





30

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

SPIN-WAVE EFFECTS IN THE MAGNETIZATION REVERSAL
OF A THIN FERROMAGNETIC FILM

K. J. HARTE

Group 24

TECHNICAL REPORT 364

27 AUGUST 1964

LEXINGTON MASSACHUSETTS



SPIN-WAVE EFFECTS IN THE MAGNETIZATION REVERSAL
OF A THIN FERROMAGNETIC FILM*

ABSTRACT

The influence of spin woves on rapid ratotionol mognetizotion reversol (switching) in o thin ferromognetic
film is investigated by meons of o semiclossicol, continuum theory which includes externol, onisotropy,
exchange, ond mognetostotic (dipolor) fields. To simplify the mognetostotic field, o "thin-film opproxi-
motion" is introduced, in which the mognetizotion is reploced by its overoge over the film thickness.
From o stochostic model for the microstructure of o polycrystolline film, the equilibrium mognetizotion
configurotion _A7\(_r’) is derived. Plonor fluctuotions of M from its meon direction Fn'o ore found which
hove the charocteristics of "longitudinol ripple," nomely, wove vectors K porollel to Fn’o ond wovelengths
greoter thon on exchange cutoff 2n)\e ~ 10-4 cm. Campanents with wove vectors in directions other thon
ir_n’° ore ottenuoted by mognetostotic forces, while exchange forces ottenuote components with wove-
lengths less than 2n)\e. The magnetizotion dispersion § [rms ongulor deviotion of M('r’) from r_n’O] is olso
colculoted. A brief discussion is given of the uniform rototionol switching mode (without spin woves),
with particulor ottention to undamped ond overdamped cases. From the spin-wove equotions of motion,
the spectrum applicable to a parollel resononce situotion (externol field in the film plone) is first ob-
toined, ond long-wovelength mognetostotic distortion is noted. Then the tronsient spin-wove response is
colculoted for o switching field H suddenly turnedon ot t = 0. It is found that if r_n’o(t) rototes foster than
longitudinal spin woves [l_:” r_n’o(O)] con relox, the mognetizotion goes through a transient stote of high
mognetostotic energy, ond o spin-wove reaction torque (proportional to §7) is exerted on the uniform
mode. If Hp is less than o critical field Hpc' the reaction torque at some point in the switching process
is greoter than the reversing torque and the uniform mode becomes locked; rototional reversal connot
proceed until initiolly longitudinol spin woves hove relaxed into companents propogoting in the inston-
toneous direction of Fn’o(f). Such o highly damped process is suggestive of the noncoherent reversol mode
observed in thin films. For Hp >Hpc' reversal takes place by o modified uniform rototion; Hpc may
therefore be identified as the threshold field for coherent rototion. The calculoted dependence of H con
o bios field compores fovorobly with experiment. The &-dependence, if & con be meosured independ-

ently, should provide o cruciol test of the theory.
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SPIN-WAVE EFFECTS IN THE MAGNETIZATION REVERSAL
OF A THIN FERROMAGNETIC FILM

I. INTRODUCTION

A. MAGNETIZATION REVERSAL AND THIN FILMS:

EXPERIMENTAL BACKGROUND

In the past decade considerable interest has arisen in the phenomenon of magnetization
reversal in ferromagnetic media, i.e., an irreversible change in the direction of magnctization
following the application of a pulse magnetic field. Although this intercst received its initial
impetus from the purely practical possibility of ferromagnetic storage elements for high-speed
computers, it soon became apparent that the physical processes involved were either imperfectly
understood or else completely unknown. The basic distinction between magnetization reversal,
or switching, on the one hand, and various magnetic resonance phenomena, which are generally
much better understood, on the other, is that the former involveslarge displacements of the mag-
netization M from its equilibrium direction. How M returns to equilibrium is the problem to
which we shall devote ourselves in this work.

