
fr i
"^Sw?

8

g
B

| VRANCE DATA HANDLING INTEGRATION STUDIES

I INLINE TRANSLATORS INCORPORATING BINARY/DECIMAL CONVERTERS

Woher D. Urban

NOVEMBER 1964
ESTI PROCESSED

D DDC TAB D FROJ OFFICER

D ACCESSION MASTER FILE

D

DIRECTORATE OF AEROSPACE INSTRUMENTJHWN-

ELECTRONICS SYSTEMS DIVISION K8TI CONThOL NR

AIR FORCE SYSTEMS COMMAND ,

UNITED STATES AIR FORCE °Y "" L

L. G. Honscom Field, Bedford, Massachusetts

AL 451dl

OF_ _CYS

Project 5932 Task Number .01

MIPR 4230486

DEPARTMENT OF COMMERCE
National Bureau of Standards

Washington 25, D. C

ESD RECORD COPY
RETURN TO

SCIENTIFIC & TECHNICAL INFORMATION DIVISION
(ESTI). BUILDING 1211

COPY NR. L OF COPIES

AD6I276?

NBS PROJECT NBS REPORT

4230486 8578

IMPORTANT NOTICE

NATIONAL BUREAU OF STANDARDS REPORTS are usually
preliminary or progress accounting documents intended for use within
the Government. Before material in the reports is formally published
it is subjected to additional evaluation and review. For this reason,
the publication reprinting, reproduction, or open-literature listing of
this Report, either in whole or in part, is not authorized unless per-
mission is obtained in writing from the Office of the Director, National.
Bureau of Standards, Washington 25, D.C. Such permission is not
needed, however, by the Government agency for which the Report has
been specifically prepared if that agency wishes to reproduce additional
copies for its own use.

I Qualified requesters may obtain copies from Defense Documentation Center (DDC). Orders
will be expedited if placed through the librarian or other person designated to request docu-

ments from DDC.
1

* •-

ESD TDR 6^-195

HANGE DATA HANDLING INTEGRATION STUDIES

IN-LINE TRANSLATORS INCORPORATING BINARY / DECIMAL CONVERTERS

Walter D. Urban

NOVEMBER 1964

DIRECTORATE OF AEROSPACE INSTRUMENTATION

ELECTRONICS SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

L. G. Honscom Field, Bedford, Massachusetts

Project 5932 Task Number .01

MIPR 4230486

DEPARTMENT OF COMMERCE
National Bureau of Standards

Washington 25, D C.

FOREWORD

This document has been prepared,by the Data Processing Systems
Division of the National Bureau of Standards under Task 5932. 01 for
the Air Force Electronic Systems Division in support of Hq AFSC PD
650A. It is the final report of the study broadly entitled "In-Line Trans-
lators. " In actuality the scope is much more limited since devices
properly called "in-line" translators (matrix converters) are in use
throughout the data network in great numbers. However, none of these
are being used for radix conversion. This report is concerned with
in-line translators for radix conversion which do not yet exist, and
which can find profitable application in the specific instance of data
message conversion.

The purpose of the study has been to determine the feasibility of
applying this technique to data networks, to determine how best to
design such devices and to establish designs. It has also been our
purpose to uncover heretofore unrealized problems of design and
application of these devices.

Textual preparation, assistance, editing, and printing were done
by Edward T. Johnson and Associates of Washington, D. C.

Arthur A. Ernst
Project Manager

ii

ABSTRACT

The application of In-Line Translators is covered in terms of
the specific adaptation of a wired program device which can effi-
ciently handle the translation between different numerical radices
or number base codes. Design criteria, feasibility, and a function-
al description are presented.

Since the Radix Converter is the central and primary modular
element of the translator concept, the logic designs for four princi-
pal types of decimal/binary converters are described in detail.

iii

TABLE OF CONTENTS

Section 1. INTRODUCTION

1.1 GENERAL
1.2 OBJECTIVE
1.3 APPROACH

Section 2. DESIGN CRITERIA

2. 1 RELIABILITY
2.2 CONVERSION SPEED
2.3 PRECISION
2.4 ADAPTIVENESS
2.5 INDEPENDENCE

Section 3. IN-LINE TRANSLATORS

3. 1 FUNCTIONAL DESCRIPTION
3.2 DESIGN FEASIBILITY
3. 3 EMPHASIS ON RADrX CONVERTER DESIGN

Section 4. RADIX CONVERTERS

4.1 GENERAL
4. 2 DESIGN PARAMETERS AND DESCRIPTION
4. 3 CONVERSION OF DATA FROM BCD TO BINARY
4. 4 BINARY TO BCD CONVERSION
4. 5 CONVERSION OF DATA FROM TIME IN HOURS, MINUTES,

SECONDS AND MILLISECONDS TO BINARY MILLISECONDS
4. 6 CONVERSION OF BINARY MILLISECONDS TO BCD HOURS,

MINUTES, AND MILLISECONDS
4. 7 SUGGESTED PROCEDURES FOR THE CONVERSION OF

MIXED NUMBERS

Section 5. CONCLUSIONS

IV

LIST OF ILLUSTRATIONS

FIGURE PAGE

1. Six Kinds of Formatting Problems 1
2. a. General Features of In-Line Translators 7

b. Operational Flow Chart for An In-Line Translator 7
3. BCD to Binary Converter Comparisons of Requirements and

Conversion Delays as a Function of Precision Capability 13
4. Binary to BCD Converter Comparisons of Requirements and

Conversion Delays as a Function of Precision Capability 14
5. Serial Data Stream, BCD to Binary Converter 15
6. Sequence of Events for Converting Data Serially by BYTES 16
7. Parallel Data Stream, BCD to Binary Converter 18
8. Serial by BCD Character, BCD to Binary Converter 20
9. Circuit Symbols and Conventions 21

10. Serial by Bit Stream, Binary to BCD Converter 24
11. Full Decimal Adder 25
12. Serial by Quantenary Character, Binary to BCD Converter 26
13. Two Level Half Adder 27
14. Two Level Full Adder 29
15. Serial Data Stream, Binary to BCD Converter 31
16. a. Truth Table For the BCD X4 Multiplier and Adder 32

b. BCD Combination X4 Multiplier and Adder 33
17. Binary to BCD Conversion by Recursive Division 35
18. Parallel Data Stream, Binary to BCD Converter 38
19. Multiplier Switch Logic 41
20. a. Truth Table For the Base 6 BCD Combined

X4 Multiplier and Adder 43
b. BCD Base 6 Combined X4 Multiplier and Adder 44

Section 1. INTRODUCTION

1.1 GENERAL.

1.1.1 A particular problem in the integration and augmentation of
existing information handling networks is the inconsistency in the for-
mat of data passed between various points in the data network. At
times of peak data loads when data equipment is working at near capac-
ity, these incompatibilities have the potential of causing major ineffi-
ciencies to occur. Format disparities can be classified as those
resulting from the message composition, the code symbolism utilized,
and the physical characteristics associated with transmission and
receipt. (Figure 1)

■

p
FORMATTING

)ARD-
i vnoN

ISLATION

5E PREFERRED

ESS AGE
STRUCTUP

D CON

' ID
PROGRAM

STORED
Pit OCR AM

CODE

CHARACTERS
MATRIX
JNVERTERS

TABLE LOOK UP
EITH1

,SF STORED
PROGRAM

! ID 4
PROGRAM

PHYSICAL
PI LSE LENGTH

MODULATK

TERMINAL
LO

MODEMS
SAJ

FI 1. SIX KINDS OF FORMATTING PROBLEMS

1.1.2 The problem of message data incompatibility can be solved all
or in part by an all encompassing standardization, by wired programs,
by stored programs, or by a combination of these. However, when
considered one at a time, none of these solutions lend themselves to
the problem as the one best solution.

1.1. 3 A wholesale standardization of formats is a difficult process to
implement when consideration is given to factors such as the immediate
outmoding of equipment which would result, the attendant huge problem
of revising procedures throughout the data network complex, and the
time and cost that would be required to change over to new procedures
and equipment.

1.1. 4 Physical formatting translation is necessarily handled by Terminal
Logic with conventional modulation and demodulation devices. Code
character translation can be handled readily either through the use of
Matrix Converters or Table Look-Up Techniques.

1.1. 5 Composition inconsistencies in message structure and content can
and are being rectified through the use of wired program devices. How-
ever, in view of the large number of differently configured special
devices required to obtain network compatibility, it seems reasonable
that stored programs would be better suited for this purpose. Con-
versely, the translation between different numerical radices or number
base codes are being handled by stored programs when it could be done
more effectively by wired program converters where the work load
justifies the initial hardware cost.

