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ABSTRACT 

The attitude dynamics of a gravity-gradient oriented satellite, which employs soft nickel- 
iron rods as magnetic hysteresis dampers, is simulated by a digital computer program. 
A subroutine was generated to compute the flux induced in the rods for an arbitrary ve- 
hicle orientation relative to the earth's magnetic field vector.   This subroutine was 
added to an existing computer program.   Analytical expressions were fitted to empirical 
major and minor hysteresis loops, and a logic scheme was devised for tracing BH curves 
with an arbitrarily fluctuating applied amgnetic field.   This enables simulation of the 
effects due to the magnetic field encountered in orbit.   Volume I of this report describes 
the analysis and the computer program in detail.   Volume II presents the results of 
computer runs made under various initial conditions. 
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SECTION 1. 

INTRODUCTION 

The U.S. Naval Weapons Laboratory at Dahlgren, Va., awarded the Spacecraft Department 
of the General Electric Co. a contract for performing the digital simulation of the attitude 
dynamics of a gravity-gradient oriented satellite employing soft nickel-iron rods as mag- 
netic hysteresis dampers.   The work, performed under Contract No.  N178-8450 as 
amended by Contract Change Notice, consisted of (1) obtaining test data for the rod mate- 
rial from the Allegheny Ludlum Steel Corporation; (2) fitting analytical expressions to these 
magnetic curves; (3) generating a magnetic torque subroutine for incorporation into an 
existing GE digital program for simulating the attitude dynamics of the satellite; and (4) 
making computer runs with various initial conditions and vehicle parameters, as specified 
by NWL. 

The report on this contract is submitted in two volumes.   Volume I includes a summary of the 
work done, explains the magnetics fundamentals involved, and describes the approaches taken 
tc solve the problems.   A complete description of the hysteresis torque subroutine is pre- 
sented, including the logical rules, the scheme for implementing the logic, and the complete 
equations.   The unsuccessful approaches are also described briefly. 

Volume II includes a brief description of the satellite in terms of the characteristics and 
parameters which affect its attitude performance, a list of the initial and other conditions 
for the various computer runs, and the results of these runs. 

The Allegheny Ludlum data used is for the same material as that in the hysteresis rods in 
the satellite.   However, the heat treatment of the satellite rods is slighiiy different from 
that of the sample used for taking the data.   Also, the maximum value of the earth's magnetic 
field encountered in orbit is somewhat greater than the maximum value used in taking the 
data.   The data were therefore extrapolated to provide the required range.  Additional data, 
taken with greater field strengths applied to samples having appropriate heat treatment, 
have been requested from Allegheny Ludlum, but have not yet been received.   When they 
are received, these curves can be compared with those used in the digital simulation. 
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SECTION 2. 

SUMMARY 

The work reported herein includes (1) determining the general requirements of the hysteresis 
torque subroutine, in terms of the representation of the magnetic curves and their use in 
conjunction with a logic scheme in a mrnner which is compatible with the digital computer; 
(2) fitting analytical expressions to the original magnetic data, after making the corrections 
for the demagnetization factor of the rods; ana (3) devising a scheme for using these ex- 
pressions, together with a minimum amount of information about the past history of each 
rod, to derive magnetic curves under the conditions associated with an arbitrarily varying 
applied magnetic field. 

The magnetics and dynamics fundamentals which bear on the problem are discussed.   It is 
shown that a continuously varying magnetic field applied to a hysteresis material causes a 
continuously varying torque which is non-conservative around a cycle because of the 
hysteresis losses. 

The digital computer program which simulates the satellite attitude dynamics, and to which 
the magnetic hysteresis torque subroutine is added, is briefly described in terms of its 
flexibilities, limitations, and capabilities applicable to the present contract. 

The various approaches used to derive analytical expressions to fit the magnetic curves are 
described.   Various methods had varying degrees of success.   The reason for abandoning 
each of the unsuccessful methods is given. 

The work done demonstrates that the flux density in a ferromagnetic rod subjected to an 
arbitrarily varying magnetic field can be calculated by a digital computer.   The limited 
core storage and running time economy dictate simplifications in the representation of the 
magnetic curves.   A set of ten polynomials was used to represent the original data.   In 
the program, other curves are interpolated between these polynomials.   An interpolation 
coefficient which varies with the applied field is employed to meet the various conditions 
imposed on the interpolated curves.   From these curves, the flux density in each rod is 
computed at every integration interval.   These values are then used to compute the in- 
stantaneous magnetic moments and hysteresis torques. 

The computation of other torques, calculation of vehicle characteristics from input data, 
integration of the equations of attitude motion with respect to time, and other required 
computations are performed by the existing digital program. 
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SECTION 3. 

3.1    FERROMAGNETIC MATERIALS AND HYSTERESIS LOOPS 

MAGNETICS FUNDAMENTALS 

When a ferromagnetic material is placed in a magnetic field, there will be induced in the 
material a flux density which is a function of the magnitude of the magnetic field and the 
magnetic characteristics of the material.   This can be expressed as 

where 

B. = H. +4*1. (1) 

B. = internal magnetic flux density 

H. = internal magnetic intensity 

I. = internal intensity of magnetization 

and 

where 

It    = KH. (2) 

K   =  magnetic susceptibility. 

If the permeability of the material is defined as 

u   =  1 + 4 ffK (ft) 

B4    = «Hj (4) 

In a ferromagnetic material the permeability is not a constant but is a function of B. or H.. 

As H. is varied from (H.) to (H.)   . , B. will vary from a maximum to a minimum value 
in a manner described as a hysteresis loop, such as the outer loop in Figure 3-1.   The 
coordinates of the tips of such a loop are designated i H\ /max\ and t B/max\. 

If while traversing the   hysteresis loop from(Hi)max to — (Hj)mm, the magnitude of the 
applied field Hj is reversed, a minor hysteresis loop is formed. The characteristics of this 
minor hysteresis loop are functions of the point of flux reversal.   Further flux reversals will 
produce additional minor hysteresis loopo. Once the major hysteresis loop has been traversed 
and a field reversal takes place, the loop being formed will bend towards the point of last 
reversal.   Internal reversals within a minor hysteresis loop will follow this property of 
bending towards the point of last reversal. 

The magnetic characteristics of any material are a function of the magnetic field intensity 
internal to the material.   In a rod, poles are induced at the ends of the rod which are 
opposite to that of the applied field.   This is a demagnetizing field and its effect is to reduce 
the internal field in the rod; it is a function of the length to diameter ratio of the rod. 

Hj  =  H0-NI (5) 
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where 
H. = internal field 
H0 = external field 
N   * demagnetizing factor 
I    = intensity of magnetization 

Since 

and 

Since 

B4 = H.   + 4 ff I, 

B.   - 
I    -         * 

H. 
l 

4ff 

Hi  "  Ho  - 
N        (B.. 

4TT           * ■»■> 

H « Bi 

H.   =  H     - 
1             0 f-Bi 4ir      i 

(6) 

(7) 

(8) 

(9) 

N / Values of  j-   are given as a function of —- and the material permeability in Borzorth, 

"Ferromagnetism" pp. 846-847.   For a long cylinder with infinite permeability 

/N\      
4-uz IO

SIO(T7" 4. 02 log10U-J- • 92 llMi  do) 
i   2 

d 

The magnetic moment, M, of a bar is 

M  =  mi (11) 

where 
m = pole strength 

= pole separation 

m t           AB 
4ir          4tr     » 

M VB 
4tr 

Since 

(12) 

However, due to leakage and saturation effects, the pole separation is not always equal to 
the length of the bar.   Borzorth and Chapin*   show that the pole separation is approximately 
. 73 the length of the bar.   Therefore 

M   =  .73 X2- (13) 
4tr 

*Bozorth and Chapin, "Demagnetizing Factors of Rods," Journal of Applied Physics, 
Vol. 13, p. 320, May, 1942. 
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The Barkhausen effect describes the irregularities in the magnetization of a ferromagnetic 

material.   The magnetization does not take place instantaneously but in steps as the field 

strength is varied. As -TT— approaches zero, -£r approaches the total change in magnetization 

for high nickel alloys     (~80% Ni? 20% Fe).       Investigation and consultation with Allegheny 

Ludlum indicates that this should not be a problem in 4750 Nickel Iron. 

It is assumed that the rods are separated enc gh so that there is not magnetic interaction 

between them.   Thus each rod acts as though it is alone in the magnetic environment. 

The rod material used was AEM 4750 (Allegheny Electrical Metal) which is a nickel iron 

alloy containing approximately 48% nickel,the remainder being iron.   In order to obtain 

optimum magnetic characteristics the material must be annealed.   It should be noted 

that the anneal recommended by Allegheny Ludlum was not that used by the Applied Physics 

Laboratory for the rods.   A comparison is given as follows: 

Allegheny Ludlum APL 

Heat Treatment 2150°F 1650°F to 1740°F 

Cooling Rate 100°F per hour 54° ± 18°F per hour 
max. to U00öF from 1100°F to 570°F 

The exact effect of this variation of h°at treatment is unknown;   however, it is thought that 

the APL heat treatment might produce greater hysteresis loss than the Allegheny Ludlum. 

3.1.1    Test Data 

There is no way to predict the magnetic properties of ferromagnetic materials from any 

fundamental properties of the material.   The newest approach has been the work of 

Rayleigh which only applies to unsaturated regions of low flux density.   The only method for 

obtaining reliable data is by test procedures. 

Allegheny Ludlum ran hysteresis loops on a ring sample of AEM 4750, annealed to produce 

optimum magnetic characteristics;   i.e., 2150°F anneal.   Curves were run for Bmax = 

i 2000, - 4000, - 6000 and - 8000 gauss, showing major and minor hysteresis loops. 

These curves are given in Figures 3-1, 3-2, 3-3 and 3-4. 

The curves were obtained from a demagnetized sample, first obtaining the major hysteresis 

loop and then the minor hysteresis loops.   The slight shifting of the loops is a result of 

instability in the test equipment rather than inherent magnetic properties. 

3. 2    CONVERSION OF MECHANICAL ENERGY TO HEAT THROUGH MAGNETIC 
HYSTERESIS LOSS 

It has been demonstrated that the torque acting on a ferromagnetic rod placed in the earth's 

magnetic field is associated with a change in the mechanical energy equal and opposite to 
the change in the magnetic energy stored in the rod. 
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Figure 3-5 shows such a rod placed in the earth's field, which has the value Hg.   The 
component of the field along the rod is 

HA  =  HE  cos e M 

Figu; e 3-5.   Ferromagnetic Rod in the Earth's Field 

This is the only component which is effective in producing any flux, t, in the rod.   The 
differential flux crossing the differential area, dA, at some point, is the flux density, B, 
multiplied by the area, 

d t = BdA. 

The flux density is 

B  = u Hj  = M(HA - DMB), 

(2) 

(3) 

where H» is the internal (induced) field, p is the true permeability of the rod material, 
and Dw is the demagnetization factor. 

The elementary volume of length d£   is 

dV  =  dAd£ 

The differential magnetic moment of dV is 

(4) 

J_ 
4tr 

B d A d« 

4rr 
BdV. (5) 
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The total magnetic moment of the rod is the integral of this expression throughout the 
volume, V, 

—     / B dV. M   = —     / BdV. (6) 
4it V 

The torque on the rod is 

T   =   M H£ sin 9. 

= ~h~ HE sm ° f B dv- w 
V 

If the rod rotates through an angle d9under the influence of this torque, the mechanical 
energy is 

dW  =  T dfl 

=   "Tlf- HE sin 9 d 9    I B dV* W 

The rotation will also produce a differential change in the applied field, 

dHA   =  'HE sin 9d 8' W 

The corresponding change in the magnetic energy, E, per unit volume, is 

«J   =   _J_    BdHA. (10) 
dV Ait A 

The change in the magnetic energy of the whole rod is the volume integral of this, or 

1    JHA     / dE   =~dH.     ;   BdV. (11) 

Equation (9) is substituted into (11) 

d E   -   -  -J—   HF sin 9 d 8    /   3 dV. (12) 
4TT & -\j 

From equations (8) and (12), 

dW  +  aE   --  0. (13) 

This shows that the mechanical energy gained is equal to the magnetic energy lost, and 

vice versa.   The equation and its method of derivation also show that the exchange of 

energy is continuous, because it takes place with differential motions.   It is not necessary 

to traverse a complete magnetic hysteresis loop, nor any specified fraction of it, for the 

energy exchange to take place.   Therefore, mechanical energy is continually converted into 

heat through hysteresis losses as the motion causes traversal of the hysteresis curves. 
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3. 3    COMPUTATION OF MAGNETIC HYSTERESIS TORQUES 

The results of the previous sections are used to derive the torque expressions used in 

the program and the numerical value of the conversion factor. 

Equation (13) of Section 3.1 relates the magnetic moment of one rod to the flux density at 

its center.   The factor . 73 accounts for the decrease of flux toward the ends of the rod. 

That is, 

B dV   -   . 73 ßV. (1) 
/ 

Each of the rods used is 60 inches long and . 11 inches in diameter.   The volume is 2. 974 ir 

cubic centimeters.   The ratio ot the magnetic moment to the flux density at the center of the 

rod is therefore . 5428 dyne-centimeters per oersted-gauss.   This number is doubled for 

two rods (with negligible proximity effect), and converted to the units used in the program. 

T\r value is then 80. 067 x 10"   foot-pounds per oersted-kilogauss.   This factor is designated 

Hpp and is an input constant in the program.   In general, this factor accounts for the rod 

length, rod diameter, decrease of flux toward the ends of the rod, number of rods, 

proximity effect, and units conversion factors. 

The torque on an elementary volume, dV, of the roc! is 

dT   =   IYHF   dV, (2) ■X«, 
where I is the intensity of the magnetization in the rod, and Hg is the applied magnetic field, 

undisturbed by the rod.   The magnetic moment of the elementary volume is 

d M  =   I dV. (3) 

Using the expression for I from equation (7) of Section 3.1, with HA negligible in comparison 

with B., and equation (2) above, in (3), leads to 

B. 
(4) 

and 

(5) 

The torque on the whole rod is 

T   =   M   YHE. (6) 

This is consistent with equations (5), (6), and (7) of Section 3.2 where the value of the 

vol   ne integral is given by equation (1) above. 

dM i 

4T7 
dV, 

dT 
Bi 
4ff - f\ HE dV 

=  dN {XHE- 
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SECTION 4. 
DIGITAL COMPUTER SIMULATION 

The attitude dynamical equations of the satellite were simulated by an IBM 7094 com- 

puter program (GOLD-N-ROD), coded in Fortran II.   This was accomplished by adding 

a magnetic hysteresis torque subroutine to the existing program.   This program is 

described in detail in Reference 1.   The torque subroutines not needed for this simula- 

tion were deleted from the program. 

The applicable portions of the GOLD-N-ROD program are described below, in sufficient 

detail to enable an understanding of those capabilities and limitations which affect this 

simulation. 

The magnetic hysteresis torque subroutine is described in complete detail.   This includes 

the magnetic curves for the material, the fitting of analytical expressions to these curves, 

the logic for tracing BH curves with an arbitrarily varying H, and the equations which 
constitute the magnetic hysteresis torque subroutine. 

