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ABSTRACT: Calculations have been made of the flow f.eld in the isentropic
region behind a detoration wave in TNT, using the landau-Stanyukovich
equation of state for the detonatior products (as described by Zeldovich
and Kompaneets). Adjustable constants in this equat.on have been evalu-
ated by imposing ideal gas behavior on the detonation products in the
large expansion (low density) limit, and by fitting to an experimentel
curve of detonation velocity versus loading density. Calculated values

of Chapman-Jouguet variables correspond fairly well with experimental
values at various load.ng densities, with the exceptior. of the tempera-
tures, which seem to be far too low. This is connected wi‘h the fact that
the theory predicts an upper limit to the loading density at which an
expiosive will detonate; at this point the thermal energy vanishes and
only the elastic energy contributes to the energy of detonation.
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THE FLOW FIELD BEHIND A SPHERICAL DETONATION IN TNT USING THE LANDAU-
STANYUKOVICH EQUATION OF STATE FOR DETONATICN PRODUCTS

Calculations of the airshock motion produced by a spherical TNT explo-
sion, with the reaction products considered to be gaseous, have given
satisfactory agreement with experimental results However, the
experimental motion of the explosive interface and the second shock
have not agreed with the theoretical calculations. An attempt to
clarify these discrepancies has led to consideration of the Landau-
Stanyukovich solid state model for the reaction products of a condensed
explosive. The landau-Stanyukovich equation of state has been utilized
to calculate the flow field in the reaction products behind the
Chapman-Jouguet zone - the so-called Taylor Wave distribution - and

the results are presented in this report Preliminary determinations
of this distribution have already been used as initial conditions for
the calculation of the subsequent explosion motion, and have been
reported elsewhere.

Support for this investigaticn has been provided by the Defense Atomic
Support Agency under Nucleer Weapons Effects Research Subtask 01.002
(NOL-428).

This report has been approved for open publication by the Department
of Defense, Office of Assistant Secretary of Defense (Public Affairs).
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INTRODUCTION

The theory of the detoratior process for a Y-lavx gas, whose
detcr atior product is also & y-law gas, has been quite completely
worked out and is available i' mary places.}?® In particular, the
conrditions at the Chapmar-Jouguet state car be derived, a~d it can
be shown that the detoration velocity 13 a function only of the heat
of detonation and the Y for the detonation products, for sufficiently
large detonation pressires. In addition, differential =quatlions have
been derived for the flow behind the detonation wave, ard have been
golved for certain explosives and geometries.¥'31*

The theory of the detonaticn of a s0lid explosive, on the other
hard, is in & much less satisfactory state. Experiments®?® have shown
that the detonation velocity of a solid explosive depends on the initial
density, unlike the detonation velocity of gaseous detonations. Further-
more, the explosion products of condensed explosives are obtained at
presswres of the order of megabars, and at densities approaching 2 grams/
er®, under which condi“lons their behavior becomes extremels complex.
Consequently, various attempts have been made to find an equation of
state for the explosion products by treating the highly compressed
gas as a solid.

The first such attempt is due to H. Jones,” who developed an
equation of the Grineisen type, based on the Einstein model of a
solid, of the form p = Ae"8Y-B+fRT, where a, A, B and f are constants.
The equation of atate which we consider in this paper, however, was
derived by Landau and Stanyukovich,®s®* who also approached the problem
by drawing an analogy between the stvate of the édetonation products
of a condensed explosive and the crystal lattice of the sclid state.
It is well known that the energy of a solid body has a two-fold origin:
it is made up of an elastic energy arising from the binding forces
between the atoms and molecules and a thermal energy connected with
oscillaticns of the atoms or molecules about their positions of stable
equilibrium. Landau and Stanyukovich have attempted to describe the
behavior of the detonation product by considering it as a solid with
the property that the elastic energy and the elastic part of the pres-
sure are predominant. The theory has been described and expanded by
Zeldovitch and Kompaneets? 80 that vwe refer to it as the ILSZK theory.
The purpose of this nape. is to make some computations using the LSZK
equations of state, and, in particular, to calculate the flow field
behind the detonation shock in a condensed explosive.
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THE LSZK EQUATION OF STATE

For the sake of completeness, we present here a description of
the LSZK equation of state, and a derivatiou of some of its properties.

The LSZK equation of atate may be writter®

% - 3
pub M EF W
vY v
£ =l +cT, (2)

(Y-l)VY-l v

vhere P = pressure

= energy density (per unit mass)

= gpecific volume

= temperature

and B, Cy;, Oy md v are constants. vy 18 a dimensionless constant

serving a8 a polytropic index connected with the intermolecular

forces; Cy 18 the specific heat at constant volume; Cvy 18 & specific

lieat associated with the appropriate lattice vibrations; and B is

a constant having the units 1-Y calories . The elastic
“E"cm ) e

Haqm

gram
part of the pressure ims B , ard B is the elastic part of
;7 <V-15V-
the enrergy.

Eliminating T between (1) and (2), we obtain the expression

=
+

R I 3)

oo
where = — j . (%)

a 18 & convenient variable which will be vsed in this report. 1In
terms of a, (1) and (2) may be written:

B
P = +
v oav (5)
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B +CT (6)

E® ——mmaoo
(Y-2)vv Y

Another convenient parameter which we will find useful is the
quantity y, defined as the ratio of the thermal part of the pressure
to the elastic part:

(CVT/oN) c,T

., = _— Y=1 (7)
TV

Clearly, (5) and (6) may now be written in ihe form:

Peii(1+y) (8)
v
1 /
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iSENTROPIC PROCESSES

It is possible t- obtein an expression for the pressure of the
form P = P (p), valid for isertropic processes of an LSZK substance,
by combining equation (3) with

cm-%.-dp, (10)

which is8 the differential equation of ar isentropic process Dif~
ferentiating (3), we obtain

- 1 v-1 1 ;
ap =1 (oaE +5a0) + B T {1 - gy fae (W)

Using {10) to eliminate dE from (11), we obtein

1l /P -1 {- 1
3 + + Y -
dp 5 (de Edp) BYp 1 m J‘ dp (12)

Solving (3) for E and substituting into (12), we obtain the differential
eguation