1.1. 6 It is the purpose of this study to demonstrate that this latter
problem can be efficiently handled by means of wired logic converters
and that such converters can be useful in reaching the goal of adequate
real-time operation and can offer a significant economic advantage
for heavy data flow over data conversion by means of stored programs.

1.2 OBJECTIVE.
It is the objective of this study to:

(1) Establish whether satisfactory translators can be designed
to perform specified routine in-line translation for high vol-
umes of data.
(2) Establish whether construction of such translators is
feasible in terms of cost and as a useful augmentation to cur-
rently installed computers.
(3) Establish the basic characteristics required of in-line trans-
lators.
(4) Establish design criteria.
(5) Develop logic designs of BCD to binary and binary to BCD
converters.
(6) Develop logic designs of time in BCD to binary and time in
binary to BCD converters.

1.3 APPROACH.
The translator when interposed between a particular data source

and receptor must be capable of accepting the data signals, converting
the data and generating signals suitable for use by the data receptor.
The approach taken in this study has been first to analyze the trans-
lator as an entity in the data system. Following this, the data conver-
sion problem has been removed from its system interface in order to
assure a radix converter design which is readily adaptable for use
throughout the data network. This can be achieved if the data for con-
version is preconditioned and standardized by an input unit of the trans-
lator prior to entry into the radix converter. After conversion, the
data is organized for transmission to the data receptor by an output unit.
Thus, the translator has been separated into an Input Buffer, Composition
Controller, Radix Converter, and an Output Buffer. Logic designs of
the converter have been developed as a part of the study; a design of the
complete translator can be developed for any specific application for
which a given set of values for input data and the characteristics of the
data line are stipulated.

Section 2. DESIGN CRITERIA

2. 1 RELIABILITY.

2.1.1 The system reliability of a data stream is equal to the product of
the reliabilities of all the units in the stream. Therefore, the reliability
of each element placed in series is of particular importance. A malfunc-
tion in an in-line unit of a data stream can alter or even destroy data
passing through it. For this type of function, reliability should only be
limited by the feasibility of construction and economic practicality.

2.1. 2 Current techniques in the utilization of solid state components
lend themselves to achieving this end. The use of components which
require regular maintenance, frequent performance checks, and adjust-
ment should be avoided. Similarly, the circuits employed must follow
good design techniques, be held to a minimum, and be relatively insensi-
tive to power line fluctuations or to disruptive signals which may be
generated by neighboring devices.

2.1. 3 The device should be capable of sustained operations with a mini-
mum amount of maintenance. Design of the unit should include careful
consideration of the need for the ready detection of malfunctions and ease
of repair.

2. 2 CONVERSION SPEED.
The translator must not introduce a data lag any greater than now

experienced and should, for the sake of system improvement, actually
improve on current processing times. It is preferable to have unused
capacity at a minor additional cost than to require a particular circuit
design for every speed requirement; therefore, translators are to be
designed for the highest practical speed of operation within the limits
of reasonable costs and currently available solid state circuitry-. The
designed processing limit will be 100,000 six bit characters per second
which is at about the ceiling of the current magnetic tape transport
capability.

2.3 PRECISION
Translators are to be designed to accomodate a precision rate of one

part per billion. Included will be a provision for operating at a lower
precision of one part per million by a simple adjustment and/or deletion
of components.

2.4 ADAPTIVENESS.
The design of the translator should permit a maximum amount of

flexibility in application. This built-in adaptivity will obviate the
necessity of designing a special device for every translator applica-
tion.

2.5 INDEPENDENCE.
The translator is to be a self-contained independent entity capable

of being inserted in the data line and functioning thereafter without
further external assistance.

Section 3. IN-LINE TRANSLATORS

3. 1 FUNCTIONAL DESCRIPTION.
In actuality, the translator will be composed of approximately ten

modular units. However, for purposes of explanation, consider that
the translator is composed of four principal elements; an Input Buffer,
a Composition Control Unit, a Radix Converter, and an Output Buffer.
(Figure 2a and 2b) The following is a basic description of the processes
occurring in these elements.

3.1.1 Input Buffer. Since the required translation could include changes
in the physical, code, and composition format, parity checks, and data
flagging, the radix conversion may only be a part of the complete trans-
lation process. For this reason it is desirable to make the converter
"system independent." The first step in achieving this in the interception
of the data from the data link by an input unit which alters the incoming
message to make it acceptable for introduction into the Composition
Control Unit. In this input unit there may be a demodulator which puts
the proper physical format on the received signal for further passage
in the translator. Thus, the input unit is capable of accepting the input
signal, physically adjusting, and storing the input message.

3.1. 2 Composition Control Unit. This is a wired program device which
essentially integrates and controls the operations of the translator. It
controls the transfer of measurement data into the radix converter and
controls the composition of the output message. The incoming message
procedural data, such as headers and flags, are separated from the
measurement data by an implicit or explicit wired program and stored
for later recombination after data conversion. If there is to be a data
quality check it will be done on receipt in the Composition Control Unit.
Also in this unit the measurement data is assembled and restructured as
necessary for code and radix conversion. The measurement data is
separated into characters or syllables for introduction into the radix
converter. However, these characters may not be in the code for which
the converter was designed and it may therefore be necessary to insert
an additional step before the data conversion process. If the code is
incompatible, a code standardization operation will be provided. This
step may be required, for example, in converting data from BCD to
binary. At the completion of this process all data entered into the radix
converter will be in the form of 8-4-2-1 characters called BYTES.
Because the number of bits of translated data will not agree with the
number sent into the translator, the Composition Control portion must
either make it possible to add or delete characters from the string if
they are received and produced serially, or to enter blank characters

6

*

X

where a fixed parallel format is used. When the measurement data is
received in a form unsuitable for convenient conversion, the incoming
data characters are assembled and stored in the input buffer until the
complete measurement data is available. It is then restructured into
the proper form for conversion by the Composition Control Unit. This
step will cause a time lag in addition to the delay caused by the conver-
sion process which is equal to the time required to receive the entire
measurement word. Since the tasks of these units may vary consider-
ably from use to use, it may be necessary to provide a variety of such
modules for translators.

3.1. 3 Radix Converter. The radix conversion will be accomplished by
a wired-program unit. A minimum of storage operations will be included
in order to keep conversion speed high. Arithmetic operations are
accomplished, as much as possible, by stream methods in which the
output responds to the inputs within a settling-down-time which is small
compared to an incoming character period. For example, in the BCD
to binary converter, the time required to handle each incoming char-
acter is expected to be about 6 microseconds. The Radix Converter is
covered in further detail in Section 4.

3. 1. 4 Output Buffer. The output interface presents a problem similar
to that of the input interface. Here the output unit provides the neces-
sary storage, places the converted data in the correct code format, and
under the control of the Composition Control Unit, places the outgoing
message in the proper composition format. Finally, the interface sec-
tion of the output unit places the outgoing signal in the required physical
format. The physical format change may require a modulator; the code
format change may require a wired matrix to go from 8-4-2-1 to BCD
or whatever code is used by the receptor. The Composition Control and
Output Unit combine to keep the flow of characters or words proceeding
at the rate at which they enter so as to obviate the need for storage of
data or to minimize the delay through the translator. Since not all data
in a message are converted, some may be bypassed onto the line while
the rest goes through the converter. The translator control unit handles
this type of traffic pattern, allowing only data to be converted to go to
the converter.

3. 2 DESIGN FEASIBILITY.
From an analysis of a wide range of variable input and output require-

ments and the structure of the designs associated with these requirements,
the general problems associated with the design of in-line translators
have been organized into a manageable form. As a consequence, it has
been determined that the design and construction is technically feasible
within the present state of the art, and that the elements required for
construction are commercially available at reasonable cost.

9

3. 3 EMPHASIS ON RADIX CONVERTER DESIGN.
The premise throughout this study has been to design a translating

device which can be readily inserted at any required point in the data
network with a minimum of re-configuration. As previously indicated,
the wide range of possible data requirements and associated variables
have been considered in the determination of design feasibility. The
study has demonstrated that it is highly practical to meet the particular
requirements of a given application by the addition, deletion, or restruc-
turing of modular units of a basic translator. However, until the specific
input/output values are stipulated for a point of application, any detailed
design of the entire translator unit would be purely an academic exercise.
Primary design effort has therefore been concentrated on the Radix Con-
verter. This unit is the core of the translator and is designed to have
unlimited application for a specific type of conversion regardless of the
individual interface requirements of the complete translator.

