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ABSTRACT

Stability map for a gas-bearing supported rotor can be constructed from the

periodic dynamic perturbation solution of the gas bearing equation about the

equilibrium condition. A complete frequency range of the perturbation solution

is required. Effective system stiffness and damping can be defined in terms of

the perturbation solution of the gas bearing. The condition of neutral stability

corresponds to the vanishing of the effective damping, yielding the characteristic

frequency, and resonance at the characteristic frequency with the equivalent

stiffness, yielding the critical mass. An excess of rotor mass causes instability

if the effective damping increases with frequency, at the characteristic frequency,

and conversely. For unloaded, journal bearings possessing rotation L s'-rmetry,

the stability map can be constructed from their steady-whirl solutions. An example

illustrating the latter case is given in terms of a herringbone-grooved journal

bearing. This method of stability analysis is applicable to both thrust and

journal bearings for both wbirl and pneumatic-hamfer instabilities.
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INTRODUCTION

Certain types of fluid film bearings are capable of causing some form of dynamic

instability of the bearing-rotor system. The best known example Is the whirl

instability of self-acting journal bearing, which first became understood for

oil-lubricated journal bearings in Poritsky's "Theory of Oil Whip" (Ref. 1).

The same phenomenon also exists with self-acting gas-lubricated journal bearings

and has been referred to as "half-frequency whirl" or "fractional-frequency

whirl". Although experimental data on the whirl instability of rotors supported

in gas journal bearing (Refs. 2, 3, 4, and 5) are quite similar to those of

rotors supported in oil journal bearings, attempts to extend the "oil-whip theory"

to gas-bearing systems encountered considerable difficulty. This is primarily

because the gas-lubrication equation explicitly contains the time derivative of

gas density (Ref. 6). While an analogy of this equation with the heat diffusion

problem is quite apparent (Refs. 7 and 8), the significance of this term in the

dynamics of rotor-bearing systems has been an object of controversy for some time.

From the standpoint of obtaining the complete mathematical solution of the gas-

lubrication equation, it is beyond doubt that an initial condition should be

specified. On the otherhand, it is intuitively plausible that the stability of

the rotor-bearing system should not have a history dependence. Earlier works on

the subject reflected the latter view and neglected the time dependent term from

the gas-lubricated equation altbgether (Refs. 9 and 10); clearly, the accuracy

of these results are not a priori known. Subsequently, it has been shown that

time dependence of the gas-film pressure can be separated into an "initial

transient". which is directly related to the specific initial condition and would

always attenuate, and an "implicit time-dependent" term, which interacts with the

motion cf the rotor and controls the dynamic stability of the system (Ref. 8).

Also, there is a formal method to uncouple the time-dependent gas-lubrication

equation from the dynamical equation of the rotor (Ref. 8). This method of

uncoupling is equivalent to a Taylor series expansion in the time coordinate

and, therefore, is subject to truncation error which is not readily controllable

and can significantly affect the stability analysis (Ref. 11). More recently
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the stability of a rigid rotor in plain, cylindrical, self-acting, gas-lubricated,

journal bearings have been studied quite thoroughly with the time-dependent effects

properly considered (Refs. 12, 13 and 14). Here, peculiarities in the stability

analysis of gas-bearing systems are again manifested. Where the method of Galerkin

is utilized, the characteristic equation of the system (Refs. 12 and 14) is a

polynominal, and Routh-Htrnitz criteria can be used to determine the condition

of stability. Since the accuracy of the method of Galerkin is improved by an

increased number of terms used, the corresponding characteristic equation also

becomes of a higher order. Where the finite-difference method is employed (Ref.

13), the state of periodic motion, which borders the domain of unstable operation,

can be found. In this analysis, one does not know, exc.pt with the additional

effort of orbit calculation whether oneor the other side )f the neutral state is

stable.

Now, stability problems are not limited to the self-acting plain journal bearings.

The externally-pressurized gas-lubricated thrust bearing can exhibit a form of

Self-excited oscillation commonly called "pneumatic hammer" (Ref. 15), which is

also possible for an externally-pressurized journal bearing. External-

pressurization can reduce but will not eliminate the hazard of whirl-

instability of high-speed journal bearings (Refs. 16, 17 and 18). A variation

of "pneumatic hammer" has been discovered for the spiral-grooved, self-acting,

gas-lubricated thrust bearing (Ref. 19). Many "whirl-free" journal bearing

configurations have been proposed (Refs. 20, 21, 22, and 23).