P Lty P, gl 1
- 5 5B (v -1-3) (13)
which has the solution:
1+
P(p) = Kp 7 + Bp' (1k)

vhere K is a constant of integration. We are now in a position to
obtain expressions for E, the sound speed ¢ , the temperature T,
etc. a8 functions of density alone, valid for isentropic processes
of an LSZK substance. Thus, putting (14) into (3), and solving
for E, we obtain:

1 _
(e) = ake § 4ot o' (25)




Similarly,

ard
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(16)

(17)
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CHAPMAN-JOUGUET CONDITIORS

We now obtain the initial conditions at an LSZK detonation, in
terms of the variable y. We consider that the detonation wave consists
of a shock traveling at speed D, follovwed immediately by a region of
isentropic expansion. The region of chemical reaction behind the
shock i8 considered to be infinitely thin. Values of the hydro-
dynamic peremeters in the undetonated explosive ahead of the shock
are given a subscript o so that v, is the specific volume of the

original explosive. We tirst obtain ; as a function of y. From
(]

the Rankine-Hugoniot (R-H) relations at the shock, we lave

Yo . D .
v D-u ’ (18)
where u = particle wvelocity
D = detcnation velocity.
Using the detonation property D = u +¢ (19)
equation (18) becomes
!ﬂ. = —E +
v ¢ 1 (20)
Another R-H relation ylelds
P = Du/v, (21)
which may be written in the form
u u _ Py,
=+ - = .
(F+1) =3 (22)

Using P=BpY (1 + y) and the equation (20), (22) may be put into the
form

y-1
B it
-:,-'9—- 1 = P% Y) ' (23)
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c® may be obtained as a function of p and y by eliminating K between

(14) end (17), and ther using P = BpY (1 +y) to eliminate P; the
result is

@ =Bt (y + 22 ’jy (2u)

Inserting (24) into (23) we obtain ‘1"9- as a function of y:

Yo my e 12W) (25)
v y + il a}y

The next step is to obtain v, itseif as a function of y; this will
enable us to solve for the parameter y as a function of the known
quantity vg-

We write the R-H equation for the energy in the form
1 1 v
E'Q*gP(Vo‘V)'Q*gPV(;;O“'l), (26)

where Q is the chemical energy released by each gram of explosive;
and using (25), this becomes:

1l 1+
E=Q+xPv ( A ) (27)
AR ara?
Q
Eliminating P by using P = BpY (1 + y) we obtain
E B (1 +y)? 1
S e o+ = : 28
Q Q evY'l ( 1 + a} ( )
Another expression for E/Q may be obtained from equation (9):
E.B .._?.__:y + 3 } ) (29)
Q g vyl x(y-1)
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Bquating (28) and (29), and solvi-g for v, we ootair

- + )% \
vY 1. g (0’}’ + y]:l s (l [.{)4’ - ~ (30)
\2(Y + - J’_y’)/

Eliminating v between (30) and (25), we obtain t' e expression:

vwhere

Since v, , the specilic voclume of the solid explosive, i3 8 krown

quantity, we may solve (31) for y, by an 1terative process. Since

v 18 & known furction of y, by virtue of (30), we can tind P by

using the expression R _ E may be found from (28) or
P = N (1 +y);

(29); and ¢® may be found from equation {(24).

The particle velocity at the front, u, may be found from (20),
and is given by

u= C_&LDT . (33)
Yy * { 2.y

Y )

-

Finelly, the detonation velocity can be found from

— (3)
l+0’}y}

D®su+tc=c 1t
. y + {

04

Thus, the detonation velocity 1is seen to be a function of v,, the
initial specific volume, corresponding to the well-known experimental
result for solid explosives.

8
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EVAIUATIOR OF PARAMETERS

The three undetermined parameters, Y, o, and B/Q, which appear in
the ISZK equation of atate, must be evalusted by using experimental data.
It can be seern from equation (14), which descrives the isentropic P-p
relstion for an LSZK substance, that if 2 *a v (p) 8PPromches

1 + = ’
Kp @ as p approaches zerc. We assume that in the limit of low pres-

sures the detonation products behave as ideal gases, with a constant
value of the specific heat ratio, deno.ed here by *. (A reasonable value
for * seems to be 1.34. obtainable by averaging the gammas for the various
gaseous constituents accrrding to the composition of the products at low
pressure.) Jt is thus clear that in order tc obtain the correct behavior
of the detonaticr products at lov pressures, we must set 5 = _1

X-1

The remaining constants may be evaluated by referring tc the experi-
mental results for the dependence of the detonation velocity on the
density. After a particular valvs is assigned for ¥ (Y>x:, a series of
values for B/Q may be obtained ty carrying out a point by point comparison
of .he theoretical plot of 1n D ve. (lnp + Vlj,- in g) (obtainable from
equations {31) end (34)) with the experimental plot of ln D vs. 1ln p,.
Since B/Q must be a constant, the accuracy of the fit is determined oy
the amount of variation in the values of B/Q obtained, and Y may be adjusted
to make this variation a minimum.

This process has been carried out for TNT, using an empirical relation
between detonsation velocity and loeding demnsity determined at the
Explosives Research laboratory, at Bruceton.® This relation may be written
D =0.1785 *+ 0.3225 g, vhere D is in centimeters per microsecond and p,
is in grams per cutic centimeter. Using ®* = 1.3, and with the heat of
detonation chosen!! to be 1018 cal/gm, the results are Y = 2.78, B/Q =
0.53562 and o« = 2.9412.

Equations (31) and (34) way nov be utilized to provide the dependence
of the detonation velocity on the loadling density, by letting the parameter
y run through a rarge of values. Table 1 gives a comperison of this
theoretical curve with the empirical relationship, and it can be seen that
the fi:. is quite good.

