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ABSTRACT

Stability map for a gas-bearing supported rotor can be constructed from the
periodic dynamic perturbation solution of the gas bearing equation about the
equilibrium condition. A complete frequency range of the perturbation solution

is required. Effective system stiffness and damping can be defined in terms of

the perturbation solution of the gas bearing. The condition of neutral stability
corresponds to the vanishing of the effective damping, ylelding the characteristic
frequency, and resonance at the characteristic frequency with the equivalent
stiffness, yielding the critical mass. An excess of rotor mass causes instability
if the effective damping increases with frequency, at the characteristic frequency,
and conversely. For unloaded, journal bearings possessing rotation . s'mmetry,

the stability map can be constructed from their steady-whirl solutions. .\n example
illustrating the latter case is given in terms of a herringbone-grooved journal
bearing. This method of stability analysis is applicable to both thrust and
journal bearings for both whirl and pneumatic-hammer instabilities.




INTRODUCTION

Certain types of fluid film bearings are capable of causing some form of dynamic
instability of the bearing-rotor system. The best known example ¢s the whirl
ifustability of self-acting journal bearing, which first became understood for
oil-lubricated journal bearings in Poritsky's 'Theory of 0il Whip" (Ref. 1).

The same phenomenon also exists with self-acting gas-lubricated journal bearings
and has been referred to as 'half-frequency whirl'" or '"fractional-frequency
whirl". Although experimental data on the whirl instability of rotors supported
in gas journal bearing (Refs. 2, 3, 4, and 5) are quite similar to those of
rotors supported in oil journal bearings, attempts to extend the 'oil-whip theory"
to gas-bearing systems encountered considerable difficulty. This is primarily
because the gas-lubrication equation explicitly contains the time derivative of
gas density (Ref. 6). While an analogy of this equation with the heat diffusion
problem is quite apparent (Refs. 7 and 8), the significance of this term in the

dynamics of rotor-bearing systems has been an object of controversy for some time.

From the standpoint of obtaining the complete mathematical solution of the gas-
lubrication equation, {t i{s beyond doubt that an initial condition should be
specified. On the otherhand, it is intuitively plausible that the stability of
the rotor-bearing system should not have a history dependence. Earlier works on
the subject reflected the latter view and neglected the time dependent term from
the gas-lubricated equation altogether (Refs. 9 and 10); clearly, the accuracy
of these results are not a prior{ known. Subsequently, it has been shown that
time dependence of the gas-film pressure can be separated into an "injitial
transient', which is directly related to the specific {nitial condition and would
alvays attenuate, and an "implicit time-dependent’” term, which interacts with the
motion cf the rotor and controls the dynamic stability of the system (Ref. 8).
Also, there is a formal method to uncouple the time-dependent gas-lulirication
equation from the dynamical equation of the rotor (Ref. 8). This method of
uncoupling 1s equivalent to a Taylor series expansion i{n the time coordinate

and, therefore, is subject to truncation error which is not readily controllable

and can significantly affect the stability analysis (Ref. 11). More recently
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the stability of a rigid rotor in plain, cylindrical, self-acting, gas-lubricated,
journal bearings have been studied quite thoroughly with the time-dependent effects
properly considered (Refs. 12, 13 and 14). Here, peculiarities in the stability
analysis of gas-bearing systems are again manifested. Where the method of Galerkin
is utilized, the characteristic equation of the system (Refs. 12 and 14) {s a
polynominal, and Routh-Hnrnitz criteria can be used to determine the condition

of stability. Since the accuracy of the method of Galerkin is improved by an
increased number of terms used, the corresponding characteristic equation also
becomes of a higher order. Where the finite-difference method is employed (Ref.
13), the state of periodic motion, which borders the domain of unstable operation,
can be found. 1In this analysis, one does not know, except with the additional
effort of orbit calculation whether oneor the other side f the neutral state is

stable.

Now, stability problems are not limited to the self-acting plain journal bearings.
The externally-pressurized gas-lubricated thrust bearing can exhibit a form of
self-excited oscillation commonly called 'pneumatic hammer" (Ref. 15), which is
also possible for an externally-pressurized journal bearing. External-
pressurization can - reduce but will not eliminate the hazard of whirl-
instability of high-speed journal bearings (Refs. 16, 17 and 18). A variation

of "pneumatic hammer' has been discovered for the spiral-grooved, self-acting,
gas-lubricated thrust bearing (Ref. 19). Many 'whirl-free" journal bearing
configurations have been proposed (Refs. 20, 21, 22, and 23).