The importance of stability analysis in the application of gas bearings has

alroady attracted attention. However, a general method for performing the

stability analysis, which is convenient to use, suggestive in physical meaning,

free from arbitrary assumptions, and isdependent of the particulars ot the

bearing configuration, is still missing from public literature. The present

work is intended to fill this gap, at least in part.

It will be shown, that the periodic dynamic-perturbation forces of the gas bearing

can be used to construct the effective damping and stiffiress coefficients of the

dynamical system, that the state of neutral stability occurs at a characteristic

frequency which is determined by requiring the effective damping coefficient to

vanish and when the rotor mass has a critical value which is in resonance with
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the effeccive stiffness at the characteristic frequency, and that an increment of

the rotor mass beyond the critical value will cause instability if and only if

the effective damping coefficient increases with frequency (at the characteristic

frequency). Thus, the key to this method of stability analysis is ,he knowledge

of the bearing reactions to perturbed periodic motions for the entire frequency

spectrum.

Derivations will be carried out for a single mass supported in a gas bearing

having two degrees of freedom. Simplifications for the special cases of a single

degree of freedom bearing (e.g., thrust bearing) and Pn isotropic bearing (e.g.,

unloaded journal bearing) will also be given. To illustrate the application of

this method, the stability map of an unloaded herring-bone grooved-journal bearing

will be constructed.
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A GENERAL THEOREM FOR THE STABILITY OF A RIGID ROTOR IN FIXED JOURNAL BEARING

The gas lubrication equation for a given journal bearing has a solution dependent on

the motion of the Journal. Consider Fig. 1. Let the instantaneous displacement of

the journal from its equilibrium position be (e x, e y). Assume

x y
eX2 +ey2 <<C2

1 ,!
E (ex, ey) = x, ey) exp (sT) (2)

where,

?- WLt

s - X + iv (3)

Then the lubrication equation can be linearized and yield, as final results, the

perturbed dynamic reaction of the bearing to the journal motion. It is customary

to make the bearing reaction non-dimensional with the normaliztng factor Pa LD.

Linearization leads to the useful simplification that the perturbed bearing

reaction is directly proportional to the motion. Thus, we can write in Argand

notation the matrix equation *

f - Z(s) (4)

where, f is the column vector [ x

*The homogeneous form of Eq. (4) implies that the initial transient of the fluid

film pressure has been ftglected. For justification of this assumption, see
Ref. 8.
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which is related to the actual components of the perturbed bearing reaction according

to

F f
y -y

Z(s) is a square matrix 
[xY

yx yy

which may be regarded as the mechanical impedance of the journal bearing. c is

the column vector [ex]

•y °

In the absence of other constraints, the equation of motion of the rotor is

m s2 I + Z(s) I E 0 (6)

where I is the identity matrix

Because the system given by Eq. (6) is homogeneous, the determinant must vanish,

I2 + Z(s),>1 0 (7)

whe:e

p LD

Th.eot of 4 - . + iv for Eq. (7) represent the natural exponential constants

of the system. The system is stable or unstable,. depend in& on whether V is less

or greater than zero.
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Expanding Eq. (7):

(ms 2 + Z ) (ms2 + Z - Z Z = 0 (8)
xxyy) xy yx

For convenience, introduce the definition

2
z = U+ iv =- ms (9)

Z(s) = U+ iv (10)

Then Eq. (8) becomes

W z (s), s} = Wi + 'W2  (11)

=(Z -z)(Z -z - Zxy = 0

Separating real and imaginary parts *

W1  (U -u)U u)-(V-v)V v)- U +V V =0

W = (Uxx-U)(U yy U) - (VxxV)(V yyv) - UxYUyx xy yx

W2 = (Uxx-u)(Vyy-v) + (Vxx-v)(U yy-U) - U xyVyx - Uyx VXY = (12)

At the state of neutral stability

s iv (13)

u =m V2

0 0

V 0

By analogy with a single-degree-of-freedom problem, u and v can be defined as the

effective spring and damping of the system.