In particular, we shall bc concerncd with magnetization reversal in thin films, for the rc-
sultant theoretical simplicity seems well worth the loss in generality. Furthermore, experimental
results with thin films tend to be consistent and unambiguous, in contrast to the somewhat confused
situation with respect to switching in bulk ferromagnets. Among the significant properties of
thin films are: (a) the shape demagnetizing field confines M to the film plane or nearly so (in
the absence of a strong field or easy axis normal to the plane); (b) eddy-current effects in ferro-
magnctic metals may be eliminated by choosing a film thickness much less than the skin depth;
(c) the equilibrium magnetic configuration may be directly observed since it is invariably the
same as the surface configuration; (d) the typically small crystallite size (~300 10\) of polycrys-
tallinc films, in conjunction with (a), results in a remanent state which is very nearly single-
domain; (e) single-crystal films of various ferromagnetic metals and nonmetals may be studied
(these are usually epitaxially grown); (f) low anisotropy (a few oersteds) is readily obtained,
thus allowing magnetization reversal to take place in low, fast-rise fields.

Since the early experiments of Blois,1 many workers have studied pulse switching in thin
films,z_10 usually of Permalloy (Ni-Fe alloy near the zero magnetostriction 0.83-0.17 com-
position), and possessing uniaxial anisotropy with easy axis in the film plane. In very idealized
form, these experiments have been performed in the following manner (see the above references

for details, especially Refs.5 and 9). A fast rise-time (£10'9

sec) pulse field ﬁp of a few oer-
steds magnitude is applied in the film plane at an obtuse angle to the mean magnetization r_ﬁo of

an initially single-domain film.T The switching time ty and other information on the reversal

- -
T Many af the early experiments were perfarmed with Hp ontiparallel ta mq, resulting aften in bi-directianal re-
versal, with its own peculior characteristics. We shall exclude this limiting case from aur treatment.
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process is obtained from the voltage induced in a pickup loop with axis parallel to H . This
voltage is termed the longitudinal switching signal; further information may be obtained from
the transverse switching signal, induced in an orthogonal pickup loop with axis also in the film
plane.T

The main results of these experiments are conveniently displayed in the form of switching
curves, in which inverse switching time is plotted as a function of the pulse field. Figure 1
shows a typical thin-film switching curve; we note the presence of three distinct regions (first
observed by Olson and Pohms). The reversal process in region 1 (low speed: tg 2 10_6sec)
has been identified as the nucleation of reverse domains and subsequent domain-wall motion.
The threshold field for this process, H p1’ is the wall coercive force; a fairly successful model
for domain-wall switching has been prOposed by Conger and Essig. 11 We shall not discuss
region 1 further since the physical processes involved are well understood.

We proceed now to region 3 (high speed: tg < 10_8 sec), where the reversal process is
clearly a coherent, or nearly coherent, rotation of M. A phenomenological theory of such a
process, based on a damped gyromagnetic equation such as that proposed by Landau and
Lifshitz,12 has been found by Smith,4 and by Olson and Pohm,5 to describe switching in region 3
fairly well. However, there are two difficulties. First, and most disturbing, the threshold
field H

threshold Hpt for a uniformly magnetized uniaxial film. Second, the damping of high-speed

58 is always found to be greater (by a factor ~1.5) than the theoretical Stoner-Wohlfarth13

reversal is found to be 3 or 4 times the intrinsic damping, as obtained from low-power ferro-
magnetic resonance linewidthm’M’15 or decay of free oscillations of the magnetization.w'14
Smith and Harte15 have suggested that the discrepancy in the threshold field may be caused
by dispersion in the direction and amplitude of the uniaxial anisotropy.“)’17 By assuming that
those regions of a film with the highest threshold control coherent rotation, they have been able
to account for observed thresholds with fairly plausible values of anisotropy dispersion. However,
their assumption is difficult to justify, since the effective anisotropy in coherent rotation of M
should be the mean, or close to it. Furthermore, interactions between regions were neglected.
The discrepancy in damping, for which no explanation exists, implies that there is a loss

mechanism operative in (large-angle) switching that is not present in (small-angle) resonance.

t The exoct meoning of “switching time" vories somewhot from worker to worker ond moy depend upon the noture
of the reversal process. For present purposes, t; need not be precisely defined and moy just be considered os
some meosure of the durotion of the longitudinol switching signol.