4.1    GENERAL DESCRIPTION OF THE DIGITAL COMPUTER PROGRAM 

The program is an IBM 7094 digital simulation of the attitude dynamics of a passively 

oriented satellite.   The differential equations describing the attitude motion are numerically 

integrated with respect to orbit angle (in lieu of time).   This program was developed 

prior 10 the NWL contract.   TuC various features, capabilities, and limitations of the 

program are best described in connection with the various subroutines. 

4.1.1  Input Subroutine (INPUT) 

For convenience, the various inputs are grouped in sets  as described below. 

a. Card 1 - This is the title card, and may contain any 72 alphanumeric characters. 

b. Set 1. Earth Constants - At present, only the solar pressure and solar heat 

flux constants are listed as inputs.   This is done in order to be able to include 

or exclude the effects of solar torque or thermal bend'ng as desired. 

All of the other constants are internal to the program.   These include the 

angle between the ecliptic and equatorial planes, the product of the universal 

gravity constant and earth's mass, the earth's orbital angular rate, the earth's 

spin rate, and the earth's equatorial and polar radii.   The earth's orbital 

angular rate is a constant, because the earth is assumed to be in a circular 

orbit about the sun.   The constants in the program are in the foot-pound-second 

system and must be changed if a different system of units is employed. 

c. Set 2. Satellite Orbital Parameters  - These include the geocentric distances 

at apogee and perigee: the precession rate and inclination of the orbit plane, 

and the initial values of the right ascension of the ascending node; the time of 

year, Greenwich mean time; and the orbital angular relations between the 
ascending node, perigee, and the satellite's position at injection. 
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d. Set 3. Characteristics of the Central Body - These include the radius of the body 

(assumed spherical), its mass, moments of inertia, and the diffuse reflectance 

of its surface. 

e. Set5. Characteristics of the Rod and Tip Mass - The characteristics of the 

rod include its length, radius, mass density per unit length, thickness oi wall, 

thermal conductivity, linear coefficient of thermal expansion, and the absorp- 

tance of its surface. 

The characteristics of the tip mass include its radius (the mass is assumed 

to be spherical), the diffuse reflectance of its surface, and its mass. 

f. Set 7. Initial Conditions - These are the initial values of the three Euler angles 

which relate the body reference frame to the orbital reference frame, and the 

three body-axis rates. 

g. Set 8. Integration Parameters, Time and Print Controls - These include the 

tolerable errors associated with the numerical integration, initial step size, 

print-out interval, and stop time.   All of these are more fully explained in 

the section on numerical integration. 

4.1. 2  Initialization Subroutines (INITIA and VCINIT) 

Certain parameters which are varied from one run to another are constant for a parti- 

cular run, and are therefore initialized for economy.   These include orbital parameters, 

elements of direction cosine matrixes involving fixed angles, and vehicle characteristics. 

The vehicle characteristics include the mass, mass moments, and moments of inertia 

of the straight rod and certain combinations of parameters which are recurrent in the 

solar-torque equations. 

4. 1. 3  Orbital Subroutine (ORBIT) 

The center of mass of the satellite is assumed to trace a circular or elliptical path 

about the geocenter.   The inclination of the orbit plane with respect to the equatorial 

plane is constant, but provision is made for a constant rate of precession of the line of 

nodes. 

The outputs of this subroutine are time, satellite orbital angle and geocentric distance, 

certain time derivatives of these quantities, altitude above the earth's surface, earth's 

orbital position, and a parameter used for the earth's shadow criterion. 

4.1. 4 Matrix Subroutine (MATRIX) 

This subroutine calculates elements of the direction cosine matrixes, certain of their 

time derivatives, and the satellite's latitude and longitude. 
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4.1.5 Earth's Shadow Criterion 

The sun's rays are considered to be parallel, and therefore the earth's shadow is assumed 

to be a sharply defined cylinder.   When the satellite is in the earth's shadow, all of the 

solar effects are zero. 

4.1.6 Rod Geometry Subroutine (RODN) 

This subroutine is used only when the satellite is not in the earth's shadow.   It includes 

the equations which describe the thermally bent **ods under the various conditions of full, 

partial, or no illumination.   The length     rod illuminated is dependent upon the shadow 

cast by the (spherical) central body, unless the whole satellite is in the earth's shadow. 

The mass moments of the bent rod are computed. 

4.1.7 Center of Mass Subroutine (CMASS) 

The instantaneous moments and the coordinates of the instantaneous center of mass of 

the entire satellite are computed.   The vector distances from this center of mass to the 

base and tip of each rod are computed.   Time derivatives of certain of the foregoing 

variables are also computed. 

4.1. 8  Moments of Inertia Subroutine (MOMIN) 

The instantaneous moments and products of inertia of the rod and of the entire satellite, 

and their time derivatives, are computed for the current condition of rod illumination. 

4.1. 9  Solar Torque Subroutine (SOLTOR) 

This subroutine is used only when the satellite is not in the earth's shadow. The solar 

radiation pressure torques on the central body, rod, and tip mass are computed. The 

sun's rays are all considered parallel. 

4.1.10 Magnetic Hysteresis Torque Subroutine (HYSTOR) 

This subroutine is discussed in detail in section 4. 2. 

4.1.11 Gravity Gradient Torque Subroutine (GRATOR) 

This subroutine computes the gravity gradient torques on the satellite from its moments 

and products of inertia.   The earth's gravitational field is assumed to follow an inverse 
square law. 

4.1.12 Derivative Subroutine (DERIV) 

The various torques are added to obtain the total torques acting on the satellite.   Euler's 

dynamical equations are solved explicitly (in matrix form) to obtain the body-axis angular 

accelerations.   The Euler angular rates are computed from the Euler angles and the 

body-axis rates.   Each time derivate is converted to the corresponding derivative with 

respect to orbital angle, by dividing by the orbital angular rate. 
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4.1.13 Numerical Integration Subroutine (NOL3) 

The Adams-Moulton method of numerical integration is used.   A variable integration 

interval is used.   Specified error criteria are applied to the estimated numerical inte- 

gration error for each variable to determine whether the interval is satisfactory.   If the 

interval is satisfactory with respect to every integrated variable, the results of the inte- 
gration are accepted by the program.   If the interval is unsatisfactory, it is halved until 

a satisfactory interval is obtained.   Whenever a specified number of consecutive satis- 

factory intervals ha\ J been obtained, the interval is tentatively doubled.   The results 

of using the new interval are tested against the error criteria as explained above. 

4.1.14 Output S broutine (OUTPUT) 

This subroutine computes any variables desired as output which have not been previously 

computed in other subroutines.   Usually, the output time intervals are much larger than 

the integration intervals, and so the output computations are performed only at those 

intervals when output is required.   However, because of the requirement for sometimes 

plotting the BH curves, more frequent outputs are desirable for the magnetic hysteresis 

program.   Therefore, output is obtained at every good integration step. 

The output variables required, which are not available from other subroutines, include 

the classical Euler angles, &,, gg» anc* ^ one Euler angular rate, e«, and the three 
inertial coordinates, X, Y, and Z, of the satellite position. 

The Euler angles depend upon the values of certain [E] matrix elements. 

= Vi-En2 • sin 62   -   \1-En*   . (1) 

If this quantity is equal to or   ess than 0. 001, it is considered to be essentially zero. 

This yields the sing far case, and the computation and printout of 6,, Ö«, and 8o are 

omitted for that time interval.   If the quantity is greater than 0.001, the computations 

proceed. 

v2   =  cos"1 (Eu) . (2) 

The computer subroutine used for the inverse cosine automatically puts the angle in the 

first or second quadrant.   Ö, is computed next. 

IfE.oi 0, '13 

1 / E12  ) 

vsinv • 
fl!   =   si"     l^rf-1   • (3) 

The computer subroutine used for the inverse sine automatically puts the angle in the 

first or fourth quadrant. 
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/_El2\ 

If El3 > 0, and if El2 > 0, 

6X  =  180° - sin'1 (-^|-) . (4) 

If El3 > 0, and if El2 < 0, 

«1  =   "180° - sin_1 (sln^) • <5> 

öo is computed next. 

u E31 =  * °- 

If E3l < 0, and if E21 ^ 0, 

83  =  180° - sm-1 ( —^j  . (7) 

If E3l < 0, and if E2l < 0, 

«3  =  -180° - sin"1 (^.j . (8) 

The angular rate 63 is 

0 1 
3 =  aXl -~T sin  v2 

Ell (E21 a'Yl + E31 ^'Zl* + E13 H  » (9) 

where TJ is the orbital angular velocity, and ^vi, W
YI» 

aruil azi are tne ^°^ ax*s rates 

relative to an inertial frame. 

The inertial coordinates of the satellite are expressed in kilometers, 

X = -0.3048 x 10"3An RA, (10) 

Y = -0. 3048 x 10'3 Al2 RA, (11) 

Z = 0.3048 x 10"3 Al3 RA, (1.2) 

where R. is the geocentric altitude of the satellite in feet, and A.., A.2, and A-3 are 

elements of the direction cosine matrix relating the orbital and inertial reference frames. 

4. 2   MAGNETIC HYSTERESIS TORQUE SUBROUTINE (HYSTOR) 

This subroutine computes the instantaneous torque on the satellite due to the action of the 

earth's magnetic field on the hysteresis rods.        e torque depends upon the magnetic 

moments of the rods, which in turn depend upon their magnetic flux densities.   The major 

requirement of this subroutine is therefore the tracing of BH curves, or the determina- 

tion of flux density under the condition of a fluctuating applied field.   The fluctuations 
are slow, so time rates of change are negligible. 
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4. 2.1  Organization and Logic of the Subroutine 

The subroutine first computes the components of the earth's magnetic field in the orbital 

(local vertical) reference frame.   This is done by the use jf a program obtained from the 

Armed Forces Special Weapons Command at Kirtland Air Force Base, New Mexico. 

These field components are transformed into the satellite body reference frame. 

The hysteresis rods lie along the Y and Z geometric axes of the satellite main body. 

The same logic and equations are used for each of these axes.   Therefore, the explana- 

tion which follows applies to each. 

Three basic rules are used in tracing the BH curves, using an arbitrarily fluctuating 
applied magnetic field, H. 

Second, whenever a reversal in the algebraic sign of the fic!d increment (equivalent to 

a reversal in the sign of H) occurs, the new BH curve must pass through the last prior 

reversal point.   In Figure 4-1, a reversal occurs at point C, and the curve CD, if extended, 

would pass through point B.   Similarly, the curve DE, if extended, would pass through 

point C, etc.   Thus the end point of any curve is the beginning point of the previous curve. 

This rule is based on the known effect of applying an alternating field superimposed on a 

direct field.   That is, a minor loop between the same two end points is traced repetitively. 

In the case of a rapidly alternating field, several cycles might be required before the 

loop becomes evactly repetitive.   However, it is believed that with slow variations in the 

applied field, the first traverse of the loop very closely approximates what would become 

the final path.   It should be noted that there is no implication here that a complete minor 

loop is actually traced, but only that the path of the BH point is along a curve which 

passes through the prior reversal point.   Of course, if the variation in H is great enough, 

that point will be reached, in which case the complete minor loop will have been traced 

once. 

Third, whenever the value of H ranges beyond the end point of the present curve (the 

prior reversal point discussed above), the path reverts to the previous curve of like kind 

(that is the previous ascending or descending curve).   For example, if the BH point is on 

curve FE of Figure 4-1, and H subsequently increases beyond E, the curve DC will then be 

followed.   This rule may not be strictly correct, but it is the concensus of expert opinion 

that it is a good approximation, and as good as can be done with available knowledge. 

First, it is assumed that the initial path is the major hysteresis loop whose end points 

correspond to the maximum values of the earth's magnetic field encountered at the 

perigee altitude.   Such a loop is illustrated in Figure 4-1, with end points A and B.   The 

assumption is justified on the grounds that the satellite will undoubtedly experience this 

value of applied field during its history of assembly, test, and launch. 
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Figure 4-1.   Typical BH Curves 
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The implementation of these basic rules is illustrated by the logic chart of Figure 4-2. 

The two disconnected portions of this chart are a result of the nature oi the numerical 

integration subroutine used in the GOLD-N-ROD program.   This subroutine achieves a 

balance between accuracy and economy by choosing the integration interval so that the 

estimated errors meet a set of specified error criteria.   Only if the criteria are satisfied 

is the interval considered a good integration step.   It is only at such ?. step that the logic 

based on the above rules is applied.   However, the integration method requires tne com- 

putation of derivatives, and therefore of torques, at every interval and at certain sub- 

intervals.   At ever, interval or subinterval, tie calculation of magnetic moments and 

torques is based on the value of the flux density at the most recent good step. 

At the initial time, the BH point is assumed to be on the major hysteresis loop, at' 

stated previously.   In order to determine whether the point lies on the ascending oi 

descending branch of this loop, the initial values of the instantaneous time derivatives 

of the earth's field components are computed.   If the derivative in question has a positive 

value, the initial point lies on the ascending curve and the ascending-descending index 

(D-A index) is set equa.1 co +1.   Conversely, if the initial value of H is negative, the 

initial point is on the descending branch, and the D-A index is set equal to -1. 

In order to use the reversal criterion (as explained later) at the next good integration 

step, an artificial increment in the field must be created, which corresponds to the time 

increment prior to the initial time.   Only the algebraic sign of this artificial increment 

is used in the logic, and the numerical value is of no consequence. 

Each BH curve is identified by the coordinates of its beginning point.   The end point of 

the curve is the beginning point of the prior curve, in accordance with the rules previously 

explained.   Because of the necessity of sometimes returning to a prior curve, the be- 

ginning point coordinates of every curve must be stored, unless they are intentionally 

erased at a later time.   The section of the memory serving this function is called the 

curve array.   The beginning point coordinates of each curve are identified by the curve 

array index (JHYS), which is assigned in chronological order.   In accordance with this 

system, the branch of the major loop on which the initial point lies is assigned JHYS 

equal to 2, and the beginning point coordinates are stored in the curve array with this 

index value.   The other branch of the major loop is assigned JHYS equal to 1, and its 

beginning point coordinates are stored accordingly.   Henceforth, the beginning point of 

the curve presently used always has an index equal to JHYS, the highest value of the 

index.   The end point of the present curve, being the beginning point of the prior curve, 

has an index equal to JHYS-1. 

At the initial time, the flux density in the rods is computed from the magnetic field com- 

ponents (in the satellite body frame), using the analytical approximation for the major 

loon, which has been stored as one of the eleven reference curves. 

At any interval, including the initial time, the magnetic moments of the rods are com- 

puted from their flux densities.   After th's has been done for both the Y and Z-axis rods, 
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Figure 4-2.   BH Curve Tracing Logic 
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the values are added to the respective components of the fixed or residual magnetic 

moment of the satellite to obtain the components of the total magnetic moment.   (The 

fixed magnetic moments of the NWL satellite are negligible.)  The components of the 

magnetic torque are then computed from those of the satellite magnetic moment and 

those of the earth's magnetic field. 

At any good integration step, it is necessary to detect a reversal in the sign of the in- 

crement of the field, H.   Such reversals occur at points C, D, E, and F, in Figure 4-1. 

Detection of reversals is accomplished by comparing the last two increments.   If they 

are of like sign, as manifested by a positive product, no reversal has occurred.   With 

no reversal, the D-A index remains the same as previously.   If the last two increments 

in H are of unlike sign, as manifested by a negative product, a reversal has occurred. 