*Alternately, Equation (11) can be solved for z:

2{ZX+Zyy ±+ Q(xx-Zyy) 2 + 4ZxyZyx

which, however, offers no advantage over Eq. (12) from the standpoint of ease in

computation.
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Substituting into Eq. (12):

- m V2)([ - m V) - V V - U U + V V - 0 (14)
1 0 xx 0 0 yy 0 0 xx yy xy yx Xy yX

W (0v)(U - m v2)V + (U -m V)V -U V - U V = 0 (15)
2( 0 xx 0 0oY yy 0 0 xx xy yx YX XY

Solving Eq. (15) for m :0

U V +U V -U V -U VmMxx yy yy xx xy •x yx (16-, "XV VYX XV X(16)
Io 2

V0 (Vxx + yy)

Substituting into Eq. (14):
+ u v[-(Uxx-U V )v+ Ux +V U x

lo (V U )2
(VU+x, 

yy

-V V -U U +V V
xx yy xy yx xy yx

0O (17)

Since all elements of U and V matrices can be obtained as functions of V by solving

the pertinent lubrication equation, Eq. (17) can yield roots of vo; which are the

characterlstic trequencies. With the matrix elements evaluated at V0 , Eq. (16)

gives the critical mass, mi,. for each state of neutral stability.

For a slight variation from the state of neutral stability, writing

8,- iv + s
0

(18)
Mr-im + m

0
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bm and 5s are related by the condition that 8W vanishes. That is

s I 0(19)

Differentiating Eq. (9 ),

dz = - s2dm - i'sds (20)

Treating z as an analytic function given by Eq. (11), then we can write

dm 1 = 1 dZj +2ms)
ds BW 0 82 dsI BW=

Because Z is directly known in terms of V, we can write

dz I = z 5

ds BW=o ' 0 6

Then at s = iV
0

-0, I SiW 8W 0, V 2mv (21Ts / = , s = iV v J2 O0 0

1 m 2)
"2 " (z- m 00, v0

Substituting into Eq. (19), for slight variation from the state of neutral

stability

iv 2 BM
58 ~ 0 2

s " (z- mov 2)
•=m0, V

0
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Separating real and imaginary parts,

5% + i8V

6v 6 22 •+ i - (u," m )

= 2 [-v 9V 0 em (22)0 • (u-_moV2) 2+ •)•'

BW - 0, V

The last expression is an explicit stability criterion which may be stated as

follows:

With an infinitessimal mass increment beyond that determined from the

state of neutral stability, the system becomes unstable when and only

when ýv/)v evaluated at v is positive. Conversely, if ýv/ýv is

negative at v 0 , the system would become unstable with a mass decrement.

To find ýu/ýV and ?v/?V , differentiate Eq. (11) with respect to V:

F z)0 - ( .

(Z xyy Zx+yZyx 9V( xx yy [ xxyy) 6
(23)

- 2z -(Zxx + Z yy)

Separating real and imaginary parts

F2 (g + rA) + i(aI - rfl (24) Si - (q) 2 + (r)2
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where

q = #.{2z - (Zxx+ Zyy)

M 2u - (Uxx +U yy)

r =c•-{2z - (Z xx+ Z)}

yy=2v - (V xx + V yy )

-6 (Z+z 6(Z Z -Z Z (25)
9• xyxxy yy) yV xx yy xy yx

L(Ux+U (V +V+ (UxUyT -VxVyy-UxyUy + y

~tt~~Z +Z) 6- 7( Z Z-ZS= 44ýv xx+Zyy)" a(ZxxZyy Zxy yx)

= uNV (Vx+Vyy) + V--(Uxx+Uy) - F (VxxVyy+VxxUVyy Vyyx-VyUy)

Single-Degree-of-Freedom Systems

While above derivations were performed for two-degree-of-freedom systems, the

results are valid for single-degree-of-freedom systems. In single-degree-of-

freedom systems; e.g., parallel thrust plates, and a non-spinning externally

pressurized Journal bearing,

Z = M = 0 (26)xy yx

Equation (6) becomes uncoupled. Writing Z for either Zxx or Zyy, Eq. (7) is

simFly

m2 + Z - 0 (27)
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The state of neutral stability is then given by

V(v) 0 - 0 (28)

2
M0V U(vo) (29)

A slight variation from the state of neutral stability would cause

bs = % + iBV

iv2 2M

2

iv 370nv

00,*+ ) .Jv

U and V clearly have similar connotations as stiffness and damping coefficients

although they may be v dependent functions. Above results have previously been

given in connection with the analysis of spiral-grooved thrust bearings in

Ref. (19).