It is interesting to note that this formalism predicts an upper
density limit to the detonability, at the loading density p = 1.793 gm/cc
and detonation welocity D = 0.757 cm/usec. This comes about because of
the fact that at this point the value of the parameter y is zero (y
decreases with increasing loeding density),and y cannot be negative,
because of its physical meaning &8s a ratio of pressures (see equation (7)).
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In fact, equation (7) implies that at this limiting point, the only
contridbution to the pressure comes from the elastic part, while the thermsl
pressure vanishes. Zeldovich and Kompaneets® have the following to say
about the physical eignificance of this phenomenon: "It is poesible to
have charge cdensities for which the thermal energy is much smaller than
the elastic part. This corrcsponds to y being nearly zero....It is not
quite cleer what happens whern the charge density is large. It can be
assumed that in this case the dissociation reaction does not go to
completion, since the supply of chemical energy is insufficient for over-
coming the work required by the elastic repulsion forces between the
molecules. It appears as though the chemical energy does not suffice

for the mclecular rearrangement which leads to en explosion.” This
prediction is especially interesting inasmuch &8 it is known thet TNT

exhibits increaring resistance to detonation with increasing loading
density, as, in Tact, do most solid explosives.

Nov that values for the constanta in the ISZK equation have Yeen
arrived at, t he conditions &t the Chapman-Jouguet state may be computed
by wsing the expressions developed in the preceding section. This has
been dorie for TNT at several loading censities and the results are
presented in Table 2. (The temperatures were calculated using Cy = 0.3
cal/gm-iegree.) Table 3 presents experimental values for the C-J state,
determined by Dremin, et al;}? the correspondence betweer calculated
values and experiment appears good, except for the temperatures, which
seem tc be far below the generally accepted values for detonation tem-
peratures of several thousand degrees.

The fact that the ratio of elastic pressure to total pressure
inereases as the loading density increases may e verified in the last
column of Table 2. For instance, for p ™= 1.625, this ratio is 0.97k4,
vwhich means that, for the isentrope given in equation (14), 97.4% of the
pressure comes from the elestic pressure term. For y = 1.00 gm/cc, this
ratio is 0.805.

Consegently, in the vicinity of the Chapmen-Jouguet state, the LSZK
isentrope may be approximated by a polytropic relation, with exponent
equal to 2.78. 1In this connection, it is interesting to note the experi-
mentsl results of Deal,® which indicate that the explosion products
izentrope for RDX-TNRT may be fitted quite closely to a polytiropic P-p
relation, with ¥ = 2,77, at least down to 500 bars. It thus seems likely
that the ISZK equation of state for TNT not only ylelds the proper D ve
fy relationship, but also provides the proper isentrope, both in the
vieinity of ths Chapman-Jouguet state and in the larg~ expansion limit
of low pressure and density.

10
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FLOW FIELD BEHIND DETONATION SHOCK

The isentropic flow behind a detonation shock in a spherical
explosive is goverred by the differential equations:®

du_ 21102 6
ETEu-07 - &) (36)
ac? 2 uc? - u
— = f
T - g (37)
where u = particle velocity
r = radial distance of detonation shock from origin
r r
{ =%t = time
» = sound speed
- &P . L1
f (affaa) Eval vhere p = density = = . (38)
Calculating f by means of (14), we obtain:
y -1 .
+ -] - =
g Sl - a) +BY (Y - 1)p o
£ = . (39)
T Yy - 1~ 1
K(laa)+B‘(o 5

To utilize (39) in the system of differential equations (36), (37),
1t 18 necessary to express f as a function of ¢®*. This may be done
(in principle) by solving (17) for p in terms of c®, and substituting
the result into (39). Unfortunately, it is not possible to invert
(17) analytically, in closed form, so that an alternative approach
must be used. The procedure chosen here is to convert equations

(36) and (37) into a set in whicb the dependent variables are u

and p, rather than u and ¢®. In this case, we can use f in the

form (39), a8 a function of p. To effect this change of variable

42 make use of the equation

de? _ de® dp

il Pl (40)

11
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Since ¢? = dP/de in the isertropic flow, we may put dc?®/dp = d°P/d?
and using (17) we get:

l -«
de* - E 1 +to o + . vy - 2
a0 5 () e BY (Y - 1)p (41)
dc? l+y 1 - -2,4
Consequently, - -[g ( = ) o @ +BY (Y -1)Y ] ag , and the
differential equations become:
du 2 uc?
L 42
A Y (42)
de 2 uc? - u £(p)
ac o = 43)
3 T2 - K1 *ay L - 72 (
RO S (TR SV M A
1l

+ = .
where ¢ = K (;—;~g)o Y+ pypY l, and f(p) 1s given by (39). These

equations are to be solved subject to the conditions u = Wy, P - o
at £ = D, where

D = detonaticn velocity
Wy = part.cle velocity at the detonation shock

fp = deneity at the detonation shock.
v, and pp may be fourd from (33) and (25), after y has been found from
equation (31).

These calculations have been carried out for TKT on an IBM-T090
electronic computer, for the loading densities 1.625, 1.59, 1.45, 1.30,
1.14, and 1.00 gm/cc. The results are given in Tables 4-9. The first
column ‘s & dimensicnless disiance, the radius of the original charge
being taken as the unit. Pressures are in megabars, velocities in centi-
meters per microsecond, energy densities in megabar-cc per gram and
densities in grams per cubic centimeter. It will be seen that the para-
meters vary in the well-known way first demonstrated by Taylor,® with the
region of constant state surrounding the orig.n.

12
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CONCLUDING REMARKS

Up until now, very little has been said about the temperature. To
evaluate this quantity, we must know the value of Cy, which is not
determined by the other camstents. (Only the ratio Cv/Cyy 1s determined
by equation (M).) If Cy is taken to be 0.3 cal/gm, ar. approximate average
value for detonation products, the C-J temperature (for p, = 1.625 gm/cc)
turns out to be $82.9°K, which seems to be too low. This is connected
with the phenomenon of the decreasing importance of the thermal pressure
with increasing loading density, which was mentioned above. Though this
phenomenon is consistent with the known resistance to detonation of TNT at
high densities, and with the experimental results of Deal,® 1t is not yet
certain vhether it is a real effect or whether it is & result of the
incompleteness of the LSZK theory® 1In any case, it is believed that
in all applications where the temperature is not needed, and only an
(E, p, v) equation of state is iequired (such as the calculation of the
non-reactive, isentropic expansion of detonation products by means of
hydrodynamic computer codea), the LSZK equation of state (in particular,
equation (3)) may be used with confidence.