The sign of the D-A index is then reversed and checked.   A reversal also has occurred 

if the last increment in H is zero, as manifested by a zero product.   The procedure 

illustrated in the chart treats this case as though the product was negative.   This pre- 

vents the occurrence of a zero product at the next interval, which would otherwise cause 

a second apparent reversal for a single occurrence of a zero increment.   The logic shown 

in the chart will correctly determine the occurrence of reversals at the following time 

interval for any sign (or zero value) of the increment pertaining to that interval. 

After any reversal, a new BH curve must be derived, and is then treated as the present 

curve.   This is done by using tne coordinates of the beginning and end points, as explained 

later.   The beginning point coordinates are the values of B and H at the time interval 

prior to the one when the reversal was detected.   These prior values have always been 

stored, to facilitate this, because it is never known when the next interval will produce 

a reversal.   These beginning point coordinates are assigned the next available JHYS 

number and stored in the curve array.   The coordinates of the end point of the new ' urve 

are the values then available in the curve array under the index JHYS-1. 

Whether a reversal has occurred or not, the value of H must be tested to determine 

whether it is beyond the end point of the present BH curve.   If not, and if no reversal has 

occurred, the flux density is computed by using the present curve.   If a reversal has just 

occurred, but H is not beyond the end point of the new curve, that new curve is used in 

determining the flux density. 

Whenever the value of H lies beyond the end point of the present curve, regardless of 

the occurrence of a reversal, the last two curves must be erased from the memory 

(curve array), and the curve prior to those two must be considered for use.   Since it is 

possible that the value of H lies beyond the end point of any new curve, tne test must 

be repeated, as shown in the chart, until a satisfactory end point has been determined. 

The end point is accepts )le if the value of H does not lie beyond it.   The coordinates of 

the acceptable end point, together with those of the beginning point of the corresponding 

curve, are used to derive a new BH curve (which then becomes the present curve) by a 

method explained later.   The flux density is then computed from this new curve. 
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In the program, all B-H curves are considered as ascending curves,   When the path of 

the BH point is along a descending curve, it is considered for computational purposes 

that the signs of B and H are reversed for the entire history of the rods.   Then the 

descending curve becomes an ascending one.   The computed value of the flux density 

is multiplied by the D-A index.   The use of this index in appropriate places automatically 

inverts curves and multiplies computed values by -1 whenever necessary, in order to 

use the basic ascending curves and associated logic for both ascending and descending 

curves. 

At every good integration step, the variables required for printout are stored on tape. 

4.2.2  Inputs 

The inputs for the hysteresis torque subroutine include two constants and 88 coefficients. 

One constant is the value of the external magnetic field corresponding to the tip of the 

major hysteresis loop.   The second is a conversion factor to compute the magnetic 

moments from the flux densities.   The 88 coefficients are those of eleven sev -.th-degree 

polynomials, which are used to represent the BH curves.   These are discussea in detail 

in Section 4. 3.1. 

4. 2.3  Equations 

Certain of the computations are performed at every integration step and others only at 

good integration steps.   This is accomplished by entering the HYSTOR subroutine from 

other subroutines.   At every integration step, HYSTOR is entered from DERIV, with the 

entry point index, NOPT, equal to 1.   The computations described in Section 4. 2. 3.1 

are then performed.   At good steps only, HYSTOR is entered from OUTPUT, with the 

entry point index equal to 2.   The computations described in Section 4. 2.3. 2 are then 

performed. 

4. 2. 3.1  Computations at Every Integration Step 

At every integration step, certain of the following computations are performed.   At 

every time interval, the components of the earth's magnetic field are computed, as 

described in Section 4. 2. 3. la.   At the initial time, T     the computations described in 

Section 4. 2. 3. lb are done.   At every time interval, the magnetic moments and torques 
are computed, as described in Section 4. 2. 3. lc. 

The time, T, is tested.   If 

T - To - 0.01 5 0, • (1) 

the time, T, is considered equal to the initial time, T .   The small increment assures 

that the correct choice will be made, regardless of roundoff errors. 
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a.    Components of the Earth's Magnetic Field - The components of the earth's 
magnetic field, in spherical coordinates, B„, B«, and B„, are computed in 

a subroutine adapted from the program used by the Armed Forces Special 

Weapons Command at Kirtland Air Force Base, New Mexico.   This subroutine 

requires the altitude, ALT, latitude, A, and longitude, Qv, of the satellite, 

as inputs.   These are all available from previous subroutines.   The components 

in spherical coordinates are converted to those in the orbital and satellite 

reference frames.   Use is made of the right ascension of the satellite, ßT, 

and the right ascension of the ascending node, i>N, also available from previous 

subroutines.   These celestial angles are measured from a baseline along the 

vernal equinox.   The positive direction of this baseline, corresponding to zero 

values of the angles, is from the heliocenter to the geocenter at the time of 

vernal equinox.   This is opposite from the customary reference direction. 

The difference in the longitudes of the satellite and of the ascending node is 

aM ~ ^T"nN* (2) 

The [D] matrix is used to convert from the spherical coordinate frame to 

the orbital frame, RPQ.   The elements of the [D] matrix are 

Dll " L> 

D22 = sin v cos nM, 

n cos v 
u23 r " cos x   ' 

D32 = 'D23' 

D33 = D22» 

D12 = D13 " D21 = D31 = °' 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

where v is the orbital inclination angle. 

The components of the earth's magnetic field, in the orbital frame, are 

H R 

Hp [D] 

■BR 

B, 

B 

(9) 

The [E] matrix is used to convert from the orbital frame to the satellite frame. 

The elements of this matrix are computed in a previous subroutine.   The com- 

ponents of the field, in the satellite frame, are 
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13 

11 

H R 

[E] H, 

H 12 H 
Q (10) 

H.» is the X. component, H.. is the Y, component, and H.« is the Z. com- 
ponent. 

b.    Computations at the Initial Time, T   - The logic requires the time increment 

in the magnetic field.   At the initial time, T     the field increment would 

correspond to the time interval prior to T .   This increment is not available, 

and therefore it must be generated artificially.   Only the algebraic sign of the 

increment has any effect, not the numerical value. 

The increments due to satellite attitude motion, satellite orbital motion, and 

earth spin motion are computed and combined.   The increments due to attitude 

motion depend on the time derivatives of the [E] matrix elements.   These are 

designated by the additional subscript, D: 

ED21 ' E3l,a:Xl " E11UJZ1 + E22 T?' (11) 

ED22 ' E32 "Xl " E12 a! Zl ' E2l v ' 

ED23 " ^S^'Xl " El3wZl» 

ED31 = Ell *Y1 " E21 u XI + E32 V ' 

CD32 = E12 WY1 " E22 aXl " E3l v 

'D33 - E13*Y1 " E23WX1' 

(12) 

(13) 

(14) 

(15) 

(16) 

where n is the orbital angular velocity, and the body axis rates are wXi» 

u;Y1, and uzv 

The required time derivatives of the components of the earth's magnetic field 

are 

or 

H Dl = ED2lHR + ED22HP + ED23 HQ' 

H1D2 = ED31 HR + ED32HP + ED33 HQ' 

H1DI = ED,I+1,1HR+ ED,I+1,2HP+ ED, 1+1,3 HQ- 

(17) 

(18) 

(19) 

The subscript I is 1 for the Y axis and 2 for the Z axis.   The same set of 

equations is used for both axes, in most cases.   Only one set of equations, 

with subscript I, will be included hereafter. 
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The increments in the field due to the satellite orbital motion and earth spin 

motion depend upon extrapolated values of the satellite's latitude and longitude 

prior to T .   The T   value of the altitude is used, because the change would 

be so small, anyway. 

The orbital angle prior to time zero is 

T?D = rj -AT?, (20) 

where ATJ is the initial integration interval.   The extrapolated prior latitude 

is 

AD = sin"   (sin ^ sin Tjp). (21) 

The corresponding longitude is computed from various angles.   The sidereal 

angle of Greenwich is 

nGD = aG - nG *?- , (22) 
TJ 

where CLG is the value at T     Qp is the earth's spin rate, and r\ is the satellite's 

orbital angular velocity. 

The right ascension of the ascending node is 

Ovn^v-nv^, (23) 

where oN is the value at T   and QN is th«3 precession rate of the nodes.   The 

rignt ascension of the satellite, QTD, is found from 

sin nNj) cos T?D + cos v cos fiND sin T?D 

sin nTD =   53^- , (24) 

cos QND cos TJD - cos v sin OvjD sin TJ^ 
cos ßTD= ^y- . (25) 

The extrapolated prior longitude is 

nVD = ftTD~ °GD- U6) 

The corresponding difference in the longitudes of the satellite »nd of the 

ascending node is 

nMD = nTD - nND • (27) 
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These values are used in the earth's magnetic field subroutine to find the 

extrapolated prior values of the field in spherical coordinates.   The elements 

of the [D] matrix are found from Equations (3) through (8), with 0Mn used 

in place of 0.,, and xD used in place of A.   Equations (9) and (10) are then 

u.ced to compute Drui3   ^EHll' and ^EH12' tne comPonents °* tne extrapolated 
prior field in the satellite reference frame.   The artificial increments, due to 

orbital travel and earth's spin, are 

DH11 = Hll " DEH11' (28) 

DH12 = H12 " DEH12 ' (29) 

The total artificial increments are 

HHNI = H1DI  "f   * DH1I (3°) 

The D-A index, H^., is determined in accordance with the algebraic sign of 

HHNI 

KHHNI      °>HDAI = -L <3l> 

U HHN1 "  °. HDAI = ^ <32> 

The end point coordinates of the branch of the major hysteresis loop are 

HHC1I =   HDAI HFAH' (33) 

HBC1I = "HDAI HFA11' (34) 

where HpA„and-Hp^jj are the coordinates of the positive tip of the loop. 

The corresponding beginning point coordinates are 

HHC2I  ' ~HHClI' (35) 

HBC2I '- "HBCir (36) 

The argument of the polynomial used to find the flux density is the D-A-indexed 

difference between the field value and the beginning point value, 

X = HDAI (H1I " HHC2I)* (37) 

The value, Hp, of the polynomial is computed.   The flux density is 

HBLI = HDAI HF- (38) 
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The increments in the field due to the satellite orbital motion and earth spin 

motion depend upon extrapolated values of the satellite's latitude and longitude 

prior to T .   The T   value of the altitude is used, because the change would 

be so small, anyway. 

The orbital angle prior to time zero is 

UD = I?-ATJ, (20) 

where ATJ is the initial integration interval.   The extrapolated prior latitude 

is 
AJJ = sin"   (sin v sin TJD). (21) 

The corresponding longitude is computed from various angles.   The sidereal 

angle of Greenwich is 

>GD^G-^G^> (22) 

where ft„ is the value at T     f>G is the earth's spin rate, and TJ is the satellite's 

orbital angular velocity. 

The right ascension of the ascending node is 

iND = nN - QN nWn = nM - hv -^ , (23) 
ri 

where oN is the value at T   and fjNis the precession rate of the nodes.   The 

right ascension of the satellite, f^TD, is found from 

sin QND cos ?7D + cos v cos f)^ sin r\^ 
sin nTD =  ggg-yjj " ' (24) 

cos QND cos T7D - cos v sin Clm sin T,D 

cos 0TD=  ——— ^-^ . (25) 

The extrapolated prior longitude is 

nVD = QTD " fiGD • (26) 

The corresponding difference in the longitudes of the satellite and of the 

ascending node is 

nMD     ^TD"nND' (27) 
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These values are used in the earth's magnetic field subroutine to find the 

extrapolated prior values of the field in spherical coordinates.   The elements 

uf the [D] matrix are found from Equations (3) through (8), with Ojutr) used 

in place of 0^, and xD used in place of A.   Equations (9) and (10) are then 

used to compute DEH«2   ^EHII' 
an(* ^EHlk   tne comPonents °* tne extrapolated 

prior field in the satellite reference frame.   The artificial increments, due to 

orbital travel and earth's spin, are 

DH11 =H11 -DEH11' (28) 

DH12 = H12 " DEH12 ' (29) 

The total artificial increments are 

HHNI = H1DI  "f  + DH1I <30> 

The D-A index, H^., is determined in accordance with the algebraic sign of 

HHNI 

UHHNI      ^"DAI-
1
' <3l> 

U HHN1 ?  °. HDAI = + 1- <32> 

The end point coordinates cf the branch of the major hysteresis loop are 

HHC1I =   HDAI HFAH' (33) 

HBC1I = "HDAI HFAIP (34) 

where HpA„and-Hp^1j are the coordinates of the positive tip of the loop. 

The corresponding beginning point coordinates are 

HHC21 = ~HHC1P (35) 

HBC2I = "HBC1T (36) 

The argument of the polynomial used to find the flux density is the D-A-indexed 

difference between the field value and the beginning point value, 

X = HDAI (H1I - HHC2I>- (37> 

The value, Hp, of the polynomial is computed.   The flux density is 

HBLI = HDAI HF' (38) 
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The increments in the field due to the satellite orbital motion and earth spin 

motion depend upon extrapolated values of the satellite's latitude uiiu longitude 

prior to T .   The T   v?.lue of the altitude is used, because the change would 

be so small, anyway. 

The orbital angle prior  o time zero is 

TJD =  T»   -  4XV, (20) 

where AT? is the initial integration interval.   The extrapolated prior latitude 

is 

AD = sin"   (sin f sin TJD). (21) 

The corresponding longitude is computed from various angles.   The sidereal 

angle of Greenwich is 

«GD = °'G - hG  ^  ' (22> 
n 

where CLQ is the vaiue at T     nG is the earth's spin rate, and h is the satellite's 

orbital angular velocity. 

The right ascension of the ascending node is 

lND = aN " nN OMn^v-nM^, (23) 

where oN is the value at T   and £)»- is the precession rate of the nodes.   The 

right ascension of the satellite, nTD, is found from 

sin QND cos t)D + cos v cos QND sin T?D 

sin nTD = ^T~- , (24) 

cos QND cos TJD - cos v sin QND sin T?D 

cosOTD,        cosXD ' (25) 

The extrapolated prior longitude is 

nVD = nTD-oGD. (26) 

The corresponding difference in the longitudes of the satellite and of the 

ascending node is 

nMD = ßTD " °ND • (27) 
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These values are used in the earth's magnetic field subroutine to find the 

extrapolated prior values of the field in spherical coordinates.   The elements 

of the [D] matrix are found from Equations (3) through (8). with 0„D used 

in place of fly, and AD used in place of A.   Equations (9) and (10) are then 

used to compute DE-JJIO   DpH11, and Dr-n.,, the components of the extrapolated 
prior field in the satellite reference frame.   The artificial increments, due to 

orbital travel and earth's spin, are 

DH11 = H11 "DEH11- (28) 

DH12 = H12 " DEH12 * (29) 

The total artificial increments are 

HHN1 = H1DI  f  + DH1I <30> 

The D-A index, HDAI is determined in accordance with the algebraic sign of 

HHNI 

L'HHNr   «»'«DM»-1- <3l> 

U HHNI "  °- HDAI = +1- <32> 

The end point coordinates of the branch of the major hysteresis loop are 

HHC1I =   HDAI HFAH' (33) 

HBC1I = "HDAI HFA11' (34) 

where HFAH and-Hp^jj are the coordinates of the positive tip of the loop. 

