EXPONENTIAL LIFE TEST PROCEDURES
WHEN THE DISTRIBUTION HAS
MONOTONE FAILURE RATE

by

Richard E. Barlow
Frank Proschan

OPERATIONS RESEARCH CENTER
INSTITUTE OF ENGINEERING RESEARCH

UNIVERSITY OF CALIFORNIA - BERKELEY
ERRATA SHEET for "Exponential Life Test Procedures When the
Distribution has Monotone Failure Rate," by R. E. Barlow and
Frank Proschan.

Page 11, line 10 and page 12, line 7: Replace by:

\[R_1(t) = \begin{cases}
(1 - \frac{t}{\lambda})^{r-1} & \text{if } t < Z_r \\
0 & \text{otherwise}
\end{cases} \]

Page 12, line 8: Replace by:

\[\begin{cases}
1 - \frac{t}{\lambda} & \text{if } t < Z_r \\
0 & \text{otherwise} .
\end{cases} \]

Page 13, line 6: Replace "Theorem 2.1" by "Corollary 2.2".

Page 13, line 12: Insert "(larger)" after "smaller".

Page 13, 2nd line from bottom; and page 32, line 5: Replace "\geq\) by "\geq(\leq\)".

Page 13, bottom line: Replace "\leq E\) by "\leq(\geq\) E".

Page 16, line 3: Insert "\lt\) between "T" and "t".

Page 22, line 3: Put subscript "\Delta\) on "G" and "C".

Page 22, bottom line:

Replace: "e^{x \log \frac{q}{p}}" by "e^{x \log \frac{c}{p}}".

Page 30, line 4: Replace by "\widehat{\alpha}_1(x)".

Page 31, line 5: Insert "(DFR)" after "IFR".
EXPONENTIAL LIFE TEST PROCEDURES
WHEN THE DISTRIBUTION HAS MONOTONE FAILURE RATE

By

Richard E. Barlow, University of California, Berkeley,
Frank Proschan, University of California, Berkeley, and
Boeing Scientific Research Laboratories.

October 1964

This research has been partially supported by the Office of Naval Research under Contract Nonr-3656(18) with the University of California. The report will also be issued by Boeing Scientific Laboratories. Reproduction in whole or in part is permitted for any purpose of the United States Government.
SUMMARY

A number of estimates and tests for mean life and other parameters derived under the exponential distribution assumption are studied under the alternative condition that the distribution has increasing (decreasing) failure rate. The estimates considered are, for the most part, based on censored and truncated samples. It is shown that these estimates generally favor the producer (consumer) in the IFR (DFR) case. Properties of order statistics and their spacings from distributions with increasing (decreasing) failure rate are presented.
1. Introduction. In a fundamental paper in the literature of life testing Epstein and Sobel (1953) introduce life test procedures based on the exponential distribution. These procedures have been codified in a Department of Defense handbook (1960) and are now widely employed. Zelen and Dannemiller (1961) show by sampling from Weibull distribution alternatives that these procedures are not robust in testing for mean life. However, as Antelman and Savage (unpub.) have pointed out they may be robust in testing for certain percentiles. For certain loss functions based on percentiles, these procedures seem to be robust. Since statistical procedures based on the exponential distribution have a great deal of intuitive appeal and computational simplicity we investigate their properties relative to alternative distributions having increasing failure rate (IFR) or decreasing failure rate (DFR).

This paper essentially confirms, theoretically and more generally, the sampling results of the Zelen-Dannemiller paper for statistics derived under the exponential assumption. Using Weibull distribution alternatives (with parameter values which insure that the distribution has increasing failure rate) Zelen-Dannemiller show that the use of these statistics may result in substantially increasing the probability of accepting items having poor mean lives. We show that these estimates for the mean are positively (negatively) biased when the distribution is IFR (DFR). Also we obtain bounds on the expected values of the exponential estimates for the distribution function and bounds on the expected values of the order statistics.
In the last section various properties of IFR (DFR) order statistics are presented.

Preliminaries. Let \(X \) denote a random variable with right continuous distribution \(F \) such that \(F(0^-) = 0 \). If \(F \) has density \(f \) then

\[
 r(t) = \frac{f(t)}{[1 - F(t)]^t} \tag{1}
\]

is known as the failure rate. Note that \(r(t) = -\frac{d}{dt} \log[1 - F(t)] \) when a density exists. For this reason, we say that \(F \) is IFR (DFR) for increasing (decreasing) failure rate if \(\log[1 - F(t)] \) is concave where finite (convex on \([0, \infty)\)). Note that any IFR (DFR) distribution with specified mean can be expressed as the limit of continuous IFR (DFR) distributions with the same mean. Hence for many of our results it is sufficient to confine attention to continuous IFR (DFR) distribution.

We often use the well known fact that if \(F \) is continuous, then \(Y = -\theta \log F(X) \) is exponentially distributed with mean \(\theta \) where \(F(x) = 1 - F(x) \). Repeatedly we use the fact that if \(F \) is IFR with mean \(\theta \) then there exists \(x_0 \geq \theta \) such that

\[
 y = -\theta \log F(x) \begin{cases} < x & \text{for } x < x_0 \\ \geq x & \text{for } x \geq x_0 \end{cases}
\]

This is evident from log concavity and the bounds on IFR distributions given in Barlow and Marshall (1964). The inequalities are reversed when \(F \) is DFR.

Unless otherwise indicated we denote ordered observations from a random sample of size \(n \) based on a random variable \(X \).
by $X_1 \leq \ldots \leq X_n$. We define $X_0 = 0$.

2. Estimates based on censored samples. Assume n items are put on life test and let $X_1 \leq X_2 \leq \ldots \leq X_n$ denote the ordered observations. If F has density f such that

$$f(x; \theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & x \geq 0 \\ 0 & x < 0 \end{cases}$$

then

$$\hat{\theta}_{r, n} = \frac{\sum_{i=1}^{r} X_i + (n - r)X_r}{\sum_{i=1}^{r} 1} = \frac{\sum_{i=1}^{r} (n - i + 1)(X_i - X_{i-1})}{r}$$

($1 \leq r \leq n$) is the maximum likelihood and minimum variance unbiased estimate for θ based on the first r order statistics (Epstein and Sobel, 1953).

The normalized spacings $D_i = (n - i + 1)(X_i - X_{i-1})$ which enter into the computation of $\hat{\theta}_{r, n}$ have a natural intuitive appeal. They have also been used as the basis for a statistic to test for IFR (Proschan and Pyke, in preparation). We shall derive and use several properties of these spacings when F is IFR (DFR). Since the normalized spacings are independent and identically distributed in the exponential case (Epstein and Sobel, 1953), Theorem 2.1 below is quite intuitive.

A random variable X is said to be stochastically smaller than a random variable Y if and only if $P[X \geq x] \leq P[Y \geq x]$ for all x.

Theorem 2.1. If \(F \) is IFR (DFR) the normalized spacings
\((n - i + 1)(X_i - X_{i-1})\) are stochastically decreasing (increasing) in \(i \).

Proof. Assume \(F \) is IFR and let \(F(x) = 1 - F(x) \). Note that
\[
P[nX_1 > x] = \left[F\left(\frac{x}{n} \right) \right]^n \geq \left[F\left(\frac{x}{n-1} \right) \right]^{n-1}
\]
since \(\left[F(t) \right]^t \) is decreasing in \(t \). Let
\[
F_u(x) = \frac{F(u + x) - F(u)}{F(u)}
\]
and note \(F_u(x) \geq F(x) \). Given that \(X_1 = u \) is observed, \(X_2 - X_1 \) is distributed as the first order statistic from a sample of size \(n - 1 \) each with distribution \(F_u(x) \). Hence
\[
P[(n - 1)(X_2 - X_1) > x \mid X_1 = u] = \left[F_u\left(\frac{x}{n-1} \right) \right]^{n-1}.
\]
Conditioning on \(X_1 \) we have
\[
P[nX_1 > x] = \left[F\left(\frac{x}{n} \right) \right]^n \geq \left[F_u\left(\frac{x}{n-1} \right) \right]^{n-1}
\]
\[
= P[(n - 1)(X_2 - X_1) > x \mid X_1 = u]
\]
for all \(u \geq 0 \). Unconditioning
\[
P[nX_1 > x] \geq \int_0^\infty \left[F_u\left(\frac{x}{n-1} \right) \right]^{n-1} dG(u)
\]
\[
= P[(n-1)(X_2 - X_1) > x]
\]
where \(G(u) = 1 - \left[F(u) \right]^n \) is the distribution of \(X_1 \). Hence we have shown that \(nX_1 \) is stochastically larger than \((n - 1)(X_2 - X_1) \).

In a similar manner we can show that \((n - i + 1)(X_i - X_{i-1}) \) is stochastically larger than \((n - i)(X_{i+1} - X_i) \) for \(i = 2, 3, \ldots, n \).

All inequalities are reversed for DFR distributions. \(\Box \)

As an immediate consequence of Theorem 2.1 we have that
E\left\{ \frac{(n - i + 1)(X_{i} - X_{i-1})}{\sigma} \right\}

is decreasing (increasing) in i for $\sigma \geq 0$ when F is IFR (DFR). Using this fact we can show that $\hat{\theta}_{r, n}$ is positively biased when F is IFR.

Corollary 2.2. If F is IFR with mean θ, then

$$\theta \leq E[\hat{\theta}_{r, n}] \leq n \frac{\theta}{r}$$

for $r = 1, 2, \ldots, n$. All inequalities are sharp.