10

Section 4. RADIX CONVERTERS

4.1 GENERAL.
To relieve the central data processors of part of the data conversion

burden, it is proposed to provide several types on in-line translators.
In particular, four types are being considered:

(1) Translation of data from BCD to binary.
(2) Translation of data from binary to BCD.
(3) Translation of data from time in hours, minutes, seconds,
and milliseconds to binary milliseconds.
(4) Translation of time in binary milliseconds, to hours, minutes,
seconds, and milliseconds.

As previously explained, the heart of this translation process is in the
Radix Converter. This section outlines in detail the design parameters
and the logic design in the four types of converters.

4. 2 DESIGN PARAMETERS AND GENERAL DESCRIPTION.

4.2.1 The converters are designed to handle pure measurement data up
to 100,000 six bit characters per second. At lower input rates the con-
verter has been designed to convert the incoming data BYTE at its max-
imum rate, store the results and await the next BYTE to be processed.
Higher data rates will be accommodated by the use of parallel conversion
for which converters have been designed.

4. 2. 2 A data precision of one part per billion or a number containing
nine decimal digits or 30 bits has been designed into the converter.
For cost and circuit comparison purposes, circuits for a lower preci-
sion rate of one part per million have also been designed. Some
economy can be achieved where very short numbers are to be handled
by omitting some of the circuitry required for the higher precision
while retaining the basic universal module.

4. 2. 3 To further promote design simplicity, wherever possible the
data measurements are considered to be in terms of the smallest unit
employed, thus making the entire measurement a whole number. For
example, hours, minutes, and seconds would each be expressed in
milliseconds.

4. 2. 4 Two basic types of conversion methods have been developed. The
first of these (serial conversion) converts the data measurement piece-
meal serially by character or BYTE, using iterative operations. The
second (parallel conversion) operates on the entire data measurement in
a systematic way in a single operation. Being more economical of

11

circuitry, the serial conversion will generally be used even when the
incoming data is received broadside. However, short processing time
requirements'may demand that parallel conversion be utilized. Figures
3 and 4 demonstrate that the circuitry required for parallel operations
greatly exceeds that needed for serial operation for precision capabili-
ties in excess of one part per 100,000.

4. 3 CONVERSION OF DATA FROM BCD TO BINARY.

4. 3.1 Let Di D2 D3 D4 represent a 4 decade decimal number. The rank
of each digit is expressed by writing the number in its explicit form:

Dl X1000 + D2 X100 + D3 X10 + D4
Rewriting this number in the equivalent nested form demonstrates
the decimal to binary process:

Di D2 D3 D4 = 10 (10 (10D! + D2) + Dg) + D4
Again, consider a number whose digits are:

Di D2 D3 D4
Di is the most significant digit and D4 is the least significant. Using
binary operations, Di is multiplied by ten (1010) and D2 is added to the
product to obtain the intermediate sum Si. Si is in turn multiplied by ten
and D3 is added to this product to obtain the next intermediate sum S2.
The process is updated to obtain the sum S3 which is the required binary
equivalent of Di E^ D3 D4. This process is summarized as follows:

10 Di + D2 = Si
10 Si + D3 = S2

10 S2 + D4 = S3

4. 3. 2 In the serial conversion process, each digit is processed in a sep-
arate cycle. Thus the determination of each intermediate sum is a separate
conversion step in the iterative process. The parallel conversion process,
on the other hand, involves a single stream operation on a chain of adders.
In our example, digits Di and D2 are combined to form the sum S-^ which
is immediately thrust forward to be combined with D3 to form the sum
S2. The process continues uninterrupted until the conversion is. complete.
Actual multiplication is avoided; instead, multiplication by ten is accom-
plished by adding twice the multiplicand to eight times the number. This
process involves binary shift operations.

4. 3. 3 Figures 5 and 6 are relevant to the exposition which follows. For
serial operations the converter consists of an Augend Register, an Addend
Register, a Sum Buffer, stream binary adders, a Data Switch, and con-
trol circuitry. To simplify the latter, each cycle processes only one digit.
With each new value to be converted a signal is included which clears the
Augend and Addend Registers.

4. 3. 4 When the first (most significant) BCD 4 bit BYTE is loaded into

12

IM

i - m

41 - IM

I"
H

3
8

i

41 -

I - M-

BASED ON O.
0.2 UM« CYCLE

W-'l

DATA RECIPROCAL PRECISION

10*1 10-1

MI

FIGURE 3. BCD TO BINARY CONVERTER COMPARISONS OF REQUIREMENTS AND CONVERSION
DELAYS AS FUNCTION OF PRECISION CAPABILITY.

13

640

560

480

400

520

240

160

JO

160

140

- 12«

- 100

8
-ui 10

a

1

I- 60

40

- 20

BASED ON 0.1 iiitc PER STAGE AND
0.2 UMC CYCLE TIME PER STORAGE ELEMENT

1 2 J. 4 « 1 7
10-1 10-1 KM 10 -1 10-1 (0-1 10-1 IO'I

RECIPROCAL PRECISION
CONVERTER PRECISION CAPABILITY »T-l

14

FIGURE 4. BINARY TO BCD CONVERTER COMPARISONS OF REQUIREMENTS AND
CONVERSION DELAYS AS FUNCTION OF PRECISION CAPABILITY.

so =

o
er

8

o

I
UJ
Q.
O
or
UJ

<r
UJ
> z
o o

SI = STANDARD DATA Tl*

CLE*

BYTE
TO or TO

"4 V M
Tl

AUGEND REGISTER ADDEND REGISTER

CLEAR
T2

13

T
XIO r^—r

STREAM ADDERS

T5

SUM BUFFER

' Ä

COMPLETE

PUT BUFFER

Jri*

83-2

SERIAL DATA STREAM BCD" BINARY CONVERTER

FIGURE 5.

15

to

er2
o i- i- o
< UJ
_i to

is

O
to

l-
*
UJ 2
Z Ul

5-
cr or
4 3
1- </) to 4

UJ
2

16

a
z
UJ UJ
o I-
Q >
4 CD

3*

o
z
UJ

»°
to 4

• UJ*
u

»- OQ

a uj
o o
4

«jto

?£ zi(_
g2

•
O

o*5

4W

►-
4° 5 z UJU

Ho OQ

4

E = </}
se I
Ui CD O

si
o

88 1
to,

* z i

R
A

O

T
SI

G
 s

5
in UJ

1 tn

< UJ _

ü 3
O

"I

CO
cO CC

UJ
Q t-
Z
UJ

3
</l

o
5
UJ

K 4 or

CC
4

o
z

UJ UJ
_l a u Q

4

Q
Q 2
4 UJ

h- o»
_l 3

4

1 ,
a
UJ

Z 1-
o UJ

to 2
CC *
UJ O
> o
z
o h-
o O

z

CO
UJ

>

>
CD

UJ

< a
o z
f-
or
UJ
>

8
a:
E

UJ
>
UJ

UJ
CJ

UJ

O
UJ
GO

u>
UJ
or
O

the Addend Register the converter performs the first cycle of the con-
version process at its designed rate. Using binary operations, each
cycle consists of multiplying the contents of the Augend Register by ten
and adding the contents of the Addend Register; this sum is temporarily
stored in the Sum Buffer and then transferred to the Augend Register.
The cycle is repeated with each remaining most significant digit until
the conversion is complete.

4. 3. 5 The time sequences of events (Figure 6) in the conversion of
BCD numbers to binary commences with the arrival of the signal SQ
signifying that a new measurement is ready for processing. SQ clears
the Augend and Addend Registers by allowing time TQ to be internally
generated. Next, when the first measurement BYTE is ready for pro-
cessing, the signal Si permits the Addend Register to be loaded with the
BYTE which is then processed with the value being held in the Augend
Register. However, since this is the first BYTE of a new measurement
the Augend Register is empty and the value is passed to the pre-cleared
Sum Buffer at time T3 where it is held pending the next internally gen-
erated T]_. The next generated TQ clears the Addend and Augend Regis-
ters and at the following self-generated Ti time the Augend Register is
loaded with the contents of the Sum Buffer through the Data Switch. If
the next input signal Si does not appear at this time, operations are sus-
pended pending its receipt. In this way the converter adapts itself to
any input rate. When Si appears the next most significant BYTE is
introduced into the Addend Register where it is added to ten times the
value of the contents of the Augend Register. While this process is still
going on, the generated T2 causes the Sum Buffer to be cleared and T3
allows the new summation to be loaded in the Sum Buffer. Again, as
the cycle re-commences at TQ, the Augend and Addend Registers are
cleared of the old values and at Ti the new value is placed in the Augend
Register. The process continues as before until the last BYTE is ready
for processing. At the signal S2 indicating the final BYTE, the Data
Switch is shifted to "Conversion Completed" and the converted value is
loaded into the Output Buffer. The converter then halts to await the
next Start of Message Signal.