The corresponding beginning point coordinates are 

HHC2I = "HHC1I' (35) 

HBC2I = "
H

BCI.:- (36) 

The argument of the polynomial used to find the flur density is the D-A-indexed 

difference between the field value and the beginning point value, 

X = HDAI (H1I " HHC2I)> (37) 

The value, Hp, of the polynomial is computed.   The flux density is 

HBLI = HDAI HP <38> 
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The value, H.», of the magnetic field component is assigned to    HHMT, the 

symbol for the prior value   so that it will be available as such at the next 

time interval. 

HHMI = Hlf (39) 

c.     Magnetic Moments and Torques - The magnetic moments and torques are 

computed at every time interval.   The magnetic moments are computed from 

HDBY = HDCHBL1 + HCY' (40) 

HDBZ = HDCHBL2 + HCZ' (41) 

where H^p is the constant for converting from flux densiiy at the center of 

one rod to total magnetic moment of a set of two parallel rods.   For the NWL 

satellite, this factor is 80.067 x 10"   foot-poundi. per oersted-gauss.   H~x, 

Hpy» and Hp7 are the components of the fixed or residual magnetic moment 
of the satellite.   For the NWL satellite, this magnetic moment is negligible. 

The components of the magnetic hysteresis torque are 

TMHX = HDBYH12 " HDBZH11» (42) 

TMHY = HDBZ H13 " HCX H12' (43) 

TMHZ = HCXH11 " HDBYH13- (44) 

These torques are added to the other torques acting on the satellite. 

The program then returns to the DERIV subroutine. 

4. 2. 3. 2  Computations at Good Integration Steps 

At good integration steps only, the logic (which implements the basic rules for tracing 

hysteresis loops) is employed. 

The time, T, is tested by inequality (1).   If this inequality holds, T is considered equal 

to T , and the curve array indexes for both axes are set equal to 2, 

JHYS1 = 2' (45) 

JHYS2 = 2" (46) 

The program then returns to the output subroutine, and the required variables are 

stored on tape for later printout. 
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If T - T0- 0.01 -   0, (47) 

the time is later than the initial time, and the ensuing logic is employed for both axes 

by the index I taking the values 1 and 2. 

The index N-pgg-,. is set equal to zero for possible later use. 

The new value of the previous field increment is set equal to the old value of the present 
increment 

HHPI = HHNP (48) 

The new value of the present increment is computed from the appropriate values of the 
field. 

HHNI = H1I " HHMI <49> 

Writing the new values over the old ones automatically erases the latter from the memory. 

In a similar manner, the new value < i the previous flux density is set equal to the old 

present value, 

HBMI = HBLI* (50) 

The product of the present and previous field increments is computed, 

HHQI = HHNIHHPT (51) 

If this product is positive, no reversal in H has occurred, and the procedure of Section b 
below is followed. 

If the product is negative, a reversal in H has occurred, and the procedure of Section a 

below is followed. 

If the product is zero, a reversal in H has occurred.   In this case the present increment 

is set equal to the negative of the previous increment, 

HHNI = "HHPr *52) 

and the procedure of Section a below is followed. 

a.     Procedure With a Reversal of H - When a reversal of H occurs, the sign of 

the D-A index is reversed, 

HDAI = -HDAI- (53) 

The new value of the index is checked for agreement with the sign of the 

present field increment.   If 

HDAIHHNI      °. <54> 
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the program is stopped.   If 

HDAI HHNI "  °. <55> 

the procedure continues. 

The curve array index is checked next.   If 

JHYSI " 400 =  °» (56) 

the remaining storage is insufficient, and the program is stopped.   If 

JHYSI " 400 ** °» (57) 

sufficient storage remains, and the program continues. 

The curve array index is increased by one, 

J = JUYSI 
+ ^» (58) 

The new beginning point coordinates are set equal to the previous values of 
the field and flux density, 

HHCJI = HHMI' (60) 

HBCJI = HBMI' {61) 

These coordinates are automatically stored in the curve array. 

The index N-pESTI is set eQual to 1, as an indication that a new BH curve must 
bo> used. 

The value of the field is tested to determine whether it exceeds the new end 

point.   To facilitate this, a temporary index is needed, 

J = '^HYSI* (02) 

The H-coordinate of the new end point is then H..~  TIT»   The D-A-indexed 

difference between the field and this coordinate is 

TEMPI = HDAI (H1I " HHC, J-1,11 (63) 

If 

TEMPI = °. (64) 
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the field exceeds the new end point.   The curve array index is then reduced 

by two, 

JHYSI = JHYSI " 2* (65) 

The index NT£ST» is again set equal to 1.   Since Juvci was reduced, it is 
advisable to check that its value is not too low.   The minimum allowable value 

is two.   If 

JHYSI " * =   °» (66) 

the index is one or less, and the program is stopped.   If 

JHYSI " * > °» (67) 

the index is at least two, and the program continues. 

The reduction in the index results in the admission of a new BH curve, with 

new beginning and end points.   The test of the field for exceeding the new end 

point is repeated by again using Equations (62) and (63).   As long as inequality 

(64) holds, th3 repetition is continued.   Eventually, when 

TEMPI '   °. <68> 

a curve has been identified whose end point is not exceeded by the field.   The 

index NfgcyT *s then tested and found to be positive.   The range of the new 
BH curve is computed, 

HHEI = HDAI (HHC, J-l, I " HHCJI)- (69) 

Two of the eleven stored polynomials are selected for interpolation.   This is 

accomplished by taking the difference, ••QATC 
Detween tne beginning value, 

Hp.   ,r . of each of the stored polynomials and the D-A-indexed value of 

the flux density, Hßpj,, corresponding to the beginning point of the new BH 

curve which is to be interpolated. 

HGAIC = HFA, IC, 1 " HDAI HBCJP (70) 

The index L-, runs from one to ten. 

If H. »jQ is found to be positive with L> equal to one, it means that the beginning 

point lies outside the end of the major loop.   (This may be due to roundoff 

error, or a poor choice of the major loop in the first place.)  In this case, L, 

is verified as being one, and the major loop is used for computing the flux 

density.   The argument of the polynomial is the D-A-indexed difference between 

the field and the beginning point coordinate, 
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HHDI     HDAI (H1I ' HHCJ1K (71) 

The index Ipijoi is set equal to two, indicating that the upper interpolation 

curve is the one above the major loop, and the lower one is the major loop. 

The interpolation coefficient is set equal to zero, so that, in effect, the major 

loop is used.   The value of the polynomial is HF, and the flux density is found 

from Equation (38).   The new value of the previous field for the next time 

increment is set equal to the old present value by using Equation (39). 

If H^.jp is found to be positive for a certain value of Ip between two and ten, 

inclusive, the stored curve corresponding to this value is the upper interpola- 

tion curve.   The curve corresponding to Ip-1 is the lower interpolation curve. 

If the difference given by Equation (70) is found to je negative with L-. equal 

to ten, the index Ip is set equal to eleven. 

After Ip has been determined to be between two and eleven, inclusive, the 

beginning point value of the interpolation coefficient is found as the ratio of 

the appropriate differences in flux density coordinates, 

HKAI   =   H—-QA^zl • (72) RAl       HGAIC " HGA,IC-1 

The value of the flux density, H.JJ. from the lower interpolation curve, Ip-1, 

is found from its polynomial, using the range found from Equation (69) as the 

argument.   Similarly, the value, H™™, from the upper interpolation curve, 

Ip, is found. 

The end point value of the interpolation coefficient is found as the ratio of the 

appropriate flux density differences, 

„ HDAI HBC,J-1,I " HILI ,„,. 
KCI Um - HILI 

The index 

!CURI r *C' (74) 

is used henceforth to indicate the upper interpolation curve. 

The argument of the polynomial is computed from Equation (71).   This is used 

in the polynomials representing the interpolation curves.   The value from the 

lower interpolation curve is designated Hy.» T, and that from the upper one is 
H
FUI- 
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The parabolically sliding interpolation coefficient is 

HKLI = HKAI * (HKCI " HKAI)  \Hj^7/     * (75) 

The flux density is computed by interpolation between the interpolation curvfo, 

HBLI = HDAI   [HKLI HFUI + (1-HKUJ H KLI' "FLI (76) 

The new value of the previous field for the next time interval is set up by using 

Equation (39). 

The program then returns to the output subroutine, and the required variables 

are stored on tape for later printout. 

• • 
b.     Procedure With No Reversal of H - With no reversal of H, the D-A index re- 

mains unchanged.   Nevertheless, the value of the field must be tested to de- 

termine whether it exceeds the end point of the present BH curve.   This is 

done by means of Equations (62) and (63).   The same procedure is followed 

as in the previous section.   WTien inequality (68) is satisfied, a curve with a 

satisfactory end point has been found.   If, during this procedure, inequality (64) 

was found to hold one or more times the index NTES~,, will have been set 

equal to one.   Under this condition, the procedure of the last section will be 

followed, from Equation (69) onward. 

If inequality (68) was satisfied   the first time that TEMpi was tested, the value 

of H did not exceed the end point of the present BH curve, so no new curve ne^d 

be derived.   The index NTEgj is tested and found equal to zero.   Then the 

procedure of the last section will be followed, using Equation (71) to find the 

argument of the polynomial, the interpolation curves to find HFT, and HpjTT, 

and continuing with Equations (75), (76), and (39). 

4. 3  CURVE-FITTING AND INTERPOLATION TECHNIQUES 

The fitting of analytical expressions to the actual BH curves for the material, and the 

generation of an interpolation scheme, proved to be more difficult than the generation of 

the logical scheme.   This difficulty was due to the shape of the BH curves, to the limited 

storage in the core memory of the computer, and to the necessity of obtaining economical 

running speeds.   The last two factors required that the logic be simplified as much as 

possible, that a BH curve be derived from the least possible amount of information, and 

that the minimum amount of information about previous BH curves should be stored. 

With all of these factors, as well as accuracy of the fit, taken into account, the final 

choice for the analytical function was a seventh degree polynomial.   The manner of 

derivation of the coefficients, the interpolation scheme used in the digital computer 
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program, and related matters, are discussed in Section 4. 3.1 below.   Otner methods 
which evidently have merit are discussed in Section 4. 3. 2.   The methods which were 

investigated, but found unsatisfactory, are described in Section 4. 3. 3.   These are in- 

cluded for the purpose of documentation and to prevent future effort from being expended 

along these lines without a realization of the shortcomings already found. 

4.3.1  Seventh Degree Polynomials 

BH curves for the rod material were obtained from the Allegheny Ludlum Steel Corpora- 

tion, and processed as described in Section 4. 3.1.1 below.   The fitting of the polynomials 

and the interpolation of additional reference curves are described in Section 4. 3. 1. 2. 

The interpolation scheme uced in the digital program is described in Section 4. 3.1. 3. 

4. 3. i. 1  Allegheny Ludlum Curves 

Several sets of curves were obtained from the Allegheny Ludlum Steel Corporation.   The 

set which was used is reproduced as Figure 4-3.   The curves were taken for a ring 

sample of the material, anc' so they must be corrected for the demagnetization effect 

when applied to rods.   For the rod dimensions used, the demagnetization factor, DM, 

is 1.5 x 10"   oersteds per gauss.   The correction is applied to the field, 

He = Hi + DMB, (1, 

where B is the flux density at the center of the red, H. is the internal field at the center 

of the rod, and H   is the applied field, which is external to the rod.   H. is then the value 

of the field which is plotted as the abscissa of the original set of curves in Figure 4-3. 

For the present purpose, H   is the component along the rod axis of the earth's magnetic 

field at the satellite location.   H   is the abscissa of the derived set of curves in Figure 

4-4.   The derived set was obtained by replotting with a new abscissa value, in accordance 

with Equation (1).   The values of H   were actually obtained from the first part of a 

digital computer program which is described in Appendix II. 

4.3.1.2  Curve-Fitting 

The analytical expression used for fitting the BH curves is a seventh-degree polynomial. 

The coefficients were derived by means of the least squares method.   The digital com- 

puter program used is described in detail in Appendix A. 

The argument of the polynomial is the translated value of the field, that is the difference 

between the value of H   at any point and the value at the beginning point of the curve 

being fitted.    Likewise, the ordinates were translated by subtracting the beginning point 

value from each of the actual values.   For the translated curve, the beginning point then 

has the coordinates (0,0).   The polynomial was forced to pass through this point by omitting 

the constant term from the general expression.   To obtain the reference curves used in 

the digital program, the flux density was retranslated by adding the beginning point value, 

which thus becomes the constant in the polynomial.   The argument of the polynomial, 

however, remains the translated value of the field.   This is most useful in the main 

digital program, particularly tor interpolation, as will be apparent later. 
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This procedure was applied to the ascending branch of the major hysteresis loop and to 

the four second-class curves of Figure 4-3.   The second-class curves are the ascending 

ones which begin at various points along the descending branch of the major loop.   The 

polynomials thus derived are plotted in Figure 4-5, and designated as curves number 

1, 3, 5, 7, and 9.   These designations correspond to the reference curve numbers used 

in the main program.   Reference curve 11 is simply a horizontal line, and is used only 

when necessary to interpolate a curve above the uppermost BH reference curve available. 

(Attempts to use the descending branch of the major loop for this purpose yielded un- 

satisfactory results.) 

Reference curves 2, 4, 6, 8, and 10, also shown in Figure 4-5, were obtained by inter- 

polating between the odd-numbered curves. 

The interpolation scheme described in the next section requires extrapolating each of the 

curves numbered 2 through 10 to reach the abscissa of the end point of tne unextrapolated 

curve immediately below.   These extrapolated sections are shown dashed in Figure 4-5. 

Each polynomial was-   .cted ov<    the complete range, including the extrapolated portion. 

The polynomials are of the form 

8 . . 
B =   L    A. H]_i , (2) 

j=l      1 

where H is the translated field. 

It became apparent in the course of the analysis that the maximum value of tne earth's 

magnetic field at the perigee altitude would be about 0. 55 oersteds.   This value is greater 

than the 0. 405 oersteds corresponding to the tip of the major loop in Figure 4-4.   To 

overcome this deficiency, additional curves were requested from Allegheny Ludlum. 

These have not yet been received.   Therefore, the curves of Figures 4-4 and 4-5 were 

adapted to the requirements of the program.   This was accomplished by applying different 

stretching factors to the field and flux density scales.   The factors used were derived 

by extrapolating the magnetization curve.   This curve was assumed to go through the 

tips of the major loops of the 2, 4, 6, and 8 kilogauss sets of Allegheny Ludlum curves. 

The coordinates of these points are tabulated in Table 4-1. 

TABLE 4-1.    POINTS ON MAGNETIZATION CURVE 

External Field, H Flux Density, B 
(Oersteds) (Kilogauss) 

0.084 2.0 
0.140 4.0 
0. 202 6.0 
0. 405 8.0 

A parabola, 

H = 0.436 - 0.144 B f 0.0175 B2, (3) e 
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was fitted to the last three points in Table 4-1.    Figure 4-6 is a plot of the magnetization 

curve plotted from Table 4-1.   A portion of the extrapolating parabola is shown as a 

dashed curve in this figure.   It will be noted that the abscissa is the external field, H . 

