcano at elevations below the summit. Hypocenters, therefore, may
be either above or below the elevation of the seismic station. Interpre-
tation of the earth's motion must take into consideration the epicentral
location, focal depth, and the horizontal and vertical components of seis-
mograph motion. If the motion originates above the seismic station and is
a push, it will appear as a push on the horizontal radial seismograph and
as 1 dilatation on the vertical seismograph since the vertical component is
downward. The same seismograph motions would result if the motion orig-
inated as a pull helow the station level. In thds latter case, without

knowledge of the epicentral location and focal depth, the motion could
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easily be misinterpreted as a push originating in or near the summit crater.
I circumstances such as this, interpretation of ground motion becomes
rather complex. The assumptions made concerning the P wave velocity and s
crustal model, present additional complications which may account for some
of these interpretive difficulties. An example of the interpretation of

seismic motion and earth motion is shown in Figure 19.

8.4 FREQUENCY OF OCCURRENCE OF QUAKES

(ne of the outstanding characteristics of volcanic earthquakes is the
fact that they occur in swarms preceding an eruption. Numerous investiga-
tions of earthquake frequency have been made. In general, the smaller the
magnitude of *the shock, the greater the frequency of occurrence. Gutenberg
and Richter in SEISMICITY OF THE EARTH show that the frequency of occurrence
N and the magnitude M computed from surface wave amplitude are related by

the equation

log N=a+b (8 -M) (12)
Where a and b are constants
In Japan, M. Ishimoto and K. Iida have developed another empirical
equation relating the fregquency of occurrence N and the maximum trace ampli-
tude A of the seismogram. This equation is
" = ¢ (13)
Where m and ¢ are constants

The magnitude M of Equation 12 is determined from the maximum trace

amplitude. It was shown by Suzuki that the b of Equation 12 and the m of
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Equation 13 are so related that
b=m-1 (14)

In practice, amplitudes are read over a range A to A + dA and the num-
ber in this group is then tabulated. In addition to tabulating the fre-
quency or number of occurrences within a range dA, the frequencies can be
summed up so that a value is obtained for the total number of quakes produc=-
ing all amplitudes from the largest down to a specified value of A.

Minakami in Japan has used this approach to show that A-type and B-type vol-
canic earthquskes have different characteristics.

Indicating the sum of the frequencies of cccurrence over an amplitude

range from infinity to some value A by NS, we can write:

A
N = L NaA (15)
A  -m
N, = j@ cA™ aa (16)
1-
N -t A an

In practice NS is obtained numerically so that we may express,; it in summsa-

tion form:

$ ono Al (13)

®_oo 1l-m
The term b in Equation 12 and the term m in Equation 13 are constants.
The physical significance of these constants is not very well understood and
it is quite remarkable that such constants exist. 1In the investigation of
volcanic quakes, Minekami haes found that m has different velues depending on

the type of quake under consideration.
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A-type volcanic quakes are similar to tectonic quakes with values for
m in the range 1.8 to 2.2. B-type volcanic quakes and explosion quakes
seem to be similar and have much larger values for m ranging from 2.7 to
4.0,

Amplitude data for the Kilauea Iki eruption were analyzed to see what
sort of m value would result. When the data are plotted as log2 N egainit
log A, the curve Should be linear and have slope l-m from which m can easily
be found. Amplitude, frequency of occurrence, end summation values are
given in Table 2. The data are shown graphically in Figure 20 with the

value of m equal to 2.6,

TABLE 20 AMPLITUDE - FREQUENCY DATA, KTIAUEA IKI

Trace Amplitude Frequency

in mm N ’Eﬂ
1.0 250 342
2.0 L2 92
3.0 20 50
k.0 6 20
5.0 I 2k
6.0 h 20
7.0 5 16
8.0 2 11
>8.0 9 9

The data for the North Pit station was analyzed separately to see if
this method might reveal something unususl. It will be recalled that the
Noxrth Pit data, rarely agreed with that data fiom the other staticns. The
value of m was found to be 2.0 which can be considered to be in the same
range a8 the value determined for all the other stations.

A similar analysis was made for the Vesuvian quakes. The number of

data points was smaller and the curve showed a much different character -
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two distinct slopes are apparent. The steeper slope gives a value for

m = 4.84, which would place Vesur us in the explosive type, thus ver-
ifying tnrough seismic messurement the known historical character of Mount
Vesuvius. The graph of this data is shown in Figure 21.

The type of curve resulting from the graph of Vesuvian smplitudes has
been found in model experiments by Mogi, in which he correlated the results
with Llhe mechanical structure of the medium, which in turn is related to
tne romogeneity or leterogeneity of the wedium.

As indicated previously, the significance ol the coefficient m is not
toc well understood at this time. Perhaps the first thought that arises as
a possible explanation for the variation ir m, is the question of focal
mechanism. An investigation of initial motion patterns for explosive versus
non-explosive mechanisms might shed some light on this problem. Focal depth
may be a significant factor since the m values for A-type and B-type quakes
fouid by Minexami are different. Finally, it seems quite probable that the
type of stress application may be si_ 1ificant. In the case of a tectonie
quake, the stress application produces a mechanical rupture or fault; in the
case of a volc:inic eruption, the stress application may approximate a uni-
form internal hydrnstatic system ziving rise eventually to an explosiwve
eruption. In the case of an externally applied intensive stress system,
the situation is again different and may be revealed by a characteri-tic
value for m just as the tectonic quakes and volranic explosion gquakes have

ckaracteristic values.
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SUMMARY AND CCNCLUSIONS

Seisnic effects, that is earthquakes occuring in volcanic regions and
resulting from volcanic processes, have been the subject of this investi-
gation. Three trcas selected for investigation were Italy, Hawaii and
Japan. Seismographs from these areas wers studied and statistical analy-
sis was applied to the data. The following main conclusions have resulted

from the investigation:

l. First motion patterns can usually be delineated in
non-explosive volcanic regions which indicate thet

an exclusive first motion push occurs infrequently.

2. In areas where the volcanic mechanism is explosive,
a first motion push does occur but not exclusively
and many other seismic events also occur which show

a quadrantal pattern.

3. Interpretation of a first motion push is subject
to serious misinterpretation if location of the

epicenter and focal depth are unknom.

k., Volcanic quakes occur in swarms and are generally
of low energy having magnitudes on the Richter
Scale that range from plus one down into negative

values.
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(o))

Volcanic quakes are characterized by high frequency
motion which attenuates rapidly and conseguently
are not usually recorded at distances beyond a few

tens of kilometers.

Data from a single seismic station tends to show
randomness rather than reveal identifying char-
acteristics. W en used in conjunction with other

stations, the data then responds to analysis.

The frequency of occurrence of volcanic quakes shows
promise of being a reliable statistical variable with
m in the equation NA" = ¢ being the important

coefficient.

Tectonic quakes and explosion quakes can be identi-

fied by the characteristic m value.

The m value gives promise of being an identifying

characteristic for an explosive source above ground.
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