4. 3. 6 Data presented in parallel can be converted by the device outlined
in Figure 7, which uses the same mathematical principal as used in the
serial BCD conversion. This device contains a 36 bit register plus
eight groups of stream binary adders that process nine decade decimal
numbers. Referring to the figure, the data word is stored in the Regis-
ter. The number then has its BCD (BYTES) presented to the adder
groups which follow. Thus the most significant digit Di is combined
with its neighbor D2 to form 10 Di + D2 in the first set of adders. The
interim sum Si which results then appears at the input of the next set

17

STANDARDIZED PARALLEL DATA INPUT

01 02 03 04 05 06 07 08 D9

V If

r
r1

1 F 1'

BINARY ADDER
I0DI + D2=S|

1 i
IOSI + 03 = S2

1 1 r

I0S2+ 04 = S3

r

1
/
/

r

1
I0S6 + D8 =S7

I0S7 + D9 =S8

PARALLEL DATA OUTPUT

PARALLEL DATA STREAM BCD TO BINARY CONVERTER

84-1

!8 FIGURE 7.

of adders where it is in turn combined with the next most significant
digit. In this way the combining processes ripple through the sets of
adders until the completely converted number is finally gated out through
the Output Buffer.

4. 3. 7 A circuit design for the serial converter is shown in Figure 8.
Figure 9 shows the circuit symbols and conventions used in this report.
To estimate the size of this converter the concept of a normalized
module is employed. A normalized module is a printed circuit board
that may contain any of the following functional units:

1/4 Bit Decoder
1/3 Divider Network
1/2 Combined X4 Multiplier and Adder
1 Full Binary Adder
2 Half Binary Adders
4 Flip Flops

10 NOR Gates
10 Drivers

For purposes of calculating circuit delay, the converter shall be built of
circuitry that does not introduce more than 0. ly sec gating delay per stage
and the cycle time for the flip flops shall not exceed 0.2 usec. These
circuit requirements are easily met with materials currently available at
reasonable cost.

6 Decade ENM 9 Decade ENM

Input Buffer Flip Flops
Control Flip Flops
Clock

12
12

1

3
3
1

12
12

1

3
3
1

NOR Gates 10 1 10 1
HexLdecimal Decoder 1 1 1 1
Addend Register Flip Flops
Augend Register Flip Flops
Sum Buffer Flip Flops
Stream Adders/Full Adders
Drivers

4
17
20
20
10

1
5
5

20
1

4
27
30
30
10

1
7
7.5

30
1

Equivalent Normalized Modules 41 56
Conversion Delay 25 usec 56 ysec

4. 3. 8 Figure 3 demonstrates the quantity of circuitry required vs. conver-
sion delay in series and parallel converter operations capable of accomo-
dating from two to nine decade numbers.

19

Si dl III ail

o « 0 zu O
St 8 «

38 1 1 3

3 5 d 9 d

333«
° ° h, -i

8 a

'IS
*«

<

o

Q
o m

20

COLUECTOR
COMPLEMENTARY
SIGNAL OUTPUT

COMPLEMENTARY
SIGNAL OUTPUT

FLIP FLOP

COLLECTOR
► SIGNAL

OUTPUT

SET RESET

ONE SHOT

SET

B

SIGNAL
► OUTPUT

t ' SIGNAL OURATION

r AB

AB

-*■ ä" + B

TO FLIP FLOP BASE

DIOOE
STEERING

GATE

INPUT
SIGNAL

4d
A i

TO BIAS
144-1

FIGURE 9. CIRCUIT SYMBOLS AND CONVENTIONS
21

4. 3.9 The tally of circuit components required for parallel conversion
is as follows:

6 Decade ENM 9 Decade ENM
Converter Control

Clock 1 1 1 1
Flip Flops 8 2 8 2
Hexidecimal Decoder 1 1 1 1
NOR Gates 10 1 10 1

Converter
Word Buffer Flip Flops 24 6 36 9
NOR Gates 5 1 8 1
Half Adders 15 8 24 12
Full Adders 48 48 116 116
Drivers 4 1 4 1

Equivalent Normalized Modules 69 144
Conversion Delay 4 usec 6 usec

4. 3. 10 Referring again to Figure 3 it can be seen that the serial converter
can meet the conversion speed requirement. For a data precision of one
part per million or less the parallel conversion technique is competitive
with the serial conversion technique in the amount of circuitry required.
At a precision of one part per billion, however, the serial conversion
method requires only about 40% of the amount required for parallel con-
version. In terms of time required for conversion, the parallel conver-
sion method is much more rapid.

4. 4 BINARY TO BCD CONVERSION.

4. 4. 1 Since a 30 bit binary number converts to 9 decades in decimal or
36 bits in Binary Coded Decimal, the incoming message structure must
contain 6 bits of zeros or other expendable data to permit the input and
output transmission rates to be the same. There are at least three
feasible methods for converting data from binary to BCD. In all of these
methods the more significant bits are processed first.

4. 4. 1.1 Method 1. The decimal equivalent of each binary bit is summed
in a decimal accumulator.

4. 4. 1.2 Method 2. A binary number up to and including 1001 (the equiv-
alent of 9 in decimal numbers) may also be considered as a BCD number.
This method takes advantage of this by dividing the data word into BYTES
containing up to 3 bits (octal). By treating these BYTES as decimal num-
bers and by using decimal operations, the binary number is converted
to a BCD representation. Each BYTE then would be ranked according

22

to powers of the radix. In the general case, the radix referred to may-
differ from 2 according to whether the data word is converted by bit or
by BYTE. As in the above case, when the data word is subdivided into
fixed length BYTES, the radix has a value of two raised to the power
that corresponds to the number of bits in the BYTE. Conversion is effec-
ted by using decimal operations in the following recursive iterations:
The first cycle is completed when the most significant BYTE is multiplied
by the value of the radix while the next most significant BYTE is added
to the product. The succeeding iterations are performed by multiplying
the resulting sum obtained in the preceding iteration by the value of the
radix and adding the next most significant BYTE outstanding to the result.
This procedure is terminated when the least significant BYTE is finally
included in the resulting sums.

4. 4. 1. 3 Method 3. This method is a casting out of tens process. The
data word and the quotients obtained are divided by ten to yield successive
remainders whose values correspond to the decimal digits in increasing
powers of ten.

4. 4. 2 A brief description of the implementation of each method follows.

4. 4. 2.1 Implementation of Method 1. In this method the BCD equivalent
of each binary bit of a data word is summed by decimal adders. The
following description refers to Figures 10 through 13.

4. 4. 2.1.1 The Start of Message Signal (SQ in Figure 10) clears the Aug-
end Register, the Data Character Buffer, and the Data Bit Counter at
time TQ. The first data character is loaded by signal Si into the 6-bit
shift register called the Data Character Buffer, to initiate the conversion
process at time T]_. The major bit of the Data Character Buffer and the
number stored in the Data Bit Counter determine the value of the BCD
number serving as the Addend to the decimal adders. The Bit to BCD
Equivalent Decoder is used to generate the proper BCD equivalent for
each binary bit. This number and the BCD number stored in the Augend
Register are added together by the stream decimal adders (see Figure
11). While these quantities are being added together, the Sum Buffer is
cleared at the generated Tg. The sum is stored in the Sum Buffer at
T3. The Augend Register is cleared at TQ to complete the conversion
of the first bit to BCD. At T]_, a new addition cycle is initiated when the
Augend Register is loaded with the contents of the Sum Buffer; the Data
Character Buffer has its contents shifted one bit position to the left; and
the Data Bit Counter is increased by one. When all 6 bits of the first
character have been processed, the conversion can proceed only when the
next character is loaded into the Data Character Buffer. This action may
occur at T^ for uninterrupted conversion; otherwise, the conversion halts
until it does. If this is the case, the status of the converter is: The

23

SI « Tl LOAD DATA
(6 BITS)

To CLEA R

Tl ADD I

SO ■ TO or TO CLEAR

Tl

V)
z o
t-

o

UJ

UJ >

8

n
AUGEND REGISTER

Tl

INPUT DATA
30 BIT WORD

BIT
COUNTER!

DATA
CHAR BUFFER

TIVTI

Tl

SHIFT LEFT
I BIT POSITION

BIT TO BCD DECODER
(ADDEND REGISTER)

LINES Tl

STREAM DECIMAL AODERS

CLEAR
T2

T3

SUM BUFFER

INCOMPLETE

COMPLETE

OUTPUT DATA BUFFER

FIGURE 10.SERIAL BY BIT STREAM BINARY-BCD CONVERTER

IS-I

24

er
UJ
o
Q
<

s
3
ü.