Proof. From Barlow and Proschan (1964a, p.33) we know that

$$E[\hat{\theta}_{1, n}] > \theta.$$

Also

$$h(r) = \sum_{i=1}^{r} \left\{ E\left[\frac{(n - i + 1)(X_{i} - X_{i-1})}{\sigma} \right] - \theta \right\}$$

exhibits at most one sign change as a function of r since

$$E\left[\frac{(n - i + 1)(X_{i} - X_{i-1})}{\sigma} \right]$$

is decreasing in i by Theorem 2.1. But $h(1) > 0$ and $h(n) = 0$, which implies $h(r) \geq 0$ for $r = 1, 2, \ldots, n$. Hence

$$E[\hat{\theta}_{r, n}] \geq \theta.$$

Clearly the bound is attained by the exponential distribution so that it is sharp.

To show the upper bound we note

$$\sum_{i=1}^{r} X_{i} + (n - r) X_{r} \leq \sum_{i=1}^{n} X_{i}$$

for every sample realization. Hence

$$E[\hat{\theta}_{r, n}] \leq n \theta$$

or

$$E[\hat{\theta}_{r, n}] \leq n \frac{\theta}{r}.$$
Since equality is attained with distributions degenerate at \(\theta \) (which is the limit of IFR distributions) the bound is sharp.

Corollary 2.3. If \(F \) is DFR with mean \(\theta \), then
\[
0 \leq E[\hat{\theta}_{r,n}] \leq \theta \quad \text{for } 1 \leq r < n.
\]

All inequalities are sharp.

Proof. The upper bound follows from Theorem 2.1 and the method of proof in Corollary 2.2. To show that the lower bound is sharp, let
\[
F(x) = \begin{cases}
0 & x < 0 \\
\frac{e x}{\theta} & x > 0
\end{cases}
\]
where \(\epsilon > 0 \) is arbitrary. Then \(F \) is DFR with mean \(\theta \) and
\[
P[X_i > x] = \sum_{j=0}^{i-1} \binom{n}{j} [F(x)]^j [F(x)]^{n-j}
\]
\[
\leq \sum_{j=0}^{i-1} \binom{n}{j} \epsilon^{n-j} \frac{\epsilon(x(n-j))}{\theta^{n-j}}
\]
Hence
\[
E[X_i] = \left. \int_0^\infty P[X_i > x] \, dx \right|_{0}^{\epsilon} \leq \sum_{j=0}^{i-1} \binom{n}{j} \frac{\epsilon^{n-j} \theta}{(n-j)} < 2^n \epsilon \theta
\]
when \(0 \leq \epsilon < 1 \). Since \(\epsilon \) is arbitrary we see that
\[
E[X_i] \geq 0 \quad \text{for } 1 \leq i < n
\]
is sharp.

For convenience we now denote the \(i \)-th order statistic from a sample of size \(n \) by \(X_{i,n} \).

Theorem 2.4. If \(F \) is IFR (DFR) \((n-i+1)(X_{i,n} - X_{i-1,n}) \) is stochastically increasing (decreasing) in \(n \) for fixed \(i \). Hence
\[
E[\hat{\theta}_{r,n}] \leq E[\hat{\theta}_{r,n+1}] \quad \text{for } 1 \leq r \leq n.
\]
Proof. Assume F is IFR. Let $G_{i,n}(x) = P[X_i \leq x]$ and note that $G_{i,n}(x) \leq G_{i,n+1}(x)$ for samples from any distribution.

Now

$$
P((n - i)(X_{i+1} - X_i, n) \geq x) = \left(\int_0^\infty \left[F_u \left(\frac{x}{n+1-i} \right) \right]^{n+1-i} dG_{i,n}(u) \right)$$

$$\leq \int_0^\infty \left[F_u \left(\frac{x}{n+1-i} \right) \right]^{n-i} dG_{i,n}(u)$$

$$\leq \int_0^\infty \left[F_u \left(\frac{x}{n+1-i} \right) \right]^{n+1-i} dG_{i,n+1}(u)$$

$$= P((n+1-i)(X_{i+1} - X_i, n+1) \geq x).$$

The first inequality holds since $[F(t)]^t$ is decreasing in t when F is IFR.

All inequalities are reversed when F is DFR.

Thus when F is IFR, the estimate $\hat{\theta}_{r,n}$ of mean life based on a sample censored on the right becomes worse with increasing n when $r \ (1 < r < n)$ remains fixed.

Acceptance Sampling. Statistical methods for testing hypotheses about the mean of an exponential distribution depend on the statistic $\hat{\theta}_{r,n}$, in the case of censored samples (Epstein, 1960a). For testing the hypothesis $H_0: \theta = \theta_0$ against the alternative $H_1: \theta = \theta_1 < \theta_0$ subject to $P[\text{reject } \theta = \theta_0 | \theta_0 \text{ true}] = \alpha$, the rejection region is of the form

$$\hat{\theta}_{r,n} < \frac{\theta_0 \chi^2_{1-\alpha}(2r)}{2r}.$$

If $\chi^2_{1-\alpha}(2r) < 2r$, then we shall prove, using Lemma 2.5, that
so that the exponential test provides a size α test when the failure distribution is IFR. To see (2.2) we need the following easily verified result which we present without proof.

Lemma 2.5. If ϕ is concave, $\phi(0) = 0$, and $a_i \geq 1$, $x_i > 0$ ($i = 1, 2, \ldots, n$), then

$$\phi \left(\sum_{i=1}^{n} a_i x_i \right) \leq \sum_{i=1}^{n} a_i \phi(x_i)$$

Let $\phi^{-1}(y) = -\theta \log F(y)$, so that $X_i = \phi(Y_i)$

where Y_i is the i^{th} order statistic of an exponentially distributed random variable with mean θ. Then

$$\hat{\theta}_{r, n} = \sum_{i=1}^{r} \phi(Y_i) + (n - r) \phi(Y_r)$$

$$\geq \phi \left[\sum_{i=1}^{r} Y_i + (n - r)Y_r \right]$$

by Lemma 2.5. Using the bounds on IFR distributions (Barlow and Marshall, 1964) and letting $Z_r^* = \sum_{i=1}^{r} Y_i + (n - r)Y_r$, we have

$$P_{\hat{\theta}} [\phi(Z_r^*) \leq c] \leq P_{\hat{\theta}} [Z_r^* \leq c]$$

when $c < \theta$. We obtain (2.2) by letting $\theta = \theta_0$ and
Sampling with Replacement. Suppose now that failed items are replaced at failure. In this case the bias of the usual estimate for \(\theta \) is even greater than in the non-replacement case.

Let \(X^*_i \) denote the time of the \(i \)th failure when failed items are replaced. The maximum likelihood estimate for \(\theta \) based on the exponential assumption is, in this case

\[
\hat{\theta}_{r,n} = \frac{1}{r} \left[nX^*_1 + n(X^*_2 - X^*_1) + \ldots + n(X^*_r - X^*_{r-1}) \right] - \frac{nX^*_r}{r}
\]

(Epstein, 1960b).

Theorem 2.5. If \(F \) is IFR with mean \(\theta \), then

\[
\theta < E[\hat{\theta}_{r,n}] < E[\hat{\theta}^*_{r,n}] < \frac{n}{r} E[X_1^n] \quad 1 \leq r \leq n
\]

Proof. Clearly \(X^*_{r,n} \leq X_r \) for any distribution \(F \) so that the upper bound is obvious. To show the remaining inequality we introduce the following fictitious replacement policy:

Policy A: Replace a failed item with a good item of the same "age".

Let \(X^{**}_i \) denote the time of the \(i \)th failure under this policy and

\[
\hat{\theta}^{**}_{r,n} = \frac{1}{r} \sum_{i=1}^{r} (n - i + 1)(X^{**}_i - X^{**}_{i-1})
\]

It is clear that \(E[\hat{\theta}^{**}_{r,n}] = E[\hat{\theta}^*_{r,n}] \)

since under the IFR assumption the conditional mean life of an aged item is less than the mean life of a new item.
We need only show \(F(\hat{\mu}_{r, n}^*) \leq F(\hat{\mu}_{r, n}^{**}) \). Let
\[
F_u(x) = \frac{F(x + u) - F(u)}{F(u)} \quad \text{and} \quad G(u) = P[X_1 \leq u] \quad \text{. Then}
\]
\[
P[X_2 - X_1 \geq \frac{x}{n-1} \mid X_1 = u] = [F_u(\frac{x}{n-1})]^{n-1} \quad \text{and}
\]
\[
E[(n - 1)(X_2 - X_1)] = \int_0^x \int_0^x [F_u(\frac{x}{n-1})]^{n-1} \, dx \, dG(u) \quad \text{. Similarly}
\]
under Policy II,
\[
P[X_2^{**} - X_1^{**} \geq \frac{x}{n} \mid X_1 = u] = [F_u(\frac{x}{n})]^n
\]
and
\[
E[n(X_2^{**} - X_1^{**})] = \int_0^x \int_0^x [F_u(\frac{x}{n})]^n \, dx \, dG(u) \quad \text{.}
\]
Since
\[
[F_u(\frac{x}{n})]^n \geq [F_u(\frac{x}{n-1})]^{n-1} \quad \text{when } F \text{ is IFR}
\]
we have
\[
E[(n - 1)(X_2 - X_1)] \leq E[n(X_2^{**} - X_1^{**})] \quad \text{.}
\]
To show
\[
E[(n - i + 1)(X_i - X_{i-1}^{**})] \leq E[(n - i + 1)(X_i^{**} - X_{i-1}^{**})] \quad \text{for } 2 < i < n
\]
we proceed as above except that the definition of \(G \) is different for the two policies. For example, for \(i = 3 \) let
\[
G(u_2 \mid u_1) = P[X_2 \leq u_2 \mid X_1 = u_1] = 1 - [F_{u_1}(u_2 - u_1)]^{n-1} \quad \text{and}
\]
\[
G^{*}(u_2 \mid u_1) = P[X_2^{**} \leq u_2 \mid X_1^{**} = u_1] = 1 - [F_{u_1}^*(u_2 - u_1)]^n \quad \text{.}
\]
Since
\[
G(u_2 \mid u_1) \leq G^{*}(u_2 \mid u_1)
\]
we have...
Bounds on estimates for the reliability function. The minimum variance unbiased estimate for \(R(t) = \bar{F}(t) \) (t is fixed) under the exponential assumption is

\[
\hat{R}_1(t) = \max \{ 0, (1 - \frac{t}{\theta})^{r-1} \}
\]

where \(\theta = \sum_{i=1}^{r} X_i + (n-r)X_r \). For a discussion of such minimum variance unbiased estimates see Tate (1959). For convenience, assume that \(\theta = 1 \). Then, under the exponential assumption, \(Z_r \) has density

\[
g_r(y) = \frac{r-1}{(r-1)!} y^{r-1} e^{-y}.
\]