The importance of stability analysis in the application of gas bearings has
alrerady attracted attention. However, a general method for performing the
stability analysis, which is convenient to use, suggestive in physical wmeaning,
free from arbitrary assumptions, and imdependent of the particulars ot the
bearing configuration, is still missing from public literature. The present
work is intended to fill this gap, at least in part.

It will be shown, that the periodic dynamic-perturbation forces of the gas bearing
can be used to construct the effective damping and ltifoFll coefficients of the
dynamical system, that the state of neutral stability occurs at a characteristic
frequency which 1is determined by requiring the effective damping coefficient to

vanish and when the rotor mass has a critical value which is in resonance with




the effeccive stiffness at the characteristic frequency, and that an increment of
the rotor mass beyond the critical value will cause instability if and only if
the effective damping coefficient increases with frequency (at the characteristic

frequency). Thus, the key to this method of stability analysis is the knowledge

of the bearing reactions to perturbed periodic motions for the entire frequency

specC trum.

Derivations will be carried out for a single mass supported in a gas bearing
having two degrees of freedom. Simplifications for the special cases of a single
degree of freedom bearing (e.g., thrust bearing) and an isotropic bearing (e.g.,
unloaded journal bearing) will also be given. To illustrate the application of
this method, the stability map of an unloaded herring-bone grooved-journal bearing
will be constructed.




A GENERAL THEOREM FOR THE STABILITY OF A RIGID ROTOR IN FIXED JOURNAL BEARING

The gas lubrication equation for a given journal bearing has a solution dependent on
the motion of the journal. Consider Fig. 1. Let the instantaneous displacement of

the journal from its equilibrium position be (ex, ey). Assume

elielccc? (1)

x Ty

Le,e) = (Q.,{(e € ) exp (s7)

C “x’ 7y x' Ty (2)
where,

r =t

s = A+ 1iv (3)

Then the lubrication equation can be linearized and yield, as final results, the
perturbed dynamic reaction of the bearing to the journal motion. It is customary
to make the bearing reaction non-dimensional with the normalizing factor p.LD.
Linearization leads to the useful simplification that the perturbed bearing
reaction is directly proportional to the motion. Thus, we can write in Argand

notation the matrix equation %
f = 2(s)e (%)

vhere, f i{s the column vector tt]

ny

*The homogeneous form of Eq. (4) implies that the initial traansient of the fluid

film pressure has been n.glected. For justification of this assumption, see
hf. 8.




which is related to the actual components of the perturbed bearing reaction according

to
Fx [ r fx ]
L = 03» e’ (5)
paLD J
F T
y . y
YA z
XX Xy
Z(s) is a square matrix [
L Z Z
yx yy

which may be regarded as the mechanical impedance of the journal bearing. € 1is
the column vector ex

€
y °

In the absence of other constraints, the equation of motion of the rotor is

[m s2 I + Z(s)] e =0 (6)
where I is the identity matrix

Because the system given by Eq. (6) is homogeneous, the determinant must vanish,

ms? 1 + z(s)| = o0 (7
whexe 9
m - MCw
paLD

Ike xoots of 8 = A+ iv__ for Eq. (7) represent the natural exponential constants
of the system. The system is stable or unstable, depending on whether v is less

or greater than zero.

PN _




Expanding Eq. (7):

2 2
(ms” + zxx) (ms” + Zyy) - nyZyx = 0 (8)

For convenience, introduce the definition

z = u+iv = - m52 (9)
Z(s) = U4V (10)
Then Eq. (8) becomes
W {z (s), s} = W, + ¥, (11)
=@, - 2)(2yy -z - zxyzyx = 0

Separating real and imaginary parts *

= - - - ] - - - =
Wy o= (U u)(Uyy u) - (¥, v)(vyy v) UV ¥ Vaey Uy 0
w2 = (Uxx-u)(Vyy-v) + (V%x-v)(uyy~u) - nyvyx - nyvgy =0 (12)

At the state of neutral stability

§ = ivo (13)

By analogy with a single-degree-of-freedom problem, u and v can be defined as the

effective spring and damping of the system.

*Alternately, Equation (11) can be solved for z:

1 2 ‘
z =3 { Zx*yy i\ﬂzxx 2, )+ sz 2

which, howevér, offers no advantage over Eq. (12) from the standpoint of ease in

computation.




