
NOLTR 64-40

THE FLOW FIELD BEHIND A SPHERICAL
DETONATION IN TNT USING THE LANDAU-

, STANYUKOVICH EQUATION OF STATE FOR

DETONATION PRODUCTS

10 DE$.OE_ 2 ',?•

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND
o 

T

DDC IRA C

, r-• , ,',-•". •,,



NOLTR 64-40

THE FLOW FIELD BEHIND A SPHERICAL DETONATION IN TNT USING THE LANDAU-
STANYUKOVICH EQUATION OF STATE FOR DETONATION PRODUCTS

Prepared by:
M. Lutzky

ABSTRACT: Calculatlons have been made of the flow field in the isentropic
region behind a detonation wave in TNT, using the Landau-Stanyukovich
equation of state for the detonation products (as described by Zeldovich
and Kompaneets). Adjustable constants in this equation have been evalu-
ated by imposing ideal gas behavior on the detonation products in the
large expansion (low density) limit, and by fitting to an experimental
curve of detonation velocity versus loading density. Calculated values
of Chapman-Jouguet variables correspond fairly well with experimental
values at various loading densities, with the exception of the tempera-
tures, which seem to be far too low. This is cormected with the fact that
the theory predicts an upper limit to the loading density at which an
explosive will detonate; at this point the thermal energy vanishes and
only the elastic energy contributes to the energy of detonation.
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STANYUKOVICH EQUATION OF STATE FOR DETONATION PRODUCTS

Calculations of the airshock motion produced by a spherical TNT explo-
sion, with the reaction products considered to be gaseous, have given
satisfactory agreement with experimental results However, the
experimental motion of the explosive interface and the seccnd shock
have not agreed with the theoretical calculations. An attempt to
clarify these discrepancies has led to consideration of the Landau-
Stanyukovich solid state model for the reaction products of a condensed
explosive. The Landau-Stanyukovich equation of state has been utilized
to calculate the flow field in the reaction products behind the
Cbapman-Jouguet zone - the so-called Taylor Wave distribution - and
the results are presented in this report Preliminary determinations
of this distribution have already been used as initial conditions for
the calculation of the subsequent explosion motion, and have been
reported elsewhere.
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INTRODUCTION

The theory of the detoration process for a Y-law gas, whose
deto'atior product is also a y-law gas, has been quite completely
worked out and is available i' many places.192 In particular, the
conditions at the Chaprar'-Jougue+ state car be derived, and it can
be shown that the detoration velocity i3 a function only of the heat
of detonation and the Y for the detonation products, for sufficiently
large detonation pressLres. In addition, differential equations have
been derived for the flow behind the detonation wave, and have been
solved for certain explosives and geometries, a9 3 94

The theory of the detonation of a solid explosive, on the other
harnd, is in a much less satisfactory state. Experiments' have shown
that the detonation velocity of a solid explosive depends on the initial
density, unlike the detonation velocity of gaseous detonations. Further-
more, the explosion products of condensed explosives are obtained at
pressurea of the order of megabars, and ot densities approa:hing 2 grams/
cm?, under which conditlons their behavior becomes extremeln complex.
Consequently, various attempts have been made to find an equation of
state for the explosion products by treating the highly compressed
gas as a solid.

The first such attempt is due to H. Jones,7 who developed an
equation of the Gr~ineisen type, based on the Einstein model of a
solid, of the form p - Ae-av-B+fRT, where a, A, B and f are constants.
The equation of state which we consider in this paper, however, was
derived by Landau and Stanyukovich,,i 9,ho also approached the problem
by drawing an analogy between the s'*.ate of the detonation products
of a condensed explosive and the crystal lattice of the solid state.,
It is well known that the energy of a solid body has a two-fold origin:
it is made up of an elastic energy arising from the binding forces
between the atoms and molecules and a thermal energy connected with
oscillations of the atoms or molecules about their positiona of stable
equilibrium., Landau and Stanyukovich have attempted to describe the
behavior of the detonation product by considering it as a solid with
the property that the elastic energy and the elastic part of the pres-
sure are predominant. The theory has been described and expanded by
Zeldovitch and Kompaneets, so that we refer to it as the LSZK theory.
The purpose of this papei. is to make some computations using the LSZK
equations of state, and, in particular, to calculate the flow field
behind the detonation shock in a condensed explosive.

1\
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THE LSZK EQUATION OF STATE

For the sake of completeness, we present here a description of
the LSZK equation of state, and a derivatio-, of some of its properties.

The LSZK equation of state may be written8

p.B + , T()
vy V

E B + C T , (2)(Yl)vy-l

where P a pressure
E 0 energy density (per unit mass)
v n specific volume
T = temperature

and B, Cvy, OG •id y are constants. y is a dimensionless constant
serving ms a polytropic index connected with the intermolecular
forces; Cv is the specific heat at constant volume; Cv1 is a specific
heat associated with the appropriate lattice vibrations; and B is
a constant having the units a calnries The elastic

cm gram
part of the pressure is B and B is the elastic part of

vy (y _)v• r
the energy.