Theorem 2.6. If \(F \) is IFR with mean \(\theta = 1 \) and \(t < \theta = 1 \), then

\[
E[\hat{R}_1(t)] \geq \int_{t}^{1} \left[1 - \frac{y}{\theta} \right]^{r-1} g_r(y) \, dy + \int_{1-t}^{\infty} (1-t)^{r-1} g_r(y) \, dy.
\]

Proof. Without loss of generality we may assume \(F \) continuous (see preliminaries). Let \(\phi^{-1}(y) = -\log \bar{F}(y) \). Then \(\phi \) is concave, increasing and \(\phi(0) = 0 \). If \(Y_i \) is the \(i \)th order statistic.
from an exponentially distributed random variable with \(\theta = 1 \),
then \(X_i = \phi(Y_i) \) is the \(i \)th order statistic from an IFR random variable with distribution \(F \) and mean \(\theta = 1 \). Furthermore

\[
Z_r = \sum_{i=1}^{r} \phi(Y_i) + (n - r) \phi(Y_r)
\]

\[
\geq \phi \left[\sum_{i=1}^{r} Y_i + (n - r)Y_r \right] = \psi \left[Z_r \right]
\]

by the previous lemma. Therefore

\[
\hat{R}_1(t) = \max \left\{ 0, (1 - \frac{t}{Z_r})^{r-1} \right\}
\]

\[
\geq \max \left\{ 0, (1 - \frac{t}{\phi(Z_r)})^{r-1} \right\}
\]

Since

\[\phi(y) \begin{cases} \geq 1 & y < 1 \\ = 1 & y \geq 1 \end{cases}\]

we have

\[
E[\hat{R}_1(t)] \geq \left(1 - \frac{t}{y} \right)^{r-1} g_r(y) dy + \left(1 - t \right)^{r-1} g_r(y) dy
\]

The maximum likelihood estimate for \(R(t) \) under the exponential assumption is

\[\hat{R}_2(t) = e^{-\hat{\theta}_r n}\]

where \(\hat{\theta}_r n \) was defined in (2.1). Pugh (1963) has shown that
under the exponential assumption \(\hat{R}_2(t) \) is negatively biased when
the true reliability \(R(t) > \frac{1}{e} = 0.368 \). Assuming \(F \) is IFR
we can obtain a lower bound on \(E[\hat{R}_2(t)] \).

Theorem 2.7. If \(F \) is IFR with mean \(\theta = 1 \), then
The proof parallels that of Theorem 2.6.

Estimates and confidence bounds on percentiles. If \(F \) is IFR with mean \(\theta \) and \(p \) th percentile \(\xi_p \), then

\[
-\log(1 - p)\frac{\theta}{p} \leq \xi_p \leq \left(-\log(1 - p)\right)\frac{\theta}{p}.
\]

(See Barlow and Marshall (1964)). Hence by Theorem 2.1

\[
E[\hat{\xi}_p] \geq \frac{1}{\Phi} \int_0^1 e^{(y\theta)} r_r(y) dy + \frac{1}{\Phi} \int_1^\infty r_r(y) dy.
\]

and one might be tempted to use these estimates to bracket \(\xi_p \).

Intuitively, we want a confidence interval to have small expected width when it covers the true percentile. The usual distribution-free confidence intervals based on order statistics have smaller conditional expected width under the IFR (DFR) assumption than under the exponential assumption, given that the interval contains the true percentile. To see this let \(Y = -\frac{\xi_p}{\log(1 - p)} \int_0^1 \frac{\log F(x)}{I(x)} \) and note that \(Y \) is exponentially distributed with \(p \) th percentile \(\xi_p \) when \(F \) is continuous. Suppose that \(X_i \leq \xi_p \leq X_j \). Then clearly

\[
\frac{Y_j - Y_i}{X_j - X_i} \geq 1,
\]

which implies

\[
E[X_j - X_i | X_i \leq \xi_p \leq X_j] \leq E[Y_j - Y_i | Y_i \leq \xi_p \leq Y_j].
\]
Estimates based on truncated samples. If \(n \) items are placed on life test and if sampling is terminated at time \(T \), the associated sample is called a truncated sample. Let \(X_1 \leq X_2 \leq \ldots \leq X_n \) denote an ordered sample from a distribution \(F \) and let

\[
V(T) = \sum_{i=1}^{r} X_i + (n - r)T
\]

where \(r \) is a random variable and denotes the number of \(X \)'s less than \(T \). Then \(V(T) \) is the total life observed up to time \(T \). This statistic occurs, for example, in sequential life tests for the exponential case (Epstein and Sobel, 1955). It is not surprising that this statistic also has greater expected value under the IFR assumption.

For convenience, let \(G(x) = 1 - e^{-\frac{x}{\theta}} \).

Theorem 3.1. If \(F \) is IFR (DFR) with mean \(\theta \), then

\[
E_F[V(T)] \geq E_G[V(T)]
\]

Proof. Assume \(F \) IFR and let \(X_1 \leq X_2 \leq \ldots \leq X_n \) denote an ordered sample from \(F \). Without loss of generality we may assume \(F \) continuous. Let \(y = -\theta \log F(x) \). We know there exists \(x_0 > \theta \) such that \(x \geq -\theta \log F(x) \) for \(x \leq x_0 \) and \(x \leq -\theta \log F(x) \) for \(x > x_0 \) (Barlow and Marshall, 1964).

Let \(Y_i = -\theta \log F(X_i) \). If \(T \leq x_0 \), then

\[
\sum_{i=1}^{r} X_i + (n - r)T \geq \sum_{i=1}^{r} Y_i + (n - r)T \geq \sum_{i=1}^{s} Y_i + (n - s)T
\]

where \(r (s) \) denotes the number of \(X \)'s (\(Y \)'s) less than \(T \).
Hence for $T \leq x_0$

$$F_F[V(T)] \geq F_G[V(T)].$$

Let

$$Y_i^* = \begin{cases} V_i & \text{if } Y_i \leq T \\ T & \text{otherwise} \end{cases}$$

For $T > x_0$,

$$\sum_{i=1}^r X_i + (n - r)T - \sum_{i=1}^s Y_i - (n - s)T$$

$$= \sum_{i=1}^r X_i + (n - r)T - \sum_{i=1}^r Y_i^* - (n - r)T$$

$$\geq \sum_{i=1}^r (X_i - Y_i) + \sum_{i=r+1}^n (X_i - Y_i)$$

since $X_i \leq Y_i$ for $i > r$. Hence

$$F_F[V(T)] - F_G[V(T)] \geq E\left[\sum_{i=1}^n X_i\right] - E\left[\sum_{i=1}^n Y_i\right] = 0$$

for $T > x_0$.

A similar argument holds for the DFR case.

Consider the estimate

$$\hat{\theta}(T) = \frac{V(T)}{r} = \begin{cases} \frac{\sum_{i=1}^r X_i + (n - r)T}{r} & \text{if } r > 0 \\ nT & \text{if } r = 0 \end{cases}$$

When F is the exponential distribution, $\hat{\theta}(T)$ is the maximum likelihood estimate of θ. In this case

$$E[\hat{\theta}(T)] = \theta - \frac{\text{cov}(r, \hat{\theta}(T))}{1 - \exp(-\frac{T}{\theta})} > \theta.$$
since \(r \) and \(\hat{\theta}(T) \) are negatively correlated (Bartholomew, 1957). In the IFR case, this statistic exhibits even greater bias for \(T < \theta \). As before let \(G(x) = 1 - e^{-\frac{x}{\theta}} \).