Substituting into Eq. (12):

2 2
= - - - - = 1
WI(O,VO) (Uxx movo)(Uyy movo) VxxVyy nyU + V*yV 0 (14)

2 2
Wo(0,v.) = (U - movo)vyy + (uyy -m VOV, - UeyVyx = UyxVay 0 (15)
Solving Eq. (15) for L

v Vv 40 Vv ~U V ~U"V
XX yy YY XX Xy yx YX_Xy (16)

2
o (v*x + Vyy)

m =
o]

Substituting into Eq. (14):

]
- - -U + +U VvV
[(Uxx Uyy?vix+uxyvyx + vaviyJ[ (Uyx yy)v§y UyVyx + Ui Vuy |

W, (0v) =
17,0 v _ +v )
XX yy
-V .V _-¢ +V. V
XX'yy Xy yX Xy yX
= 0 (17)

Since all elements of U and V matrices can be obtained as functions of v by solving

the pertinent lubrication equation, Eq. (17) can yield roots of VQ; which are the

charactcristic trequencies. With the matrix elements evaluated at Voo Eq. (16)

gives the critical mass, m , for each state of neutral stability.

For a slight variation from the state of neutral stability, writing

8 = 1vo + 5s

(18)
m=m + 5m




m and &s are related by the condition that & vanishes. That is

dm

88 = &m s

Differentiating Eq. (9 ),
2
dz = - 8 dm -Zms ds (20)
Treating z as an analytic function given by Eq. (11), then we can write

dm 1 dz.

Is + 2ms)

Because Z is directly known in terms of Vv, we can write

2 Ll
ds S =0 i ov 8 =0

Then at 8 = ivo

dm 1 )
an =-—-|(z) 2m v
ds‘ﬁw-o,saiv wzé? S =0, v °°]
0 (o) [o] (21)
1 o) 2
= (z-m V)
ivozgv ° & =0, v,

Substituting into Eq. (19), for slight variation from the state of neutral
stability

ivg &m

Sy (z - movz)

B =

W =0, vV
o




.
B i e S T

Separating real and imaginary parts,

8\ + 18v

9 g—z+ig—v-(u-mov2)

2
{%\7 (u - movz)} + (%%)2

8m

W =20, v
o

The last expression is an explicit stability criterion which may be stated as

follows:

With an infinitessimal mass increment beyond that determined from the

state of neutral stability, the system becomes unstable when and only

when Ov/dv evaluated at v, is positive. Conversely, if Jv/dv is

negative at vo’ the system would become unstable with a mass decrement.

To find du/dv and dv/dV , differentiate Eq. (11) with respect to V:

) ) dz
S Py Loyl = 2§52 ty) [zz - (zxx+zyy)] 2 . 0

d o)
dz - z 53‘2x1+zy1) T v (zxeyy B zxyzyx)
v 2z - (2 + zyy)

Separating real and imaginary parts

%2'+ { %! - £+ ry) + 1 - T
v v (q)2 + (r)2

(22)

(23)

(24)
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where

q = R,,{zz - (2 +2,0)

= 2u - (Uxx + Uyy)

r =é2nu{éz - (Zxx + Zyy%)

2v - (V’xx +V )

yy
§ =&”< 3t lyy) - 5v( xxlyy” xyzyx)} (25)
= u(U_4U_) - (vv)-é— U V.V U U_ +V. V)
VU Tlyy? T SV Vi yy Uaxyy Vi yy UxyUyx * VaeyVyx
. =&m){z53<zxx+zyy) ; Fv(zxx yy-zxyzyx)}

9 3
= v (Vxx v&y) + v53<uxx+uyy) ) gz(uxxv§y v&nyy-vavyx-viy yx)

Single-Degree-of-Freedom Systems

While above derivations were performed for two-degree-of-freedom systems, the
results are valid for single-degree-of-freedom systems. In single-degree-of-
freedom systems; e.g., parallel thrust plates, and a non-spinning externally

pressurized journal bearing,

Z = Z = 0 (26)

Equation (6) becomes uncoupled. Writing Z for either zxx or zyy’ Eq. (7) is
simply

me +2Z = 0 (27)




The state of neutral stability is then given by

V(vy)) = 0 (28)

2

mV,%& = U(vo) (29)

A slight variation from the state of neutral stability would cause

Bs = BA + 1BV

iv 2 &m
o)

=9 2 [
sxﬂz-mov ) -

o

2,0V 9 2
+ i $=(U-m v") &m
o| dv Qv o 5 . (30)

v

U and V clearly have similar connotations as stiffness and damping coefficients
although they may be v dependent functions. Above results have previously been
given in connection with the analysis of spiral-grooved thrust bearings in

Ref. (19).

