h

Ap610677

GENERAL ATOMIC DIVISION

GENERAL DYNAMICS CORPORATION

John Jay Hopkins Leghoratory for Pure and Applied Science
P.0. Box 6298, San Diego 12, Califcrnia

HYDRODYNAMIC FLOW EQUATIONS WITH A
RESISTANCE LAW

GAMD-5910
Category A

i
rf3

PLASTICITY

Spensored by
Advanced Reseaich Projects Age

ARPA Order No. T1-62

ngRD Co°2Y
MICROFICHE

O 2 OF _3.._PC

e —— T i S ———

$. /. o®
$.0 52

Menitcred by

Ballistic R -search laboratories
Contract No. JA-OL-LG5-AMC-116(X)

Work done by:

J. X. Dienes

//7&

Report written by:

J. K. Dienes

This document, which was prepared primarily for
internai use at Ge:neral Atomic, may contain

preliminary or incomplste data.

It is informal

and is subject to revision or correction; it does
not, therefore, represent & final reyort.

General Atomic Project 341

ARGHIVE CUPY

i

Decenber 8, 1964




As the complete =quations for plastie flow with erbitrarily larue
deformations are not reudily availsble, the results of a number of scattered,
relevant analyses liave been assembled in the following pages to provide a
summary of the spproiriate equations. For simplification, tensor notation

is used everywhere.

THE CONSERVATION LAWS

The equations of motiorn for a fluid are given below for a general

tensor law of resistsance:

Dp 2 .

5= tp ug g 0, ‘ntinuity, (1)
Dui

P BT = iy, momentum, (2)

par (E+3uu) = (o, energy (3)
ot 2 WY 13%7, 5 Ys

where the convective derivative is given by the expression

2 - _a_+ u i
Dt ~ a3t :E: i ox
1 i

and repeated indices are summed. Differentistion with respect to =

coordinate, Xi’ is dencted by preceding the index with a comma, e.g.,

9 _
Bxi = ( ),i'
The energy equation is simplified by elimination of the kinetic
energy term ir Eq. {3) by means of the momentum equation, resulting in
DE _ |
Pt = %y By g (4)
The velocity gradient, Uy 3 can be written as the sum of a
3
symmetric and an antisymmetric par*. The symmetric part, eij’ is the
strain-rate tensor and the antisymmetric part, wij’ is the anguiar
velocity vector in tensor form.

i




2
Thus,
= +
Uy 5= €y Wy 5 (5)
where, by definition,
.- @, = -W, 6
e;J e,ji, i,j Ji ( )
The stress tensor is always symmetric, a result found by computing the
total moment on an element of fiuid anc noting that the surface forces
mus' cancel. Then,
gl,j =ch‘ ({)
Interchanging dummy indices, using Egs. (5) and (6), and noting thst an
expression equal to its negative is zero,
'ciJ wiJ = 031 wji = 0. wiJ = 0.
The energy equuiion (4) then becomes
DE
o= = . {
ot~ %1 Sy (€)
The stress and strain tensors can be written as the sum of a
hydrostatic part and a deviator psrt, defined as the total tensor less
the hydrostatic part. The totsl tensors have been denoted above by
Greek letters; the devisators will be denoted by Roman letters. Then the
stress tensOr becomes
gij=-p 61J+Sij’ (9)
where
p=-% 0 S,, =0 (10)
3 iy ii 4
snd 6ij is the Kronecker delta. Similarly, the strain rate tensor becomes
1

where

o 8y =i (12)
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Using these relations, the five flow equations can be written in

terms of the deviator guantities:

D
b *t 8 =0, (13)
Duy

PoE™ =Pt Sy, (24)
IE

THE CONSTITUIIVE EQUATIONS

A wide variety of material properties can be describsd by a
cone .tutive equation which expresses the total strain rate as the sum

of an elastic und a plsstic part:

12 ,
N = 1
€5 2 SLj + b iy (26)
(total) (elastiz) (plastic)

i
where p is the shear mcdulus of elasticity; b is, in general. a function
of stress and strain. Several special cases in which the second stressc

invariant
J, = sij sij (17

appears repeatedly are listed below. Where k appears, it denotes the
yield strength of the material.

Classical viscosity

Shear modulus = p = o b = 1/2 F, F = dynamic viscosity; (18)

Prandtl-Reuss plasticity equations

/k2 for J. = ke,

2
Y (19)
b =0 for JQ < k;

= aQ
b = eiJ oi,j
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Perznya plasticity equations
y V2 ° 2
b = —_——— - 1 for J, 2 k,
(20)
b=20 for J2 < kE;
/
Classical elasticity
b = 0; {21)
Rigid-plastic equations
p =, with Ea. (19) or Eq. (20). (22)

MATERIAL ROTATION

The general constitutive equation, (16), is only valid for
coordinates fixed in the materiasl. If it is to be used in connection
with a set of Eulerian fiow equations, for which the coordinute axes are
fixed in space, a cor-ection for rotation of the materiasl must be
included. The physical basis for thies correction term is that when the
materiul rotates there is a change in the components of the stress tensor,
even though the physical state of stress may not change. Let Tij denote
the components of any tensor in material axes and Ti
fixed axes. Tnen

the components in

J

Ti5 = g Bik 234 (23)

- )
Lo a5y, B0 8y (ak)

and the direction cosines, which are time-dependent, satisfy the identities

a5y By = ajk’ (25)
Byp By = BJk. (26)
Equation (16) -=comes, in this notation,
- l = -
= e +
€y =3 Syt 8. (27)
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It is required to replace the first term on the right with appropriate

fixed-axis derivatives. Differentiating Eq. (2k)

i ° T

ke ki %65 T Tke 2kt %05 " Te Bki "ay

and multlplying by a a_,
plying oy pi Bq3’