Theorem 3.2. If \(F \) is IFR with mean \(\theta \), but not degenerate then

\[
E_F[\hat{\theta}(T) \mid r \geq 1] \geq E_G[\hat{\theta}(T) \mid r \geq 1] \quad \text{for} \quad T < \theta.
\]

Proof. Assume \(F \) is continuous and let \(Y_i = -\theta \log F(X_i) \) as before and let

\[
a_i = \begin{cases} 1 & \text{if } X_i < T \\ 0 & \text{otherwise} \end{cases}
\]

\[
b_i = \begin{cases} 1 & \text{if } Y_i < \theta \\ 0 & \text{otherwise} \end{cases}
\]

We can write

\[
\hat{\theta}(T) = \frac{\sum_{i=1}^{n} [T - a_i(T - X_i)]}{\sum_{i=1}^{n} a_i} \quad \text{if } \sum_{i=1}^{n} a_i \geq 1.
\]

Assume \(T < \theta \). As in the previous proof \(X_i < T \) implies \(Y_i < T \) and hence \(a_i < b_i \). If \(a_i = 1 \), then \(b_i = 1 \) and

\[
T - X_i < T - Y_i. \quad \text{Hence if } \sum_{i=1}^{n} a_i \geq 1,
\]

\[
\sum_{i=1}^{n} [T - a_i(T - X_i)] \geq \sum_{i=1}^{n} [T - b_i(T - Y_i)]
\]

\[
\sum_{i=1}^{n} a_i \geq \sum_{i=1}^{n} b_i
\]

and

\[
E_F[\hat{\theta}(T) \mid r \geq 1] \geq E_G[\hat{\theta}(T) \mid r \geq 1] \quad \text{for} \quad T < \theta.
\]
Inverse Binomial Sampling.

Nadler (1960) has considered the following type of sampling. An item having life distribution F with mean θ is put on test until it fails or time t has elapsed; at this time the item is replaced by a fresh item. This is repeated sequentially until r actual failures are observed. The number N_r of items that have to be tested until the r actual failures are obtained is a random variable. Nadler (1960) showed that when $F(x) = 1 - e^{-\frac{x}{\theta}}$, an unbiased estimate of θ is

$$\hat{\theta}_r(t) = \frac{1}{r} \sum_{i=1}^{r} Y_i + (N-r)t,$$

where the Y_1, \ldots, Y_r are the r life lengths not exceeding t.

We show next that when F is IFR (DFR) with mean θ, then $\hat{\theta}_r(t)$ is biased high (low).

Theorem 3.3. If F is IFR (DFR) with mean θ, then $E\hat{\theta}_r(t) > (<) \theta$.

Proof. Let F be IFR. Let Z_i denote test time elapsed between the i-th failure time and the $(i-1)$-th failure time, $i = 1, 2, \ldots, r$, where the 0-th failure time is defined to be 0. Then

$$\hat{\theta}_r(t) = \frac{1}{r} \sum_{i=1}^{r} Z_i.$$

Next consider an alternate testing procedure differing in that replacement occurs only upon failure. Let $Z'_i =$ test time elapsed between the i-th failure and the $(i-1)$-th failure. Now since F is IFR, Z'_i is stochastically larger than Z_i. It follows that
The inequality is reversed when \(F \) is DFR.

Sampling with replacement. In this case

\[
\hat{\theta}(T) = \frac{nT}{r} = \frac{nT}{\sum_{i=1}^{n} N_i(T)}
\]

where \(N_i(T) \) denotes the number of replacements in the \(i \)th item position and \(r = \sum_{i=1}^{n} N_i(T) \) denotes the total number of replacements in \([0, T]\). Of course \(\frac{1}{\sum_{i=1}^{n} N_i(T)} \) is unbounded.

However, we know that \(\mathbb{E}[N_i(T)] \leq \frac{T}{r} \) for all \(r > 0 \) (Barlow and Proschan, 1964b). Hence this again indicates that \(\hat{\theta}(T) \) will tend to be larger in the IFR case than in the exponential case.

4. Bounds on time to \(r \)th failure. Under the exponential assumption, the distribution of the statistic \(\hat{\theta}_{r,n} \) depends only on \(r \) and not on \(n \). The choice of \(n \) in this case is usually determined by the ratio

\[
\frac{\mathbb{E}(X_{r,n})}{\mathbb{E}(X_{r,r})}
\]

which is an indirect measure of the expected saving in time due to putting more than \(r \) items on test but terminating at the \(r \)th failure (Epstein, 1960a). We always have

\[
\frac{\mathbb{E}(X_{r,n})}{\mathbb{E}(X_{r,r})} \leq 1
\]
Since the bound is attained by the degenerate distribution (which is the limit of IFR distributions), this is not a useful measure if we assume only IFR. However, we can obtain non-trivial bounds on $E(X_{r,n})$.

Assume F is IFR, with mean 1, and continuous. We may write $Y_i = -\log F(X_i)$ where Y_i is the ith order statistic in a sample of n from distribution $G(x) = 1 - e^{-x}$, and is a convex function of X_i, where X_i is the ith order statistic in a sample of n from F. By Jensen's inequality

$$E(Y_i) \geq -\log F(E(X_i)),$$

so that

$$F(E(X_i)) \geq e^{-E(Y_i)}.$$

If $b(x)$ is a sharp upper bound on $F(x)$, then b is decreasing to 0 and

$$b(E(X_i)) \geq e^{-E(Y_i)}.$$

Hence choosing x_0 such that

$$b(x_0) = e^{-E(Y_i)},$$

where of course

$$E(Y_i) = \sum_{j=1}^{i} \frac{1}{(n-j+1)},$$

we have

$$E(X_i) \leq x_0.$$

Using tabled upper bounds on F given one or two moments of F (Barlow and Marshall, 1963) we can obtain upper bounds on $E(X_i)$.

When F is DFR we can, in a similar manner, obtain lower bounds on $E(X_i)$ using lower bounds on F.
If we specify the first moment of F, explicit upper bounds can be given on $E(X_i)$ when F is IFR, as shown in Theorem 4.1. If $X_1 \leq X_2 \leq \ldots \leq X_n$ are order statistics from an IFR random variable with mean θ and $Y_1 \leq Y_2 \leq \ldots \leq Y_n$ are the order statistics from $G(x) = 1 - e^{-x}$, then

(a) $\theta E(Y_1) \leq E(X_1) \leq \theta$

(b) $E(X_i) \leq \frac{\theta E(Y_i)}{1 - e^{-E(X_i)}}$ \quad $1 \leq i \leq n$

(c) $\theta \leq F(X_n) \leq \theta E(Y_n)$

(a) and (c) are sharp and (b) is non-trivial though not sharp.

Proof. (a) and (c) are shown in Barlow and Proschan (1964a, Chapter 2). Hence we need only prove (b) and we may assume $\theta = 1$.

First let us verify that (b) is non-trivial. Note that by (a),

$EX_{n-1} \leq EX_n \leq EY_n$, so that EY_n is a trivial upper bound for EX_{n-1}. Therefore, a non-trivial upper bound for EX_{n-1} must be less than EY_n i.e., we must show that $\frac{EY_{n-1}}{1 - e^{-EY_{n-1}}} < EY_n$.

But for $z > 0$, $\frac{z}{1 - e^{-z}} < z + 1$; thus letting $z = EY_{n-1}$:

$\frac{1}{n} + \frac{1}{n-1} + \ldots + \frac{1}{2} < EY_n$.

Therefore, we conclude

$\frac{EY_{n-1}}{1 - e^{-EY_{n-1}}} < \frac{1}{n} + \frac{1}{n-1} + \ldots + \frac{1}{2} + 1 = EY_n$.

To show (b) use the bound

$F(x) \leq b(x) = \begin{cases} 1 & x \leq \theta \\ e^{-wx} & x > \theta \end{cases}$
where \(w \) depends on \(x \) and satisfies \(\int e^{-wu} du = \theta \).

(Barlow and Marshall, 1964).

Sharp bounds will be derived in a future publication. However, these are not as convenient as the bounds of Theorem 4.1.

Bounds on expected values of order statistics can also be given in terms of the \(p \)th percentile.

Theorem 4.2. Let \(X_1 \leq X_2 \leq \ldots \leq X_n \) denote the order statistics from \(F \), IFR with \(p \)th percentile \(\xi_p \). Then

\[
E(X_j) \leq \max \left\{ \xi_p, \frac{1}{n} + \ldots + \frac{1}{(n-j+1)} \right\}
\]

and

\[
E(X_j) \geq \sum_{i=0}^{j-1} \binom{n}{i} \int_0^{\xi_p} \left(1 - \frac{x \log q}{\xi_p} \right)^i \left(\frac{x \log q}{\xi_p} \right)^{n-i} dx
\]

where \(q = 1 - p \). All inequalities are sharp.

Proof. To show (4.1), let

\[
\sigma_\Delta(x) = \begin{cases}
1 & 0 \leq x \leq \Delta \\
q \exp \left(\frac{x - \xi_p}{\xi_p - \Delta} \log q \right) & x > \Delta
\end{cases}
\]

Note that \(\sigma_\Delta(\Delta) = 1 \) and \(\sigma_\Delta(\xi_p) = 1 - p = q \). Since \(\log F(x) \) is concave, there exists at least one value of \(\Delta \geq 0 \) such that \(\sigma_\Delta(x) \geq F(x) \) for all \(x \geq 0 \). Thus \(E(X_j) \leq \sup E(Y_j) \) where \(Y_j \) is the \(j \)th order statistic from \(G_\Delta \). Now

\[
E(Y_j) = \Delta + \int_\Delta^{\infty} \sum_{i=0}^{j-1} \binom{n}{i} \left[\sigma_\Delta(x) \right]^i \left[\sigma_\Delta(x) \right]^{n-i} dx
\]

\[
= \Delta + \int_\Delta^{\infty} \frac{\Gamma(n+1)}{\Gamma(j+1)(n+1-j)} \int_{G_\Delta(x)} t^{j-1}(1-t)^{n-j} dt dx
\]
To find the maximizing Δ, consider

$$
\frac{\partial}{\partial \Delta} E(Y_j) = 1 - \frac{\Gamma(n + 1)}{\Gamma(j + n + 1 - j)} \int_0^1 t^{j-1}(1-t)^{n-j} dt
$$

$$
+ \frac{\Gamma(n + 1)}{\Gamma(j + n + 1 - j)} \int_\Delta \big[G(x) \big]^{j-1} [\mathcal{G}(x) \big]^{n-j} \cdot q \exp\left[\frac{x - \xi_p}{\xi_p - \Delta} \log q \right] \frac{x - \xi_p}{(\xi_p - \Delta)^2} dx .
$$

Since $G_\Delta(\Delta) = 0$, $- (\xi_p - \Delta) \frac{\partial E(Y_j)}{\partial \Delta}$ reduces to

$$
\frac{\Gamma(n + 1)}{\Gamma(j + n + 1 - j)} \int_\Delta \big[G(\Delta) \big]^{j-1} \big[\mathcal{G}(\Delta) \big]^{n-j} g_\Delta(x)(x - \xi_p) dx = F(Y_j) - \xi_p
$$

where g_Δ is the density of G_Δ.

