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Abstract 

The average and standard deviation of the radar cross section of 

chaff is computed under the assumptions that dipoles are randomly ori- 

ented and randomly distributed within a radar resolution volume.     For 

a single type of chaff,  the standard deviation approaches the average 

value as the average number of dipoles increases.     When the number of 

dipoles per resolution volume is small,  the statistics of the single dipole 

cross section are important.     The results are then generalized to the 

case of several types of dipoles distributed in space.     The average 

cross section is simply the sum of the average cross sections for each 

type; however,  the standard deviation involves additional terms which 

are not small.     These terms are just sufficient to again provide the 

Rayleigh limit    6 s/< s >  -* 1    as the number of dipoles increases. 

Accepted for the Air Force 
Stanley J.   Wisniewski 
Lt    Colonel, USAF 
Chief,  Lincoln Laboratory Office 
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I. Introduction 

In a previous report       the author considered the statistics of 

the radar cross section of a small number of resonant dipoles ran- 

domly oriented and randomly spaced in a radar resolution volume. 

In that case it was possible to use an accurate analytic representation 

of the cross section of a single dipole to determine a complete repre- 

sentation of the statistics of the radar cross section,   i. e. ,  the probability 

density.    However,   it will more often be the case that the radar frequency 

will not correspond to the resonant frequency of the chaff.    In fact,  the 

chaff may be dispensed in several lengths some of which may be resonant 

to radar frequencies almost an octave lower than the operating frequency. 

In order to understand this more complicated chaff environment 

we have calculated the average radar cross section and its standard 

deviation in terms of the average and standard deviation for the single 

(2-3) 
dipole. The average cross section is merely the summation of the 

individual average dipole cross sections.    However,  the standard devia- 

tion of the cross section is a good indication of the importance of the 

statistics of the single dipole cross section.    In particular,   it is to be 

expected that once the standard deviation,     6 s    ,  is approximately equal 

to the average cross section,     <s>   ,  the probability density for the cross 

section is approximately exponential (i. e. ,  Rayleigh power distribution). 

In section II,  we have considered the chaff to be of a single type,  and in 

section III we have considered the more general case of several types of 

chaff.    In each case it is found that the Rayleigh limit is reached for 

large numbers of dipoles.    If one assumes that the standard deviation of the 



single dipole cross section is about equal to the average,  the Rayleigh 

limit is well approximated by two or three dipoles.    Furthermore,  for 

the case of small numbers of dipoles,  the results enable one to calculate 

the first and second order statistics accounting for the single dipole 

statistics. 



II.        Statistics For a Single Type of Chaff. 

Let   A be the coherent amplitude for the i-th radar resolution cell, 

a be the coherent amplitude for the Cl-th dipole in the i-th cell, 

r be the range to the a-th dipole in the i-th cell, 

n be the number of dipoles in the i-th cell,   and 

k = 2TT/\ be the wave-number. 

ni i2kra 
Ai =   E   aae 

a=i 

*        nini \    i2k(ra-r   ) 
si = AlAi  =   E   E    aaaB  e 1       l  l   a=i ß=l   a p 

For n.   fixed,   and all dipoles statistically independent,   randomly oriented, 

and randomly spaced in the resolution volume    Av , 

In-- "*        *   i2k(ra " rR> <s„> =     fdr....dr     dfi . . . .dQ        £   a  a     e 

—» 
where   dr.    is the volume element and   dQ.    is the orientation surface element 

l l 

for the i-th dipole. 

For    ra/ r    (i.e. ,  a / ß)       , 

_     i2kr i2kr 
;drae   a = ;d;9e    » = o   , 

and 
n. n. 1        *        L 

<<r> =   PdD. . . . dQ       £   a„a„ s £ <a> = nÄ <cr> i       J      1 n„        a a. i i a a 

If   n     is   considered to be a random variable, 

<s> = <n> <<r> i i (1) 

To determine the standard deviation of   s.    ,    we must calculate 

n, 
7 i & * i2k(r   - rQ + r     - r _) 

<s> = L-fdr\...dr    dn,...dn £ aa*aa*e a      ß 7        6' "> = -—     dr....dr    c n£   J       1 ni -        n,   j-l n,     l"-      niajß        ß  a  ß    y  6 
(Av) 



The cases for which the   dr.    integrals are non-zero are 
l ° 

1) q = ß = y = 6 

2) a/T 

a) a = 0 ,    T = 6 

b) a = 6 ,    ß = y      . 