Isotropic Bearings

For those bearings, where rotational symmetry prevails,

Zex " iy " Y (31)

Zy = iy " W (32)

All unloaded cylindrical journal bearings are in this category.

-11-
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In Ref. (24), it was shown that reactions of an isotropic bearing caused by a small
periodic motion of the journal are linearly related to those due to a small-orbit
steady whirl of the journal. Referring to Fig. 2, the bearing reactions of the

steady whirl problem can be written in the complex notation as follows:
(FR + 1FT) = ¢ F (A%) (33)
= ¢ (f + 1g)
where F(A*) = £ + ig is a complex, analytical function of
A = A(1-2a') (34)
@' =+ v respectively for the forward and backward whirl cases. The impedance

components are related to the steady whirl forces in the following manner (see
Ref. (24) for details):

L8]

[F (' =v)+ F@ = - v)] (35)

/.
ﬁ-

where Fc is the conjugate of F.

Noje-

[rc(a' =v) - F@ = - V)] (36)

The characteristic equation is reduced from Eq. (1l1) co

«(u-z)z«»zl2 - 0 (37)

Il

Expanding and making use of Eqs. (35) and (36):

z2 - {Fc(a' = V) 4+ PQ = -v)} ¢“-F-‘rc'(a' « V) FQ' =« -y) «0 (38)




At the state of neutral stability

2
z=u =@V
o oo

Then Eq. (38) becomes:

0= ug " Y% [f(vo) + f(-vo)] + f(vo)f(-vo) + 8(Vo)8(-vo)

(39)
+ i{ uo[s(vo)-s(-vo)_] + £V )e(-v ) - f(-vo)s(vo)}
From the imaginary part of Eq. (39),
uo - novg
£V )8(-v,) - £(-V_)B(v,) 40

g(v,) - 8(-v.)

Substituting into the real part of Bq. (39):
0 = [ £V IB(-v,)- -V 28 (v )| [ £V I8 (v )- €65, Da(v,)
+ <8(V°)°l('\'°)} (f(vo) + f(-v°)>]
2
+ [sv)sv)] [Evg) £v)) + 50y dpev,)]
- (£ s )£y a0y [Evdeevy) - £y sty

2

+ [svg) - 80v] [t )ECv,) + sty ds(-v,)]

2 2
- “"o"“"o’[ {f(vo)-f(-vo)) *{‘("o)"(“"o)) ] (41)

-13-
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The solution of Eq. (41) is determined by the vanishing of either of three factors.
Vanishing of the first two factors require that

g (xv) = 0 (42)
Substituting into Eq. (40)
mv: o= ) (43)
oo -0
Vanishing of the third factor leads to

E(vy) - £(-v,)) = g(v ) - 8(-v)) = 0 (44)

This condition renders Eq. (40) indeterminant. Therefore, m has to be found
by other means. Substitute Eq. (44) into the real part of Eq. (39), it is

tound

[uo-f(t_vo)]2 + [g(tyo)]z = 0

Therefore

g (:yo) =

These turned out to be merely repetition of Bq. (42) and (43).

To determine whether or not deviation from the neutral state of stabdbility in

some manner would cause instability, we must know the sign of dv/dv at Vo'




Differentiate Eq. (38) with respect to Vv:

[2z - F_ (V) - F(-v)] g% -2 %, [rc(a' - v) - F(@' = - v)]

oF
- F (V) ' = 0 (45)
'V’ Sa o' =y

+ F(-v) aa—f

a' sv

Substituting Eqs. (42) and (43) into Eq. (45),

dz

[f(-_o—_ V) - £f&F v,) ¥ ig(+ vo)] =

- £(2 V) ga. [pc(a' =v) - F@' = - v)]

+f(-v)aFc - f(V)bp
oc’)&"'a._v o’ da"
(o]

a' =-vy
0

+ 1g(F v ) ng"' [f(a' =+ v) ¥ ig@' =+ v)] =0

ig-&. {f(a' -+ v) + ig(a’ -i\:)}] =0

11

[ v - £ v * 186G v [

f(a' =+ v
a'

_13 0'7 V)

-
v Vo

- 4

v

0 o

Separating real and imaginary parts

g%'vo -tg%{a'-tvo e
. - g-g,l (47)

a’' a4+ v
- 0

&

v
Q
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Using these results in Eq. (22), one sees that the stability of an isotropic bearing
can be evaluated in terms of its steady-whirl properties. Summarizing Eqs. (42),
(43), and (47), a theorem on the stability of an isotropic bearing can be stated

as follows.