3

ä£8 25

8
Q
<
i

Li.
_l
<
I

>
a
o

c\i
LÜ
cr
3
O
Li.

26

Q:
UJ

8
<
i

d
3
U_
_)
UJ
>
a
8
H
ro

S
2

27

Augend-Register is storing the BCD equivalent of the first character,
the Data Character Register is empty, and the Data Bit Counter stores
a count of six. 'The succeeding characters are processed in the same
way as the first. While the fifth data character is being processed, and
after the Data Bit Counter has been incremented to a count of 29, at T2
the Data Switch is set to the "Conversion Completed" state. As a con-
sequence, when the final bit has been processed and the Augend Register
has been cleared at TQ the data in the Sum Buffer is loaded to the Out-
put Buffer, the Data Bit Counter is cleared, and the Data Switch reset
to the " Conversion Not Complete" state. The converter may now accept
the first character of the next data word for processing.

4. 4. 2.1.2 One measure of the practicality of this method for conversion
is the calculation of the conversion speed, which is obtained by multiply-
ing the gating delay per stage by the total number of gating levels involved
for the entire conversion. The gating delays are introduced by the deci-
mal adders employed in the method. The type chosen is a compromise
between the quantity of circuitry required and the delay with which the
decimal carry and BCD sums are generated. The two BCD digits and the
decimal carry from the preceding decade are added together in a two stage
process to generate a BCD sum and decimal carry. First these quanti-
ties are added together as binary quantities (Figure 11). Then six is added
to the result when the sum exceeds 9. By this means the BCD sum and
decimal carry are generated by gating through 16 and 10 levels of logic,
respectively. Half adders and full adders of the type shown in Figures
12 and 13 are used because they can generate the sum, the carry, and
their respective complements, by gating through only two levels of logic.
Using the established circuit design parameters of 0.1/^sec gating delay
per stage and 0.2# sec flip flop cycle time, the conversion delay for a
30 bit binary is 294 sec. This is nearly five times the acceptable limit
of 60/<sec. To achieve the speed desired using this method required
circuitry having less than 0. 02« sec gating delay per stage. Within the
techniques and materials currently available this type of response cannot
be easily or economically achieved and is therefore considered to-be an
impractical approach. The number of addition cycles can be reduced by
the pairing of certain bits so that their BCD equivalents are superposed
to form a composite BCD equivalent. However, only a 20% time reduc-
tion can be achieved and this only at the cost of assembling the entire data
word prior to conversion and greatly complicating the control circuitry.

4. 4.2.1. 3 The method described above requires the following circuitry:

28

LOAD
Sl= 2 BIT BYTE

DATA INPUT

Tl*

SO =

_J
o

o
o
<n
8
I
It!
o

i
UJ

CLEAR

Tl

Tp*or TO I
AUGEND REGISTER

C

r
i

ADDEND REGISTER

SUM BUFFER

INCOMPLETE. ^DAT^

COMPLETE

OUTPUT DATA BUFFER

E
X4 ; + XI

STREAM DECIMAL ADDERS

CLE AR T3

I*!-

FIGURE »4.SERIAL DATA STREAM BINARY-BCD CONVERTER

29

30 Bit 20 Bit
Data Word ENM Data Word ENM

Decimal Adders 9 9 6 6
Flip Flops: 36 9 24 6

Augend Sum Buffer 36 9 24 6
Data Character Buffer 6 1.5 6 1.5
Data Bit Counter 5 1.25 5 1.25

Bit to BCD Equivalent Matrix 1 4 1 4
Drivers 10 1 7 1
Control 6 6 6 6

Equivalent Normalized Modules 31 22

4. 4. 2. 2 Implementation of Method 2. To implement this method, it is
expedient to divide the incoming data word into two bit (quantenary)
characters as a compromise between the complexity of the required cir-
cuitry and the number of required iterations.

4. 4. 2. 2.1 The Start of Message Signal SQ (see Figures 6, 14, 15, and
16) starts the conversion process by clearing the Augend and Addend
Registers at time Tg. The Addend Register is loaded with the input
standardized quantenary BYTE by the signal S^ at the generated T]_.
This starts the process of multiplying the contents of Augend Register
by four (the radix value of a two bit BYTE), and adding to it the contents
of the Addend Register. While this action is still going on at T2> the Sum
Buffer is cleared and at T3 the Sum Buffer is loaded with the results of
the summation process. At the next self-generated TQ time the Augend
Register and the Addend Register are cleared, and at the next self-gen-
erated T^ the Augend Register is loaded with the contents of the Sum Buffer.
In coincidence with the self-generated T^ signal, a Load Addend signal may
occur to start the next iteration. If it does not, the converter halts to
await the Load Addend Signal (S^) to start the next iteration. The succeeding
iterations are performed as described until the last BYTE has been con-
verted; then after clearing the Augend and Addend Registers, the converted
data being held in the Sum Buffer is transferred to the Output Buffer in-
stead of to the Augend Register. The converter would then be in the proper
condition to process properly the next data word. Figure 15 shows the circuitry
required for the implementation of this method.

4. 4. 2.2.2 To multiply the contents of the Augend Register decimally by
4 and add to it the contents of the Addend Register, a BCD combination
multiplier and adder circuitry has been designed. Shown in Figure 16a
and 16b are the BCD Truth Tables and the logic required to generate this
function, which is obtained by gating through only 4 levels of logic. Each
decade of the Augend in conjunction with a possible two bit carry from
the preceding decade or Addend character is used to gate out a decimal

30

■~1

2t

<
Q
<t

*?>

♦ ■
-*>—r

52=;
52=;

-St;
52=;
52=;
A"
52=;
52=;
55=;
52=;
52=;
52=;
52=-
St;
52=;
52=;
52=;
52=;
52=
52=;
52=;
52=;
52=;
52=;
52=;
52=;
52=;
52=;
52=-
52=;
52=;
52=
52=-

i

lr
Sei

— I- <<r

< mZ

i_±

E&

M

36B

iyrx

as

SO

E

So

SB
52=13
5fc=g
52= rg

52=;
52=;

52=;
52=

52=-g
52=
ra=;

52=;
52=
52="
52=;
52=1
55=;
92=;
52=;
52=-
52=;
52=;
Kl
52=-
52=;
52=;
52=;
52=;
52=i
52=-

-is
5fcr@ I

<~—

W?h IU 3 OIL

s"3 -«I

I
° i o S ill • I

ml >- 5

g a:

o
o ffi

i
m

UJ
a:

I'i

31

BCD TRUTH TABLE FOR FUNCTION

4(dcba) + qp - 10 q«p' + d'c'b'a'

INPUT DATA OUTPUT DATA INPUT DATA OUTPUT DATA

d c b a q p qV d'c'b'a1 d c b a q p q p d'c'b'a

0 0 0 0 0 p 0 0 0 0 0 p 0 0 0 0 l p 0 0 0 0 1 p
0 0 0 1 0 p 0 0 0 1 0 p 0 0 0 1 l p 0 0 0 1 1 p
0 0 10 0 p 0 0 1 0 0 p 0 0 1 0 l p 0 1 0 0 0 p
0 0 11 0 p 0 1 0 0 1 p 0 0 1 1 l p 0 1 0 1 0 p
0 10 0 0 p 0 1 0 1 1 p 0 1 0 0 l p 0 1 1 0 0 p
0 10 1 0 p 1 0 0 0 0 p 0 1 0 1 l p 1 0 0 0 1 p
0 110 0 p 1 0 0 1 0 p 0 1 1 0 l p 1 0 0 1 1 p
Olli 0 p 1 0 1 0 0 p 0 1 1 1 l p l l 0 0 0 p
10 0 0 0 p 1 1 0 0 1 p 1 0 0 0 l p l l 0 1 0 p
10 0 1 0 p 1 1 0 1 1 p 1 0 0 1 l p l l 1 0 0 p

d c b a
q P
q P

d'c'b'a'

INPUT BCD (binary coded decimal) digit
INPUT BCD carry or 2 bit BYTE
OUTPUT BCD carry
OUTPUT BCD digit

d c b a and d'c'b'a' range in value between 0 and 9

OF FUNCTION

d c b a
d c b a
d c b

q
a
P

q p' d c V a'

EXAMPLE:

then

since

d c b a
q P
qV

d'c'b'a'

0 1

0 1

1 0
1 1
1 0
1 1

6
3
2
7

6 + 3 = 27

150-1

FIGURE 16a. TRUTH TABLE FOR THE BCD X4 MULTIPLIER AND ADDER

32

o

lT>\j -O

o
icr

To
o

^ r~~ IU

tot ^/

I

1«

ce
UJ

Q
Z
<
tr
Hi

s

1
03
2
O
u
Q
O
CD

S
UJ
o:

33

sum, and at most, a two bit carry. This is so, since a series of nines
in the Augend Register when multiplied by four and having a carry of
three added to it can at most generate a sum of 9 and a carry of three.
This effect results in limiting the carry from any particular decade to
the next higher decade. At most, it can effect the least significant bit
of the decade beyond, making it odd or even. Since the propagation of
carries is limited, conversion speed is high. Furthermore, the cir-
cuitry required is little more than required for 2 binary full adders.