Hence

$$
- (\xi_p - \Delta) \frac{\partial}{\partial \Delta} E(Y_j) = \Delta - \frac{\xi_p - \Delta}{\log q} \left(\frac{1}{n} + \ldots + \frac{1}{n - j + 1} \right) \cdot \xi_p
$$

$$
= -(\xi_p - \Delta) \left[1 + \frac{1}{\log q} \left(\frac{1}{n} + \ldots + \frac{1}{n - j + 1} \right) \right].
$$

For j such that $1 + \frac{1}{\log q} \left(\frac{1}{n} + \ldots + \frac{1}{n - j + 1} \right) \leq 0$, we have

$$
\frac{\partial}{\partial \Delta} E(Y_j) \leq 0.
$$

For j such that $1 + \frac{1}{\log q} \left(\frac{1}{n} + \ldots + \frac{1}{n - j + 1} \right) \geq 0$, we have

$$
\frac{\partial}{\partial \Delta} E(Y_j) \geq 0.
$$

Thus $E(Y_j)$ is maximized in the first case at $\Delta = 0$ and at $\Delta = \xi_p$ in the second case. When $\Delta = 0$, $E(Y_j) = \xi_p \log q \left(\frac{1}{n} + \ldots + \frac{1}{n - j + 1} \right)$; when $\Delta = \xi_p$, $E(Y_j) = \xi_p$.

To show (4.2). Let $\mathcal{G}(x) = \begin{cases} e^{x \log \xi_p} & \text{for } 0 \leq x < \xi_p \\ 0 & \text{for } \xi_p \leq x < \infty \end{cases}$.
Then \(\mathcal{G}(x) \leq \mathcal{F}(x) \) for all \(x \geq 0 \) and \(G \) has \(p \)th percentile \(\xi_p \). Thus \(E(Y_j) \leq E(X_j) \) where \(Y_j \) is the \(j \)th order statistic from \(G \). But

\[
E(Y_j) = \int_0^\infty \sum_{i=0}^{j-1} \binom{n}{i} [G(x)]^i [\mathcal{G}(x)]^{n-i} \, dx .
\]

Using the above definition of \(G \), we obtain (4.2).

5. Further results on order statistics and spacings. In this section we present some results of theoretical interest concerning order statistics and their spacings from \(PF_\infty \) and IFR (DFR) distributions. Many of the results hold without the restriction \(F(0^-) = 0 \).

First we present some total positivity properties of the order statistics. A function \(K(x, y) \) of two real variables is said to be totally positive of order \(r \) (TP\(_r\)) if for all \(1 < m < r; \)

\[
x_1 \leq x_2 \leq \ldots \leq x_m \text{ and } y_1 \leq y_2 \leq \ldots \leq y_m \text{ we have the determinant inequalities}
\]

\[
\left| K(x_i, y_j) \right|_{i, j=1}^m \geq 0 .
\]

The following lemma is of use later on, as well as of interest in its own right.

Lemma 5.1. Let \(F \) be a distribution having density \(f \) with \(f(x) \) not necessarily \(0 \) for \(x < 0 \). Let \(f_i(x) \) be the density of the \(i \)th order statistic in a sample of size \(n \). Then \(f_i(x) \) is TP\(_0\) in \(i, x \) where \(i = 1, 2, \ldots, n \) and \(-\infty < x < \infty \).

Proof.

(5.1)

\[
f_i(x) = \frac{n!}{(i-1)!(n-i)!} F^{i-1}(x) F^{n-i}(x) f(x) .
\]
Since \(\left(\frac{F(x)}{F(x)} \right)^{1-i} \) is TP in \(i \) and \(x \), when \(i = 1, 2, \ldots, n \)
and \(-\infty < x < \infty\), the conclusion follows.

We may obtain a similar result concerning the right hand tail of the distribution of an order statistic.

Lemma 5.2. Let \(F \) be any distribution with \(F(x) \) not necessarily 0 for \(x < 0 \), \(F \) the corresponding distribution of the \(i \)th order statistic. Then \(F_i(x) \) is TP in \(i, x \), where \(i = 1, 2, \ldots, n \) and \(-\infty < x < \infty\).

Proof.

\[
F_i(x) = \sum_{j=0}^{i-1} \binom{n}{j} F_j(x) F^{n-j}(x).
\]

Now \(\left(\frac{F(x)}{F(x)} \right)^j \) is TP in \(x, j \). Therefore

\[
F_i(x) = \sum_{j=0}^{\infty} \binom{n}{j} F^n(x) \left(\frac{F(x)}{F(x)} \right)^j H(i - j) \text{ is also TP in } i \text{ and } x, \text{ where } H(k) = 1 \text{ for } k \geq 0, 0 \text{ otherwise.}
\]

In Barlow, Marshall, Proschan (1963), it is shown that the order statistics from an IFR distribution themselves have an IFR distribution. The next lemma shows a similar preservation of the PF property.

Lemma 5.3. Suppose the underlying density \(f \) is PF, with \(f(x) \) not necessarily \(\infty \) for \(x < 0 \). Then the density \(f_i \) of the \(i \)th order statistic is also PF for fixed \(i = 1, 2, \ldots, n \).
Proof. It is easy to verify that when \(f \) is \(\text{PF}_2 \), so is \(F \) and \(\bar{F} \). Thus \(\log f, \log F, \) and \(\log \bar{F} \) are concave. It follows from (5.1) that \(\log f_i \) is concave, or equivalently, \(f_i \) is \(\text{PF}_2 \) for fixed \(i = 1, 2, \ldots, n \).

Next we obtain some comparisons between the order statistics of an IFR (DFR) distribution and the corresponding order statistics of an exponential distribution.

Theorem 5.4. Let \(X_1 \leq X_2 \leq \ldots \leq X_n \), \(n \geq 2 \), be order statistics from \(F \), an IFR (DFR) distribution with mean \(\theta \), but \(\neq 1 - e^{-\theta} \). Let \(Y_1 \leq Y_2 \leq \ldots \leq Y_n \) be order statistics from \(G(t) = 1 - e^{-\frac{t}{\theta'}} \). Then

(a) \(E_{X_j} - E_{Y_j} \) has at most one change of sign as \(j \) goes from 1 to \(n \). Moreover if one change of sign does occur, then \(E_{X_j} - E_{Y_j} \) goes from positive (negative) to negative (positive) values.

(b) If \(\theta = \theta' \), then one change of sign does occur.

Proof.

(a) Assume \(F \) is a continuous IFR distribution with mean \(\theta \) and \(G \) is exponential with mean \(\theta' \). We have seen in Section 1 that if \(Y \) has distribution \(G \), then \(X = \phi\left(\frac{Y}{\theta'}\right) \) has distribution \(F \), where \(\phi^{-1}(x) = -\log \bar{F}(x) \), a convex increasing function which is 0 for \(x = 0 \).

Thus

\[
E_{X_i} - E_{Y_i} = \int_{0}^{\infty} \left\{ \phi\left(\frac{Y}{\theta'}\right) - y \right\} g_1(y) dy,
\]
where \(g_i \) is the density of the \(i \)th order statistic from the exponential distribution \(G \). By Lemma 5.1, \(g_i(y) \) is TV in \(i \) and \(v \). Also \(c(Y_i) - y \) changes sign at most once, and if once, from positive to negative values. By the variation diminishing property of totally positive functions (Karlin, 1964, p. 34), \(EX_i - EY_i \) also changes sign at most once, and from positive to negative values, if at all.

(b) If \(\theta = \theta' \), then \(\sum_{i=1}^{n} EX_i = \theta = \theta' = \sum_{i=1}^{n} EY_i \). Hence \(EX_i - EY_i \) must change sign at least once or be identically 0 for \(i \).

If \(F \) is IFR but not continuous, we may obtain the same result by using continuous IFR approximations.

Finally, a similar argument holds if \(F \) is DFR. Actually, under the same hypothesis we may prove a stronger version of (a) in which \(EX_i - EY_i \) is replaced by \(EX_i^\sigma - EY_i^\sigma \), \(\sigma > 0 \). If instead of assuming \(EX = EY \) in (b), we assume \(EX^\sigma = EY^\sigma \), then we may show that one change of sign of \(EX_i^\sigma - EY_i^\sigma \) does occur. We omit the details.