Let the whirl ratio be @'. Let the radial and tangential components of the bearing
reaction due to the whirl motion be 'FR and FT respectively. Let €, which is
assumed to be small, be the ratio between the whirl radius and the radial bearing

clearance. Then the state of neutral stability is given by

1 '
EPT (a o) =0 “8)

?
which concerns the bearing only and determines &, ; and also by

F_ (a')
u‘o '—-R_'g_ ’ (49)
e(a;)

which is called the critical mass.

Let the rotor mass deviate from m by a slight amount Bm. The system is stable
if and only if

ar‘
I 0.
WI% b >

Thus, comparing with the theorem stated below Eq. (22), -Fr may be regarded as the
eifective damping while G' now assumes the role of v. Note, however, a' takes on
both positive and negative values while v is always positive by definition.
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PROCEDURE OF STABILITY ANALYSIS

The essence of the theorem, and its simplified versions, derived above, will be
reiterated in the form of a procedure of stability analysis. The dyramical
model considered here will be the translational mode of a rigid rotor supported

in a rfixed journal bearing.

The gas lubrication equation can be first solved for the equilibrium position

of the journal designated by e, as shown in Fig. 1 along with other parameters
describing the operating conditions, e.g., A and L/D. Then, with the journal

position perturbed by the periodic motion

%(ex, ey) = JZL,{(GX, ey) exp (ivvé} (2)

the gas lubrication equation can again be solved to obtain the perturbed forces,

which can be written in the dihensionless form:

5 Il.D (Fx’ Fy) = Re {(fx, fy) exp (iV‘r)} (50)

a

The numerical values of (fx, fy) depend on the particular geometry as well as
the equilibrium operating conditions and the frequency of motion. For the
present, we shall merely assume that the dynamic perturbation forces can be

found for the entire range of V and can be expressed as

f Z Z €
r X XX Xy X

[ = (51)
f Z 2 €
y yx yy y
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The elements of the impedance matrix are complex quantities:

=U 4+ 1V etc,
XX XX XX

Case 1 € # 0, ny # 0, Zyx # 0.

The characteristic frequencies are the roots of

0= wl(vo)
[(u- W+ U + U ][(U U W _+U V_ +U Vxl
= XX Yy XX XJIX _YX XY XX YV Yy Xy yX YX_X
(V*x+Vyy)
-V V ~U U +VV (17)
XX yy Xy yx Xy yx
The critical mass is
U vV +U0 V -U Vv -y Vv
XX YV YY XX Xy yX YX XY 16
o 2 (16)
v oV +V )
o XX yy

An infinitessimal mass increment above L would constitute an unstable system

if
[zmov ) (Uxx+uyy)J (275 §5 Hyy) - 3_ Crxlyy vxxuyy'uxyvyx'vxyuyx)]
+ +V ) [ 0”0 SV (Ui tV yy 5-(Uxx yy-vkxvyy-uxy yx v*yvyx)]

=0

at v = vo; and vice versa.

e e,
¢




Case 2 Z =2Z =0

The two degrees of freedom (x, y) are uncoupled.

The characteristic frequencies are the roots of

x - mode v%x(vo) =0
(28)
y - mode Vyy(vo) =0
The critical mass is / \
- mod -1 Uxx
X - mode m 2 < > (29)
v U
y - mode o yy
)

An infinitessimal mass increment above m would constitute an unstable system if

\
X - mode 2 A\
v ¢ } >0
y - mode v
yy

S
at v

vo; and vice versa.

Case 3 Zxx = zyy = Z" ’ ny = - Z?x = EL

Generally, this corresponds to an unloaded journal bearing possessing rotational
symmetry. 2, and Z; are directly related to the small eccentricity, steady-
whirl, radial and tangential forces, of the journal bearing with whirl ratio

a' =+ v (see Fig. 2).

-19-
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The characteristic whirl ratio is determined by

1 " =
Fo(a)) =0 (48)
The critical mass is
al
I
o eaéZ (49)

An infinitessimal mass increment above m would constitute an unstable system if

at

a' = aé; and vice versa.
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EXAMPLES

In Ref. 13, the stability of an infinitely long, self-acting, plain, cylindrical
journal bearing was treated. The procedure used to find the characteristic
frequency and the critical mass was essentially the same as Case 1 above. The
method to determine which side of the neutral state is unstable was different.
Since there is no contradiction in fundamental principle between the two methods,

one would not expect the final results to be different.