It is easy to show algebraically, with the use of Equation (1), that if H   is a second-degree 

polynomial in B, then H- is also.   Thus equivalent results would have been obtained if the 

extrapolation had been done in terms of H.. 

To allow some margin, the stretching factor for flux density v'/as taken as 1. 15.   This 

brings the 8-kilogauss peak value to 9. 2 kilogauss.   The corresponding value of H 

from Equation (3) is 0. 5924 oersteds.   The ratio of the former 0. 405 oersted value to 

this number is 

C   =   ^§4   =   0.68366. (4) 

This is the reciprocal of the stretching factor for the magnetic field values. 

The new polynomial corresponding to Equation (2) is then 

Bs -  *   AJS HsM - <5> 

where the subscript S indicates the stretched curves.   This subscript is dropped later. 

The new coefficients for the polynomial were found from 

A s = 1.15C*"1 A. . (6) 

Equation (6) was applied to the coefficients of each of the eleven reference curves of 

Figure 4-5.    The results were used as the input reference curves for the computer pro- 

gram. 

4. 3.1. 3  Interpolation Scheme 

An examination of the curves of Figure 4-5 shows that interpolation with a constant in- 
terpolation coefficient is not realistic.   Curve 5 may be used as an example.   Suppose 

that this curve were not available, and it was required to obtain it by interpolation.   The 

interpolation coefficient is the ratio of differences between appropriate ordinates, 

B5-B3 
k3   =   B7-B3    ' (7) 

where the subscripts refer to the curve numbers.   Having the curve 5 available, one 

may obtain the interpolation coefficient, kc, as a function of the abscissa (translated 

magnetic field).   This function is plotted in Figure 4-7.    The beginning point value is 

one-half, and for low values of the abscissa, kg remains nearly constant at this value. 

It then gradually rises in value.   Over the right-hand portion of the curve, the points 

seem erratic.   This has been attributed to instrument errors in the original data, in- 

accuracies in the reading of the graphs, and the high sensitivity of the coefficient to 

these errors in this region of the curves. 
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The scheme to be used for interpolation in the main program should take into account 

the general shape of the curve in Figure 4-7, and yet the scheme must be fairly simple. 

The requirements of the main program are that a BH curve bo derivable from the co- 

ordinates of it" end points, together with the use of the eleven stored reference curves. 

It is evident that the interpolation coefficient must generally have a value at the end point 

of the interpolated curve different from the value at the beginning point.   In the program, 

the beginning point value, HJ^J. and the end point value, H^pj, are found from the 

equivalent of Equation (7), using the flux density at the beginning or end point, as appro- 

priate, in place of B~.   The coefficient at :ny intermediate point is then taken as a 

parabolic function of the abscissa, 

HKLI = HKAI + X   (HKCI • HKAIK (8) 

where X is the ratio of the abscissa to its total range.   Therefore X varies from zero 

to one over the range of the derived curve.   It is easily verified that Equation (8) satisfies 

the beginning and end point requirements, and has a zero slope at the beginning point. 

Such a function was considered to best meet the requirements of simplicity with a shape 

similar to that of Figure 4-7. 

The scheme was tested by applying it to one of the Allegheny Ludlum curves.   The curve 

tested is the longest descending branch of a minor loop illustrated in Figure 4-4.   This 

curve was selected because it has a greater range than any of the other corresponding 

curves in its set.   The actual curve was inverted about the origin to make it ascending, 

translated, and replotted in Figure 4-8.    The curve obtained by interpolation between 

reference curves 4 and 5 is shown dashed in Figure 4-8 for comparison.   Tne discrepancy 

is believed to be comparable to the instrument and other errors. 

4. 3. 2  Alternate Methods Which Appear Applicable 

Several methods of fitting BH curves with analytical functions and of interpolating between 

such curves were investigated.   One of the curve-fitting methods, described later, was 

tried and found successful but not used, because the seventh degree polynomial is simpler. 

The problems fall into two distinct areas, curve-fitting and interpolation.   Interpolation 

methods are divided into three classes.   The first of these is interpolation between sets 

of curves corresponding to various peak values i •: end points of the major hysteresis 

loop, such as the 2, 4, 6, and 8 kilogauss sets of curves obtained from Allegheny Ludlum. 

The second is interpolation between the curves in any such set, that is, the generation 

of additional curves.   The third is the type of interpolation that is suitable for use in the 

digital simulation, that is, a scheme which will generate a curve from the coordinates 

of its end points, under the conditions of an arbitrary history, and using a limited amount 

of input information derived from the original BH curves.   Only the first two types of 

interpolation are discussed in this section.   The third type was discussed in Section 4. 3.1. 
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This section will discuss curve-fitting in general, then fitting magnetic hysteresis curves 

in particular, and finally the various types of interpolation. 

4. 3. 2.1  Curve-Fitting By Interpolation Techniques 

The most familiar form for fitting a curve 

y -- f(x), (1) 

is by means of polynomials P(x).   These are generally chosen as "interpolation" poly- 

nomials, that is so as to pass through n points of the curve (1), generally equally spaced 

over the interval over wnich the fit is desired, the degree of the polynomial being one 

less than the number of fitted points, so that it has as many constants (coefficients) as 
the number of points.   If the fit is not too good between the points, then one increases 

the number of fitted points as well as the degrees of the polynomial.   Occasionally it 

happens that even this does not help, and as the number of fitted points increases, the 
discrepancies between f(s) and P(x) between the x. also increase.   This is likely to 

happen when the curve (1) has both flattish ana steep portions. 

Some of these difficulties may be avoided by using other forms for the curve-fitting com- 

ponents.   In particular, we consider approximations of the form 

f(x) ~t AA/ [(x-Xj)2 + B21   = E At R(x-Xi), (2) 

where x. are equally spaced, a distance Ax apart over the interval in question, and B 

is a predetermined constant. The A. are chosen so that the right-hand member of (2) 

agrees with f(x) at the points x.. 

If the constant B is small compared with Ax, then 

R(0) = -V (3) 
B 

r 2     2i is large, and R(x) falls off rapidly, being equal to 1/1 B   + (Ax)     at x = Ax.   Therefore 

each coefficient A. in (2) is approximately proportional to the local ordinate f(x.).   While 

this gives one an immediate estimate for the constants A. and their variation with the 

shape of f(x), it has the disadvantage that between the points x, the right hand member 

of (2) decreases to numerically small values.   Thus the right-hand member of (2) has 

the appearance shown schematically in Figure 4-9.     On the other hand, if B is much 

larger than Ax, then the shape of R(x) is rather like a parabola with a small curvature, 

at least for some distance to each side of its maximums.   This follows from the expansion 

R(x) = 1/B2 - x2/B4 + ....,        I x I < B . (4) 

While there is no difficulty in solving the linear equations for A., the variation of the 

coefficients with the slvipe of f(x) is not immediately predictable. 
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Figure 4-9. 

From the above it would appear that any special advantage that the form (2) might pos- 

sess would be attained by having B of the same order of magnitude as Ax.   It is believed 

that rather than choosing a large B/Ax, it is preferable to double the number of points 

Xj.   Of course, the final decision on whether the form (2) is better than some other 

form of approximating functions lies in comparing the discrepancies between the true 

shape and the approximating shape, at points between the fitted points.   A predictable 

and systematic variation of the coefficients A, with the shape of f(x) is also desirable, 
if possible. 

One property of Equation (2) (and this is true for any shape R(x) provided that x. are 

equally spaced points), is that the matrix of the coefficients of the equations to be solved 

for A. has the same elements in each diagonal parallel to the main diagonals.   The 

matrix is also symmetric about the main diagonal, if R(x) is even in x.   The same state- 

ments apply to the inverse matrix. 

As an alternative one may use the form (2), but choose the coefficients in some other 

way than by imposing an exact fit at x..   Thus, as discussed later in Section 4. 3.2. 2, 

one may determine the coefficients in (2) by the least squares criterion, that is, so 

that the sum of the squares of the discrepancies between the left and the right sides of 

(2) at the points x. is least.   \s will be shown, this gives rise to linear equations for 

the coefficients A . 

The form was used to fit each of the curves in the 8-kilogauss set furnished by Allegheny 

Ludlum.   An eleven-point fit was made by an IBM 7094 digital computer program coded 

in Fortran n.   The equations programmed are listed in Appendix in.   The runs were 

made for values of the ratio of B/Ax equal to 0. 25, 0. 5, 1, 2, and 3.   Twenty-one 

points were taken from each curve to be fitted, the two end points and every 0.05 of the 

range of H.   The multiples of 0.1 of the range of H, together with the two end points, 

were the eleven points used for curve-fitting.   The ten intermediate points were used 

for checking the goodness of fit.   It was felt that the discrepancies between the fitted 

expression and the original data would be greatest at these points, which lie midway 

between the fitted points.   The errors were least for ratios of B/Ax equal to 1. 5, 2, or 

3.   For any fitted curve, the ratio selected should be that which yields the least value 

of the maximum error.   After this selection was made for each of the fitted curves, 

the worst error was 380 gauss. 
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A great deal of the above readily carries over to other shapes R(x) which have a maximum 
at x = 0; are symmetric in x, and decrease to zero to either side.   Several such possible 

shapes are 

l/(xZ + BZ)   , 
2/ 2 -x /a and sech n(x/a). (5) 

If R(x) is chosen as indicated in Figure 4-10, then (2) reduces to a polygonal approxima- 
tion to f(x) obtained by drawing straight line segments between the ooints of (i) corres- 

ponding to equally spaced ordinates. 

R (X) 

2*X     X 

Figure 4-10. 

This requires merely storage of the ordinates f(x.) and linear interpolation between them. 

It is too rough for high accuracy, but quadratic interpolation based on interpolation using 

several adjacent ordinates may be very effective. 

For 

x. = i(Ax) < x <(i+l) Ax = x.  . 
1 1+ 1 

.pa. 
xi     Vi 

(6) 

where neither x. nor x.  , is an end point.   The interpolation is given by the interpolation 

polynomial fitting the values of t(x.) at x = x. ., x., x. . x. 2: 

f(x) = mQ f(xi_1) + mx f(xj) + m2 f(xi+1) + m3 f(xi+2) (7) 

where     m , m., m«, m« are given by 

m. 
(x-Xi) (x-xul) (x-xi+2) 

(Ax)3 1-2-3 
mQ (x) 

m 
(x-x.^) (x-xi+1) (x-xi+2) (e+l)(O-l)(0-2) 

1       (Axr i-i-2 * li] 

m2 =   mx (x4 + xi+1 - x) 

where 

m3=  m0(xi + xi+1-x) 

x-x. 

(8) 

(9) 
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If x, or x. . is an end point, then one-sided interpolation may be used in place of (7). 
Thus in x   <- x < x   ♦ ax Equation (7) holds, but with one sided values.   Thus for 
Xj < x < x2 

f(x) * mQ f(x2) + 

mo = 
(x-x1Kx-x2)vx-x3) 

(10) 
3! (Ax)" 

These can also be expressed in terms of first, second, and third finite differences. 

4.3.2.2 Curve-Fitting by Least Squares Techniques 

Let f(x) be a given function of the independent variable x over a proper interval (a, b). 
We are concerned with approximating to f(x) by means of a linear combination of given 
functions: 

f(x) ~ C1f1(x) + C2f2(x) + ... + Cfcfk(x), (1) 

where fj, f2, .. are functions of x only, and the C* are constants to be chosen so that 
the "errors" ai n prescribed points 

xl» x2» • •» xn ^ 

are least in the sense that the sum of their squares is smaller than for any other set 
of coefficients C, in (1). 

It is evident that unless the number n of points in (2) is greater than the number k of 
terms on the right of (1), the errors can be made to vanish (provided that the determinant 
I f«(xJ I does not vanish), and the least square fit reduces to an interpolation fit 

By a linear change of variable the interval (a,b) can be transformed into the interval (0,1), 
and this we assume to be the case in the following.   The points (2) will then lie in (0,1). 
They may include one or both of the end points. 

The quantity to be minimized is thus 

n      / k \2 
Q =    E     (   E    C.f.(x.) - f(xj)    . 

i=l    \ \=l     n   l l / 
(3) 

Evidently, Q is, in general, a definite (that is a positive) quadratic form in the coefficients 
C-.   It takes on its minimum at the values of C. which satisfy the k equations 

2 Ä?" =0= i-i i=i   [cifJ(*i)"£(*i)] W^1' '-'k (4) 

Rearranging the terms results in k linear equations, 

k (5) 
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In these equations C. are the unknowns, while the coefficients of these unknowns are 
sums of products of the functions f. at the points (2), and the right-hand constants are 
sums of products of the values of the left-hand member of (1) by the values of the func- 
tions f., all evaluated at respective values of the points (2) chosen properly in each 
factor.   The solution of these equations, when substituted in the right-hand side of (1), 
yields the least square fit for f(x). 

An example is that in w*ich the functions f* are polynomials: 

f,(x) = xj-\ (6) 

Then Equations (5) reduce to 

n k 
L  C 

J 
E xHxt-i 

i=l '   * 
=    £ f(x-) x.1'1; 1=1, .., k 

i-1     l    l 
(7) 

The least square approximation in general will not yield a perfect fit at the points (2). 
In particular, if the end points are included among the points (2), it is not to be expected 
that the least square fit will yield the exact values of f(x) JL these points   either.   If it 
is desired to obtain an exact fit at these points, say for polynomial fits, then one proceeds 
as follows. 

We choose for the polynomials the functions 

fj(x) = x(l-x) x*"1 (8) 

thus replacing (1) by 

f(x)~ x(l-x)  |c0 + C1x + wA X     + • ■ •    4- V'i- "'hW*1*1-*1*2) (9) 

where, with a slight change of notation, the subscript has been allowed to range over 0 
as well.   The form (9) automatically vanishes at the end points x ■ 0 and x = 1. 

As an alternative method, one may, before applying least squares, subtract from f(x) 
a linear function of x which takes on at the end points the same values as f(x).   Then one 
proceeds to apply least squares to the resulting difference.   We shall assume in the 
following that this has been done, and will use f(x) for the difference function.   With this 
in mind, Equations (5) apply and, more explicitly, yield 

k 
£   C 

j=l ] 
£ x^l-x/x^]   =1   j^Jx.U-x.Jx.*]; *.l, .., k.   (10) 

Another alternative is to divide both sides of (9) by x(l-x) and choose a polynomial repre- 
sented by the bracketed factor in (9) so that it fits f(x)/x(l-x) in the least squares sense. 
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The resulting coefficients C, will not be the same as above.   There will also be the 
difficulty of obtaining limits of indeterminate forms when evaluating the function 

Mr <») 
at the end points. 

Least square methods can be readily extended to the case where the squares of the 
deviations are weighted with weights w- which are prescribed with the position x.. 

It is believed that, as compared with an interpolation polynomial which takes on the values 
f(x-) at x-, the least square polynomials have an over-all smaller error over the whole 
interval, say when Xj are equally spaced.   The error of the interpolation polynomial can 
be expressed in terms of the (n+l)th derivative of f(x); no estimate of the error of the 
least square approximation polynomial is known. 