Isotropic Bearings

For those bearings, where rotational symmetry prevails,

xx yy z I (31)

Zxy z - y - (32)

All unloaded cylindrical journal bearings are in this category.
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In Ref. (24), it was shown that reactions of an isotropic bearing caused by a small

periodic motion of the journal are linearly related to those due to a small-orbit

steady whirl of the journal. Referring to Fig. 2, the bearing reactions of the

steady whirl problem can be written in the complex notation as follows:

(FR + iFT) -T F (A*) (33)

- £ (f + ig)

where F(A*) - f + ig is a complex, analytical function of

A* - A(1-2a') (34)

a' - + V respectively for the forward and backward whirl cases. The impedance

components are related to the steady whirl forces in the following manner (see

Ref. (24) for details):

1 [(C - V) + F(a' -)] (35)

F 4v(a1' - V) -F(c' mv)] (36)

where F. is the conjugate of F.

The characteristic equation is reduced from Sq. (11) to

I/ - - 0 (37)

Expanding and making use of Eqs. (35) and (36):

2 _ (Fc(C,. v),++(a, .v)} e .& C (X'- v)F(a' -- v) -0 (38)



-13-

At the state of neutral stability

v v
0

2

Then Eq. (38) becomes:

0 -u2 [ f(v 0) + f(-v 0)] + f(v0)f(-v 0) + g(v0)g(-v0)

r 1 (39)
+ . ( u[g(v 0)-s(-v 0)] + f(V 0 )g(-V ) f(-v0)9(V)

From the Imaginary part of Eq. (39),

2
U - WV

0 0 0

f(v O)g(-v ) f(-v O)g(v ) (40)

g(v 0) -g(-vO)

Substituting into the real part of Eq. (39):

+ {g(V.)-g(-V04 {fv 0) + f(-v 0)}

+ [s(v o)-g(v 0 J [f (VO) f (-vo) + g(v0 )g(-V0)]

a (f(v )g(.v 0 )-f(.v 0)g(v0)] [E(v 0)g(v0 ).- f(-v 0)s(-v0 )]

+ [g(v 0) _ s(_vo)]2 If(V 0)f(-v 0) + I(vO)s(-v0)]
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The solution of Eq. (41) is determined by the vanishing of either of three factors.

Vanishing of the first two factors require that

g (_ vo) M 0 (42)

Substituting into Eq. (40)

2
mo 2 f(±v) (43)

0 0 0

Vanishing of the third factor leads to

f(v 0 ) - f(-vo) - g(Vo)- g(-vo) M 0 (44)

This condition renders Eq. (40) indeterminant. Therefore, m has to be found

by other means. Substitute Eq. (44) into the real part of Eq. (39), it is

found

u-f(v) + [g(Vo) 0

There fore

g (±vo) - 0

uo a moV2 a f(+v)

These turned out to be merely repetition of Eq. (42) and (43).

To determine whether or not deviation from the neutral state of stability in

some manner would cause instability, we must know the sign of av/av at vo.
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Differentiate Eq. (38) with respect to V:

2z - F (V)- F(-v)] z - z L, [Fc(a•' - V)- F(a#' =-V)]

+ F(-v) F I -F(v) •d -O (45)T I a' -V c " ' a-- V

Substituting Eqs. (42) and (43) into Eq. (45),

[f(+to v f 0 ) ig(+ v az

-f(+. vo) , IFc(cx' - V) - F(a' = - V)]

+ f(- v) a ' - f(v a'-

+ ig&(v 0) o [f(a ' -I v) ig(a' - v)J -0

0 0

Separating real and imaginary parts

+ - a' ++ v

ig;v0 cc 0fa

1 0 0 I v V

Separating~ ~ ~ reladiagnr at
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Using these results in Eq. (22), one sees that the stability of an isotropic bearing

can be evaluated in terms of its steady-whirl properties. Summarizing Eqs. (42),

(43), and (47), a theorem on the stability of an isotropic bearing can be stated

as follows.