It is probably not possible to decide on the correctness of the
ISZK equation of state by experimental observations of the detonation
process alone. A possible approach is to use the results for the distri-
bution behind the detonation as initial conditions for a hydrodynamic
code computation of the detonation of a sphere of TNT in air, using the
LSZK equation of state for the expanding detonation products. The motion
of the second shock through the product gases i8 expected to be a
sensitive function of the equation of state used, and one can attempt
t0 compare the calculated results with the evidence obtained from
photographic records. The behavior of the air shock, though a much less
sensitive function of the equation of state for explosion producte,
might also provide a useful check.

Preliminary hydrodynamic calculations have already been carried out

on an IBM-TO90 and are reported elsewhere;}° more refined computations

are in progress at the present time.

* Jacobs!3 has pointed ou' that & reinterpretat.on of the partition
betweer elastic and thermal energy leads to a theory wh.ch does rot
involve a limitirg density, or vanishing thermal pressure. This
theory retains the LSZK form for the equation of state, but does
not make use c® Zeldovich's® argume: ts for the physical mearing of
the corstants Cvy » Cyg» 8nd Cy.

13
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Table 1

Comparison of Detonation Velocities Calculated for
IS7ZK Substance with Detonation Velocities Determined at RBruceton

Q,(E%) D(ﬁc ; L8ZK D(u::c); (Bruceton)
1.7935 0.7572 0.7569
1.6620 0.7146 0.7145
1.5535 0.6795 0.6795
1.4412 0.6433 0.6433
1.3655 0.6189 0.6189
1.2995 0.59T1 0.5976
1.2412 0.5791 0.5788
1.1773 0.5588 0.5582
1.1320 0.5u4h4 0.5436
1.1009 0.5345 0.5335
1.0034 0.5039 0.5021
0.9590 0.4900 0.4878
0.9256 0.4797 0.4770
0.9010 0.4720 0.4691
0.8565 0.4584 0.4547
0.8082 0.4437 0.4391
0.T703 0.4322 0.4269
0.7331 0.4211 0.4149

e~ P G e e ™"
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Table 2

Detonation Parameters Celcvlated with
ISZK Equation of State, for TNT, Q = 1018 cal/gm

o (88/cc) [P(vars ) [B(PEEERTC0) [ (B2, [u (S0 In(S2-) In(y S87%e) | pecastec
1.625 214.3 0.06022 2.217| 0.188 | 0.703 582.9 0.974
1.59 203.5 0.05973 2.171{ 0.185 | 0.661 | 698.4 0.968
1.45 163.8 0.0579 1.988( 0.175 | 0.646 | 1141.7 0.941
1.30 127.6 0.05607 |1.792] 0.1 0.598 | 1582.5 0.905
1.14 95.4 0.05431 1.583] 0.153 | 0.547 | 2013.3 0.857
1.00 72.2 0.05293 1.400] 0.4 | 0.503 | 2356.7 0.805
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Table 3

Experimental Values for Detonation Parameters

of TNT (Dremin, et al)

n (2) P(kbars) (o) (=)
1.59 202 g:ﬁ 0.69%4
1.45 162 o 0.650
1.30 123 g:ig‘z 0.600
1.1h S g:i:g 0.557
1.00 & g:igg 0.510




DISTANCE
X/RADILS

0.

4.5T265€E-02
9.14531€E-22
1.37180E~G1
1.82906€E-31
2.28632€--01
2.74359€-01
3.20086E~-C1
3.65812F-01
4.11539E-01
4.57265E-01
4.8573CE-01
5.14195E-01
5.4265%E~01
5.71124E-21
5.99589E-91
6.28052E-11
6.56518E-01
6.84982£-0]
T.13447€-01
7.41912€-01
T.70377€-"1
7.98841E-C1
8.273%¢E~11
Re55771€E~01
B.B84235E-"])
9.€0523L-121
9.15477€-31
9.2910%E-21
F.41417€-)1
9.52435€-01
9.62185E-01
9.70701£-01
9.78C22€E-11
9.84192E-01
9.89262E-01
9.93282E-091
9.96309€E-91
9.98398E-01
9.99609E-01
1.C0000E 20

VELOCITY
CrM/USEC

C.
Ce
C.
Ce
C.
C.
Ce
C.

Ce

C.

5.62295£-05
2.864C9E~y3
6.72565t~03
l.11811€-02
1.60719€E-02
2.13167L-02
2.687124¢-02
3.27201€-02
3.88586L-02
4.537264€-92
.20822€-02
5.92466E-02
€.68685E~-02
7.50551€-02
€.39076€-02
9.3806C4L-02
1.03118c£-01
1.12632C£-01
1.18860(-01
1.25147E-01
1.31405€E~-01
1.37662€-01
l.43919E-01
1.50177¢-01
1.56434¢-~01
1.6266G1E-01
1.68949€£~01
1.75206E-01
1.81463€-91
1.87721t-01
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Table 4

CENSITY
Grv/CC

1.29163¢E
1.29103L
1.29163€
1.29163¢€
1.29162¢
1.29162¢
1.29163¢
1.29163CE
1.29163E
1.29163€
1.29163E
1.30326E
1.31989E
1.33975€
l.36220¢
1.38693¢
l.41367¢
1.44242¢
1.47311¢€
1.50582E
l.540067€
1.57788E
1.61777€
1.66085¢
1.70765E
1.75995¢
1.79278¢
1.82544E
1.8579%¢C
1.89013E
1.922vut
1.953,57€
1.9847¢€E
2.91555¢€
2.04590F
2.07574E
2.10517¢€
Ze1340U5E
2.16240E
2.19020E
2.21743E

Ju

Cy
Ju
30

D
1%}

o0
o
ouv

VS
35
U
00
09

QZ
Ou
Ov
Gu
0¢
ou
0l
Qu
O
Cu
0C
(010
Ou
Ov
0U
oc

Qu

stonation Wave for TNT (q, ® 1.625 gm/cc)