Thus, 
*i * 2 ni 

<s/> = J dnr • • dQ
n   [ E   <aaaa>    + 2   S    aaaa* a  a * ] 
10. 0. f y '     ' 

nt nt 
= E <<r2> + 2   E  <o->2 = n   <cr2> + 2n   (n    -  1) <(r>2 

a a/T 
£ 

For   n.   a random variable, 

<s„2> = <n> <o-2> + 2(<n 2> - <n>) <(r>2 

and 

(6./    = <,/>-<„/ 

= <n > <cr2> + 2(<n 2> - <n >) <cr>2 - <n.>2 <cr>2 

2 2 2 2 2 2 Rearranging terms and using <n.  >   = <n.>    + (6n.)      and <ar > - <a>    + (6cr) 

leads to the result 

(6Sje)
2 = (<ni>

2 + 2(6ni)2 - <nt>) <<r>2 + <n^> (6cr)2 
(2) 

If we assume Poisson statistics for the   n. ,   then (On )     = <n.> . 

2 2 2 Furthermore,   we may write   (6cr)     =  \    <<r>    ,  where   \   is a scale factor; 

for the resonant   \/2-dipole,    x = 4/3 .    Then, 

(6Sje) 
2 =     [^^+(1 +x ) <nt>} 

,1 
<cr> (3) 



Equation (3) indicates that for small values of < n->  the statistics 

2 
of the single dipole, by virtue of   \    ,  are important for calculating   6s. . 

As   < n ->   increases,   6s -   approaches the average cross section which 

agrees with Rayleigh statistics. Figure 1 indicates the ratio of 

6 B p/< s->   for several assumed of   y ,    If   Y is of the order of one, 

Rayleigh statistics should be a good representation about the average 

if   < n->   is greater than two or three. 



III.      Statistics For Several Types of Chaff. 

Let us now consider that there are   M   types of dipoles to be 

distributed in space,   and let 

A       be the coherent return from the i-th radar resolution cell. 

a       be the coherent return from the (X-th dipole,   i-th type in the i-th cell, 

r       be the range to the a-th dipole,   i-th type in the i-th cell,   and 

n..    be the number of dipoles of the i-th type in the i-th cell. 

M    nii 
A< V, J, a-e 

i2kr. 
ia 

„     MMniinij +       i2k(r     -r    ) 

l   j   a    ß Ji" 

For fixed numbers   n 
li ' 

n 
im_ 

M   n . dr        dO M   nii nij 
np=l     mp      mp   E     E     E   a.    a*    - 3i> = J  n 

m=l 

i2k(r,   -r    ) 

n 
(Av) ira i.j    a     0     ia   J0 

But the volume integrals over   r are zero except for  i=j,  a = ß  ; thus, 

n 
M    im M   nii M    n 

<s,> =  f n    II    dQ E     S     a.a       =E   E     <<r.> 
i        J mp „       ia ia 1 

m   p r   1    a l   a 

M 
<Sjf> =    E   »     «r> 

i=l 

If the   n..    are random,   independent variables, 

M 
<s> =   E   <n„.> <<r.> 

i .      ii 1 
1 = 1 

(4) 



Again,  to determine the standard deviation of   s   ,   we must calculate 

nim 

, M     H . dr      dQ M       nigninniinij A   „.    i2k(r    +r,    -r.   -r.J 
<s2>=r     n      P=l      mP     "P        E E    E    E    E    a„a.0a*a.*e «a    hß     ^    J6 

1 Jm=l (Av)% g,h,i,j   a    ß    y    6       8ahß   ^J6 

The volume integrals are only non-zero for the cases: 