Eliminating T between (1) and (2), we obtain the expresbion

p.E ÷B 1 l (3)

C r
where M a 1I

or is a convenient variable which will be used in this report. In
terms of o, (1) and (2) may be written:

B CTP=B +vC

P 7 v- Y- (5)

2
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E B + CT (6)
(Y-l)v•y v

Another convenient parameter which we will find useful is the
quantity y, defined as the ratio of the thermal part of the pressure
to the elastic part:

(ClT/cev) .C vT y_ (7)
Y B/ = aB

Clearly, (5) and (6) may now be written in Lhe form:

p L (l + y) (8)

VY

E +
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iSENTROPIC PROCESSES

It is possible t, obtain an expression for the pressure of the
form P - P (p), valid for isentropic processes of an LSZK substance,
by combining equation (3) with

dE =- dp, (10)

which is the differential equation of ar isentropic process Dif-
ferentiating (3), we obtain

dP -1 (pdE + Edo) +BYp •,-1i- -• -l d (11)

Using (10) to eliminate dE from (11), we obtain

lP
dP -1(-Pd p +Ed p) + ypY11- 1 d (12)

Solving (3) for E and substituting into (12), we obtain the differential
equat:.on

d_ _ (1 + L () BY-1 ( 1-I) (13)
dp a p

which has the solution:

1I+•

P )-K p-3 + By(14)

where K is a constant of integration., We are now in a position to
obtain expressions for E, the sound speed c , the temperature T,
etc. as functions of density alone, valid for isentropic processes
of an LSZK substance.: Thus, putting (14) into (3), and solving
for E, we obtain:

E(p) - AKr 1 BP ) Y-l (15)

4
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Similarly,

T - -K (16)C
v

and
1

c" K(- -•)p + (17)

5
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CHAPMAN-JOUGUET CONDITIONS

We now obtain the initial conditions at an LSZK detonation, in
terms of the variable y., We consider that the detonation wave consists
of a shock traveling at speed D, followed immediately by a region of
isentropic expansion. The region of chemical reaction behind the
shock is considered to be infinitely thin., Values of the hydro-
dynamic parameters in the undetonated explosive ahead of the shock
are given a subscript o so that v. is the specific volume of the
original explosive. We first obtain v as a function of y, From

the Rankine-Hugoniot (R-H) relations at the shock, we have

_. D--q ;(18)

where u - particle velocity
D - detcnation velocity.

Using the detonation property D - u + c (19)

equation (18) becomes

va -c- + 1. (20)v c

Another R-H relation yields

P - Du/Vo (21)

which my be written in the form

S(22)c c c

Using P-Boy (l + y) and the equation (20), (22) may be put into the
form

Y-i
BP (I + y(23)

v

6
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ca may be obtained as a function of p and y by eliminating K between
(14) and (17), and then using P a BpY (i + y) to eliminate P; the
result is

ca B - (Y + ', 1 (24)

Inserting (24) into (23) we obtain Y& as a function of y:
V

+ ( + -- (25)v Y l+ +

The next step is to obtain vo itself as a function of y; this will
enable us to solve for the parameter y as a function of the known
quantity vo.

We write the R-H equation for the energy in the form

1 1
E + P (V0  - V)m + ýPv (,- -- 1) ,(26)

where Q is the chemical energy released by each grain of explosive;
and using (25), this becomes:

EQ + Pv ( + y (27)

Eliminating P by using P - BpY (i + y) we obtain

E 1 + B (1+ y) 1 T7 (26)

Another expression for E/Q may be obtained from equation (9)

E*B c + 1(29)

7
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Equating (28) and (29), and solv-.g for v, we oota'-:

y B (cry + + - (30)

Q '~'1,2(Y +

Eliminating v between (30) and (25), we obtain t'L expression:

1 1
Vo ) I y + + + __ +o 1)

where

w-,- 'y (32)

Since vo , the specific volume of the solid explosive, is a known
quantity, we may solve (31) for y, by an iterative process. Since
v is a known fanction of y, by virtue of (30), we can find P by
using the expression B (1 4,y); Emay be found from (28) or

(29); and ce may be found from equation (24).

The particle velocity at the front, u, may be found from (20),
and is given by

u " c(l + y) (33)
Y + + '

Finally, the detonation velocity can be found from

D - u + c - c 1 + 1 + X (34)
1+ ý

Thus, the detonation velocity is seen to be a function of vo, the
initial specific volune, corresponding to the well-known experimental
result for solid explosives.

8
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EVALUATION OF PARAMETERS

The three undetermined parameterb, Y, c, and B/Q, which appear in
the LSZK equItion of state, must be evaluated by using experimental data.
It can be seer, from equation: (14), which descrites the Isentropic P-p
relation for an LSZK substance, that if 1).+ 0' < Y P (0 approaches

I + o 3

Kp a as p approaches zero. We assume that in the limit of low pres-

sures the detonation products behave as ideal gases, with a constant
value of the specific heat ratio, denot.ed here by K. (A reasonable value
for K seems to be 1.34. obtainable by averaging the gams for the various
gaseous constituents accrrding to the composition of the products at low
pressure.) It is thus clear that in order to obtain the correct behavior
of the detonaticn products at low pressures, we must set ca 1

K-i

The remaining constants may be evaluated by referring to the experi-
mental results for the dependence of the detonation velocity on the
density. After a particular value. is assigned for Y (v',-, a series of
values for B/Q may be obtained by carrying out a point by point comparison
of •he theoretical plot of in D vs. (lnpe + 1 in (obtainable from

equations (31) and (34)) with the experimental plot of ln D vs. In •.
Since B/Q must be a constant, the accuracy of the fit is determined by
the amount of variation in the values of B/Q obtairnd, and Y may be adjusted
to make this variation a minimum.

This process has been carried out for TNT, using an empirical relation
between detonation velocity and loading density determined at the
Explosives Research Laboratory, at Bruceton. 8  This relation may be written
D - 0.1785 + 0.3225 P,, where D is in centimeters per microsecond and O
is in grams per cubic centimeter. Using K - 3..31, and with the heat of
detonation chosen" to be 1018 cal/gm, the results are Y - 2.78, B/Q -

0.53562 and a - 2.9412.

Equations (31) and (34) may now be utilized to provide the dependence
of the detonation velocity on the loading density, by letting the parameter
y run through a rarge of values. Table 1 gives a comparison of this
theoretical curve with the empirical relationship, and it can be seen that
the fi. is quite good.

It is interesting to note that this formalism predicts an upper
density limit to the detonability, at thu loading density pe - 1.793 gm/cc
and detonation velocity D a 0.757 cm/usec. This comes about because of
the fact that at this point the value of the parameter y is zero (y
decreases with increasing loading density), and y cannot be negative,
because of its physical meaning as a ratio of pressures (see equation (7)).