4. 4. 2.2. 3 The estimated time for conversion can be calculated by noting
that two bits are processed at a time. To process 30 bits, 15 iterations
are required. Assuming that each iteration can be completed in the
time to gate through 4 levels of logic, the complete conversion requires
15 times this value (60 levels) or 6.0usec plus 15 storage cycles or
3 usec for a total conversion delay of 9 usec. This more than meets the
design goal for conversion speed.

4. 4. 2.2. 4 Study favors this method since the circuit requirements are
reasonable and their quantity and complexity are considered optimal.
This technique also results in the shortest conversion time for circuitry
operating at any given speed. This method requires the following cir-
cuitry:

30 -Bit Word ENM 20 -Bit Word ENM
Control Circuitry 7 7 7 7
Combined X4 Multiplier

and Adders 9 18 6 12
Flip Flops: Augend 36 9 24 6

Addend 2 0.5 2 0.5
Sum Buffer 36 9 24 6

Drivers 10 1 10 1

Equivalent Normalized Modules 45 33
In Figure 4 is shown the module count and the conversion delays for Method
2 as a function of the reciprocal data precision.

4. 4. 2. 3 Implementation of Method 3. The entire data word is transferred
to the Dividend Register before the conversion process is initiated (see
Figure 17). When the data word has been transferred it is divided by ten
by the divide networks and the remainder obtained stored in the Decimal
Digit Register. The quotient obtained replaces the original data word to
initiate the next and similar division cycle. When 9 division cycles have
been performed, the Decimal Digit Register contains the 9 BCD charac-
ters equivalent of the original 30 bits. To facilitate the conversion process
and optimize the conversion speed by a reasonable quantity of circuitry,
the data word is processed piecemeal. For this purpose the data word

34

3

\
t
1

3

3

\

<r
UJ
»-
(/)

UJ
cr
o
z
UJ
Q
>

e
t

i
J

>

>

3

_
_
 D

A
TA

W
O

R
D

S

E
R

IA
LL

Y

 B

Y
C

H
A

R
A

C
T

E
R

i-

0»

u
UJ
o

or
UJ
C
u.
3
00

1

UJ

a
u
OD

o
5

—

o

o

to

ro
r-

or
UJ
1-
t/>

o
UJ S
10
ro

5
5
_i
<

O

CO

u
Ul
o O

K
U
o

<r
CM "L, x.

o

O
O

Q
U

O
TI

E
N

T
R

E
G

IS
TE

R

1
T

2

C
L

E
A

R

'

d
o>
>
5

UJ

d * CO

o

ro

to
r-

<->
IU
Q

c

at

t-
u
o

orfo z
CM «u

0>

r-
U
o

i
Q

6

CO

>
o

^-I—'

UJ

d

O

r
* CO

o

to

ro

>
5

c
00

u
o

CM ~u orfo

CO

r~
U
O

u
UJ
a

«

6 >
S

UJ

d

UJ
>

* CO

o

ro

to
r-

CO

ocfo 3

U
o

CM (M|_^.
N

r-
U

o

u
Q

6
>
S

UJ

d m
u
UJ

Q

UJ
ce

<* * CO

o

ro

to
i-

>-
CD

ccfg
(0

r-
U
o

CM

Q

6

~U
>

UJ

O
r-
U

O

1 2
* 00

o
CO

o

fO

to a
o

o *-
o h

» to
' or

irfo . - UJ

m

o
o

m
r-
O
o

■ </> >

CM ~u
d
d

>
5

Id

O

z
o

* ro

to
r-

o

fO

o

1- u
o

 , CCTV

r-
O
o

CM

d
d

CML^

>
S

UJ

d

o
CO

* CO

o

ro

to
r-

o
1-

arfo >
ro

i-
u
o

CM

d
d

NLH CM

>
5

UJ

o
ro

U
o

N

U
UJ

Q

ce
<

i
* 00

o

IO

ro
r-

z
CO

c
CM

1-
U
o

«to
UJ 1

CM

b
a

~L*j
> UJ

d

CM

r-
O

o 0*(
* CO to

U
UJ

Q

or
3

V> h I
O

r-
U

o
CO

C

d
d

=1
IOCIINO:) «131« I3AN03

35

is subdivided into octal (3 bit) characters and the divider network con-
strained to operate upon 7 bits; four bits being the remainder from the
preceding divider network output and three bits from the Dividend Register.
The remainder from the preceding divider network, serving as one input
to the following divider network is decoded to activate one of ten lines.
The major two bits of the octal character serving as the other input to the
divider network are decoded to activate one out of 4 lines by the Quantenary
Decoder (QD). The first divider network accepts as one input the most
significant octal character decoded into one out of 8 lines, and the decoded
next most significant octal character as its other input. Since the least
significant bit of the octal character merely makes the remainder gener-
ated odd or even and does not affect the quotient, it is not included in the
division process. Thus, the divider network has 10 input lines corres-
ponding to the value of the remainder from the preceding divider network
and 4 lines corresponding to the major two bits of the octal character from
the Dividend Register. There are 40 possible ways of activating these
lines and the appropriate value of the quotient is gated out on one of 8
lines and appropriate value of the remainder on one of 5 lines. The 5
remainder lines are combined logically with the least significant bit of
the input octal character to activate one out of ten lines to serve as one
input to the next divider network.

4. 4.2. 3.1 The Start of Message Signal SQ clears the Dividend Register.
The Si signal loads the Dividend Register with a data word, clears the
Decimal Digits Register with the generated T]_, and initiates the conver-
sion process. The data word is subdivided into octal characters which,
after being decoded by their respective decoders, serve as inputs to the
divider network chain. A remainder, gated out by the preceding higher
ranking divider network, serves as the other input. While these divider
networks are generating their quotient and remainders, the Quotient
Register is cleared by the generated T2. The quotient from each divider
network is encoded into an octal character by the Octal Encoders (OE),
and the remainder from the lowest ranking divider network is encoded into
a BCD character by the BCD encoder (BCD E). When T3 is generated
the Quotient Register is loaded with the quotient and the Decimal Digits
Register is loaded with the BCD character generated by the last divider
network. At cycle time TQ the Dividend Register is cleared and at T]_
it is loaded with the contents of the Quotient Register to initiate the next
division cycle. The succeeding division cycles are performed in the same
way as the first; and at the end of the ninth cycle after the Decimal Digits
Register is loaded with the last BCD character, the content of that register
is loaded into the Output Buffer. The next Si signal loads the next data
word into the Dividend Register, clears the Decimal Digits Register, and
initiates a new conversion process. Each iteration is completed in about
the time required to gate through 20 levels of logic, and the entire conver-
sion in 9 such iterations for a total propagation delay due to 180 levels

36

of logic, or 18 ysec plus 9 storage cycles of 1. 8 ysec for a total conver-
sion delay of 19. 8 usec. This method therefore meets the design goal
for conversion speed.

9 Decade ENM 6 Decade ENM

Divider Matrices 9 27 6 18
Octal Decoders 1 1 0 0
Quantenary Decoders
Octal Encoders

9
9

4.5
4.5

7
6

3.5
3

BCD Encoders 1 1 1 1
Dividend Register Flip Flop
Quotient Register Flip Flop
Decimal Digits Register Flip Flop
Drivers

30
27
36
10

7.5
7
9
1

20
18
20

7

5
4.5
5
1

Equivalent Normalized Modules 52 41

4. 4. 2. 3.2 While this method is a satisfactory one for converting binary
numbers to decimal, it is, however, more complex, requires more cir-
cuitry, and is only half as fast as conversion Method 2. It is, therefore,
not as desirable.