PRESSUZ L
MEGABARS

4.91537€~-732
4.91537e-02
4.91537€-92
4.91537¢-C2
4.91537£~C2
4.91537€-92
4.91537¢-02
4.91537€6~-C2
4.91537E-32
4.91537€-02
4.91537£-32
5.03598E-(2
5.21153€-02
5.42632E-02
5.€7594E~C2
5.95975E~02
6.27591E-02
6.627965~72
T.C1775€6-02
1.44899(~02
7.92682E-02
6.45828E-02
9.053C3E-92
9.72468E~-C2
1.04932¢-01
1.13896E~01
1.19769€-01
1.25843¢c-01
1.3265.E-0C1
1.38399E~C])
1.44880E~01
1.514825-01
1.58192€-01
1.650CE-01
1.71892E~01
1.78856E~01
1.85883(-01
1.92952£-01
2.0006CE-~01
2.07191€-01
2.14333€-01

ENERGY DENS
(+EG-CC)/GM

2.€3C€25-C2
2.€37€62F-C2
2.€3362E-C2
2.€637€2F-C2
2.637€2F-02
2.€30€20-C2
2.€32¢€2€E-22
2.€37T62F-(2
2.637¢2€E~C2
2.€37¢€2E-C2
2.62°€2€E~C2
2.€€4G9E-C2
2.714536~(2
2.77425%-(C2
2.84252F-C2
2.518585~(2
3.0C2C8E~C2
3.06299F-(2
3.16152F-C2
3.268147~C2
3.41357F-(2
3.53P90E-¢2
3.€67566F-C2
3.8261CF-C2
3.G69349€-C2
4.183C1F-12
4.30454E-C2
4.427C9FE-C2
4.55C45F-(02
4.€76442F-(2
4.75R77E-C2
4.92332F-(2
5.C4T786E-0Q2
5.1722¢7~C2
5.26615%-C2
5.41953F~-C2
5.54217F-02
5.¢¢392E-12
5.9C411E-02
6.02228F-C2



DISTANCE
X/RADILS

0.

4.56064C-72
9.12129E~-1:2
1.36819€-11
1.82426E-"1
2.28032€-C1
2.7363GE-21
3.19245€E-C1
3.64851E-01
4.10458E-901
4.56064E-"1
4 ,84596E-01
5.13127€-"1
5.70191c-"1
5.98722E-01
6.27254E-C1
6.55785E-0C1
6.84317E-11
7.12848E-71
T.4138CE-01
T.69912E-C1
7.98442E-"1
8.26972E-"1
8.5550€6E£~C1
8.84038E-C1
9.C0348C-"1
9.15325€-01
9. 28974E-01
9.41307€-01
9.52344E-01
9.,62112€6-01
9.70643E-C1
9.77978E-01
9.84161E-01
9.8924CE-01
9.93269E-"1
9.96301€E-"1
9.98395e-01
9.99609E~C1
1.00000E 36
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Table &

Detonation Wave for TNT (ry, = 1.59 gm/cc)

VELCCITY
crv/usSceC

Ce
Ce
C.
Ce

r
.~ e

Ce

C.

Ce.

Ceo

Ce

G.91348t-05
2. T24687£-CG3
6.52P%4£-03
1.29217E-02
1.57492E-02
2.09282E-02
2.64154€-02
3.21914£-02
3.82546E~02
4.46192€-02
5.131510-02
5.83303L-C2
6.59166E-02
7.39669£-02
8627990t-02
Ge25653E-02
S.87363t-02
1.049C7¢-01
l.112.78E-01
l.17249€-01
1.23420€E-01
1.29591E-01
1.35762€-01
1.41533c-Cl
1.48104E-01
1.54275E£-01
1.60446L-91
1.72789£-01
1.78960€£-01
1.85131C-01

CENSITY
GM/ (C

1.26271E
1.26271¢
1.26271¢c
1.26271¢
1.26271E
1.26271E
1.26271E
1.26271E
1.26271E
1.26271E
1.26271E
1.27354¢
1.28981JE
1.30925¢
1.33128E
1.35553¢
1.38182¢E
1.41005L
1.44021E
1.47235E
1.50660E
1.54317€E
1.58238¢
1.62471E
1.67091¢L
1.72213¢E
1.75437C
1.78645E
1.81832E
1.84995¢E
1.881273¢E
1.9123)¢E
1.94294E
1.97319¢E
2.00300¢L
2.03236E
2.06124¢E
2.08961E
2.11746¢E
2.1447T7E
2.17153¢E

C.
0.

o

Uu
e
e
0¢
vy
0o
0o
0J
Ou
(02
Ou

01¢]
oC
0cC
oc
ou
Ou
0C
00
oo
16}
o
0C
ou
04J
0c
e
06
oy
Gu
02
00

ou
])
o0
ou

PRESSURE
ME CABARS

4.6TT53E-C2
4.6T753E-02
4.,67753£-02
4.6T753E-02
4.67T753E-02
4.67753£-02
4.67753E-02
4.6TT53E-C2
4.€6T753E-02
4.677T53€E-02
4.£77532E-02
4.,7859¢E-02
4.95179E~02
5.15509E~02
5.39162E-02
5.66025E~02
5.96061E-02
6.29463E~02
6.66453E-02
7T.07384E-02
T.52742E-02
8.C319¢€E-02
8.59663E-02
9.,23438E-02
9.96419E-02
1.C8155E-01
1.1374€E-0C1
1.19491€E-C1
1.25382€-01
1.31478E-01
1.37559¢€~01
1.43825E-01
1.50195E-01
1.63199£-01
1.69810E-01
1.76479E-01
1.83193E-C1
1.89941E-01
1.96712E-01
2.03493E-01

ENERGY CENS
{MEG-CC)/GM

2.671C8E~(C2
2.€71CBE-C2
2.671CBE-C2
2.671C8E~-C2
2.671C8BE-G2
2.671C8E-C2
2.¢71C8E-C2
2.671CRE-C2
2.£71C8E-C2
2.671C8E-02
2.7C2G4E-C2
2.75111E-02
2.8C933F-02
2.87595E-C2
2.55C1SE~-02
3.C32171E-C2
3.12047E-02
3.21667E-C2
3.32074E-02
3.4334CE-C2
3.55570E-C2
3.68914E-02
3.83587€-C2
3.66G512E-02
4.1836CE-C2
4.,3C226E-G2
4.4216CE-02
4.54171E-02
4.€6241F-C2
4.90471E-C2
5.02593F-C2
5.14694E-C2
5.2€6756€E-C2
5.28762E~C2
5.5C696F-02
5.€254CE-C2
5.74282E-02
5.859C6E~-02
5.67400E-C2