9
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In fact, e-•iation (7) implies that at this limiting point, the only
contribution to the pressure comes from the elastic part, while the therml
pressure vanishes. Zeidovich and Kompaneets have the following to say
about the physical significance of this phenomenon: "It is possible to
have charge densities for which the thermal energy is much smaller than
the elastic part. This corr"aponds to y being nearly zero ... It is not
quite clear what happens when the charge density is large. It can be
assumed that in this case the dissociation reaction does not go to
completion, since the supply of chemical energy ib insufficient for over-
coming the work required by the elastic repulsion forces between the
molecules. It appears as though the chemical energy does not suffice
for the mcleculAr rearrangement which leads to an explosion." This
pre-diction is especially interesting inasmuch as it is known that TNT
exhibits increa'ing resistance to detonation with increasing loading
density, as, in fact, do most solid explosives.

Nov that values for the ccnstants in the LSZK equation have be-en
arrived at, t he conditions at the Chapman-Jouguet state may be computed
by "ming the expressions developed in the preceding section. This has
been done for TNT at several loading densities and the results are
presented in Table 2. (The temperatures were calculated using Cv = 0.3

cal/gm-legree.) Table 3 presents experimental values for the C-J state,
determined by Dremin, et al; ' the correspondence between calculated
values and experiment appears good, except for the temperatares, which
seem to be far below the generally accepted values for detonation tem-
peratures of several thousand degrees.

The fact that the ratio of elastic pressure to total pressure
increases as the loading density increases may be verified in the last
column of Table 2. For instance, for p - 1.625, this ratio is 0.974,
which means that, for the isentrope given in equation (14), 97.4% of the
pressure comes from the eltstic pressure term. For p - 1.00 gm/cc, this
ratio is 0.805.

Conseq,,*ntly, in the vicinity of the Chapman-Jouguet state, the L5Z7K
isentrope my be approximated by a polytropic relation, with exponent
equal to 2.78. In this connection, it is interesting to note the experi-
mental results of Deal,s which indicate that the explosion products
isentrope for RDX-TWT may be fitted quite closely to a polytropic P-p
relation, with '' o 2.77, at least down to 500 bars. It thua seems likely

that the ISZK equation of state for TNT not only yields the proper D vs
pe relationship, but also provides the proper isentrope, both in the
vicinity of the Chapman-JougwL state and in the larg- expansion limit
of low pressure and density.

10
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FLOW FIELD BEHIND DETONATION SHOCK

The isentropic flow behind a detonation shock in a spherical
explosive is governed by the differential equations :"

du ' 2 uc(
d-: (36)

where u particle velocity

r radial distance of detonation shock from origin
-r
E"" , t = time

c sound speed

f - J. where p- density 1 (38)

Calculating f by means of (14), we obtain:
1

K (10 +) + BY (Y 1)p1
f W Ci a -i- (39)

K(I1)+ G' + Fe p

To utilize (39) in the system of differential equations (36), (37),
it is necessary to express f as a function of cý. This may be done
(in principle) by solvtng (17) for p in terms of c2, and substituting
the result into (39). Unfortunately, it is not possible to invert
(17) analytically, in closed form, so that an alternative approach
must be used. The procedure chosen here is to convert equations
(36) and (37) into a set in whicb the dependent variables are u
and p, rather than u and cý. In this case, we can use f in the
form (39), as a function of p. To effect this change of variable
we make use of the equation

dci. dc1 A (40)
d• dp dp

11
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Since c2 - dP/ddc in the isertropic flow, we may put dc2/dr - d&P/de
and using (17) we get:

1 -
dcld . K +I Of) C + BY (Y 1) Y 2 (41)

a0  a- 'I

Consequently, + + By (Y 1 )0 Y and the

differential equations become:

du 2 u (42)

2 ue -u) fC () (3

where c2 - K (-)p + BY , and f(p) is given by (39). These

equations are to be solved subject to the conditions u a uD) P a PD
at P - D, where

D - detonaticn veiocity

uD =particle velocity at the detonation shock

SD =deneity at the detonation shock.

v, and DD may be found from (33) and (25), after y has been found from
equation (31).

These calculations have been carried out for TNT on an IBM-7090
electronic computer, for the loading densities 1.625, 1.59, 1.45, 1.30,
1.14, and 1.00 g1m/cc. The results are given in Tables 4-9. The first
column 's a dimensionless dis~ance, the radius of the original charge
being taket, as the unit. Pressures are in megabars, velocities in centi-
meters per microsecond, energy densities in mwgabar-cc per gram and
densities in grams per cubic centimeter. It will be seen that the para-
meters vary in the well-known way first demonstrated by Taylor, 3 with the
region of constant state surrounding the origin.

12
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CONCLUDING REMARKS

4 Up until now, very little has been said about the temperature. To
evaluate this quantity, we must know the value of Cv, which is not
determined by the other constznts. (Only the ratio Cv/Cv, 13 determined
by equation (4).) If Cv is taken to be 0.3 cal/gm, aBr approximate average
value for detonation products, the C-J temperature (for g - 1.625 gm/cc)
turns out to be 582.9"K, which seems to be too low. This is connected
with the phenomenon of the decreasing importance of the thermal pressure
with increasing loading density, which was mentioned above. Though this

4 phenomenon is consistent with the known resistance to detonation of TNT at
high densities, and with the experimental results of Deal,s it is not yet
certain whether it is a real effect or whether it is a result of the
incompleteness of the LSZK theory* In any case, it is believed that
in all applications where the temperature is not needed, and only an
(E, p, v) equation of state is iequired (such as the calculation of the
non-reactive, isentropic expansion of detonation products by means of
hydrodynamic computer codes), the LSZK equation of state (in particular,
equation (3)) my be used with confidence.