It should now be clear that even such a conceptually simple process as coherent domain rotation
is only imperfectly understood.
h . ' -8 - . : :
Region 2 (intermediate speed: 10~ < ty < 10 6) has baffled workers since its dlb‘(‘.OV(—’.r'yZ's

and the physical processes involved are not known. The threshold field HpZ’ however, has been
4,5

pt’

vation of a sizable transverse switching signal, implies that reversal takes place at least partially

found to coincide with the theoretical rotational threshold H This, in addition to the obser-
by a rotational mechanism. However, switching in region 2 is about twenty times slower than
that predicted by the above-mentioned theory of coherent reversal. Humphrey6 has suggested
that reversal starts by simple coherent rotation but quickly breaks up into what he has termed
noncoherent rotation. Although this picture is consistent with all experimental evidence, in-
cluding the shape of the longitudinal switching signal (an initial spike followed by a long tails),
a physical model was lacking, and it was not even clear what precipitated the breakup.

Humphrey and Gyorgy8 have obtained a phenomenological description of noncoherent rotc..on
based on the Gilbert18 modification of the Landau-Lifshitz equation with damping about 100 times

19has

the intrinsic damping, but no explanation of this extraordinarily large loss was given. Harte
proposed a model of noncoherent rotation based on angular anisotropy dispersion, but magneto-
static interactions were neglected and the remaining effects are far too small to account for the
large loss. Smith and Harte15 have suggested that intermediate-speed switching may take place
by a sequential process, observed quasistatically by Smith,zo which they termed labyrinth propa-
gation. (An incipient labyrinth may be seen in the photograph in Fig. 2 as a reverse domain which
has propagated from the lower right film edge.) Another possibility is a partial rotation process,
observed quasistatically by Methfessel, et al.21 However, no attempt was made in either case

to calculate the dynamic characteristics of such processes, and it is not known how valid these

models are.
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Fig. 2. Magnetization ripple in a thin film. Tap center: defacused electran micragraph
af a 250-A Permollay film (courtesy of M.S. Cahen) showing langitudinal ripple (fine
structure) and large-angle domain walls (heavy black ar white lines). Tap left and right:
schematic illustratian of longitudinal and transverse ripple, respectively. Bottom: anisat-
rapy model showing randomly varying and uniform uniaxial anisotrapies.



In summary, the unsolved problems in thin-film switching are: (a) accounting for the ele-
vated coherent rotational threshold; (b) discovering the reason for breakup of coherent rotation in
region 2; (c) finding the origin of the anomalous damping in coherent rotation; and (d) uncovcring
the physical mechanism of noncoherent rotation. The theory we develop provides answers to (a)
and (b), provides a qualitative answer to (c) — further calculation should result in a quantitative
comparison of theory and experiment on this point, and leads to a suggestion for (d) which, although

plausible, cannot be fairly judged without additional development of the model.

B. THEORETICAL FOUNDATION

Our analysis of magnetization reversal is based on a semiclassical, continuum thcory in
which the quantum mechanical spin-density operator of the ferromagnectic electrons is replaced
by a constant times a classical vector field 1\7[(-1'., t) — the magnetic moment density or magnetiza-
tion. This replacement is possible provided the wavelengths of all significant disturbances of
the spin system are much greater than the lattice constant and provided wc are not too near the
Curie temperature. For a thorough discussion of the validity of this semiclassical theory, the
reader is referred to a paper by Herring and Kittel.22 We assume that all fluctuations of 1\7[(?, t)
from its spatial average r-ﬁo(t) are small, i.e., that the sample is nearly a single domain. This

condition we write as

|6M| << M, (I-1a)
where
M(F, 1) = m (1) + 6M(F, 1) (I-1b)
and
M, = M| . (I-1¢)

The fluctuations 6M will be assumed constant across the film thickness, i.c., with wave
vectors K in the film plane. However, generalization to three-dimensional f(.-space is not
difficult so that it may be possible to generalize the theory to include reversal processes in
bulk ferromagnets.

As suggested phenomenologically by Landau and Lifshitz,12 and later established on a very

general basis by Herring and Kittel,22 the equation of motion for M may be written in the form

M . o
yM He

= ¢ + damping term (1-2)

f

where y is the absolute value of the gyromagnetic ratio and I-{.eff(-r., t) is an effective magnetic
field which, for our purposes, consists of an exchange field ﬁe’ a magnetostatic field ﬁm, an

effective anisotropy field ﬁa’ and an external field H,. In addition, ﬁe includes the effects of

magnetostriction and finite conductivity. In the theo:y we shall developf,f damping processes are
of secondary importance; therefore the form of the damping term in (I-2) is not crucial to our
work. In Sec.IV we shall briefly discuss the various damping terms which have been proposed,
but for most of this work damping will be neglected.