We may obtain further consequences of Theorem 5.4 using the notion of majorization. A vector \(\bar{a} = (a_1, a_2, \ldots, a_n) \) majorizes a vector \(\bar{b} = (b_1, b_2, \ldots, b_n) \) (written \(\bar{a} > \bar{b} \)) if...
Theorem 5.5. Let \(X_1 \leq \ldots \leq X_n \) be order statistics from \(F \), an IFR (DFR) distribution with mean \(\theta \), \(Y_1 \leq \ldots \leq Y_n \) be order statistics from \(G(t) = 1 - e^{-t} \). Then \((EY_1, EY_{n-1}, \ldots, EY_n)\) >\(<(EY_n, EY_{n-1}, \ldots, EX_1)\).

Proof. Let \(F \) be IFR. From Theorem 5.4 we know
\[
EY_{n-i+1} - EX_{n-i+1} \text{ has one change of sign, from plus to minus as } i \text{ goes from 1 to } n.
\]
We also know \(\sum_{i=1}^{n} EY_{n-i+1} = n\theta = \sum_{i=1}^{n} EX_{n-i+1} \).

Thus \(\sum_{i=1}^{j} EY_{n-i+1} \geq \sum_{i=1}^{j} EX_{n-i+1} \) for \(j = 1, 2, \ldots, n \). Finally, \(EY_{n-i+1} \) and \(EX_{n-i+1} \) are decreasing in \(i \). Thus the conclusion follows.

A similar argument holds if \(F \) is DFR.

Using Karamata's Theorem we obtain Theorem 5.6 below.

Karamata's Theorem states that if \(\psi \) is continuous and convex and
\[
a > b \text{, then } \sum_{i=1}^{n} \psi(a_i) \geq \sum_{i=1}^{n} \psi(b_i).
\]
(5.3)

See Hardy, Littlewood, Pólya (1952), p. 89.

Theorem 5.6. Let \(\psi \) be continuous and convex, \(X_1, \ldots, X_n \), \(Y_1, \ldots, Y_n \) as in Theorem 5.5. Then
\[
\sum_{i=1}^{n} \psi(EY_i) \geq \sum_{i=1}^{n} \psi(EX_i).
\]
Proof. Let F be IFR. By Theorem 5.5, $(FY_1, \ldots, FY_n) > (EX_1, \ldots, EX_n)$. Hence by Karamata's Theorem, the conclusion follows. A similar argument holds if F is DFR.

Using Theorem 5.5, we obtain

Theorem 5.7. Let $c_1 \leq c_2 \leq \ldots \leq c_n$, X_1, \ldots, X_n, Y_1, \ldots, Y_n as in Theorem 5.5. Then $\sum_{i=1}^{n} c_i Y_{n-i+1} > \sum_{i=1}^{n} c_i X_{n-i+1}$.

Proof. Let F be IFR. Defining $d_i = Y_{n-i+1} - EX_{n-i+1}$, write

$$n \sum_{i=1}^{n} c_{n-i+1}(FY_{n-i+1} - EX_{n-i+1}) = (c_n - c_{n-1})d_1 + (c_{n-1} - c_{n-2})(d_1 + d_2)
$$

$$+ (c_{n-2} - c_{n-3})(d_1 + d_2 + d_3) + \ldots + (c_2 - c_1)(d_1 + \ldots + d_{n-1})
$$

$$+ c_1(d_1 + \ldots + d_n).$$

Since $c_i - c_{i+1} \geq 0$, $i = 1, \ldots, n-1$, $d_1 \geq \ldots \geq d_n \geq 0$, $j = 1, \ldots, n-1$, and $d_1 \ldots d_n = 0$, we conclude that

$$n \sum_{i=1}^{n} c_{n-i+1}(FY_{n-i+1} - EX_{n-i+1}) > 0,$$

A similar argument holds when F is DFR.

Finally we summarize some results concerning the covariance of order statistics obtained by Tukey (1958). He shows that if F is IFR, then for $h \leq j < k$, $\text{cov}(X_k, X_h) > \text{cov}(X_j, X_h)$, where X_j is the jth order statistic from F. He further shows that if F satisfies both

(a) $\log F$ is concave (i.e., F is IFR), and

(b) $\log F$ is concave,
(1) the covariance of any two order statistics is less than the variance of either, and

(2) the covariance between order statistics \(X_j, X_k \) is monotone in \(j \) and \(k \) separately, decreasing as \(j \) and \(k \) separate from one another.

Note that if \(f \) is \(PF \), then \(F \) satisfies both (a) and (b) above.

Next we derive properties of the spacings \(X_1, X_2 - X_1, \ldots, \)
\(X_n - X_{n-1} \) from \(PF \) and IFR (DFR) distributions similar to those of the order statistics \(X_1 \leq X_2 \leq \ldots \leq X_n \) obtained above.

We first consider total positivity properties.

Theorem 5.8. Let \(f \) be \(PF \) with \(f(x) \) not necessarily 0 for \(x < 0 \). Then \(h_i \), the density of \(X_i - X_{i-1} \), is \(PF \) for fixed \(i = 2, 3, \ldots, n \). If we assume further that \(f(x) = 0 \) for \(x < 0 \), then \(h_i \) is \(PF \), where \(h_i \) is the density of \(X_i \).

Proof.

\[
(5.4) \quad h_i(x) = \frac{n!}{(i-1)!(n-i)!} \int F^{i-2}(u)f(u)f(u+x)F^{n-i-1}(u+x)\,du
\]

for \(i = 2, 3, \ldots, n \).

Since \(f \) is \(PF \), so is \(r(u) = F^{i-2}(-u)f(-u) \), \(s(u) = f(u)F^{n-i-1}(u) \). Hence so is

\[
(5.5) \quad h_i(x) = \frac{n!}{(i-1)!(n-i-1)!} \int r(-u)s(u+x)\,du
\]

for fixed \(i = 2, 3, \ldots, n \).

Assuming \(f(x) = 0 \) for \(x < 0 \), we see that \(h_i \) is \(PF \), from
Theorem 5.9. If \(F \) is DFR, then \(H_i \) is DFR for fixed \(i = 1, 2, \ldots, n \).

Proof. Since DFR is preserved under convex combinations (Barlow, Marshall, Proschan, 1963, p. 381) we see from the representation
\[
\Pi'_1(x) = \frac{n!}{(i-1)!(n-i)!} \int F^{i-1}(u) f(u) F^{n-i-1}(u) \, du,
\]
where \(F_u(x) = F(u+x) \), DFR in \(x \) for fixed \(u \), that \(H_i \) is DFR for fixed \(i = 1, 2, \ldots, n \).

Theorem 5.10. Let \(F \) be DFR with \(F(x) < 1 \) for all \(x > 0 \).
Then \(\Pi'_1(x) \) is TP in \(i, x \) where \(i = 2, 3, \ldots, n \) and \(x \geq 0 \).

Proof. \(F^{i-2}(u) f(u) \) is TP in \(i = 2, 3, \ldots, n \) and \(u \geq 0 \).
\(F^{n-i+1}(u+x) \) is TP in \(i, u \), in \(i, x \), and in \(u, x(u > 0, x > 0) \).
Thus by a theorem in the book by Karlin (in process)
\[
\Pi'_1(x) = \frac{n!}{(i-1)!(n-i)!} \int F^{i-2}(u) f(u) F^{n-i-1}(u+x) \, du
\]
is TP in \(i, x \), where \(i = 2, 3, \ldots, n \) and \(x \geq 0 \).

* Theorem (Karlin) let \(\lambda, x, \xi \) traverse linear sets \(L, X, \Xi \) respectively. Suppose \(h(\lambda, x) = \int f(\lambda, x, \xi) g(\lambda, x) \, d\mu(\xi) \) is well defined on \(\Lambda \times X \), where \(\mu \) is a \(\sigma \)-finite measure, and
(i) \(f(\lambda, x, \xi) > 0 \) for all \(\lambda \) in \(\Lambda \), \(x \) in \(X \), and \(\xi \) in \(\Xi \), and \(f \) is TP in \(\lambda, x \) for each pair of variables when the third variable is held fixed.
(ii) \(g(\lambda, \xi) \) is TP in \(\lambda \).
Then \(h \) is TP in \(\lambda \).
Next we present some majorization properties of the normalized spacings \((n - 1 \cdot 1)(X_{i} - X_{i+1})\), \(i = 1, 2, \ldots, n\), similar to those developed above for the order statistics.

Theorem 5.11. Let \(X_{1} \leq X_{2} \leq \ldots \leq X_{n}\) be the order statistics from \(F\), an IFR distribution with mean \(\mu\), \(Y_{1} \leq Y_{2} \leq \ldots \leq Y_{n}\) the order statistics from \(G(t) = 1 - e^{t}\). Then
\[
\sum_{i=1}^{n} X_{i} \cdot F(n - 1)(X_{i} - X_{i+1}) > \sum_{i=1}^{n} Y_{i} \cdot F(n - 1)(Y_{i} - Y_{i+1})
\]

Proof. Let \(F\) be IFR. By Theorem 2.1, \(F(n - 1 \cdot 1)(X_{i} - X_{i-1})\) is decreasing in \(i\). It is also easy to verify that \(E X_{i} \cdot F(n - 1)(X_{i} - X_{i+1}) = F(n - 1)(X_{i} - X_{i+1})\). Since
\[
\sum_{i=1}^{n} F(n - 1 \cdot 1)(X_{i} - X_{i+1}) = \sum_{i=1}^{n} F(n - 1 \cdot 1)(Y_{i} - Y_{i+1})
\]
it follows that
\[
\sum_{i=1}^{j} F(n - 1 \cdot 1)(X_{i} - X_{i+1}) \geq \sum_{i=1}^{j} F(n - 1 \cdot 1)(Y_{i} - Y_{i+1})
\]
for \(j = 1, 2, \ldots, n-1\). Thus the conclusion follows.