It is probably not possible to decide on the correctness of the
LSZK equation of state by experimental observations of the detonation
process alone. A possible approach is to use the results for the distri-
bution behind the detonation as initial conditions for a hydrodynamic
code computation of the detonation of a sphere of TNT in air, using the
LSZK equation of state for the expanding detonation products. The motion
of the second shock through the product gases is expected to be a
sensitive function of the equation of state used, and one can attempt
to compare the calculated results with the evidence obtained from
photographic records. The behavior of the air shock, though a much less
sensitive function of the equation of state for explosion products,
might also provide a useful check.

Preliminary hydrodynamic calculations have already been carried out
on an IBM-7090 and are reported elsewhere; 10 more refined computations
are in progress at the present time.

* Jacobs'. has pointed ouT that a reiriter'pretat~or, of the partition
betweer elastllc and thermal energy leads to a theory which does rot
involve a limtAtrg density, or vanishW.ng thermal pressure, This
theory retains the LSZK form for the equation of state, but does
not make use o Zeldovich's argumeits for the physical mear.ing of.
the cot stants CV, Cv., and Cv.

13



NOLTR 64-40

ACKNOWLEDlGMENT

The author grmtefully acknowledges fruitfu! and e: lightening dscus-
slons with L. RtdLin, S. J. Jacobs, H. M. Sternberg, H. Hurwftz, and
J. W. Enig.



NOLTR 64-4O

FEFEFECIý3

1. Penner, S., S. and Mullin- , B. P., Expioeiors , Detonations,
Flammbility and Ignition, Pergamon Press, 1959, Chapter 5

2. Landau, L. D. and Lifshitz, E. M., Fluid Mec-anics, Pergamon
Press, 1959 (Addison-Wesley Publishing Co., Inc.) Chapter 14

3. Taylor, G. I., The Dynfamics of the Combustion Products Behind
Plane and Spherical Detonation Fronts in Explosives, Proc. Roy.
Soc. A200, 1061, Pgs 235-247 (1950)

4. Lutzky, M., The Spherical Taylor Wave for the Gaseous Products
of Solid ExDplosives, NAVWEPS Report 6W48 (1961)

5. Deal, W. E., Measurement of the Peflected Shock Hugoniot and Isentrope
for Explosion Reaction Products, Physics of Fluids, 1, 6) P. 523 (1958)

6. MacDougal•, D. P., Messerly, G. H., Hurwitz, M. D., et al, "The Rate
of Detonation of Various Explosive Com.pounds and M-ixtures ," OSRD-5611.
See also: Urizir, M. J., Jamsi Jr., E., Smith, L. C., Detonation

Velocity of Pressed TNT, Physics of Fluids, 4, 2, P. 262 (1961)

7. Jor.es, H. , 1-41. See C.cle, -.. H. , U. er-ate, xps-s ,
(Prir.2etor. '-..iv-rs.'y Press, -1+c)

8. Laniau, L. D. and Stanyukov~ch, K. P. , On the S .'. of -e-cra. c-
in Conder.sed Explosives, Dckialy .Jkad. Nauk 33SSR 46. 3Q (lm

9. Zeldovich, Iu.B. , ai.d Kcrnpar.!eta, -. S. , Tneory of letor.a icr.,
Academic Press (1poO), Cnapter 14

10. Rudlin, L., On the Origin of 5hockwaves from Sljherical Condensed
Explosions in Air, U. S., Naval Ordnance Laborato-y NOLTR b3-220,
Part 3, Appendix B (to oe pulish1ed)

1l. Rudlin, L.., tn Approximate Solution of the Flow Within the
Reaction Zone Behind a Spherical Detonation Wvre in TNT, U.: S.
Naval Ordnance Laboratory, NAVWEPS Report 73W, ,Ajril 1960

12. Dremin, A. N., Zaitsev, V. M., Ilyukh1n, V. S., Pokhil, P. •.,
Detonation Parmmeters, Eighth Symposium (International) on Combustion,
Williams and Wilkins Co., Baltimore, P. 610 (1962)

13. Jacobs, S. J., A New Interpretatlor. of the Zeldovich-Kcrnpar.eets
Treat,-e " of the Equation of State foe [etonation I'roducts, U. S.
Naval Ordnance Laboratory Internal Memorar.dum, 5 June l-T

15



NOLTR 64-4o

Table 1

Comparison of Detonation Velocities Calculated for
LSZK Substance with Detonation Velocities Determined at Bruceton

PD(-cm); ISZK Dcm );(Bruceton)
ccuse c usec

1.7935 0.7572 0.7569

1. 662o 0.7146 0. 7145

1.5535 0.6795 o.6795

1.4412 o.6433 o.6433

1.3655 o.6189 0.6189

1.2995 0.597 0.5976

1.2412 0.5791 0.5788

1.1773 0.5588 0.5582

1.1320 0.55444 0.5436

1.1009 0.5345 0.5335

1.0034 0.5039 0. 5021
0. 9590 o. 4900 o. 4878
0.9256 o.4797 0. 4770

0.901o o.4720 0.4691

!1o. 8565 0.4584 o.4547

o.8o82 0.4437 0.4391

0.7703 0.4322 0.4269

0.7331 0.4211 0.4149
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Table 2

Detonation Parameters Calculated with
LSZK Equation of State, for TNT, Q a 1018 cal/gm

%(gm/cc) P(Kbars) E(*egaa"rcc) p(P) u_ cm) D( cm T(edegree) -ic
gram cc usec tuec Kelvin I~t{tal}

1.625 214.3 m.06022 2.217 0.188 0.703 582.9 o.974

1.59 203.5 0.05973 2.171 o.185 o.691 698.4 o.968
1.45 163.8 0.0579 1.988 0.175 c.646 1141.7 0.941

1.30 127.6 0.05607 1.792 0.164 0.598 1582.5 0.905

1.14 95.4 0.05431 1.583 0.153 0.547 2013.3 0.857

1.00 72.2 0.05293 1.400 0.144 0.503 2356.7 O0.85
_______________________________I
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Table 3

Experimntal Values for Detonation Parameters
of TNT (Dremin, et al)