4. 4. 3 Parallel Conversion of Binary to BCD. In parallel (or broadside)
conversion the entire data word is converted in one continuous stream
conversion process. (See Figure 18). The first two 2 bit BYTES are
combined by multiplying the most significant 2 bit BYTE by four and
adding in the other 2 bit BYTE using the Combined X4 Multiplier and
Adders as previously described in Method 2. The result of this operation
is presented as the input to the next level of combination multiplier and
adders where the process is repeated using the next most significant 2
bit BYTE. This process continues using additional groups of combination
multipliers and adders until the entire data word is processed, the final
result being the required BCD equivalent of the 30 bit binary number.
The required amount of circuitry is:

20 bit number ENM 30 bit number ENM

Word Buffer Flip Flops
Combination X4 Multiplier and Adders
Drivers

Equivalent Normalized Modules
Conversion Delay

In Figure 4 is shown the module count and conversion delay for parallel
conversion as a function of reciprocal data precision. In comparing the

37

20 5
.dders 32 64

2 0.2

30
71

3

4. 4 usec

7.5
142

0.3

70
2. 5wsec

150

DATA WORD IN QUATENARY BYTES

01 02 03 04 05 06 013 014 0 15

1 ' '

; i
*

\

1 CMA *
40I+Q2 « SI

r i

i
1

2 CMA
4 SI + 03 » S2

' r ' ■

2 CMA
4S2+Q4«S3

1
I

r

1 '

8 COMBINED MULTIPLIER E AODERS
4 SI2+ 014 «SI3

V
9 COMBINED MULTIPLIER B ADDERS
4 SI4+QI5«SI4« BCD NUMBER

-
153-

TO OUTPUT BUFFER

*CMA« COMBINED X4
MULTIPUER a ADOER

FIGURE 18.PARALLEL DATA STREAM BINARY TO BCD CONVERTER

38

factors involved in this technique with those associated with the serial
methods previously discussed and again referring to Figure 4, it is
evident that the latter is considerably more economical in circuit require-
ments at the expense of only a small increase in conversion delay. How-
ever, processing parallel data by serial methods is no problem since it
can be stored in the Input Buffer from which it can be presented to the
Converter in virtually any form desired. Since this can readily be accom-
plished, it is considered that it is unnecessary to further consider binary
to BCD conversion of parallel inputs.

4. 4. 4 In summary, of the three methods described, Method 2 is the
most attractive in regard to conversion speed, circuit simplicity, and
the quantity of circuitry required. Parallel word conversion is to be
accomplished by "shifting" out of the Input Buffer since direct parallel
conversion is impractical.

4. 5 CONVERSION OF DATA FROM TIME IN HOURS, MINUTES,
SECONDS AND MILLISECONDS TO BINARY MILLISECONDS.

4. 5. 1 General Considerations Effecting Time Conversion.

4. 5. 1.1 Incoming time measurement data can be expected to be in the
form of BCD hours, minutes, seconds, and fractional seconds to thou-
sandths of seconds or milliseconds. To avoid the necessity of operating
with whole numbers and their associated fractions, the adopted value of
the least significant binary bit shall be the millisecond. Similarly, when
converting from binary milliseconds, the converted units will be in terms
of hours, minutes, and milliseconds.

4. 5.1.2 Each digit of a number representing time in hours, minutes,
and milliseconds has associated with it either some power of 10 or 6.
Consequently, the conversion process will closely parallel the opti-
mum BCD to binary and binary to BCD conversion already discussed.
It is only necessary, therefore, that the difference of techniques or cir-
cuit components be described.

4. 5.1.3 As stipulated under the design criteria, the capacity of the con-
verters under consideration was limited to a 9 decade decimal number or
the equivalent of a 30 bit number. The capacity of the converter is there-
fore set at a maximum of 298 hours, 15 minutes, and 41.823 seconds,
since this converts to one less than 2 to the 31 power which is the maximum
value of a 30 bit number.

4. 5. 2 The BCD to Binary Time Converter.

39

4. 5.2.1 Differences which exist between time conversion techniques and
decimal to binary conversion techniques result from the fact that hours,
minutes, and seconds of the time conversion problem are associated with
a factor of 60 rather than 100. Thus, for time conversion it is first nec-
essary to convert the BCD hours to binary hours, then to electrically
adjust the stream adders in order to multiply the binary hours by 6 to
obtain tens of minutes. The adder circuits are then again reconstituted
to multiply binary tens of minutes by 10 to obtain binary minutes. Once
again the stream adder circuits are modified to multiply binary minutes
by 6 to obtain binary tens of seconds and reconverted to continue the con-
version of the remaining time digits. The process can be summarized
algebraically for the time data Hh hours, Mm minutes, Ss seconds as
follows:

10 (6 (10 (6 (10H + h) + M) + m) + S) + s etc.

4. 5.2.2 The multiplication by 6 as outlined above is accomplished by
adding 4 and 2 times the number instead of 8 and 2 as in the straight
decimal conversion. Actual modification of the stream adders for this
purpose is simply achieved through the use of switch logic which couples
the respective bits from the 8 to 4 position as required. Referring to
Figures 5 and 6, the switch logic for controlling the multiplication factor
is interposed between the Augend and Addend Registers on one hand and
the stream adders on the other. Figure 19 shows the required multiplier
switch logic. The required conversion time is comparable to that of the
9 decade BCD to Binary Converter. The required circuitry is:

Units ENM

Input Buffer Flip Flops
Control

Flip Flops
Clock
NOR Gates
Hexidecimal Decoder

Converter
Addend Register Flip Flops
Augend Register Flip Flops
Sum Buffer Flip Flops
Stream Adders/Full Adders
Drivers
Switch Logic NOR Gates

Equivalent Normalized Modules
Conversion Delay

40

12 3

12 3
1 1

10 1
1 1

4 1
27 7
30 7.5
30 30
15 2
50 5

62
56 ijsec

■

CO

CO

cr>

IT»

n
41

4. 5. 3 Parallel conversion is achieved through the same process as in
the parallel decimal BCD to Binary Conversion (see Figure 7) except
that the third and fifth groups of stream adders are constructed to multi-
ply by 6 instead of ten. However, as in the former case, because of the
increased circuitry involved in this type of conversion it is considered
more practical to have the Input Buffer shift the incoming parallel data
in serial form for presentation to the Radix Converter. The required
amount of circuitry and conversion speed is exactly the same as for the
9 decade parallel BCD to binary converter which is listed on page 22.

4. 6 CONVERSION OF BINARY MILLISECONDS TO BCD HOURS,
MINUTES, AND MILLISECONDS.

4. 6.1 The optimum procedure for converting binary milliseconds to BCD
base 60 time units is to use a variation of the Method 2 described above
for converting binary numbers to decimal. As before, the capacity of
the converter is 30 bits of binary milliseconds or the equivalent of 298
hours, 15 minutes, and 41,823 milliseconds.

4. 6. 2 Whereas in the binary to decimal converter aU the BCD combined
X4 multipliers and adders were to the base ten, in this case the 5th and
7th stage combined multipliers and adders are to the base 6. The num-
ber in units of milliseconds is processed two bits at a time in order of
decreasing significance. As the decimal equivalent approaches the 60,000
decimal milliseconds mark the substitution of the base 6 combined mult-
plier and adders automatically adjusts the totals so that what would have
been 60,000 is converted to 100,000. Thus, by constraining the capacity
of the 5th decade to 5 instead of 9, the first decades are limited to units
of 60,000 milliseconds or one minute. Similarly, the 7th decade is limited
to 5 instead of 9, producing hours computed as multiples of 60 minutes.

4. 6. 3 Figures 20a and 20b show the BCD Truth Tables and the required
circuitry for the base 6 combined BCD X4 multipliers and adders. The
total required circuitry and speed capability is the same as that in the
serial conversion Method 2 for binary decimal to BCD.

4. 7 SUGGESTED PROCEDURES FOR THE CONVERSION OF MTXED
NUMBERS.

4. 7. 1 When mixed numbers must be converted from one radix represen-
tation to another, the whole number portion and fractional portion usually
require separate consideration. In the conversion process of mixed deci-
mal numbers to binary, the whole number portion is converted by a process
involving binary operations and multiplications by ten. The fractional
portion, however, is most conveniently converted by a process employing
decimal operations and multipliers of 2 or 2 raised to a small power.