A similar argument holds if \(F\) is DFR.

For normalized spacings, the analogue of Theorem 5.7 is

Theorem 5.12. Let \(c_{1} \geq \ldots \geq c_{n}\), \(X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{n}\) as in Theorem 5.11. Then
\[
\sum_{i=1}^{n} c_{i} F(n - 1 \cdot 1)(X_{i} - X_{i+1}) \geq \sum_{i=1}^{n} c_{i} F(n - 1 \cdot 1)(Y_{i} - Y_{i+1})
\]
Proof. The proof parallels that of Theorem 5.7.

We immediately obtain:

Corollary 5.13. Let $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ be as in Theorem 5.11. Then for $1 \leq r \leq n$

$$\sum_{i=1}^{r} E(n-i+1)(X_i - X_{i-1}) \geq \sum_{i=1}^{r} E(n-i+1)(Y_i - Y_{i-1}).$$

Proof. Choose $c_1 = \cdots = c_r = 1, c_{r+1} = c_{r+2} = \cdots = c_n = 0$, so that $c_1 \geq c_2 \geq \cdots \geq c_n$. The result follows from Theorem 5.11.
REFERENCES

, (1963), Tables of Bounds for Distributions with Monotone Hazard Rate, Boeing Scientific Research Labs. Doc. DI-82-0249.

<table>
<thead>
<tr>
<th>Distribution List</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistics and Mathematical Statistics Branch</td>
<td>3 copies</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C. 20360</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>2 copies</td>
</tr>
<tr>
<td>Office of Naval Research Branch Office</td>
<td></td>
</tr>
<tr>
<td>Navy #100 Fleet Post Office</td>
<td></td>
</tr>
<tr>
<td>New York, New York</td>
<td></td>
</tr>
<tr>
<td>Defense Documentation Center</td>
<td>20 copies</td>
</tr>
<tr>
<td>Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
</tr>
<tr>
<td>Defense Logistics Studies</td>
<td>1 copy</td>
</tr>
<tr>
<td>Information Exchange</td>
<td></td>
</tr>
<tr>
<td>Army Logistics Management Center</td>
<td></td>
</tr>
<tr>
<td>Fort Lee, Virginia</td>
<td></td>
</tr>
<tr>
<td>Attn: William E. Whichard</td>
<td></td>
</tr>
<tr>
<td>Technical Information Officer</td>
<td>6 copies</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C. 20390</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>1 copy</td>
</tr>
<tr>
<td>Office of Naval Research Branch Office</td>
<td></td>
</tr>
<tr>
<td>207 West 24th Street</td>
<td></td>
</tr>
<tr>
<td>New York, New York 10011</td>
<td></td>
</tr>
<tr>
<td>Attn: J. Laderman</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>1 copy</td>
</tr>
<tr>
<td>Office of Naval Research Branch Office</td>
<td></td>
</tr>
<tr>
<td>1030 East Green Street</td>
<td></td>
</tr>
<tr>
<td>Pasadena, California 91101</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. A. R. Laufer</td>
<td></td>
</tr>
<tr>
<td>Bureau of Supplies and Accounts</td>
<td>1 copy</td>
</tr>
<tr>
<td>Code OW</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C. 20360</td>
<td></td>
</tr>
<tr>
<td>Institute for Defense Analyses</td>
<td>1 copy</td>
</tr>
<tr>
<td>Communications Research Division</td>
<td></td>
</tr>
<tr>
<td>von Neumann Hall</td>
<td></td>
</tr>
<tr>
<td>Princeton, New Jersey</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>1 copy</td>
</tr>
<tr>
<td>Office of Naval Research Branch Office</td>
<td></td>
</tr>
<tr>
<td>495 Summer Street</td>
<td></td>
</tr>
<tr>
<td>Boston, Massachusetts 02110</td>
<td></td>
</tr>
</tbody>
</table>
Commanding Officer
Office of Naval Research Branch Office
230 North Michigan Avenue
Chicago, Illinois 60601

Commanding Officer
Office of Naval Research Branch Office
1000 Geary Street
San Francisco, California 94109

G.O.R. Arthur J. Cole
Office of Naval Research - Code 429
Dpt. of the Navy
Washington, D.C. 20360

m. William C. Karl
Office of Naval Research - Code 429
Dpt. of the Navy
Washington, D.C. 20360
University of Chicago
Statistical Research Center
Chicago, Illinois 60637
Attn: Prof. Paul Meier

Stanford University
Department of Statistics
Stanford, California 94305
Attn: Prof. Gerald J. Lieberman

Florida State University
Department of Statistics
Tallahassee, Florida 32306
Attn: Dr. Ralph A. Bradley

Princeton University
Department of Mathematics
Princeton, New Jersey
Attn: Prof. J. Tukey

Columbia University
Department of Mathematical Statistics
New York 27, New York 10027
Attn: Prof. T. W. Anderson

University of California
Department of Statistics
Berkeley, California
Attn: Prof. J. Neyman

University of Washington
Department of Mathematics
Seattle 5, Washington
Attn: Prof. Z. W. Birnbaum

Cornell University
Department of Mathematics
Ithaca, New York
Attn: Prof. J. Wolfowitz

Harvard University
Department of Statistics
Cambridge, Massachusetts
Attn: Prof. W. G. Cochran

Institute of Mathematical Statistics
University of Copenhagen
Copenhagen, Denmark
Attn: Prof. Anders Hald

Columbia University
Department of Industrial Engineering
New York 27, New York 10027
Attn: Prof. Cyrus Derman

Columbia University
Department of Mathematics
New York 27, New York 10027
Attn: Prof. H. Robbins

New York University
Institute of Mathematical Sciences
New York 3, New York
Attn: Prof. W. M. Hirsch

University of North Carolina
Statistics Department
Chapel Hill, North Carolina
Attn: Prof. Walter L. Smith

Michigan State University
Department of Statistics
East Lansing, Michigan
Attn: Prof. Herman Rubin

University of California, San Diego
Department of Mathematics
P. O. Box 109
La Jolla, California 92038
Attn: Prof. M. Rosenblatt

New York University
Department of Industrial Engineering
and Operations Research
Bronx 63, New York
Attn: Prof. J. H. Kao

University of Wisconsin
Department of Statistics
Madison, Wisconsin
Attn: Prof. G. E. P. Box

The Research Triangle Institute
Statistics Research Division
505 West Chapel Hill Street
Durham, North Carolina
Attn: Dr. Malcolm R. Leadbetter
Florida State University
Department of Statistics
Tallahassee, Florida 32306
Attn: Prof. I. R. Savage

Massachusetts Institute of Technology
Department of Electrical Engineering
Cambridge, Massachusetts 02139
Attn: Dr. R. A. Howard

The Johns Hopkins University
Department of Mathematical Statistics
34th & Charles Streets
Baltimore 18, Maryland
Attn: Prof. Geoffrey S. Watson

Stanford University
Department of Statistics
Stanford, California 94305
Attn: Prof. E. Parzen

Arcon Corporation
803 Massachusetts Avenue
Lexington 73, Massachusetts 02173
Attn: Dr. Arthur Albert

University of California
College of Engineering
Operations Research Center
Berkeley, California
Attn: Prof. R. E. Barlow

Michigan State University
Department of Statistics
East Lansing, Michigan
Attn: Prof. J. Gani

Yale University
Department of Statistics
New Haven, Connecticut 06520
Attn: Prof L. J. Savage

Rocketdyne - A Division of North American Aviation, Inc.
6633 Canoga Avenue
Canoga Park, California
Attn: Dr. N. R. Goodman
Dr. J. M. Zimmerman

Rutgers - The State University
Statistics Center
New Brunswick, New Jersey 08903
Attn: Prof. H. E. Dodge

Yale University
Department of Statistics
New Haven, Connecticut 06520
Attn: Prof. F. J. Anscombe

Purdue University
Division of Mathematical Sciences
Lafayette, Indiana 47907
Attn: Prof. S. S. Gupta

Cornell University
Department of Industrial Engineering
Ithaca, New York
Attn: Prof. Robert Bechhofer

Stanford University
Department of Statistics
Stanford, California 94305
Attn: Prof. C. Stein

Stanford University
Department of Statistics
Stanford, California 94305
Attn: Prof. H. Chernoff
Mr. John E. Condon
Director, Office of Reliability and Quality Assurance, Code KR
NASA Headquarters
400 Maryland Avenue, S. W.
Washington, D. C. 20546 (2 copies)

Mr. Dwight C. Cain (MGR)
Office of Manned Space Flight
Gemini Program Office
NASA Headquarters
400 Maryland Avenue, S. W.
Washington, D. C. 20546

Dr. John M. Walker (RET)
Office of Advanced Research and Technology
NASA Headquarters
400 Maryland Avenue, S. W.
Washington, D. C. 20546

Mr. James O. Spriggs (SA)
Office of Space Science and Applications
NASA Headquarters
400 Maryland Avenue, S. W.
Washington, D. C. 20546

Mr. John V. Foster, Chief
Systems Engineering Division
NASA Ames Research Center
Moffett Field, California 94035

Mr. Richard B. Cox, Head
Quality Assurance Office
NASA Flight Research Center
P. O. Box 273
Edwards, California 93523