,|cm

P(kbears) u(C)D( sC)

1.59 202 0.183 o.694

1.45 162 0.172o.168 0.650
1. 30 123 o. 158 .o0.156

1.30 123 0.165 0.557
1.1• •"0.142

1.. 0130 0.510

_________________________________ ______________________ ___________________________ ________________________________________________ _____0____________1________________
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¶able 4

Dttonation Wave for T (fb " 1.6-5 gm/cc)

DISTANCE VELOCITY CEtSITY PRESSUI'L ENERGY DENSX/RADILS Civ/USEC GtV/CC MEGABMAS ftEG-CC)/GM

0. C. 1.29163E 0,- 4.91537E-52 2.63C-62E-C24.57265E-02 C. 1.291o3[ O0 4.91537E-02 2.63'•62F-C29.14531E-,12 C. 1.29163E 0. 4.91b37E-)2 2. 63.)62E-C21.37180E-GI C. I.29163E 0- 4.9 1 37E-C02 2.E3ý62F-C21.82936E-,CI C. 1.29163E 0C, 4.91I.37E-C2 2.63f'2F-022.28633E--0l C. 1.29163E 0,s 4.91537E-02 2.6,3C62E-C22.7435gE-01 C. 1.29163E O." 4.91537F-02 2. 6 32C.2E- D23.20086E-Cl C. 1.29163E 0,, 4.91537E-C2 2.63r621:--23.65812F-01 C. 1.29163E J0 4.91537E-32 2.63"'62E-C24.11539E-01 C. 1.29163E 0G 4.91537E-32 2.63-62E-C24. 57265E-O1 5.62295E-05 1.29163E JO 4.915J7E-)2 2.632 LZE-C24.8573CE-01 2.864C9E-03 I.30326E Ou 5.235R8E-02 2.66499E-C25.14195E-01 6 .72 5 65E-03 1.31989E OC' 5.21153E-02 2.71453E-C25.42659E-01 1.11811E-02 1.33975E 0Cv 5.42632E-02 2.77425r-c25.71124cE-01 1.60719E-02 1.36220E O0 5.67594E-C2 2.84252F-C25.99589E-0i 2.13167L-02 1.3869.E 0: 5.0 9595E-02 2.91858e-C26.28053E-01 2.68724E-02 1. 4 1367E 90 6.2759'1E-02 3.OC2C8E-C26.56518E-01 3.27201E-02 1.44242E 0- 6.62796E-92 3.C9299rg-c26.84983E-OI 3.88586E-02 1.47311E 06 7.C1775E-02 3.l'd52E-C27.13447E-01 4 .53,24E-02 1.50582E O0 7.448991-02 3.29814r-c27.41912E-01 5.20822C-02 1.!'40,7E O0' 7.92682E-02 3.41357F-C'27.70377E-'11 5.92466E-02 1.57788E 0j 6.4582HE-02 3.53P93E-C27.98841E-01 6.68685E-02 1.61777E * 9 .053--H-02 3.67566F-C28 .273')6E-01 7.50551E-02 1.6608!)E c,' 9 .7246'8E-C2 3.E261CE-C214.55771IE-1 8.39o76E-07 1.707b5E 0%, 1.0493?7-01 3.99349E-GZ8.84235E--I 9.38oC4E-02 1.75995C O .1,13896E-01 4.183CIE-C29.CO523L-!:1 1.O')119-O1 1.79278E Gu 1.19769E-o1 4.30454E-C29.15477E-31 1.06-375C-01 1.82544E OC 1.258l,3E-01 4.427C9F-C29.29105E-c'1 &.12b32[-Oj 1.85790[ O0 1.3205-C-01 4.55C45F-021.18417E-S1 1.1RF~OL-O0 1.89010E O- 1.38399E-O1 4.67442F-C29.52435E-1- 1.25 147E-01 1.922u'jE 0C'j 1.44880E-01 4.7SP77E-C29.62185E-ol 1.314C5E-01 1. 9 53)7E 0C, 1.51482E-01 4.92332E-C29.70701E-01 1.37662E-01 1.98476E 0C 1.58192E-01 5.C4786E-029.78C22E-01 1.43919E-01 2.01555E OC 1.6500JE-01 5.17220r-C29.84193E-01 1.50177L-01 2.04590E 00 1.71892E-01 5.2S615F-C29.89262E-01 1.564,34E-01 2.07578E Oj 1.78856E-01 5.41953F-029.93282E-OI 1.62691E-01 2.10517E Ou 1.8588oc-01 5 .54217F-029.96309E-01 1.68949E-01 2.13405E Ou i.92952E-01 5. 6392E-C29.98398E-01 1.752061-01 2.16240E OC 2.0006'E-O1 5.7E46iC-C29.99609E-Ol 1.81463E-01 2.19020E 0. 2.0719'IE-O1 5.9C411E-02I.CO0000E 00 1.87721tC-01 2.21743E 3u 2.14333[-G1 6.C222EF-C2
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¶Iabl~e S5

Detonation Wave for TNT (c• , 1.59 gm/cc)

DISTANCE VELCCITY EEMITY PRESSURE ENERGY CENS

X/RADILS CPI/WSEC GMw/(C MECABARS (MEr,-CC)/GM

0. C. 1.26271E C.- 4.67753E-C2 2.671C8E-C2
4.56064E-"2 C. 1.26271E 02- 4.67753E-02 2.671C8E-C2

9.12129E-,',2 C. 1.26271E 0>. 4.67753E-02 2.671C8E-C2
1.36819-')1 C. 1.26271E Gu 4.67753E-02 2.671C8E-C2
1.82426E-^I ,". 1.26271E OL 4.67753E-02 2.671C8E-02
2.28032E-01 C. 1.26271E 06 4.677:,3E-02 2.671C8E-C2
2.73639E-31 C. 1.26271E 06 4.67753E-02 2.671CRE-C2
3.19245E-C•I C. 1.26271E OL. 4.67753E-C' 2.071(8E-C2
3.64851E-C1 C. 1.26271E 03 4.67753E-02 2.71CPE-C2
4.10458E-01 C. 1.26271E 0.#, 4.67753E-02 2.671C8E-C2