DI STANCE
X/RADILS

0.
4.53543E-02
9. GT087E-02
1.36063E-01
1.81417€-01
2.26772€-01
2.72126€-01
3.17480E-01
3.42835€-01
¢+ 08189E-01
©.53543E-01
¢.8218¢E-01
5.10825E-C1
5.39465E-01
5.58106E<01
5.9674TE-01
6.25387E-01
5.54028E-01
6.82669E-01
7.11309E-01
7.39950E-01
7.68590E-01
7.97231E-01
8.25872E-01
8.56512€-01
8.83153€-01
8.99565E-01
9.14641E-01
9.28386E-01
2,40811E-01
9.51934E-01
9.61780E-01
9.70383E-C1
9.77781E-01
9. 84018E-01
9.89142€-01
9. 93207€-01
9.96267E-01
9.98380E-01
9.99605E-01
1.00000€ 00

Table 6

Detonation Wave for THT (n = 1.45 gw/ce)

VELOCITY
CM/USEC

n

e

0.

C.

c.

O.

0.

0.

O.

0.

C.

lo71016L~04
2.46944E-03
6.05588E£-33
1.02157L-02
1.479C6L-02
1.97000E-22
2.49011L£-02
3.03746L-02
3.61180£-02
4.21442E-02
4.848GC8L-J2
5.51725£-02
6.22864£-22
6.99216L-02
7.82267E-02
B.T74366E-02
9.32657E-02
9.93948E-02
1.04924E-)1
1.15753c-01
1.16582E-01
1.226411E-01
1.28240c-01
134J69E-01
1.39899E-01
1.45728c~-01
1.51557€-01
1.57386k-01
1.63215€-01
1.63044E-01
1.74873E-01

CENSITY
GM/7CC

1l.146061E
lel46olt
le14601E
1.146861C
1014601E
1.14661E
1.14661C
lol4b6lL
1.14661E
l.14661E
lel4661C
1.15%83¢€
1.17077€
1.18871FE
1.2390G6E
1.23149F
1.25561C"
1.28194€
1.309806E
1.339062F
1.37133E
140519
le44149E
1.48009L
1e¢52345F
1.57GH3E
1.63C73F
1.63048C
l.66006FE
1l.66941F
l.71850F
1.74728E
1. TT75T4E
1.80383E
1.83152¢
1.85879¢E
1.885%61¢
1.91197E
1.937b4E

1le9632¢1E D

1.98806E

0l
20
o
Co
9c
Ou

L

oC
0J
Do
00
O
Do
o0
14
0%
oC
35
aC
oL
e,

gl
Gu
¢
ol
ou
Qv
18
Qu

A
A\

A
]
09
Ou
o
ou
Ju

v

PRCSSURE
MCGCABARS

3.80136E-"72
3.80136E-02
3.80136E-02
3.80136F-C2
3.8C136E-22
3.80136E-:22
3.80136E-72
3.,AC136E-2
3.6C0136E-"2
3.80156C~C

3.8013¢C-C2
3.88149€-"2
4..13606-C2
4.17629E-92
*e365TEE-02
4,58094E~-02
4.8219¢L-D2
5.)8989E-(2
5038063%~02
5. T1498C-02
6.,CT823E-N2
€.48353F-(2
609364FE’L2
TeabTT7L=-02
B.U3ZHNE-(2
8.71497¢-0)2
9.16390¢-32
9.62536E~92
1.009%6¢L-.1
1.05831C=¢1
1.1C775(-01
1.15814¢E~01
1.20937¢-1
l.Zblef-?l
1.314350C(~01
1.36721€-01
1.42C89L~-1
1.4T7494C-3)
1452926£-91
1.58377E-01
1.63836C-01

ERFRLY DENS
(MEG-CC)/GM

2.824225-"2
2.826226-122
2.826227-12
2.824220=C7
2.82422F-02
2.826422E-12
2.82422E-0:2
2.82422(-"2
2.82422F-(2
2.R24622E-G2
2.82422¢-C2
2.85)94F-"2
2.89452t~72
2.94732E- 32
3O0TTTR-(2
3.075130-02
3.14905E-C2
3.22947F-122
3.31653F-C2
3.41C¢3E~-02
3.51237F-C2
3.6272¢8F-C2
3.74287TF=(2
3.,RT48B0E~-N2
4.C21497-(C2
4.1R718F~"2
4,29342F=-"12
4 40050807
4.5CR22F=-(2
4.61642F-"2
4.72491F-02
4.RII50F-"2
4.96274F~"72
5.05734F=-C2
5.15p25¢=-C¢
5.20562¢-C2
5.37229F-02
5.47813F~-(2
5.,583({F-(2
5.68679C-32
5.78936C-07



DI STANCE
X7RADIUS

0.

4.53858E-02
9.077T15€E-02
1.36157€-01
1.81543E-01
2.26929E-01
2.72315£-01
3.17700E-01
3.63086E-01
4.08472E-01
4.53858E~-01
4.82401€E-GC1
5.10944E-01
5.39487£-01
5.68030E-01
5.96573E-01
6.25116E-01
6.53659E-01
6.82202E-01
7.10745€E-01
7.39288E-01
T.67831E-01
T7.96374E-01
8.24917E-01
B.53460E-01
8.82003E-01
8.98544E-C1
9.13748E-01
9.27617€E~01
9.40161€E-01
9.51395E-01
9.61344E-01
9. 7004 0£-01
9. 77520E-01
9.83828E-01
9.89012€-01
9.93125€E-01
9.96222E-01
9.98361E-01
9.99600E-01
1. 00000E 00
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Table T

Detonation Wave for TNT (g, = 1.30 gm/cc)

VELOCITY
CM/USEC

Ce

0.

O.

0.

0.

o.

0.

0.

0.

O.