1.      g = h ,       which implies    i = j = g = h 

a) a = ß = T = ö 

b) et /ß 

1) a = y ,  ß = 6 

2) a= 6   ,   ß  = y 

2-      g A 

a) g = i   and   a = y      while   h = j   and ß = 6 

b) 8 = j   anc^   0- = 6       while   h = i   and  ß = 7 

Thus, 

2 M   nim M   nig M ngangß 
<s    > =        n     n      dQ       [  E     E     (a     a     p + 2 E     E     E     (a  „a J(a  Da  Q) 

1 Jm=lp,l      mPg = ia=l      ga §a g = i a/ß       8a §a    «P ^ 

M   M   nignih ^ ^ 
+ 2 E     E     E     E     (a     a     )(a     a    ) ] 

g /ha=lß = l      gCC §a     hß  hß 

M   nig , M ngangß MM nIgnih 
=   E     E     <<r    > + 2   E     E     E     <o->+2EEE     E     <o-> <<r, > 

g = ia=l      g g = l a/ß        g g/h  a    ß        g 

Changing the summation variables   g,h   to   i,j   we finally determine 

M M MM 
<s 2> =   E   n£i <<rf> + 2  E   n^n^ - l)<o"i>

2 + 2 E   E n^n,. <o-.> <<r.> 
i=l i=l i /j J J 



If the   n«.   are now considered random independent variables, 

M 2 M 2 2 MM 

<s,  >= E   <n    ><a.   >+ 2 r(<n      > - <nii»<a.>   + 2 nj   <h    Xh, ><a.><a> , 
i=l i=l l ?) J J 

and 

,2 2 2 
(6Si)= <s/> - <s£>' 

M ? M 2 2 MM 
: E   <n,.XaS+   2E (<n,.   > - <n    >)<a >   + 2 EE <n    ><n    ><a ><a > 
i=l      ix      x i=l       ll H x i#        ll       *J       X       J 

MM 

" ? E <nii><nij
><ai><aj>   ' 

i   J J J 

Rearranging terms finally leads to the result 

2     M 2 2 2 2 (6Sir = E    H<ni >+  2(6ntir - <nJt>i<ai>   +  ^^ (6 a.p ] 
i=l 

MM 
+ E E <n,.Xn..><o .><a.> 

.   /.       ii       ij        ii 
if J J J 

(5) 

2 2 2 
If we let   (6 a.)    = y.    <a.>     ,    and again assume Poisson statistics for each 

ill ° 

lii 

(bn£i)    = <ni.>      , 

and 

7     M ? ? ?     MM 

<6V> = * ^n* + (1 + V <nii»<^i> + TJ. <nii><nij
><CTi><a

j
> • 

1=1 ifj 
(6) 

Note that the case   M = 1    ,    i. e. ,  only one type of dipole,   reduces to the 

result found previously.    The cross terms provide for the Rayleigh limit. 

As one final calculation, let us assume that by virtue of the radar 

resolution, the   s.   are statistically independent.    (This assumption would 



by physically violated if there were large range Doppler coupling and a wide 

spread in local dipole velocity.    Further violation would be mathematically 

introduced if the data were analyzed by overlapping resolution volumes to 

measure the   s.   .  ) 

To calculate the incoherent radar return from   N   resolution cells, 

one defines 

N 
S = y    s 

i=l    * 

Now we find 

N 
<S>= Y     <s ,> 

i=l       l 
i 

(7) 

and 

2 NN N 2        N    N 

<S>=<EE     s,s->= y     <s. >+ E    E<s,Xs,>      . 
k=li=l    K 1=1 k^i      K       * 

- ?N2
NN NN 

(6S)    = <sS -<S>   = E   <s /> + EE   <s, ><s #> - E Z <s, ><s #>     . 
i=l k^i k  i      K 

2     N 2 2      N 2 
(6S)    = E    <siS-<si>   =E    (6s/      . (8) 

2 
If the <s.>   and the    6s .   were all roughly equal to some   <s>   and   6s °" <s> 

respectively for these   N   cells,  the final result is 

<S> =» N <s> 

(6S)2 ■» N (6 s)2 ~N <s>2 (9) 

and 

(6S)/<S>- — 
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