4.56064E-CI 9.91348E-05 1.26271E OD 4.67753E-02 2.671C81-02
4.84596E-31 2.72!187E-03 1.27354E 01-i 4.78596E-02 2.7C294E-C2
5.13127E-CI 6.52P04E-03 1.2898)E Oý 4.95179E-02 2.75111E-02

5.41659E-01 1.09217E-02 1.33925E OJ 5.155".9E-02 2.FC933E-02
5.70191E-I I.57492E-02 1.3312RE 03 5.39162E-02 2.87595E-C2

5.98722E-01 2.09282E-02 1.35553E 00 5.66005E-02 2.95CIgE-02

6.27254E--I 2.64154E-02 1.38182E OC 5.96061E-02 3.C317IE-C2
6.55785E-CI 3.219146-02 1.41005E OC 6.29463E-02 3.12047F-02
6.84317E-^I 3.82 5461-02 1.44021E 00 6.66453E-02 3.21667E-C2

7.12848E-91 4.46192E-02 1.47235E OL' 7.07384E-02 3.32074E-02
7.4138CE-01 5.131511-02 1.50660E Ou 7.52742E-02 3.4334CE-C2

7.69912E-SI 5.83403L-C2 1.54317E OC 8.C3196E-02 3.55570E-02
7.98443E-Cl 6.59166E-02 1.58238E 00 8.59663E-02 3.68914E-02

8.26975E-1% 7.39999E-02 1.62471E 0. 9.2343SE-02 3.83587E-C2

8.55506E-01 8.27990t-02 1.67091[ 0C 9.96419E-02 3.S'912E-02
8.84038E-01 9.25653E-02 1.72213E 01: I.C8155E-O1 4.1839CE-C2
9.C0348E-C1 9.87363L-02 1.7543FE 0C I.1374(E-01 4.3C226E-G2
9.15325E-01 1.049G7C-01 1.7864iE Ou 1.19491E-01 4.4216CE-02

9.28974E-01 I.11''78E-01 1.8183.,E 06 1.25382E-01 4.554171E-02

9.41307E-01 1.17249E-01 1.84995E OC 1.314')8E-01 4.66241F-C2
9.5234AE-01 1.2342UE-01 1.88124E 03, 1.37559E-01 4.7el47E-C2

9.62112E-01 1.295i91E-01 1.9123)E 00 1.43825E-01 4.90471E-C2
9.70643E-C1l 1.35762E-01 1.9429.E O0 1.50195E-CL 5.02593F-C2

9.77978E-01 1.41933E-C1 1.97319E 06 1.56656E-01 5.14694E-C2
9.84161E-01 1.48104E-01 2.003U0E 0 1.63199E-01 5.26756E-C2

9.8924CE-0l 1.542751-01 2.03236E 00 1.69810E-01 5.30762E-C2

9.93269E-LI 1.60446E-01 2.06124E OC 1.76479E-01 5.5C696F-02

9.96301E-C'l 1.66617E-01 2.08961E 0& 1.83193E-C1 5. 6254CE-02

9.98395E--Ol 1.72789E-01 2.11746E Ou 1.89941E-01 5.74282E-02

9.99609E-Cl 1.78960E-01 2.1447TE 36 1.96712E-01 5.859C6E-02

,.OOOOE )G 1.85131E-01 2.17153E OCc 2.G3493E-O1 5.9740OE-C2



Dstamtlai m fcr 91! (lb 1-5 90/00fo)

DISTANCE VELOCITY CENSITY PR ESSURF~ [NFRI I r)Ews

X/RADI US, CM/USEC 10,M/C C KL'CABAS (I',EG-tCCI/GP'