Mr. Clinton T. Johnson
Reliability Analysis
NASA Flight Research Center
P. O. Box 273
Edwards, California 93523

Mr. G. Kambouris (232)
Office of Technical Services
NASA Goddard Space Flight Center
Greenbelt, Maryland 20771

Dr. William Wolman (600)
Office of Space Science and Satellite Applications
NASA Goddard Space Flight Center
Greenbelt, Maryland 20771

Mr. Brooks T. Morris, Chief
Quality Assurance and Reliability Office
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91103

Mr. Eugene H. Britt
Reliability & Quality Assurance Officer
NASA Langley Research Center
Langley Station
Hampton, Virginia 23365

Mr. T. J. Edwards (SR)
NASA Manned Spacecraft Center
2101 Webster-Seabrook Road
Houston, Texas 77058

Mr. Robert L. Chandler, (R-QUAL-R)
NASA Marshall Space Flight Center
Huntsville, Alabama 35812

Mr. James C. Taylor (R-ASTR-R)
Astrionics Laboratory
NASA Marshall Space Flight Center
Huntsville, Alabama 35812

Mr. J. E. Stitt (12,000)
Instrument Research Division
NASA Langley Research Center
Langley Station
Hampton, Virginia 23365

Mr. Roy E. Currie, Jr., (R-ASTR-TN)
Astrionics Laboratory
NASA Marshall Space Flight Center
Huntsville, Alabama 35812

Mr. Fred L. Niemann
Assistant Director for Technical Programs
NASA North Eastern Office
30 Memorial Drive
Cambridge, Massachusetts 02142
Mr. J. Brad Aaron
NASA Wallops Station
Wallops Island, Virginia 23337

Mr. Edward M. James, Jr., Chief
Technical Division
NASA Western Operations Office
150 Pico Boulevard
Santa Monica, California 90406

Mr. Samuel Perrone, Assistant Chief
Office of Reliability and
Quality Assurance
NASA Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

Mr. R. Body (PA-6)
Chief, Apollo Reliability & Quality
Assurance Office
NASA J. F. Kennedy Space Center
Cocoa Beach, Florida

Mr. George A. Lemke, Director
Apollo Reliability and Quality
Assurance Office (MAR)
Office of Manned Space Flight
NASA Headquarters
Washington, D. C. 20546 (2 copies)

Research Triangle Institute
P. O. Box 490
Durham, North Carolina 27702
Attn: Project Officer NASr-40

Dr. Albert J. Kelley (RE-TG)
Office of Advanced Research
and Technology
NASA Headquarters
400 Maryland Avenue, S. W.
Washington, D. C. 20546
Mr. I. B. Altman
Office, Secretary of Defense (J&L)
Quality Control and Reliability
Room 1E815, Pentagon
Washington, D. C. 20301

Mr. Joseph Carroll
Bureau of Naval Weapons
Quality Evaluation Operations
Code FQA0-3
Naval Weapons Plant
Washington 25, D. C.

Mr. O. A. Cocca
HQ, Air Force Logistics Command (MCPKQ)
Wright-Patterson Air Force Base
Ohio

Mr. James Coffin
Air Force System Command (SCAKQ)
Andrews Air Force Base
Washington 25, D. C.

Mr. John Condon
Director, Office of Reliability and Quality Assurance
NASA Headquarters, Code KR
Washington, D. C. 20546

Mr. Walter Foster
Fort Detrick
Frederick, Maryland

Mr. Fred Frishman
OCRD, Department of the Army
1419 3045 Columbia Pike
Arlington, Virginia

Mr. Earl K. Yost
Defense Supply Agency
Cameron Station
Alexandria, Virginia

Dr. Frank Grubbs
Aberdeen-Proving Grounds
Aberdeen, Maryland

Mr. Silas Williams, Jr.
HQ, U.S. Army Supply and Maintenance Command
Chief, Quality Assurance, AMSSM-QA
Washington, D. C. 20315

Mr. Richard Hussey
Air Force Director of Procurement Management
Room 4C253, Pentagon
Washington, D. C. 20301

Mr. B. Kurkjian
Harry Diamond Laboratory
Department of the Army
Washington 25, D. C.

Mr. Seymour Lorber
HQ, Army Materiel Command
Department of the Army
Washington 25, D. C.

Mr. Joseph Mandelson
Directorate of Quality Assurance
Edgewood Arsenal
Edgewood, Maryland

Mr. Arthur Marthens
Bureau of Ships
Department of the Navy
Room 3012, Main Navy Bldg.
Washington, D. C. 20360

Major John F. Mosher
Air Force System Command (SCSVE)
Andrews Air Force Base
Washington 25, D. C.

Dr. W. R. Pabst, Jr.
Chief Statistician
Bureau of Naval Weapons (P-130)
Washington, D. C. 20360

Mr. T. M. Vining
HQ, Defense Supply Agency
Cameron Station
Alexandria, Virginia

Mr. J. Weinstein
Chief, Mathematics Division
Institute for Experimental Research
U.S. Army Electronics R&D Lab.
Fort Monmouth, New Jersey
U.S. Naval Ordnance Test Station
China Lake, California 93557
Attn: Statistics Branch (Code 5077)

Commanding Officer
U.S. Naval Underwater Ordnance Station
Newport, Rhode Island 02844
Attn: Library (Cmab)

Commanding Officer
U.S. Naval Torpedo Station
Keyport, Washington
Code 333
Code 334 (QEL Library)

Library
Technical Reports Section
U.S. Naval Postgraduate School
Monterey, California 93940

Commander
Philadelphia Naval Shipyard
(Naval Boiler and Turbine Laboratory)
Naval Base, Philadelphia, Pennsylvania 19112

Officer-in-Charge
U.S. Naval Underwater Weapons Systems
Engineering Center
Newport, Rhode Island 02844
Attn: Quality Evaluation Laboratory (QES)

Commanding Officer and Director
U.S. Navy Electronics Laboratory (Library)
San Diego, California 92152

Commanding Officer and Director
U.S. Navy Mine Defense Laboratory
Technical Library
Panama City, Florida 32402

Commanding Officer and Director (Code 904)
U.S. Navy Underwater Sound Laboratory
Fort Trumbull, New London, Conn. 06321

Commanding Officer
U.S. Naval Avionics Facility
Indianapolis, Indiana 46218
Attn: Library
Commanding Officer
U.S. Naval Ammunition Depot (QETM)
Crane, Indiana

Commanding Officer
U.S. Naval Ammunition Depot (QEL)
St. Juliens Creek
Portsmouth, Virginia 23702

Commanding Officer
U.S. Naval Weapons Station
Seal Beach, California 90740
Attn: Technical Library, Bldg A0-2

Officer-in-Charge
U.S. Naval Fleet Missile Systems
Analysis and Evaluation Group
Corona, California

Officer-in-Charge
U.S. Naval Fleet Missile Systems
Analysis and Evaluation Group
Corona, California 91720

Commander
U.S. Naval Ordnance Laboratory
White Oak
Silver Spring, Maryland
Code (NS Div)
Code (R - Dept)

Commanding Officer
U.S. Naval Weapons Station (QEW)
Concord, California

Officer-in-Charge
U.S. Naval Mine Engineering Facility
U.S. Naval Weapons Station
Yorktown, Virginia - 23491

Commanding Officer
U.S. Naval Propellant Plant
Indian Head, Maryland
Code (QA)
Code (REM)

Commander
U.S. Naval Weapons Laboratory
Dahlgren, Virginia
Attn: Technical Library
Chief, Bureau of Naval Weapons
Department of the Navy
Washington, D. C. 20360
Code (FQ)
Code (PQC)
Code (P-13)
Code (RAAV-33)

Chief of Naval Material (MAT-25J)
Department of the Navy
Room 3025, Munitions Bldg.
Washington, D. C. 20360

Director
U.S. Naval Weapons Quality Assurance Office
Quality Analysis Department
Washington Navy Yard
Washington, D. C. 20390

Chief of Naval Operations (Op-03EG)
Operations Evaluation Group
The Pentagon
Washington, D. C. 20350

Commanding Officer (ADLR)
U. S. Naval Air Development Center
Johnsville, Pa.
Attn: NADC Library

Commander
U.S. Naval Missile Center
Point Mugu, California
Attn: Technical Library, Code NO322

Commanding Officer
U.S. Naval Construction Battalion Center
Gulfport, Mississippi

U.S. Naval Construction Battalion Center
Port Hueneme, California 93061
Code 92

U.S. Naval Ammunition Depot
Navy No. 66, c/o FPO
San Francisco, California 96612
Attn: Weapons Technical Library

Commander, U.S. N.O.T.S.
Pasadena Annex
3202 East Foothill Blvd.
Pasadena, California 91107
Attn: Pasadena Annex Library
This paper studies the performance of the standard life test procedures developed for the exponential distribution when the underlying distribution actually has an increasing (decreasing) failure rate. The standard exponential life test procedures are shown to yield estimates of the unknown mean biased on the high side in the increasing failure rate case. The practical implications of these results are that the consumer tends to accept unduly often poor quality lots, when the producer has used an exponential life test procedure and the underlying failure distribution actually had increasing failure rate.

In addition a number of theoretical results are obtained concerning order statistics and their spacings from distributions with increasing failure rate. These results are useful in the study of the life test procedures and also are of independent interest.
Life Testing
Monotone Failure Rate
Exponential estimates
Bias of the mean life

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, c, & d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through ____________________________ ."

 (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through ____________________________ ."

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through ____________________________ ."

 If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of limits, rules, and weights is optional.