4.3.2.3 Curve-Fitting of BH Curves by Inversion 

Examination of the hysteresis curves and of the curves obtained by reversing the sign of 
dH/dt, at HR - HR ., HR «i ••• shows that, after reversal, the new curve resembles 
the "inverted image" of the preceding curve segment, obtained by turning the latter 
through 180°, about the midpoint of the line segment joining its end points.   This is 
exactly true for the ascending branch of the major loop, which is obtained from the 
descending one by rotating the latter 180° about the origin H=0, B=0, which is the mid- 
point of the line segment joining H   , Bm to -H       ~B

m«   tt is **so true within very 
high accuracy for any rank curve and the curve of the following rank, if HR . and HR . « 
are close, whereupon the curve segment between these reversal points is a parabola, 
and so is its inverted image.   For the curves of rank i, i > 1, if the end points Hn ., 
Hj, . . are far apart, and B    is large enough so that the hysteresis curve has a point 
of inflection and appreciable reversed curvature, it is true only in the neighborhood of 
the reversal point.   Thus on Figure 4-11 if, after descending along the main hysteresis 
curve from the vertex A to the point B, H starts increasing, then the path followed is 
BCA.   The inverted path is BC' DA.   Near B the two paths lie close to each other, but 
they deviate for larger H. 

The curve BCA passes through A, the previous reversal point, and this is in accordance 
with the general rule for the curves of rank i, that they aim for the previous reversal 
point, and if continued beyond (for i > 1), follow along the curve of rank (i-2). 

The inverted curve BC'DA also passes through the previous reversal point A, since in 
rotating through 180   about the midpoint the end points are interchanged. 

If a curve has the equation 

B = f(H),    HR1 < H < Hm, (1) 
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H 

Figure 4-11. 

then the inverted image between these points is given by 

H + H' = HA + HR1,        B + B* = f(HA) + f(HR1), (2) 

where half of the right hand members yield the coordinates of the midpoint of the straight 
line segment between the end points, and H', B1 denote the point which is obtained by 
inverting the point H, B.   Hence, in equation form, the inverted curve is given by 

B' = f(HA) + f(HR1) - f(H) = where H = HA + HRJ - H\ 

Eliminating H, and then dropping the primes, 

B = f{HA) + f(HR1) - f(HA + HR1 -H). 

(3) 

(4) 

With proper changes of notation the form (3) ca o be used to derive the curves of rank i 
from those of rank 1-1, where the latter are obtainable by inversion of the preceding ones. 

Where an inverted curve differs appreciably from the reversed curve, the correction to 
be added to the right-hand member of (3) (or of the corresponding equation for the curve 
of rank i) must be a function of H which vanishes at the two end points.   This function 
increases numerically very slowly at B on Figure 4-11, or near its first reversal point, 
while it approaches its following reversal point more steeply.   We proceed to derive 
several forms of functions having this property.   For definiteness, we change the inde- 
pendent variable to the normalized variable x, and suppose that the roots are at x=0, 
x=l, with x=0 as the root with the slow numerical increase. 

A simple function having the desired properties is given by 

y = C x2 (1-x). (5) 
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This has a vanishing slope at x=0, and would do only if the- two curves (the reversed and 
inverted curves) are tangent to each other at the reversal point. 

Another possible function is given by 

y = C x (e~ßx - e"*) ,    * > 0, (6) 

where ß and C are constants.   The ratio of slopes at x=0 and at x=l is numerically equal 
to 

(ea-l):  ß. (7) 

This ratio can be made as large as desired by choosing ß large enough.   By replacing 
x by (1-x) in (6), the small slope can be made to occur at x=0, and the large one at x=l. 

Additional functions with the desired properties can be obtained by starting with a func- 
tion like 

y = f(x) = Jn(x), n = 2,3,.., (8) 

whose appearance between x=0 and the first positive root is as shown schematically in 
Figure 4-12, with a zero slope at x=0.   To obtain from (8) a function with a small positive 
slope at the left end, one cuts the curve v.  !ia line 

y = « , (9) 

obtaining two roots x=x. near zero, x=Xg -ath a small slope at x..   By replacing x by 

f = (x-x^Axg-Xj) (10) 

one shifts the roots to ? = 0, £ = 1. 

Y 

Y = J (X) 
n 

Figure 4-12. 

The solution of (8), (9) may have to be carried out by a trial-and-error or by a successive 
improvement method.   However, one may choose x2 as a value in the table and near the 
root.   Then c ■ f(x«)  s known, and presumably small.   The value Xj can then be de- 
termined by using the first term of the power series expansion, 

Jn(x) = -^~ 
n 2nn! 

(!-...)=«. (11) 
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The precisef(x)tobe used for AB, for the family of 2nd rank (H, B) curves, and the 
variation of f(x) with HR. and with Hm, requires a great deal of trial and error. 

4.3.2.4 Differential Equation for the Second-Rank Hysteresis Curves 

A family of curves such that one and only one curve passes through every point of a 
certain region of the (x, y) plane, can be described by means of its differential equation 

& ■ F(x'y>> (i) 

where F(x, y) is the slope of the curve passing through (x, y). This equation yields the 
curves themselves only if one carries out an integration of (1), either analytically, or 
numerically. 

In the following, an attempt will be made to obtain a differential equation of the form 

^-=F(H,B). (2) 

for representing the curves of rank 2, that is the curves obtained after one has descended 
along a particular hysteresis curve to a point HR, then increased H to H   , the value of 
H at the vertex of the hysteresis curve.   The starting points of these curves are the 
poinls of the descending branch of the hysteresis curve.   These curves are shown in 
Figure 4-13. 

<Hm'Bm> 

HA(B) 

Figure 4-13. 

Examination of the curves of Figure 4-13 shows that along any horizontal straight line 

B = constant (3) 

Theslopes increase from a small value m. to the value m« which is the slope of the 
ascending branch of the hysteresis curve through the point with the constant B in question. 
The value m,, it follows from the inversion properties explained in Section 4.3.2. 3, 
has the sauie slope as the slope of the descending hysteresis curve at its vertex (H   , B   ). 
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Thus aij is independent of the right hand constant in (3), depending only upon H   .   In 
fact, on the Allegheny Ludlum (H,B)-curves m. appears to be zero, or even slightly 
negative.   This, howe.er, can never actually be the case with any magnetic material, 
and must be due to an instrument error. 

If, for simplicity, we do assume that m1 vanishes, then a possible simple form for (2) 
is given by 

M - e m2; <*> 

where 0 is the fractional distance along the line (3) fro? -J the left, to the total length of 
this line: 

6   =  (H - HD)/(HA - HD), (5) 

where 
HA  =  HA(B),        HD  =  HD(B), (6) 

are the equations of the ascending and the descending branches of the hysteresis curves 
respectively.   It follows that 

m2  =  l/dHA/dB =   1/HA(B). (7) 

Substitution from (5), (7) into (4) yields the differential equation 

dB   _  H ' HD(B) 1 
dH   "   HA(B)-HD(B)    HA'(B) 

If m. is not negligible, then (4) must be modified, say, into 

(8) 

^ =  (1-6) m1 + 6 m2 (9) 

Utilizing (5) and (7) one adds to the right-hand side of (8) 

HA(B) " H (10) 
1  HA(B) - HD(B)  ' m 

By utilizing the inversion properties of the two hysteresis branches one may express Hp 
in terms of HA, as follows: 

HD(B) = -HA(-B) (11) 

Whether (8) or the modified form with (10) added on fits the curves of Figure 4-13 can 
be determined by a numerical comparison of the actual slopes of the curves with those 
computed from the equations, or better yet, by integrating these differential equations 
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and comparing the resulting curves with the curves of Figure 4-13.   The analytic 
integration off-hand appears difficult.   The numerical integration, if it is used, has 
to be carried out with high accuracy. 

Various changes in (9) are possible and may be desirable if (9) does not yield a good fit. 
Thus, one may replace ö by any function of 6, g(0) which has the property that it in- 
creases with 6, vanishes for 0 = 0, and is equal to 1 for 6 = 1,   Moreover, g(0) may vary 
with the height of the line of constant B. 

A further alternative consists in fitting slopes along vertical, rather than horizontal,lines 
in Figure 4-13.   Along a vertical line, it will be seen that, as B increases, the slope 
starts with the slope m« of the ascending branch of the hysteresis curve for the constant 
value of H in question and decreases to m. at the intersection with the descending branch. 
One may use (9), but 9 defined by 

6   =  (B-BA)/(BD-BA), (12) 

where B., BD represent the ascending and descending branches, with B expressed in 
terms of H, and 

m2  =  dBA/dH  = BA'(H) (13) 

There results 

4B       BA'(H)[B-BA(H)J BD(H) - B 
dir = "BjJHJ - BA(H)       + ml  BD(H) - BA(H) • (14) 

This is linear, but not homogeneous, in B, with coefficients which are functions of the 
independent variable H.   Such a differential equation can be integrated by means of 
quadratures, and for this reason (14) would be preferable to (8) and its two consequent 
equations.   However, the linear variation of slope with distance appears to be question- 
able along vertical lines in Figure 4-13,   Hence replacement of ö by g(6), a function of 
6, may be necessary.   This would lose the linearity property of the differential equation. 

While the use of differential equations in describing the (B, H)-curves is an added com- 
plication, to be avoided if the explicit equations for these curves can be obtained, it may 
be said, that, from the point of view of integrating for the motion of a satellite and its 
orientation along its orbit, the number of degrees of freedom is already high, and the 
use of (8) or (14) only increases by 1 the order of the system.   What is a more serious 
item is the fact that the differential equations proposed have only be*;n considered for the 
second rank (H, B) turves.   For third, and higher rank curves, which depend upon 
several preceding reversal values of H as well, the form (2) is insufficient and either a 
higher order system is needed or a way of describing the changes in F upon reversal 
(of the sign of dH/dt). 
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It may be added in conclusion that from a scientific point of view, it would be very de- 
sirable if a way of describing magnetic properties of ferromagnetic materials based on 
some theory, were worked out by physicists, from which, starting with the established 
tenet that elementary magnets have a constant moment, and all the magnetic properties 
are due to the orientation of these elementary (atomic or molecular) magnets, one 
could predict the magnetic behavior of a magnetic material, once its chemical and 
metallurgical structure is known.   The work by Ewing of a model based on a collection 
of regularly arranged collection of small magnets, raised hopes that this may be possi- 
ble, but to date the task has proved too difficult, though the nature of the elementary 
magnets has indeed been clarified in terms of quantum theory, Bohr magnetons, and 
electron orbital spin.   It is possible, that when this theory is worked out, it will be in 
the form of differential equations resembling (2).   A review of Neel's theory and other 
theoretical attempts in the booklet by G. F. Brown shows tha* theory is still a long way 
from theoretical explanation of properties of magnetic materials.   Possibly some semi- 
empirical theory, with the inclusion of some sort of "frictional" energy dissipation 
accompanying (H, B) changes might be developed in the meantime. 

4.3.2.5  Interpolation of Second-Rank BH Curves 

For a given hysteresis loop between the points (H   , B   ) and (-H   , -B   ), second rank 
(H, B) curves are available, proceeding from five points of the descending branch 
corresponding to values of B« differing by 

B  - § Bm <« 
and corresponding to 

B = Bm, (3/5) Bm, (1/5) Bm, -(1/5) Bm, -(3/5) Bm, - Bm, (2) 

where the last curve is the ascending branch of the hysteresis loop and forms a limiting 
case of the second rank curves. These curves start at va'.ues of H denoted by HR (cor- 
responding to reversal of sign of dH/dt) and all proceed to the point (H   , B   ). 

The question is that of interpolation between the above curves. 

One method is that of linear*'slanting" interpolation.   This consists in replacing the 
descending hysteresis curve by straight lines between adjacent starting points of the 
second rank curves, as shown schematically on Figure 4-14 at P0Pi.   This line segment 
P«Pj is continued past P, until it meets the vertical line H = Hm at a point Q..   Then 
many line segments are Urawn between the second rank curves through P., Pg, all 
proceeding from Q..   The interpolated curves are obtained by dividing these segments 
in a constant ratio.   On Figure 4-14 the mid-points on five such line segements have 
been indicated.   A curve passing through these points is the interpolated curve corres- 
ponding to an initial poinl Pj g corresponding to HR midway between HR of Pj and Pg. 
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Figure 4-14. 

It also corresponds to a B-value midway between those of P. and P«.   Thus the starting 
point does not lie on the descending branch proper, the discrepancy being large where 
the curvature of the hysteresis curve is appreciable. 

Each segment PQPp pi P2' *' * cuts tne verticai through PQ in a separate point Q0(=PQ)» 
Qi, Qo> • • •   The discrepancy in the top-most interval is most severe. 

An improvement in the above procedure   consists in replotting the original second rank 
curves so that they start at points on a vertical axis   and stretching each one horizontally 
in a proper ratio so that they end in the same point.   The resulting diagram is shown 
schematically in Figure 4-15, where the B axis has the same scale as in Figure 4-14, 
and the variable x is given by 

H - H, 
x  = H m H R 

(3) 

and runs from 0 to 1 for each second rank curve.   The ratio of scales is given by the 
factor 

f = H m H R (4) 

and this is plotted on Figure 4-16. 

The second rank curves on Figure 4-14 are obtained by multiplying each curve of Figure 
4-15 by the factor f of Figure 4-16 lying at the same B as the starting point of Figure 4-16 
and transposing it to Figure 4-14 parallel to the H axis. 

Figure 4-16 has the same shape as the upper descending branch of the hysteresis curve 
of Figure 4-14 except for beinb reflected in a vertical axis.   If f were plotted to the left, 
the curve of Figure 4-16 would be congruent to that of Figure 4-14. 
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0E.1.B-BJ 

Figure 4-15. Figure 4-16. 

On Figure 4-15 the interpolation is curved out along vertical segments, as indicated 
schematically between the curves through Pj and Pg.   Again, the midway value is shown, 
as well as the curve (broken) passing through these midway values.   After this curve is 
obtained, it is stretched horizontally by the value of f corresponding to the initial B. 

The advantage of the above method over that of Figure 4-14 is that one may fit f(B) in 
Figure 4-16 as a function of B by means of French curves or by means of an analytic 
expression, say, passing through as many points as desired, since this curve, as indi- 
cated above, is derivable from the (descending branch of the) hysteresis curve. 

If the curve of Figure 4-16 is replaced by straight line segments through the values (2) 
of B, then the method of Figure 4-15 (and the modified Figure 4-16) becomes identical 
with that of Figure 4-14.   This procedure is not recommended. 

The curve fitting of Figure 4-16 

f = f(B), Hm - HR = f(B), HR = Hm - f(B), (5) 

should yield H    as a function of B and not the other way around.   This is advisable in 
addition to the fitting of the hysteresis branch in the form 

B = function of H = g(H) (6) 

where g is the function inverse to the H    -f(B).   It is, of course, possible to solve (6) 
by a successive approximation method or trial and error for the H values corresponding 
to prescribed B-values, then identifying H with HR in (5), obtain f = H    - H. 
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The hysteresis curves of rank one, and the curves of rank 2 are available only from 
recording pen tracings of the magnetic instrument, and exhibit "wobbles" and other 
irregularities that have to be corrected graphically.   It is evident that the aid of a good 
draftsman is needed to draw the curves of Figure 4-14.   When this is done on graph 
paper with small squares, many points of Figure 4-14 can be read off and the values of 
B and H tabulated for the descending hysteresis branch and the four second rank curves. 
From the H values one can calculate x values and plot the curves of Figure 4-15. 