0.0 I146blE !I, 3.R0136E-"2 2oS2422t.-rZ
4*53543E-02 0. 1.146o1E 0O 3.80Ž136E- 'i2 2 . t24 2 2'-C- 2
9.G7081E-02 C. 1 *14&t) IE T"i 3,60136E-G2 2.82422!7-'%'-
1.36063E-01 0. 1.14661[ OZ 3.80136F-C.2 2.82422r--r(?
1*81411E-31 0. 1.l46colE Q~ 3.8(-,136E-C2 2. P,24 2 2F-t) 2
2*26?72E-OI. 0. 1.14661E OZ2 3.80136E-C2 2.92422E-,72
2.72126E-01 0. 1-14661C Ov 3.60136"5C2 2. -r~2E-~3.17480E-O1 0, 1.14661C ZD'- 3.AvCI36E-%'2 2.824i221$- .
3.42835E-01 0. 1.14661E 0-" 3.PIi0136E-r,2 2.824229:-C.2
4.08189E-10 1.14661E OC 3.80136r-0~2 2.82422E-02
4.53543E-01 1.716L61-04 1.14661[ 0ý 3.0013(6C-C2 2.82422F-C2
4.82184E-01 2.46944E-03 1.15583E 02- 3.SfI149F--.^2 2.85394F-'-2
5.10825E-C1l 6.35588E-33 1.17077E Zj 4 .;w3~WC L.95F~
5.39465E-:)l 1.021571-02 1.183871E Ou 4.17629E-/'-' 2.94732E-)2
5.6S106E--Dl 1.47906L-02 1*2,)966E 0,' 4.36576C-02 3.ýIMIPF-Cl
5.96?47E-01 1.97303E-32 1.23149F 30- 4.580'94E-02 3..07513[-02
6,25387E-01 2.4901*tE-02 1.255bl[1Ot 4.8219CE-)2 3.14905E-02
6.54028E-01 3.03746L-32 1.28194E 03 5..38989E-02 3.22947F-02
6.82669E-01 3.6118DE-02 1.3,)98bE 6iC 5.38t,63:-02 3.31653F-C2
7*11309E-01 4.21442E-02 1.339b2E 22 5.714'ThE-0? 3.41CE.,3E-(,2
7.399SOE-O1 4.84C80L-32 1.37133E OC 6.C78'3E-02 3.51237P-C2
7.69590E-01 5.51725E-02 1.40519E OL. 6.4835i3F-iQ2 3.62?ERF-C?
7.97231E-01 6.22664E-'2 1.44149E C"4 6.9364krv-L2 3.74287F-112
8.25872E-01 6.99216L-02 19480o9E OC 7.4477701---2 3.8748BLE-02
9.54512E-Dl 7.82267E-02 1.52345F 00 8.032hi0E-C2 4.241rC
8,83153E-01 8.74366E-02 1*51CdI3E 0'. 8.714 197E-0 2  ',.I1P7F~-'2
B.99565E-01 9.32657E-02 1.6.)073E 300 9*1639J;E-0.2 4.293,2P-r-2
9*14641E-01 9.9994SE-O2 1.63048[ 0(- 9.62536[-032 4.40C)Q5."-3f
9.28386E-01 1.04924E-31 1 o6b0(.,bE 00' 4.0'I- e5CF42F-C.?
9,40811E-01 1.1'4753E-01 1.68941E 0J 1C83!EC 4.61642F-'2
9.51934E-01 1.16582E-01 1.7185OF OC, 1.1c477SC-01 4.7249IF-02
9*617S0E-0l 1.22411E-01 1.74728k 01" 1.15814E-01 4.R3350F-r2
9*70383E-01 1.Z824%'Oe-Gl1 .77574E Q.1.20937t-:71 4.942^4F-:2
9o7?78lE'-01 1.34369E-01 1.80383E OC 1.26136r--,i 5*5'34FC2c
9984018E-01 1.39899E-01 1.831,2(. 0) 1.314'OE-O1 5.15?25F-C2
0,89142E-01 1.4572SE-01 1.85i879E Ot' 1.36721E-01 5.2&562F-C2
9,93207E-01 1.51557E-01 1.885b1E Oc 1.4?8w9L-,)l 5.37229r-"2
9*96267E-0l 1.57386k-Ol 14991197E 01, 1*47494E-.'f 5.4?PI 3F-L2
9,9S3R0E-01 1.63215E-01 I.93Tb4E O)u 1.529261-01 5.5P3ý'CF-C
9.99605E-01 1.69044E-%'1 1.96321E 0'. 1.58377E-01 5.689679F-C*.2
1,OOOOOE 00 1.74873E-01 1.988,6E 0,j 1.63836r-fa 5.78936[-()2
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Table 7

Detonation Wave for TNT (p 6 1.30 gm/cc)

DISTANCE VELOCITY CENSITY PRESSURL ENERGY UENS

X1RADIUS CMI/USEC GMw/CC MECAIBARS (MEG-CC)/GM

0. G. 1.02138E 00 2.990C 5E-02 2. 97234E-C2

4.53858E-02 0. 1.02138E 00 2.9901)5[-02 2.c;7234E-C2
9.07715E-02 0. 1.02138E 00 2.990j5E-02 2.97234F-02
1.36157E-01 0. 1.02138E 00 2.990:j5E-02 2.97234F-02
1.81543E-01 0. 1.02138E 00 2.990'5E-02 2.97234E-C2
2.26929E-01 0. 1.02138E 00 2.99005E-02 2.97234E-C2
2.72315E-01 0. 1.02138E 00 2.99005(-02 2.97234E-C2
3.177O0E-01 0. 1.02138E 00 2.990C5r-02 2.q7234E-C2
3.63086E-01 0. 1.02138E 00 2.99015F-02 2. 97234E-C2
4.08472E-01 0. 1.02138E 00 2.99005E-02 2.S7234[-02
4.53858E-01 4.92819[-05 1.02138F 00 2.99005E-02 2.97234F-C2
4.82401E-01 2.52551F-03 1.03098E 00 3.C6106E-02 2.999941-C2
5.10944E-01 5.93218E-03 1.04474E 00 3.164b6E-02 3.03970E-C2
5.39487E-01 9.86973E-03 1.06118E 00 3.29137E-02 3.08755F-02
5.68030E-01 1.41695[-02 1.07977E 00 3.43860E-02 3.142121-n2
5.96573E-01 1.87854E-02 1.10022E 00 3.60553E-02 3.2C276F-02
6.25116E-01 2.36693E-02 1.12239E OC 3.79229E-02 3.26914E-C2

6.53659E-01 2.88034[-02 1.14619E 00 3.99979L-02 3.34120F-02
6.82202E-01 3.41857E-02 1.17161E 0C 4.22921E-02 3.41905F-C2
7.10745E-01 3.98276E-02 1.19870E 00 4.48297E-02 3.5C3C2E-C2

7.39288E-01 4.57546L-02 1.22754E 00 4.76396E-92 3.59362E-02
7.67831E-01 5.20076E-02 1.25833E 00 5.07624E-02 3.69165E-C2
7.96374E-01 5.8648iE-02 1.29133E 0,0 5.42537E-02 3.79822F-02
8.24917E-01 6.57666E-02 1.32694E 00 5.81922E-02 3.91499F-02
8.53460E-01 7. '4985[-02 1.36576E O0 6.26922E-02 4.C4437E-C2
8.82003E-01 8.2056 9 L- 0 2  1.40873E 00 6.79313[-02 4.19C141-02

8.98544E-01 8.75274E-02 ,.43b13E 00 7.1414CE-02 4.2P4451-C2
9.13748E-01 9.29978E-02 1.46341E O0 7.49958E-02 4.37944E-02
-).27617E-01 9.84683E-02 1.49053E 00 7.86718E-02 4.47496F-02