4.92819C-05
2.952551F-03
5.93218€E-03
9.86273£-03
1.41695L-02
1.87854E-02
2.36693E-02
2.88034£-02
3.41857t-02
3.98276E-02
4,57546L-02
5.20076€£-02
5.86481E-02
6.57666t-02
T7.74985E£-02
8.20569c-02
8.75274E-02
9.29978E-02
9.84683t-02
1.03939€-01
1.09409E-01
1.14880£-01
1.20350€-01
1.25821E-01
1.31291t-01
1.36762E-01
1.42232eE-01
1.47702€E~-C1
1.53173E-01
1.58643€-01
1.64114£-01

CENSITY
GM/CC

1.02148¢E
1.02138¢E
1.02138¢C
1.02138¢
1.02138E
1.02138¢
1.02138¢
1.02138¢E
1.02138E
1.02138¢
1.02138F
1.03098E
1.04474FE
1.06118¢
1.07977E
1.10022¢E
1.12239¢E
1.14619¢
l.17161E
1.19870¢
1.22754¢€
1.25833¢E
1.29135¢
1.32694¢E
1.36576¢
1.40873E
Le43613E
1.46341E
1.49053¢E
1.51746E
1.54416¢
1.57059E
1.59672¢
1.62251¢E
1.64795¢
1.67301€E
1.69765¢
1.72187¢E
1.74565E
1.76896¢E
1.79180¢E

Ou
ac
00
N0
00
0%
00
00
a0
00
00
0¢
00
00
00
00
ocC
00

n
[

00
00
00
ou
00
09
0J
20
v
0¢
Qu
oc
00
00
0o
00
00
00
oc
00
00
00

PRESSURL
MECABARS

2.990C5E-027
£+99005E-02
2.99005E-02
2.990u5E-02
2.990358-02
2.99005E-02
2.99005€-02
2.99005£-02
2.990058-32
2.59005€E-02
2.79005€E-C2
3.C61c6E-02
3.16466E-02
3.29137t-02
3.43860E-02
3.60553E-02
3.79229€-C2
3.999727E-02
4.22921E-02
4.48297E-0C2
4,76396E-02
5.07624£-02
5e42537E-02
5.81922€E-02
6.26922E-02
6.793130-02
7.1414C€E-02
T7.49958E-02
7.86778E~4u2
B8.24330E-02
8.62759E-02
9.01929€E-02
9.417¢"E-02
9.8220€E-02
1.02317C-01
1.06457E-0C1
1.106356-01
1.14842E-01
1.19072€-01
1.23316t-01
1.27567€-01

ENERGY DENS
(MEG-CC ) /GM

2.G7234E-C2
2.67234E-C2
2.97234F-C2
2.97234F-C2
2.97234€E-C2
2.G7234E-C2
2.97234E-C2
2.G7234E-C2
2.G7234E-C2
2.67234E-0C2
2.97234E-C2
2.G9G9994E-C?2
3.03970¢€e-C2
3.08755F-C2
3.14212€-02
3.2C276F-02
3.26914E-C2
3.36120F-02
3.419C5F-C2
3.5C3C2E-C2
3.59362E-C2
3.6S51¢5€-C2
3.79822F-C2
3,91499F=-02
4.C4437E-C2
4.19C14E-02
4.28445C-C2
4,37944€E-02
4.47496F-32
4.57084E-C2
4.66693E-02
4,76306F-02
4.85909F-C2
4.95486E-02
5.05024E-02
5.145C8E-C2
5.23926E-02
5.33266£-02
5.42515€E-C2
5.516€63E-C2
5.6CTCCE-C2



DISTANCE
X/RADIUS

O.

4.52631€-02
9.05262E-02
1.35789E-01
1.81052€E-01
2.26316E-01
2. 711579€~-01
3.16R42E-0D1
3.62105€£-91
4.07368E-01
4.52631€E-01
4.95417€e-01
5.38202€-01
5.80988E-01
6.23774E-01
6. 66560E-01
7.C9345E-01
7.52131€E-01
7.94917€E-01
B8.37703E-0C1
8.80488E-01
8.93143E-01
9.05047E-01
9.16197E-01
9.26595E-01
9.36243E-01
9.45147€-01
9.53316E-01
9.60760€E-01
9.67491€-01
9.73526E-01
9.78880€E-01
9.83573€E-01
9.87625E-01
9.91058E~01
9.93896E-01
9.96161E-01
9.97879E-01
9.99074E-01
9.99773E-01
1.00000€& 00
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Teble 8

Detonation Wave for INT (n, = 1.1k gm/cc)

VELOCITY
CM/USEC

0.

0.

0.

0.

0.

O.

Q.

0.

C.

0.

8.34041£-05
3.96314£-03
9.32355E-03
1.54886E-02
2.22482E-02
2.9526EE~02
3.73264£-02
4.57134£-02
5.48296C-02
6.49320E-02
7.649856-02
8.03235E-02
B.41484£-02
8.79733C-02
9.17982E-02
9.56232E-02
9.94481E-02
1.03273€-01
1.07098E-01
1.10923€-01
1.14748£-01
1.18573£-01
1.22378E-01
1.26223E-01
1.30047E-01
1.33872€-01
1.37697€£-01
1.41522E-01
1.45347t-01
1.49172E-01
1.52997E-01

CENSITY
GM/CC

8.88453E-01
8.88453E-01
8.88453L-01
8.88453E-01
8.88453E-01
8.88453E-01
8.88453E-01
8.88453E-01
8.88453E-01
8.88453€E-01
8.88453£-01
9.03023E-01
9.24314E-01
9.49978E-01
9.79245E-01
1.01182€& 0OC
1.08713E 00
1.130748 00
1+17961E 00
1.23582E 00
1.25438E 00
1.27290£ 0GC
1.29136E 00
1.30975€ 00
1.32804E OC
1.34622E 0OC
1.36429E 0OC
1.38222E N0
1.40000E 00
1.41761E Ou
1.43506EL 0O
1.452338 00
1.46940€ 0OC
1.48627E 00
1.50292¢& 00
1.51936E 00
1.53557€ 00
1.55155E 00
1.56729E 00
1.58278€ 0OC

PRESSURE
MEGABARS

2.26994E-02
2.26994E-02
2.26994LC-C2
2.26994E~-02
2.26994E-02
2.26994E-C2
2.26994F-02
2.26994E-02
2.26994E-02
2.26994€~-C2
2.26994E-02
24359T4E-02
2.4951JE-C2
2.66488E-C2
2.86750E-02
3.1C0453E-02
3.3800%E-02
3.70077€E-02
4.07783E-C2
4.52926E-02
5.08731¢t- 02
5.28096€E-02
5.4789°E-02
5.68095E-02
5.88694E~-02
6.09666F-02
6.30992E-02
6.52651E-02
6.746210-02
6.96879L-02
71.19402E-02
T.42167E-02
1.65149E-02
7.88324E£-02
8.11668E-02
8.35156E-02
8.58764E-02
8.82467E~-02
9.0624CE-02
9.30061E-02
9.53905E-02