It is planned to fit the curves of Figure 4-14 (first and second rank curves) with equations 
of the form 

B = f(H, HR)       or        B = f(H, BR) (7) 

From these, analytic forms can be obtained for the curves of Figure 4-15, giving B as 
functions of x (and the starting point BpV.   Suppose that tht Vm of the equations is 

B= T   Ak(BR)fk(X)   .   0< x< 1, (8) 

where the shapes of fk are given and are the same for all the five values (2) and A- are 
constants depending on the curve.   For instance, if f.(X) are powers of x, the equations 
(8) constitute a polynomial fit. 

Then the interpolation between the curves of Figure 4-15 can be carried out by applying 
it to the coefficients Ak.   Thus, between the curves through P. and P, 

B   \(6B1 + 1-«B2), x 

r i (9) 
= L |^eAk(B1) + (i-e)Ak(B2)J  fk(x),  o<e<i. 

If, for definition's sake, there are 10 values of k in (8) then a table of 50 coefficients 
Ak (Br) is all that is required, since (9) can be used to obtain the equation of any inter- 
mediate curve in terms of the two curves to each side. 

In principle, it is possible to interpolate Ak not linearly as in (9), but by using a Lagrange 
interpolation value between three adjacent curves (or values of BR). 

While we have assumed that only second rank curves and one hysteresis curve are available, 
it is evident that the technique is applicable if a larger number of curves, i. e., of higher 
rank, were available. 

A check should be made between the interpolated or predicted curve and a measured 
curve, specially taken for this purpose.   If the check is not too good, the more complex 
interpolation (using say three adjacent curves, or preferably a total of nine secondaries 
plus one primary, ana interpolation of the form (9)) should be resorted to. 
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4.3.2.6 Interpolation Between Major Hysteresis Curves 

In Section 4.3.2.5 we discussed the interpolation of the second rank BH curves indicated 
in Figure 4-14.   The procedure recommended there is shown in Figures 4-15 and 4-16. 
It is evident that this procedure can be extended to other one-parameter families of 
curves.   As an example, we now consider the interpolation between the main hysteresis 
curves, or the curves of rank 1.   The latter are available for 4 values of B_, m' 

B = 2000, 4000, 6000, 8000 gauss m (1) 

We consider only the descending branches, indicated schematically in Figure 4-17 with 
arrows.   The upper end points of these curves correspond to equally spaced values of B, 
displayed in equation (1). 

The interpolation may be carried out by introducing a change of scale for the horizontal 
coordinate, H: 

x = H/H   , •m' (2) 

and replotting these curves in the x, B plane, where they will all proceed from x=l to 
x=-l.   They are shown schematically in Figure 4-18. 

B 

(H   ,B   ) v  m'   m 

Figure 4-18. 

Figure 4-17. 

The interpolation is carried out in Figure 4-18 by means of vertical segments joining 
adjacent curves.   Thus, corresponding to Bm = 7500, these segments are divided in 
the ratio 3:1 with the shorter segment abutting on the B    = 8000 curve.   Where the two 
curves intersect, the interpolated point will coincide with the point of intersection, while 
to each side of this intersection the direction of the segment proceeding from the 6000 
curve toward the 8000 curve will have opposite directions. 

After a sufficient number of vertical segments and interpolated points have been obtained, 
the complete curve corresponding to B    = 7500 is drawn through them. 

To transfer the interpolated curve to the (BH)-plane of Figure 4-17, it is necessary to 
stretch it horizontally by the scale factor 

s = H m' (3) 
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corresponding to the B    value in question.   Now the H    value can be read off from 
Figure 4-17 by drawing the curve through the vertices of the hysteresis loops, shown as 
a broken line in Figure 4-18, and described by 

Bm ■ Bm< V. (4> 
or preferably by 

m       m    m' 

as the abscissa corresponding to the desired B   . 

It is also possible to effect two changes of scale, one horizontal, as above, the other 
vertical, so that the height of the transformed curve is also fixed.   Then all the vertices 
of the transformed curves pass through two fixed end points.   The interpolation can then 
be carried out either horizontally or vertically.   Aside from saving the extra change of 
scale, Figure 4-18 has the advantage that the segment of the x-axis between x=-l and x=+l 
can be included among the family of curves (it represents the origin on Figure 4-18), 
and used to interpolate for values of B    less than 2000. 

As mentioned in Section 4.3.2.5, it is also possible to use more sophisticated interpola- 
tion by utilizing more than the two adjacent curves in Figure 4-18. 

In equation form, with rather cumbersome notation, using only linear interpolation, let 
the hysteresis curves be given by 

B = B(H,Bm),        B     =B     .,        1=1,2,3,4. (6) '   m ' m       m,i' '    '    ' 

Then the curves of Figure 4-18 are given by 

B: B(Hmx, Bm)=f(x,Bm). . (7) 

The interpolated curve, corresponding to the value 

Bm = (1-9) Bm, + «Bm.  „ 0 <   6 <   1 (8) m '    m,i m,i+l' ' 

is given by 

B = (l-e)f(x,Bmi) + üf(x,Bmi+1). (9) 

The interpolated curve on Figure 4-17 is represented by 

B = (1-6) f(H/Hm, Bm>.) + * f(H/Hm, Bmi+1), (10) 

where H    is obtained from Equation (5) as the value of H    corresponding to (8). 
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In implementing the above on computing machines, suppose that polynomial approxima- 
tions are used to fit the BH curves.   Starting with polynomials of a certain degree for 
the (four) curves f in Equation (7) over the interval 

-1< x< +1 (11) 

and assuming a value of 8 in (8) one carries the interpolation (9) by interpolating the 
respective coefficients of the polynomials.   If the right-hand member of (5) is likewise 
approximated by means of a polynomial in B   , then its value for B    given by (8) is 
computed.   On the other hand, if only its inverse function, represented by Equation (4), 
has been approximated (say by means of a polynomial in H   ), then it is necessary to 
solve for a root of (4) by some trial-and-error or successive approximation method. 

Since H is known as a function of time, the representation (7) for the (BH)-curves is 
natural.   Since this involves B   , because the magnetic data have been taken for specified 
(and equidistant) values of B   , equation (4) must be used first, assuming that H    will 
be prescribed with the satellite motion.   Then 0 is determined from (8) and the procedure 
continued as outlined above. 

While the procedure has been described as an interpolation between the (first rank) 
hysteresis curves proper, the method is obviously applicable to any one-parameter family 
of curves, for instance to the 2nd rank curves described in Section 4.3.2.5, and repre- 
senting the B values after one has proceeded a certain distance along a particular hysteresis 
descending branch, then changing the sign of dH/dt by letting H increase again after it 
has reached a minimum at HR.   If now H increases continuously, until H has attained 
the upper vertex of the previous hysteresis curve, then starts to decrease again, the 
original (descending) branch of the hysteresis curve is followed.   If, however, H increase 
to a value H   « ^ess tnan Hm, then starts decreasing, then one follows a 3rd rank curve. 
The second rank curves involve two parameters, in addition to H: 

B = B(H,Bm,HR), (12) 

and are available for a mesh of B   , HR values.   The third rank curves are of the form 

B = B(H,Bm,HR1,HR2). (13) 

They evidently involve more storage space, and must be based on time-consuming taking 
of data.   After H has attained the maximum at HR 2, it decreases, following (13), to a 
certain minimum HR g, then starts increasing again.   If HR « is greater than HR., then 
a 4th rank curve is followed, for which even less data is available.   On the other hand, 
if HR q is less than H    ., then the last portion of (13) coincides with the (6), and further 
reversals of sign of dH/dt can be followed for a while with the curves (12), (13). 

The higher and higher rank curves, which are presumably required if H oscillates be- 
tween maxima, and minima, both of which are decreasing numerically and approaching 
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zero, can be obtained after a while by the inversion method described in Section 4,3.2.3. 
As the interval between successive HR values decreases, these curves become Rayleigh 
parabolas. 

Opinion seems to be divided on what happens if Hp « proceeds to a value larger than H   . 
In the absence of complete data on this point, the recommendation is to proceed along the 
curve (4) beyond the vertex point of the original hysteresis curve, and then proceed along 
an outer hysteresis curve after H starts decreasing again.   This may be somewhat in 
error, since the hysteresis curves are generally taken only after several reversals of 
dH/dt occurring at * H   .   The "settling down" to the final hysteresis curve occurs 
more quickly if H is changing at a slow rate.   F om this it may be presumed that the 
statement about picking up the new hysteresis curve may be true for slow-swinging 
periods (about a half hour or more). 

4.3.3  Other Curve-Fitting Functions Tried and Abandoned 

Several methods of fitting analytical expressions to the magnetic hysteresis curves were 
attempted, brought to various stages of completion, and abandoned.   The functional forms 
tried were obtained from the literature or were modifications of such functions.   Each 
of the forms is discussed, and, in most cases, its advantages and disadvantages are 
discussed.   In every case, the reason for abandoning the particular form is given.   This 
section serves not only to document the work done, but also to prevent consideration of 
using any one of these forms in the future, without due regard for the reason that it was 
rejected here. 

4.3.3.1  Rayleigh Loops 

Rayleigh loops are parabolas, for which B is a second degree polynomial in H.   These 
are discussed on pages 490-491 of Reference 2.   The formulas are given for loops whose 
end points are symmetrical with respect to the origin, but the loops are easily translated 
to fit other situations. 

The use of a parabola allows the choice of three coefficients.   These are usually forced 
to fit the two end points and the initial slope of the curve.   This initial slope may be 
chosen to be that of the initial magnetization curve, or it may be a function of the flux 
density at which the reversal occurred.   Alternatively, the three coefficients may be 
chosen to fit the two end points and the height,  w, of a symmetrical loop, as illustrated 
in Figure 4-19.   The attempt to fit actual magnetic curves by this method often leads to 
negative initial slopes. 

The Rayleigh loops, based on fitting the end points and the initial slope, may yield good 
approximations for low values of maximum flux density.   They have no inflection point, 
and are therefore inherently incapable of representing a hysteresis curve for which the 
maximum flux density even begins to approach the knee of the saturation curve.   When 
it became apparent that flux densities beyond the inflection point would be encountered, 
the parabolas had to be abandoned because of this inherent limitation. 
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Figure 4-19. 

4.3.3.2 Cubic Equations 

Only cubics wherein B is a third degree polynomial in H can be considered.   The use 
of functions wherein H is a third degree function of B might appear attractive at first 
glance, but in some cases B would be a multiple-valued function of H.   Such a function 
would be an unacceptable representation of the physical curve. 

When B is a third degree function of H, there are four coefficients to be chosen.   These 
may be fitted to the two end points, the initial slope, and the height, w, of the loop formed 
from two symmetrical curves.   This is illustrated in Figure 4-19.   The upper curve is 
obtained by rotating the bottom one 180 degrees about the origin.   The equation for the 
curves is 

B = ±W r£*H (3B m u   H    - 2 w) r   m ' 

H1 

2H m 
(MrH m 2w m " 

where P   is the initial slope of either curve, and the upper sign is used for the upper 
curve, and vice versa. 

The above curve has an inflection point whose location depends upon the curve parameters 
w, jir, H   , and B   .   Fitting the inflection point would generally require a fifth coefficient, 
and therefore a fourth degree polynomial. 

When the cubic fit to actual data was attempted, the derived equation was not monotonic. 
Therefore, this function was abandoned. The cubic function might be good for moderate 
flux densities. 
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4.3.3.3 Hyperbolic Tangent Function 

The hyperbolic tangent functions considered were of the form, 

B = Aj + A2 tanh A3 (H + A4) 

Such functions have this distinct disadvantage of being symmetrical about the inflection 
point H = -A4, B = A,.   Generally, no such symmetry exists in physical curves.   The 
use of multiples of the argument or powers of the hyperbolic tangent function will make 
the curve unsymmetrical, but at the cost of considerable complexity.   The use of two 
different sets of coefficients. A., for the portions of the curve above and below the 
inflection point will also make the curve unsymmetrical.   However, it was felt that piece- 
wise continuous functions are undesirable and to be used only as a last resort.   If they 
are used, simpler functions than the hyperbolic tangent should prove to be satisfactory. 
All of these considerations led to the abandonment of the hyperbolic tangent function. 

4.3.3.4 Inverse Tangent Function 

The inverse tangent function attempted was of the form, 

Bm tan_1K 

This yielded a poor fit to an actual curve, in the vicinity of the inflection point.   The 
fit to actual data required a trial and error process.   Furthermore, the function is 
symmetrical about its inflection point, thus suffering from all of the shortcomings of the 
hyperbolic tangent function.   For these reasons, this function was abandoned. 

4.3.3.5 Froelich's Equation 

Froelich's equation was presented in Reference 3, and is discussed briefly in Reference 
4.   The equation is 

B = aH_ 
b+H 

The coefficients a and b were fitted to one of the Allegheny Ludlum curves.   The two 
end points were used to determine the coefficients.   Then the midway point was tested, 
but the error was more than ten percent.   Therefore, this form was abandoned.   The 
form is inherently limited to either concave downward or concave upward curves.   There- 
fore, at best, the use of this form would result in a piecewise continuous function. 
Furthermore, care wouid have to be exercised that the denominator did not become 
infinite within the H range used. 

4. 3.3.6  First Modification of Froelich's Equation 

The expression considered is 
a(H*TJc) 

B  =       H + b "    ' 
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where Hc is the coercive force.   The plus sign is used for the upper curve, and the 
minus sign for the lower curve. 

If a and b are chosen to make the upper curve pass through the points corresponding to 
the residual flux density, (0, Br), the coercive force, (-Hc, 0), and the positive maximum, 
(Hm» Bm^ then 

a      Br 
5 = Hc~ ' 

and B. 

(^) B „ J'm   x   ""im 
m Hc     A    H   \      Br       H      /.     Hc \ 

m\        m/        m        m    ^        m/ 

Unfortunately, when H = -H    is substituted into this expression, the result is B as +B   , 
for H   considerably less than H   .   Evidently, this form is also limited as to the range 
of H, and would necessitate the use of piecewise continuous functions.   Therefore, it 
was abandoned. 

4.3.3.7 Second Modification of Froelich's Equation 

The near successes obtained with forms similar to Froelich's equation led to further 
attempts with similar expressions.   The following expression uses a quadratic denom- 
inator to better fit the curve shape: 

C, 
B = C4 +  2        . 

*     1 + Cx H + C2 IT 

This expression was fitted to most of the Allegheny Ludlum curves by means of an 
IBM 7094 digital computer program.   The program solved for the coefficients from four 
input BH points, recalculated these points to determine that the errors in fitting were 
only small errors due to roundoff, calculated B for three interpolated and two extrapolated 
values of H, and printed out the real zeroes of the denominator or indicated that these 
were complex numbers.   When the zeroes are real, there is an infinite discontinuity 
in the BH curve.   When the zeroes are complex, there is a finite peak in the curve.   If 
either the peak or the discontinuity occurs within the range of H for the curve being 
fitted, the expression is useless.   Unfortunately, this was the case for a considerable 
number of the Allegheny Ludlum curves.   Therefore, this functional form had to be 
abandoned, in spite of the considerable effort that had been expended on it. 
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APPENDIX I. 
EDDY-CURRENT LOSSES IN RODS 

It will be shown that the torque due to eddy currents in the magnetic rods is negligible in 
comparison with that due to hysteresis.   Since the effect is to be shown negligible, a 
simplified worst-case analysis is sufficient. 