9.40161E-01 1.03939E-01 1.51746E Ou 8.24330E-02 4.57084E-C2
9.51395E-01 1.09409E-01 1.54416E 00 8.62759E-02 4.66693E-02

9.61344E-01 1.14880E-01 1.57059E 00 9.01929E-02 4.76306F-02
9.70040E-01 1.20350E-0l 1.59672E 00 9.4 176'E-02 4.85909F-C2

9.77520E-01 1.25821E-01 1.62251E O0 9-82206E-02 4.95486r-02
9.83828E-01 1.31291L-01 1.64795E 00 1.02317C-01 5.05024[-02

9.89012E-01 1.36762E-01 1.67301E 00 1.06457E-01 5.145C8F-02

9.93125E-01 1.42232E-01 1.69765E 00 i.10635E-01 5.23926E-02
9.96222E-O 1.47702E-01 1.72187E 00 1.14842E-01 5.332661-02

9.98361E-01 1.53173E-01 1.74565E 00 1.19072E-01 5.42515E-C2
9.99600E-01 1.58643E-01 1.76896E 00 1.23316[-01 5.51663E-C2

1.O0000E 00 1.64114E-01 1.79180E 00 1.27567E-01 5.6C700E-C2
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Table 8

Detonation Wave for TNT (a a 1.14 gm/cc)

DISTANCE VELOCITY EENSITY PRESSURE ENERGY DENS
X/RADIUS CM/USEC GM/CC MEGABARS (MEG-CC)/GM

0. 0. 8.88453E-01 2.26994E-02 3.11573E-02
4.52631E-02 0. 8.88453E-0l 2.26994E-02 3.11573E-02

9.C5262E-02 0. 8.88453E-01 2.26994E-C2 3.11573E-C2
1.35789E-01 0. 8.88453E-01 2.26994E-02 3.11573F-62
1.81052E-01 0. 8.88453E-01 2.26994E-02 3.11573F-02
2.26316E-01 0. 8.88453E-01 2.269941-C2 3.11573E-C2
2.71579E-01 0. 8.88453E-01 Z.26994F-02 3.11573E-02
3.16R42E-01 0. 8.88453E-01 2.26994E-02 3.11573E-C2
3.62105E-01 0. 8.88453E-01 2.26994E-02 3.11573E-C2
4.07368E-01 0. 8.88453E-01 2.26994E-C2 3.11573E-02
4.52631E-01 8.34041L-05 8.88453E-01 2.26994E-02 3.11573E-C2
4.95417E-0I 3.96314[-03 9.03023E-O 2.35974E-02 3.15776E-C2
5.38202E-01 9.32355E-03 9.24314E-01 2.4951,)E-02 3.21966E-02
5.80988E-01 1.54886E-02 9.49978E-01 2.664RSE-C2 3.29503E-C2
6.23774E-01 2.22482E-02 9.79245E-01 2.86750E-02 3.38200E-C2
6.66560E-O0 2.95268E-02 1.01182E OC 3. C453E-02 3.4P8008E-C2
7.C9345E-01 3.73264E-02 1.04769E Ou 3.3800IF-02 3.5P97CE-02
7.52131E-01 4.57134C-02 1.08713E 00 3.70077E-02 3.71218E-C2
7.94917E-O1 5.48296[-02 1.13074E 00 4.07783E-(,2 3. 84999E-02
8.37703E-01 6.49320E-02 1.17961E 00 4.52926E-02 4.0C747F-C2
8.80488E-01 7.64985E-02 1.23582E 00 5.08731t-02 4.1S2561-02
8.93143E-01 8.03235E-02 1.25408E 00 5.28096E-02 4.25463E-02
9.05047E-01 8.41484E-02 1.27290E 00 5.4789.-'E-02 4.317C2E-02
9.I6197E-0I 8.79733[-02 1.29136E 00 5.68u95E-02 4.37967F-02
9.26595E-01 9.17982E-02 1.30975E 00 5.P8694E-02 4.44253E-C2
9.36243E-01 9.56232E-02 1.32804E OC 6.09666F-02 4.5C553E-02
9.45147E-01 q.94481E-02 1.34622E 00 6.30992E-02 4.56862E-C2
9.53316E-O1 1.03273E-01 1.36429E OC 6.526b1E-02 4.63173r-C2
9.60760E-01 1.07098E-01 1.38222E 00 6.746211-02 4.694P2F-02
9.67491E-O1 1.10923E-01 1.40003E 00 6.96819L-02 4.75782F-C2
9.73526E-01 1.147'.8E-0I 1.41761E O, ?.119402E-02 4.82668E-02
9.78880E-01 1.18573E-01 1.435061 OC 7.42167E-02 4.88334E-02
9.83573E-01 1.22398E-01 1.45233E 00 7.65149E-02 4.94577E-02
9.87625E-01 1.26223E-01 1.46940E O0 7.88324[-02 5.00789E-02
9.91058E-OI 1.30047E-01 1.48627E 00 8.11668E-02 5.06968F-02
9.93896E-01 1.33872[-01 1.50292E 00 8.35156E-02 5.13107E-02
9.96161E-01 1.37697E-01 1.51936E 00 8.58764E-02 5.19203F-02
9.97879E-01 1.41522E-01 1.53557E 00 8.82467E-02 5.25252F-C2
9.99074E-01 1.45347E-01 1.55155E 00 9.06240E-02 5.31249rI-';2
9.99773E-01 1.49172E-01 1.56729E 00 9.30061E-02 5.37191E-C2
1.O0000E 00 1.52997E-01 1.58278E OC 9.53905E-02 5.43073E-C2
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Table 9

Detonation Wave for TNT (p* 1.00 gMAC)

DISTANCE VELUCITY CEASNIfY PRCSSUIJVF ENERGY DENS

X/RADIUS CMIJSEC (;i/cc M LGAB AP (MES-CC)/GM

3. C. 7.72354:-'J 1.74753E-: 2 3.22656F-02
4.46409E-D2 1. 7.7235MF-I11 I.747:.1-C2 3.22656E-02
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