42

BASE 6 BCD TRUTH TABLE FOR FUNCTION

4(dcba) + qp - 6 q'p' + d'c'b'a'

INPUT DATA

d c b a q p

OUTPUT DATA

0 0 0 0
0 0 0 1
0 0 10
0 0 11
0 10 0
0 10 1

0
0
0
0
0
0

q'p'

0 0
0 0

d'c'b'a'

0 0
0 1
0 0
0 0
0 1
0 0

0 p
0 p
1 p
0 p
0 p
1 p

INPUT DATA OUTPUT DATA

d c b a q P q'p' d'c'b'a'

0 0 0 0 1 P 0 0 0 0 1 p
0 0 0 1 1 P 0 1 0 0 0 p
0 0 10 1 P 0 1 0 1 0 p
0 0 11 1 P 1 0 0 0 1 p
0 10 0 1 P 1 1 0 0 0 p
0 10 1 1 P 1 1 0 1 0 p

d c b a ■ INPUT BCD (binary coded decimal) digit
q p = INPUT BCD carry or 2 bit BYTE
q'p' » OUTPUT BCD carry

d'c'b'a' - OUTPUT BCD digit
d c b a and d'c'b'a' range in value between 0 and 5

ALTERNATE DESCRIPTION
OF FUNCTION

d c b a
d c b a
d c b a

q P

q'p' d'c 'b'a'

EXAMPLE .

d c b a _ 0 1 1 1 _ 3

q P = 1 0 = 2

q'p' = 1 0 = 2
d' c •b'a' = 0 0 1 0 = 2

then

since 4«3+2=6«2+2

FIGURE 20a. TRUTH TABLE FOR THE BASE 6 COMBINATION
BCD X4 MULTIPLIER AND ADDER

155-1

43

o

A

V
i? m
2

<n 1
HI

y () m
J I

3 I
* <

K
UJ
Q
Q
<
a
<

LU

Q-

44

4. 7. 2 In the conversion process of a mixed binary number the whole
number portion is most conveniently converted by a process involving
decimal operations and a multiplier of 2 or 2 raised to a small power
while the conversion process for the fractional portion involves binary
operations and multiplications by ten.

4. 7. 3 The conversion process for a fraction from one radix represen-
tation to another resembles the inverse of the conversion process
required for a whole number. Thus, the conversion process for deci-
mal fractions to binary resembles the conversion process for whole
numbers in binary to decimal. This resemblance also holds true for
the inverse conversion operations. As a consequence it will be neces-
sary that the translator contain essentially both the required radix con-
verter for the whole number and inverse converter for the fractional
number. There may be advantages to this since the translator by
containing both types of converters can then convert mixed numbers
either to binary or to decimal with relative ease.

4. 7. 4 Another method which may be employed to handle mixed numbers
is to pre-multiply the number to be converted so that it becomes a whole
number. The result will be a known power of ten or two larger than re-
quired and a simple shift in the powers of ten or two will yield the desired
result. For example, in the conversion of 1. 625 from decimal to binary
to an accuracy of ten binary places or one part in 1024, the proper scale
factor is 1024, the desired binary accuracy, divided by 1000, the deci-
mal magnification factor. Thus 1. 625 is multiplied by 1.024 which
yields 1. 664. When 1664 (1. 664 X 1000) is converted to binary, the
result is:

11010000000
which is too large by a factor of 1024. Now, moving the binary point
ten places to the left (the inverse of the magnification factor) gives the
correct result or 1.101. Thus it is possible to convert decimal mixed
numbers to binary by using decimal operations to prescale the original
number by multiplying it by a factor which is equal to the desired bi-
nary accuracy divided by the decimal magnification factor. The result
when converted to binary will be too large by a factor equal to the desired
binary accuracy.

4. 7. 5 In the conversion of binary mixed numbers to decimal, a scaling
factor equal to the desired decimal accuracy divided by the binary mag-
nification factor is chosen as above. The converted binary number will
be too large by a factor equal to the desired decimal accuracy.

4. 7. 6 It is also possible to convert the mixed number disregarding the
decimal or binary point. The converted binary result may be corrected

45

by multiplying it by the reciprocal of the magnification factor. Simi-
larly, binary mixed numbers may be converted to decimal and the
converted decimal number may be corrected by multiplying it by the
decimal equivalent of the binary magnification factor.

4. 7. 7 The required pre- or post-scaling operations can be performed
by the inclusion of appropriate units in the translator. In general,
however, this approach is to be avoided since the scale factors become
numerically unsuitable for effecting multiplication by one or two addi-
tion and shift operations. In this case true multiplication units may be
necessary and these in general are expensive in terms of circuitry and
processing delay. It is preferable, therefore, to follow the procedure
wherein the whole number and fraction are processed separately even
though this requires two types of converters.

46

Section 5. CONCLUSIONS

5.1 The following conclusions are based upon the current state of the
electronic art in the utilization of solid state components and the em-
ployment of flip flops as storage elements. As the requirement for
storage elements increases, the circuitry requirements become exten-
sive to the point that despite their relative high cost, read-write
circuitry and core drivers become at first competitive and finally more
economical than flip flops. When the full range of requirements for
an in-line translator are specified in detail, it is probable that several
hundred bits of storage may be required. In addition, provisions will
more than likely have to be made for the storage of procedural data.
Thus, the currently recommended utilization of flip flops will very
probably give way to magnetic core devices for at least part of the
storage components.

5.2 It appears also, that as molecular and integrated circuitry be-
come commercially prevalent and more attractive in economy, some
of the conclusions reached may need revision. In particular, as the
availability of magnetic core devices increases with the attendant
increases in circuitry simplicity and conversion speed, parallel con-
version techniques may prove to be more attractive than serial con-
version.

5. 3 The following conclusions have been reached on the basis of this
study and current considerations.

(1) There is a definite application for in-line translators in the
range data handling network.

(2) In-line translators have the capability of achieving adequate
real-time operation and can convert as fast or faster than most pro-
grammed high speed converters.

(3) In-line translators can offer a significant economic advantage
for heavy flow data conversion over conversion by means of stored
programs.

(4) The design and construction of in-line translators is techni-
cally feasible and the elements required for construction are commer-
cially available at reasonable cost.

(5) In-line translators can be logically organized into basic
functions which can be performed by standardized modular components.

(6) By the selection of appropriate standardized sub-elements
in-line translators can be adapted to a wide range of input and output
requirements.

(7) In-line translators can function without external assistance.

47

(8) The actual design of a complete in-line translator without stipu-
lated input/output values for a specific application would be purely an
academic exercise.

(9) The basic functionally independent sub-element of any translator
will be the Radix Converter.

(10) By preconditioning input data, Radix Converters can be made
system independent and therefore have universal application.

(11) Whereas only four representative types of radix converters
were designed, it demonstrated the feasibility of designing virtually any
type needed.

48

miniUAjam

Security Classification
DOCUMENT CONTROL DATA - R&D

(Security claasitication ot title, body ot ebtlrect ami Indexing annotation mill 6« entered whan «ha overall report Im clmaaitiad)

1. ORIGINATING ACTIVITY (Corporete muthor)

National Bureau of Standard»
»sehlngton 25, D.C.

2«. REPORT SECURITY CLASSIFICATION

P«WHHMI
I«. •w atUtimn** tmenaiT area

ana
3 REPORT TITLE noiJalinsiT aiaQ

Rang« Data Handling Integration Studie», In-Une Trantl#Clfc»^0^>»l»JWq)
Binary/Decimal Converter» «TerievnoO Y*»niH

4 DESCRIPTIVE NOTES (Type ol report ana* Inehielve ttmtee)

5 AUTHORS (Xa*i name, tint nimm, Mttml)

Urban Walter D.

«. REPORT DATE

HOYWaQtr Ifrfrr
8a. CONTRACT OR GRANT NO

b PROJECT NO
5932 MIPH 4230486

7». TOTAL NO. OP PACE«

JH.
7b. NO. OP REP*

 Q_
• a. ORIGINATOR'S REPORT NUMEERfS.)

NBS 4230466

10. AVAILABILITY/LIMITATION NOTICES

$b. OTHER REPORT NOftj (Any ottter numbore thmt may be aaalgnad

 ffSSi TIM fffrlVt

Qualified requester» may obtain from DOC.
Aval from OTS.

It. SUPPLEMENTARY NOTES

None

12. SPONSORING MILITARY ACTIVITY

Directorate of Aerospace Instrumentation,
£3D, US Hanecom Fid., Bedford, Mass 01731

13 ABSTRACT

The application of In-Une Translators is covered in terms of the specific
adaptation of a wired program device which can efficiently handle the trans-
lation between different numerical radices or number base cede»* D»»ign
criteria, feasibility, and a functional description are presented* Since
the Radix Converter is the central and promary modular element of the trans-
lator concept, the logic designs for four principal types of decimal/binary
converters are described in detail*

DD .ttK, 1473
Security Classification

UNCLASSIFIED
Security Classification

u.
•KEY WORDS

LINK A LINK B
.ROLE

LINK C
ROLE

Information Handling
Data Transmission
EBP
Data Translation
Decimal Converters
Binary Converters

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD. Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Entei last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATE; Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7 a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8«. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
report from DDC"

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request through

(S) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

*t

If the report has been furnished tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing tor) the research and development. Include address.

13- ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS). (S), (C), or (U).

There is no limitation en the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional

Security Classification