T a . a = T + 7T
iy "pi aqj rq

. Y. .
kq ®ki ®pi Tpi 8.5 843 (28)
The quantities 84 éjk are the components of the angular velocity
tensor, wij' To see this, we make use of the angular velocity vector,

(i, about which the material axes are rotating. Let ;i denote the unit
vector along the 4 axis in the rotating materisl. The angular velocity

of the endpoint of this vector is in vector notation

a=0x a,
or in tensor notation
ér£ = €Ly Oﬁ 8,0 (29)
where o
1 | form an even
€iqx = { -1 according as 1, §, k { form an odd pg;‘“‘{fgf;‘_’n (20)
0 do not form a

Multiplying Eq. (29) by a,, and using Eq. (26),

ig

Brp B T Cry1 Yy
The angular velocity vector, ﬁj, is related to the angular velocity tensor
by

W, = eijk QJ. (1)

Combining these two equations and changing indices,
Brg Big T g (32)

and Eq. (28) becomes

T, a . =T +7 + T .
1 %p1 %) T "pa T "ka “kp T “pt Yug (33)




Multiplying Eq. (27) by 81 8437 eliminating the barced quantities by
means of Eq. (33), and putting the deviator stress tensor, S,., for the

general tensor, T,

137 we get, finally,

1 ;. , )
— — + 8 + + . &
®13 T 24 (Sij iy %ki T Suk “’);j) ® 8y W34
The term on the right of the energy equation, (15), can be

obtained by multiplying Eq. (24) by S,, and using the expression for

13
J, in Eq. (17). The terms involving ®; disappear by sym -try

considerations, as outlined in the eqguations Gbelow:

S = -5, =n ==-5,,w.,8 = 0,

ir ®ry Sy ir “yr 51 13 *ry "ir

The Lagrangian time derivative in Eq. (34) should be replaced by the
convective derivative in the Eulerian formulation; the energy equation,
in its final form, then becomes

. D,

DE 1
Poe *PO LS Bt * P Y (35)

The 7irst term on the right is the rate of increase of distortional strain
energy and the second term is the work done by the plastic strains. The

strain energy is recoverarle, but the work done by plastic strains is not.

THE COMPLETE EQUATICHS

For convenience, the eguations for plastic flow are assembled below

and include the equation of state, which has not been introduced before.

Continuity Equation

%tp' +p0 =0, (36)
Momentum Equation
Duy
PHE = - P,y * Sy g (37)
Energy Equation
. DJ
p%%+pe=eijsij=ﬁ ==+ b J,, (38)

= — — = =i




Equation of State

p =F (E,p). (39)

Constitutive Egquations

DS
- & (4 , .
19 T30 | Dt T %k ke TSk W) TR Sy (ko)
Si{ =0 (k1)
where
b=e, . 8, [k for J, = k-
T %1y P13 e "FE
) (u2)
b =0 for J2 < k.
Defining Equations
e,, = 1 (u, . +u ) - = 6 5, (deviator strain rate),
ij E i,J Js1 3 iJ (h )
3
1 "
w5y =3 (ui,J - uj,i) (rotation rate), (Lb)
2 \
To =8y, 8,45 (45)
= . ]
8 Uy (46)
THE PLASTIC-RIGID EQUATIONS
This situation is considerably simplified if the plastic-rigid
assumption 1s introduced, which is, in effect, to neglect the elastic
regime. Then the constitutive equation, (LO), becomes
and Eq. (42) is simply
1/2
e 1
= = = \ .
b ey Sij/k 3 (eij ey) (48)

ittt




515 = I (dencting a viscositylike term),
and meking some straightforward menipulation.,

Differentiating Eq. (47), putting

: (49)

The equations are similar to the Navier-Stokes equations, but the
"viscosity," §, 1s not a constant, as in the usual viscous flow.
Summarizing these results, we have for plastic-rigid flow six equations
in the six unknowns, p, U, Py and E. The last three equations for the

variables [, eiJ’ and 4 are not essential and are not counted in %he

SuT.
lD)-‘t',Q + o] q = O, (50)
Du, s
Ppe TRy tHE(VTw rTe ) v2e 0y, (5)
0 %g +pe = ke/eﬁ £ k ‘,eij OVE (52)
where
p =F (Ep), (53)
_ k
gu . gy (5)
2‘/eij eiJ
¢; =3 (ui,J + uj,i) - 3 8 GiJ’ (55)
g = ui,i' (56)

CYLINDRICAL COORDINATES

The equations for axially symmetric flows are given below. u and
w denote the radial and axial velocity components. r and z denote
coordinates in the radial and axial directions. Dots denote crdinary

time derivatives and subscripts denote differentiaticn with respect to
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the indicated coordinate,

6+upr+wpz+pe=0,

.. — Al 1
gyttt un +twa ) = -p o+ u_+=u tu +=
P i z) P.TH ( rr r r zz 3 r’

L] l
p (w= w |+ wwz) =-p_+i(u__ + SW. w4

o (E + ug, + sz) +ps =k [e

ij eij 4
11T % T % ’
ST SCOER SIS
e33—"z'%’
& =uw. ¥ % TV,
ey ey 7Y T g (8 *W)E’“"e*(%)e'%z’
g =k/2 VFE;E‘E;S s p = F(E,p).

SPHERICALLY SYMMETRIC FLOWS

In the case of spherically symmetric Slows, the equations are the

fcllowing, in which u denotes radial velocity and r denotes distance

from the origin.
D+upr+pe=0)

2 u

) r -
TH (urr T )+ 2ell Hp s

p (& +wu) =-p,
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. = |2 . &
p(E+uEr)+pB-k.E lw. -2 1,
a
11 T Y T 8/3 e
K
- _ {3 ———
S T
r T
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