Assume that one rod is rotating at angular velocity « in a uniform magnetic field, H   , 
in such a way that the rod lines up witn the field at two instants during one revolution. 
The flux density when so aligned is B   .   Assuming a linear relation between H and B 
as a gross approximation, the flux density in the rod is 

B = Bm sin uit. (1-1) 

Its time derivative is 

B = a Bm cos cot. (1-2) 

The changing flux in the rod induces eddy currents.   These, in turn, cause a torque 
which opposes the motion which caused the change in the first place, in accordance 
with Lenz's Law.   It is easily shown that the torque is 

T = ffR8p^2   . <J-3> 

where R is the radius, L is the length, and p is the electrical resistivity of the rod. 
From Equations (1-1) and (1-2), the peak torque is 

4 2 
Tp  -  ^- . (1-4) | 

For the rods used, R is 0.14 cm., L is 152. 5 cm., and p is 50,000 abohm-cm.   It 
will be assumed that oc is twice the orbital angular velocity, or 0.0C203 radians per 
second.   The peak flux density, B   , is 9, 200 gauss.   The peak torque is then 0.080 
dyne-centimeters per rod. 

The peak value of the hysteresis torque is calculated for comparison.   The magnetic 
moment of one rod is 

M  -   4^T V Bc  =  °,743R L Bc • S-5* 

where V is the volume of the rod, and B is the flux density at the center. The factor 
0.73 accounts for the effect of the gradual reduction of flux from the center to each end 
of the rod. For the rods used, which have a peak flux density of 9,200 gauss, the peak 
value of the magnetic moment of one rod is 5,020 dyne-centimeters per oersted. This 
occurs for an applied field of 0.592 oersted. The peak torque is therefore 2,980 dyne- 
centimeters. This is more than four orders of magnitude greater than the peak value 
of the eddy-current torque.   Therefore, the latter is negligible. 
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APPENDIX H. 
PROGRAM FOR FITTING SEVENTH-DEGREE POLYNOMIAL 

An IBM 7094 digital computer program was used to derive a least-squares, seventh- 
degree polynomial for each of the reference BH curves.   The program will (1) accept 
raw data, that is, values of flux density and internal field of a ring sample; (2) convert 
to the external field applied to a rod; (3) shift the data to an arbitrary origin; (4) solve 
the least-squares equations; (5) substitute each abscissa back into the derived polynomial 
and evaluate it; (6) compute the error in the fit at each such point; and (7) printout all 
of these results.   The polynomial is forced to go through the point (0,0) by omitting the 
constant term from the general expression. 

The input data are values of H and B.   Assume that N pairs are given: 

Hl Bl> 

Hi BJ' 
HN BN. (II-l) 

Two factors are also used.   The first is the ascending-descending index, D», which is 
+1 for an ascending curve and -1 for a descending curve.   The polynomial fit is for an 
ascending curve starting at (0,0).   If the curve is descending, the algebraic signs of all 
of the data values are reversed. 

The second factor is the demagnetization factor, D...   This is used to determine the 
external field of a rod corresponding to the internal field of a ring sample.   It is assumed 
that the latter is input, and the former is then computed.   In case the input is the ex- 
ternal field, the factor D», is simply set equal to zero. 

The external field value is computed for each data point, 

HE1 = Hx + DM Bp 

"ii:--j-t_I?M_-Bi:. 
HEN = HN + DM BN . (II-2) 

The increments for translating the first point to (0,0) are computed. For the field, 

DH = - DA HE1. (II-3) 

For the flux density, 

DB = " DA Br (II-4) 

These increments are applied to all of the input data.   For the field, 
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HS2 ~ DH + DA HE2» 

HSj = DH + DA HEj' 

HgN = DH + DA HEN. 

For the flux density, 

BS2 = DB + DA B2' 

BSj = DB + DA Bj> 

BSN=DB + DABN' 

(n-5) 

(H-6) 

The (Hgg, Bgg) ^SN   BSN^ constitute N-l pairs of data to be used to fit the 
polynomial, 

Bg = AjHg    A2HS   + + A7Hg , (II-7) 

by the method of least squares.   The equations for the coefficients are 

Al E HSi2 + A2 E HSi+A3 E HS? + A4 F Hsf-A5 E Hsf + A6 E HsJ+A7 E HSi = E BSiHsJ' 
1 

lSi ^"2 f "Si +"3 .   "Si ,,         
J       J 1        J J        J J J        ' J        ' J       '    J 

Ai f Hsj+A2 f HsrA3 f HsrA4 f HsrA5 E HsrAe f Hsf+A? f <=f B
SJ

Hs2> | 
! 

Al E HSj +A2 f HSj+A3 f Hsf+ A4 E Hsr A5 f Hsr A6 E Hsf +A7 = HSj°= f BSj «sf'    j 
1 

Al J
£
HSJ

5
 + A2 E Hsf + A3 £HS]

7 + A4 E Hg« + A5 EH^ E HS]
10 + A7 E HgJ1 = E BgjHgf, 

Al EHsr A2 EHSj7 + A3 lHsr A4 EHSj9 + A5 EHSj10 + A6 EHSjU+A7 EHS,12 = LBSjHS]
5' 

J J J J J J J J 

Al SHsI+A2 EHSi+A3 SHsr A4 EHs}° + A5 EHS?^A6 SHs|2 + A7 E Hs!3 = E BSi Hsf>   1 

Al £HS]8 + A2 EHSr A3 EHSj10 + A4 EHSj11 + A5 EK
S]

12 + A6 EHsj3 +A7 ^ «S^ = E BSj HsJ> 

(n-8) 
where j runs from 2 to N. 

These are solved for the coefficients, A-, by a subroutine used for simultaneous, linear 

equations. 
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Each abscissa, Hg., is substituted in turn into Equation (II-7) and the corresponding value 
of flux density, Bc*, is computed, 

BC2 " Al HS2 + A2 HS2   +  + A? Hg2 , 

BCj = Al HSj + A2 HSj   +  + A7 Hgj , 

2 7 
BCN = A1HSN +A2HSN   + + A7HSN' <n"9) 

The error in the polynomial at each point is computed.   It is the difference between the 
flux density computed from the polynomial and the corresponding input value, 

BE2 = BC2 " BS2' 

BEj = BCj " BSj' 

BEN = BCN-BSN- ^-10) 

The computed values of the flux density are retranslated, by subtracting D„, 

BR1 = " DB' 

BR2 = BC2 " DB' 

BRj = BCj " DB> 

BRN=BCN-DB- <D-U> 

The argument of the fitted polynomial remains the translated value of the field, which is 

zero at the beginning point of the curve.   This is the same way that the polynomial is 

used in the main program. 

It should be emphasized that the fitted polynomial pertains to an ascending curve. 
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APPENDIX ID. 
ELEVEN-POINT FIT OF THE RATIONAL FRACTION 

This appendix lists the equations, input, and output of an IBM 7094 program used for 
deriving the coefficients, A-, of the function 

Ai B = E    k-—5—  . (m-i) 
i     (H-Hjr + C£ 

This function may be used as an analytical approximation for a BH curve, as discussed 
in Section 4.3.2.1. 

The range of H is divided by 20, to obtain 21 points.   The corresponding 21 values of B, 
from the curve to be fitted, are also tabulated.   The eleven alternate pairs of values, 
beginning with the first pair, are used for fitting.   The intermediate ten pairs of values 
are used for checking the goodness of the fit. 

A rearrangement of Equation (I1I-1) is convenient.   First, the increment between con- 
secutive values of H (1/20 of the range) is designated AH.   Also, C is expressed as a 
multiplier, HR, times AH.   Then 

B(AH)2  =  £   -*-* *- , (m-2) 
i    nz + HK* 

where n is zero or a positive integer.   The method of summing is explained later. 

The program may be used for fitting either ascending or descending magnetic hysteresis 
curves.   An index, D», is set equal to +1 if the curve is ascending and -1 if it is descending. 

The input to the program consists of the D. index, the multiplier, HR, and the 21 pairs 
of values: 

Ho' Bo' 

H20' B20" (HI-3) 

The first computations are all of the denominator factors which will be required.   These 
are for 

n = 0, 1, 2, 20. (m-4) 
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The factors are 

Ro - 2    » 
HK 

Rl  = 
1 

1   +HK 

R2  * 
1 

R20 = 
1 

on2 .   u   2 (in-5) 

The coordinates of the eleven points to be fitted are substituted into Equation (III-2). 
For any general point, one of the terms will correspond to n = 0, the two adjacent terms 
will correspond to n = 1, etc.   The scheme is apparent from an examination of the sub- 
scripts in the determinant of the system of equations.   Since alternate points are used, 
only R factors with even subscripts appear.   The eleven simultaneous linear equations 
for the A. are, in matrix form: 

R2 

R, 

R 

R* 

8 R10 R12 R14 R16 R18 R20 

R10 R12 R14 R16 R18 

R4 R2 Ro R2 R^ 

R6 R4 R2 R0 R2 

Rg    Rg    R4    R2    Rc 

R, 6    "8 

R, 

R10 R12 R14 R16 
R8    R10 R12 R14 

l6    R8 R10 R12 

R10 R8 R6 R4 

R12 R10 Rg R6 
R14 R12 R10 R8 

Ro v6    "8 R 10 

RJI    Ro   R_   Ro   R>i    Rc    Rc 

R, o Ro   R„    Rc 

R16 R14 Rl2 R10 R8 Re     R>i     R«i o 

R18 R16 R14 R12 R10 R8 Re    R, 

R2    R4 

R_    R, 

R20 R18 R16 R14 R12 R10 R8 R, 

Ao 
Al 
A2 
A3 

A4 
A5 

A6 
A7 

Ag 

A9 
A10 

= DA(AH)' 

Bc 
B, 

B^ 

Be 
B 

B 

B 

B 

B 

B 

10 

12 

14 

16 

18 

20 

(m-6) 

After solving for the eleven A., the computed and the intermediate points are tested, 
using Equation (111-2) solved for B. The values of B so computed are designated Bp. 
The twenty-one Bp's are computed from the following equations: 
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DA 
BC0  =  ^2~ (RoAo + ¥l + R4A2 + R6A3 + V-4 + R10A5 + R12A6 

+ R14A7 + R16A8 + R18A9 + R20
Aio^ 

DA 
BC1   = 77^2" (RlAo + R1A1 + R3A2 + R5A3 + ¥4 + ¥5 + R11A6 

+ Rl3A7 + R15A8 + R17A9 + Rl9Al0), 

BC2  - ^T (¥0 + Vl + ¥2 * R4A3 + ¥4 + ¥5 j 

+ R10A6 + R12A7 + R14A8 + R16A9 + Rl8A1{)), 

DA 
BC3  =  ^2" (R3Ao + R1A1 + R1A2 + R3A3 + R5A4 + R7A5 

+ RgAg + RnA7 + R13A8 + R15A9 + Rl7A1Q), 

DA 
BC4  =  ,T72  (R4Ao + R2A1 + RoA2 + R2A3 + R4A4 + R6A5 (on) 

+ R8A6 + R1QA7 + R12A8 + RHA9 + R16A1Q), 

BC5   =  (-~^ (R5Ao + R3A1 + R1A2 + R1A3 + R3A4 + R5A5 

+ R7A6 + RgA, + RnA8 + R13A9 + R15Al0), 

D. 
BC6  = Tztj (R6Ao + R4A1 + ¥2 + RoA3 + ¥4 + R4A5 (AH) 

+ R6A6 + R8A7 + R10A8 + R12A9 + Rl4AlQ), 

D. 
BC7       ^2" <R7Ao + R5A1 + R3A2 + R1A3 + R1A4 + R3A5 

+ R5Ag + R7A7 + R9A8 + RnA9 + Rl3A1Q), 

DA 
BC8  * 7^2" (R8Ao + R6A1 + R4A2 + R2A3 + RoA4 + R2A5 

+ R4Ag + RgA7 + R8A8 + R1QA9 + Rl2Al0), 

DA 
BC9  =  ,7^2  (R9Ao + R7A1 + R5A2 + R3A3 + R1A4 + R1A5 (AH) 

+ R3Ag + R5A7 + «7A8 + R9A9 + RnAlQ), 
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BC10= 7~2 ^1(^0 + "sS + R6A2 + R4A3 + V4 + RoA5 (AH) 

+ RjAg ♦ R4A7 + RgAg + RgAg + R10Al0), 

BC11" 7±T (RllAo + Vl + ¥2 + R5A3 + R3A4 + R1A5 (AH) 

+ RjAg + R3A7 + R5A8 + RyAg + RgA^), 

BC12=  77ZJ {R\^o + R10A1 + ¥2 + R6A3 + R4A4 + ¥5 (AH) 

+ R0A6 + R2A7 + R4A8 + RgAg + RgA^), 

BC13=  ;nh <Rl3Ao + R11A1 + ¥2 + ¥3 + R5A4 + R3A5 (AH) 

+ RjAg + RjA« + RoAg + RgAg + R«A.Q), 

D, 
BCl4 = JTZJ (Rl4Ao + R12A1 + R10A2 + ¥3 + R6A4 + R4A5 (AH) 

+ RgAg + R0A7 + RgAg + R4Ag + RgAlQ), 

BC15= 7^2- (Rl5Ao + R13A1 + R11A2 + R9A3 + ¥4 + R5A5 (AH) 

D, 

+ R3Ag + RjA7 + RjAg + RgAg + R5A10), 

BC16= .T7T2 (Rl6Ao + R14A1 + R12A2 + ^3 + ¥4 + R6A5 (AH 

+ R4Ag + R2A7 + R0Ag + RgAg + R4Al0), 

D, 
B C17 (AH) 2 

(R17Ao + R15A1 + R13A2 + R11A3 + R9A4 + R7A5 

+ R5A6 + R3A7 + RjAg + RjAg + RgA^), 

£_/ BC18=  /AtIv2  ^l^o + R16A1 + R14A2 + R12A3 + R\(^A + ¥5 (AH) 

+ RgAg + R4A7 + R2A8 + R0A9 + RgA^), 

BC19= 77^2" <Rl9Ao + R17A1 + R15A2 + R13A3 + RUA4 + ¥5 (AH) 

+  R7Ag 4   R5A7  +  RgAg +  RjAg  + RJAJQ), 
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DA 
BC20 = ^F ^2(^0 + R18*l + R16A2 + R14A3 + R12A4 + R10A5 

+ RgA6 + RgA7 ♦ R4A8 ♦ RjAg + RoAl0). (m-7) 

The error in each computed value is the difference between that value and the actual 
(input) value of B.   These errors are computed from 

BE0 = BC0 "  ' 

EE1 = BC1 ' Bl» 

BE2 = BC2 " B2' 

BE20 = BC20 ' B20* (m"8) 

The output includes the eleven coefficients, A , A., A«, A.«, and the tabulated 
input pairs of values, computed flux density, and error in flux density: 

Ho Bo BCo BEo 

Hl Bl BC1 BE1 

H2 B2 BC2 BE2 

H20   B20    BC20    BE20* 

III-5/III-6 
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