Case 2 1s & one-degree-of-freedom problem. The corresponding stability criteria

was first derived in Ref. 19, which also gives an example.

Two examples for Case 3 will be considered below.

Example 1. Unloaded, Plain, Cylindrical, Self-Acting, Journal Bearing

The steady-whirl results of this bearing was given in Ref. 25. They are
reproduced in Figs. 3 and 4. The tangential bearing force vanishes at A* = 0 or

a; = 0.5. for all A and L/D. The radial bearing force ~ 1is also always zero
there. Therefore, the critical mass is zero. Since, at A* = 0,
137
€ oh¥
1 OF BFT

I 1
et Ahow < ¢

Since all finite rotor masses are larger than the zero critical mass, this

bearing is always unstable. This is the infamous half-frequency whirl.
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Example 2. Unloaded, Herringbone-Grooved, Cylindrical, Self-Acting .iournal Bearing

A schematic of this bearing is shown in Fig. 5, its steady-whirl a..alysis wes
given in Ref. 21. Results of one such bearing for a range of A ave shown in

Figs. 6 and 7. The value of a('), at which the tangential force, é—FT, vanishes,

is about 0.5 when A is small; it increases with A and is about 1.7 at A = 50. At
a(", the radial force, é—FR, has some positive value, which alsn increases with A.

The slope of éF at ac', is always negative. Therefore, masses larger than

T
f£(A, a&)

2
@)

m ) =

are unstable, "while smaller masses are stable. This results ‘n a stability map

as shown in Fig. 8.

e —  ———— - - . i i s L e e o e ot 1, <




CONCLUSIONS

The response of a gas bearing due to the perturbation of a periodic motion

can be used to determine the stability map of the bearing.

The usual concepts of stiffness and damping can be generalized to include

frequency dependence for either single-degree-of-freedom or coupled systems.

The condition of neutral stability exists at the characteristic frequency
where the effective system damping vanishes and when the mass (« itical

mass) is in resonance with the effective system stiffness.

Mass increment above the critical mass is unstable if the effective system

damping increases with frequency and conversely.

The stability map of unloaded journal bearings can be constructed from

their steady-whirl results.

The spectral analysis provides a satisfactory means to separate the solution

of the lubrication equation to that of the entire dynamical system.

-23-
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NOMENCLATURE

Bearing Clearance
Bearing Diameter

Displacement of Journal Center From Bearing Center

Components of Rotor Displacement from its Equilibrium Position

Column Vector with the Components fx and fy
Real ané¢ Imaginary Parts of F
Normalized Complex Modulii of (Fx’ Fy)

Normalized Complex Bearing Stiffness for Steady Whirl
(Normalization Factor is paLD)

Conjugate of F

Normalized Radial Bearing Force, €f
Normalized Tangential Bearing Force, €g
Components of the Perturbed Bearing Force
Idemfactor or Identity Matrix

Bearing Length

MC 2

-QL-. Normalized Rotor Mass
p.LD

Rotor Mass

Mmbient Pressure

Functions

Bearing Radius

Normalized Complex Exponential Coefficient
Time

Real Part of 2




U , U0 , etc.

(54
v v ete,
] x}'l

Real part of 2

Real Parts of Zxx, ny. etc.
Imaginary Part of z
Imaginary Part of Z

Imaginary Parts of zxx' ny, etc.
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W Characteristic Determinant

Wl Real Part of W

w2 Imaginary Part of W

z »msz, Normalized Effective System Impedance

A Normalized Impedance Matrix of the Bearing

Zxx’ ny. etc Components of the Normalized Impedance Matrix

25 Normalized Parallel or Colinear Impednace

z Normdlized Perpendicular or Cross Impednace

( )o Referring to the Condition of Neutral Stability or the
Critical Condition

8( ) Infinitessimal Deviation of ( ) from its Critical Value

a' Whirl Ratio, Ratio of Angular Whirl Speed to w _

€ Column Vector with the Components ¢  and cy; !130\/(€x)2+(€y)2'

< e /C, ey/c
Real Part of s

A %HQ(%)z. Compressibility Number

Aw A:I-za')

H Viscosity

v Imaginary Part of s, Normalized Circular Frequency of Oscillation

£ 1 Functions

T wt, Normalized Time

® Rotor Rotational Speed
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