Let the whirl ratio be a'. Let the radial and tangential components of the bearing

reaction due to the whirl motion be 'FR and FT respectively. Let e, which is

assumed to be small, be the ratio between the whirl radius and the radial bearing

clearance. Then the state of neutral stability is given by

-T (a') =0, (48)
C T 0

which concerns the bearing only and determines Co ; and also by

F (a')
R 0 (49)

0

which is called the critical mass.

Let the rotor mass deviate from m0 by a slight &mount Om. The system is stable

if and only if

bF Ti am > 0.

Thus, comparing with the theorem stated below Eq. (22), -FT may be regarded as the

effective damping while C' now assumes the role of V. Note., however. &' takes on

both positive and negative values while V is always positive by definition.
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PROCEDURE OF STABILITY ANALYSIS

The essence of the theorem, and its simplified versions, derived above, will be

reiterated in the form of a procedure of stability analysis. The dynamical

model considered here will be the translational mode of a rigid rotor supported

in a fixed journal bearing.

The gas lubrication equation can be first solved for the equilibrium position

of the journal designated by e0 as shown in Fig. 1 along with other parameters

describing the operating conditions, e.g., A and L/D. Then, with the journal

position perturbed by the periodic motion

) (ex, exp (iv) (2)

the gas lubrication equation can again be 8olved to obtain the perturbed forces,

which can be written in the dimensionless form:

a (F'F) - R (f, fy) exp (iv) (50)

The numerical values of (ix f y) depend on the particular geometry as well as

the equilibrium operating conditions and the frequency of motion. For the

present, we shall merely assume that the dynamic perturbation forces can be

found for the entire range of V and can be expressed as

F- x- Fxx Zxyl x
J J (51)

fy Zyx yy y
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The elements of the impedance matrix are complex quantities:

Z = U + iV etc,

Case 1 o 0 O, Zxy A O, z AO.

The characteristic frequencies are the roots of

0 = W1 (V0 )

( u,-U )V XX + U V + U [-(Uxx-U, )V~, + Uxv + UVv j

(V +Vyy) )2

-V Vy -U uu +V Vv (17)
xyy xy yx xy yx

The critical mass is

U V +U V -U V -- U.' V
M = y yy xx xy yx XXY (16)

V (V xx+V yy)

An infinitessimal mass increment above m°0 would constitute an unstable system

if

12mo0V- (U xx+U yy) [m V2 xV +V y)" F (U XXV yyVxxU yyUxyVyx-Vy Uyx)

+ (V +V ) [moV (Ux +Uy • (UU VVyUU+VxV
xx yy 00 TV (Ux y, FV XX yy- XX V y- YUYX+

>0

at V = V; and vice versa.
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Case 2 Z =Z -0
xy YX

The two degrees of freedom (x, y) are uncoupled.

The characteristic frequencies are the roots of

x - mode V x(Vo) = 0

(28)

y - mode Vyy(Vo) = 0

The critical mass is

x - mode m=" U (29)

y - mode o0  y

An infinitessimal mass increment above m would constitute an unstable system if

x - mode 6 • I

y - mode V

at v = V; and vice versa.

Case 3 Zx- - Z-Z 1 , Zy = -ý V z-x

Generally, this corresponds to an unloaded journal bearing possessing rotational

symmetry. Z/ and ZL are directly related to the small eccentricity, steady-

whirl, radial and tangential forces, of the journal bearing with whirl ratio

a' - + V (see Fig. 2).
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The characteristic whirl ratio is determined by

-F (a') = 0 (48)
6 T o

The critical mass is

F (a')
mo .0R2 (49)

0

An infinitessimal mass increment above m0 would constitute an unstable system if

I 6F T
e <0

at

a' = a'; and vice versa.
0
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EXAMPLES

In Ref. 13, the stability of an infinitely long, self-acting, plain, cylindrical

journal bearing was treated. The procedure used to find the characteristic

frequency and the critical mass was essentially the same as Case 1 above. The

method to determine which side of the neutral state is unstable was different.

Since there is no contradiction in fundamental principle between the two methods,

one would not expect the final results to be different.

Case 2 is a one-degree-of-freedom problem. The corresponding stability criteria

was first derived in Ref. 19, which also gives an example.