ENERGY DENS
(MEG-CC)/GM

3.11573E~-02
3.11573E-02
3.11573E-C2
3.11573F-C2
3.11573F~-02
3.11573E-C2
3.11573€E-02
3.11573E-C2
3.11573E-C2
3.11573€E-02
3.11573E-C2
3.15776E~C2
3.21966€~02
3.29503E-C2
3.382C00E-C2
3.48008BE-C2
3.5897CE-C2
3.71218E-C2
3.84999E-02
4.CC747FE~-C2
4.16256€-02
4.25463E-02
4.317C2E-02
4.3756TE-02
4.44253E-C2
4.50553E-C2
4.56862€-C2
4.63173%~C2
4.69482F+02
4.757828-C2
4.82068E-02
4.88334E-02
4.54577E-02
5.00789E-02
5.0¢968F-02
5.13107E~C2
5.19203F-02
5.25252F-C2
5.31249€-%2
5.37191F~-C2
5.43073€E-C2
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DI STANCE
X/RADIUS

3.

4.46409E-02
8.92817E-"2
1.33923E-%1
1.78563E~-C1
2.23204E-31
2.67845E-C1
3.12486E-31
3.57127E-01
4.J1768E£-01
4.49272E-"1
4.77912E-C1
5.068551E-01
5«35199E£-01
5.63830£-01
5. 92469E-71
5.21139E-)1
b.49748E-11
6.78387E-01
7.07027€E-01
7.355666E-91
7.64305E-31
T.92945€E-21
B.21584E-C1
8.50223E-01
8.78R53E-C1
8.95739E~01
9.11281lE-J1
9.25483E-01
9.38347E-01
9.498R5E-01
9.60118E-01
9.69C72€E-01
9, 76782E-)1
9.83290E-01
9, 88643E-21
9.92892E-01
9.95093¢E-21
9.98304E-11
9.99586E-01
1. 000Q0E 170

Detonation Wave for TNT (n,

VELUCITY
Cv/J5¢eC

(]

O RN A5 I S B VR SRR S K S I

<
*

1.28491.-c4
215273c-C3
5.16212.-53
Be534988¢-213
1024547t'52
1.65385L-C2
2.0A542¢ -T2
2.53841t-22
3.,31246t-22
3.50840(-32
4.32328L-02
4,57547-C2
5.15505:-C2
5. T74543-02
6.4451T7€-02
T.13447¢-32
T.66343E-C2
3.14243E~J2
B.62136C-C2
9,10.:32E-02
9.57929(~92
1.27583¢c-31
1.05372E-C1
1.12162E-01
1.14951t-01
1.13741E-21
1.24531E-C1
1.29322E-01
1.341100~01
1.3990GC~01
L.43689E-"1

NOLTR 64-40

Table 9

CENSITY
Gm/CC

T.723547-31
T.723587-01
7.723,556-21
TeT¢35%L-31
7.7235%0-01
T.72338E~-01
T.723,0E-J1
T.72308F-C1
T.723560-21
7.72258(-01
T.723.%E=-"1
70794615-31
7.9i5050=-01
Rel3T24€E-91
B.137T0TE-C]
8.3521&E-01
Re53127E-01
8.7230RE-21
§.729255-01
9.14832E-01
J¢38175E-D1
9.63275€-01
9.8970 *€=C1
1.01R854F Oc
1.34944E I
1.078452E .
1.13694t 02
1.12931C OC
1.15157E OU
1.17371€ aC
1.19507E OO
1.21744E O«
1.23898E OJu
1-26OZOE a3
1.28126E OQu
132195 J.
1.32231E Jv
1434233F Ju
1.36198¢E Co
1e381lehE Qv
1.43012E 9IC

= 1.00 gm/cc)

PRISSURT
ML GABAR S

1.74758E-22
1.74758C-C2
1.74758(-C7
leT4758(-02
1eT4ToRC-122
1.74758E-C2
1.7475PC-02
1.74758c~02
1.747585-02
1.747225-02
1.74758£-02
1.78422E-02
l.B#lqﬁf-OZ
1.91259¢-22
1.99456L- "2
2.088165-C2
2019222502
203,8385’&2
2.436>:L-32
2.57T8 4E-02
2.73462E-02
Z2.9UB44E-22
3.10251€-C2
3.32107E-C2
3.57u285-02
3.8596-£-02
4.05481L-02
4,25581E-02
4.46229E-)2
4,67391E~22
4.89C31¢t-.)2
$.11113L-32
5.335870-22
5.56419E-C2
5.79564E~32
6.72977E~-02
6.26612E-C2
6.50424E-02
6.74309E-32
6.984)]1F-02
T7.22470L-02

ENERGY DENS
(MEG-CC)/GM

3.22656F-02
3.22656E-02
3.22656E-02
3.22656E-02
3.22656E-02
3.22656E-02
3.22656E-02
3.22656E-02
3.22656E-02
3.22656E-02
3.22656E-02
3.24745E-02
3.27988E-02
3.31893E-02
3.36341E-C2
3.41269E-02
3.4664TE-02
3.52463F~02
3,58722F-0C2
3.65443F-CC
3.726630-C2
3.80437E-02
3.88846F-02
3.980C9E-02
4.C8101E-C2
4.19395E-02
4.26T84E-02
4.34216E-02
4.4167BE-02
4.49156E-02
4.56640E-02
4.64116E-02
4.71573E-02
4.78999E-02
4.86384E-(2
4.93716E-02
5.00986E~02
5.08185E-02
5.15303£-02
5.22333E-02
5.29266E-02
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with the exception of the temperatures, which seem to be far too low,
This is connected with the fact that the theory predicts an upper
1imit to the loading density at which an explosive will detonate; at
this point the thermal energy vanishes and orly the elastic energy
contributes to the energy of detonation,
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