Two examples for Case 3 will be considered below.

Example I 1 . Unloaded, Plain, Cylindrical, Self-Acting, Journal Bearing

The steady-whirl results of this bearing was given in Ref. 25. They are

reproduced in Figs. 3 and 4. The tangen~ti4lbearing force vanishes at A* = 0 or

a' = 0.5. for all A and L/D. The radial bearing force is also always zero
0

there. Therefore, the critical mass is zero. Since, at A* - 0,

1 3F T

1 6F T 1 T.- A < 0.

Since all finite rotor masses are larger than the zero critical mass, this

bearing is always unstable. This is the infamous half-frequency whirl.
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Example 2. Unloaded, Herringbone-Grooved, Cylindrical, Self-Acting ,Iournal Bearing

A schematic of this bearing is shown in Fig. 5, its steady-whirl a,.alysis wa~s

given in Ref. 21. Results of one such bearing for a range of A are shown in
1Figs. 6 and 7. The value of CO, at which the tangential force, _-F Tvanishes,

0 6 TO
is about 0.5 when A is small; it increases with A and is about 1.7 At A = 50. At

I
CIO, the radial force, 1 F , has some positive value, which also increases with A.
0 1,

The slope of --F at a' is always negative. Therefore, masser, larger than
e T 0

f(A,a')
Mo(A) 0

0 ~(a') 2
0

are unstable, while smaller masses are stable. This results I.n a stability map

as shown in Fig. 8.
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CONCLUSIONS

1. The response of a gas bearing due to the perturbation of a periodic motion

can be used to determine the stability map of the bearing.

2. The usual concepts of stiffness and damping can be generalized to include

frequency dependence for either single-degree-of-freedom or coupled systems.

3. The condition of neutral stability exists at the characteristic frequency

where the effective system damping vanishes and when the mass (( itical

mass) is in resonance with the effective system stiffness.

4. Mass increment above the critical mass is unstable if the effective system

damping increases with frequency and conversely.

5. The stability map of unloaded journal bearings can be constructed from

their steady-whirl results.

6. The spectral analysis provides a satisfactory means to separate the solution

of the lubrication equation to that of the entire dynamical system.
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NOMENCIATURE

C Bearing Clearance

D Bearing Diameter

e Displacement of Journal Center From Bearing Center

e x, e Components of Rotor Displacement from its Equilibrium Position

f Column Vector with the Components f and fx y

f, g Real and Imaginary Parts of F

f f y Normalized Complex Modulii of (Fx, Fy)

F Normalized Complex Bearing Stiffness for Steady Whirl
(Normalization Factor is paLD)

F Conjugate of FC

FR Normalized Radial Bearing Force, cf

FT Normalized Tangential Bearing Force, eg

F , F Components of the Perturbed Bearing Forcex y

I Ideafactor or Identity Matrix

L Bearing Length

aLD ,Normalized Rotor Massp LD

N Rotor Mass

Pa Ambient Pressure

q, r Functions

R Bearing Radius

s Normalized Complex Exponential Coefficient

t Time

u Real Part of z
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U Real part of Z

Oxx, Uxy, etc. Real Parts of Zxx, Zxy, etc.

v Imaginary Part of z

V Imaginary Part of Z

Ixx' VXY, etc. Imaginary Parts of Z xx, Zxy, etc.

W Characteristic Determinant

W1 Real Part of W

W 2 Imaginary Part of W
2

z .ms , Normalized Effective System Impedance

Z Normalized Impedance Matrix of the Bearing

Zxx, Zxy, etc. Components of the Normalized Impedance Matrix

Z1- Normalized Parallel or Colinear Impednace

Z Normilized Perpendicular or Cross Impednace

()o Referring to the Condition of Neutral Stability or the
Critical Condition

5( ) Infinitessimal Deviation of ( ) from its Critical Value

al Whirl Ratio, Ratio of Angular Whirl Speed to w

£ Column Vector with the Components cx and e ; als ( )2+ley)2x y Oý x y

I x* 9y e xC, e yC

SReal Part of a

A
pa") ' Compressibility Number
pa

A* A(1-2ct')

J Viscosity

V Imaginary Part of a, Normalized Circular frequency of Oscillation

Functions

r�Iat, Normalized Time

to Rotor Rotational Speed
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