The constant y is given by

y=— B (1-3)



where e and m are the clectronic charge and mass, c is the velocity of light, and the spectro-
scopic splitting factor g is slightly greater than 2 due to incomplete quenching of orbital angular
momentum.

The exchange field ﬁe’ which arises from the short-range interactions responsible for

ferromagnetism, has been shown by Herring and Kittel22 to be given, for a cubic lattice, by

i =—2A? v*M (1-4)
RV
[o]

where A is an exchange constant (in erg/cm). It should be noted that ﬁe, as given by (I-4), is
independent of atomic model and follows from the energy expression of lowest order in the spatial
derivatives of M allowed by the symmetry of the lattice, and invariant with respect to spin ro-
tations and inversions.

The magnetostatic ficld ﬁm has its origin in dipole-dipole interactions and in our continuum

thcory may be found from Maxwell's magnetostatic equations

-

vH + 47l) = 0 (I-5a)

uvxfH =0 . (I-5b)
m

We devote Sec. II to the solution of (I-5a, b) with boundary conditions appropriate to thin-film
geometry.

Anisotropy forces in thin polycrystalline films are of two general types, uniform and local.
A uniform uniaxial anisotropy is usually found to be induced along the magnetization direction
during film deposition.1 Although the physical origins of this anisotropy are not complctely under-
stood (for a discussion of these the reader is rcferred to a paper by Smithzo), a satisfactory

phenomcnological description may be obtained from the energy expression

B =k M 2 T2 (1-6)
a o 0 X

where -;x is a unit vector along the easy axis and KO is a positive constant. Local anisotropy
forces arise from inhomogeneities and will be discussed in the introduction to Sec. IIl. Magneto-
strictive effects, whether uniform or local, will be included in the effective anisotropy field.

External fields may be steady or time-varying and entail no conceptual problems. Risec
timcs of the order of 10-10 sec for a pulse field of a few oersteds are now readily available,
and we shall assume that pulse switching fields may be represented by step functions.

The primary effect of finite conductivity in metallic films is eddy-current damping. Smich4
has shown that the mean eddy-current contribution to the effective damping « [see (IV-3)] is given
by

41rLZw
m

P TR (1I-7)

where L is the half-thickness of the film, p is the resistivity, and W, T 41rMoy. For a
Permalloy film withp = 2 X 104 abohm cm, o, is equal to the intrinsic damping of about 10-2

for L = 1.6 X10 " cm. Thus, unless the film thickness is greater than about 2500[0\, eddy cur-
rents may be neglected. Where necessary, « will be assumed to include o, but we shall not

be conccrned explicitly with this effect in the theory to follow.



We remark here that we shall find it useful to introduce the concept of a "typical Permalloy
film" (TPF), the properties of which are listed in Appendix A. This we do mainly for the purpose
of numerical estimates of our results, but a few of the approximations we use would have to be

altered in order to apply our theory to a film with parameters drastically different from a TPF.



II. MAGNETOSTATIC FIELD OF A NONUNIFORMLY
MAGNETIZED THIN FILM

A fundamental source of difficulty in any magnetic problem involving fluctuations of the
magnetization M(T) on a scale comparable to a sample dimension is the magnctostatic (dipole-
dipole) interaction. This Iong range force leads to a field H (r) which depends not only on
1\71(;:) but also on M throughout the sample.Jr In conjunction with other forces such as exchange
and anisotropy, it usually renders static calculations very difficult (only a few exactly soluble
cases are known24) and dynamic calculations intractable. Thin-film geometry, however,
greatly simplifies the magnetostatic problem, enabling us to find an approximate solution for
ﬁ(;) in a form which is very convenient for both static and dynamic situations.

We calculate this field (also called the stray, dipolar, or demagnetizing field) from
Maxwell's magnetostatic equations, for a planar film of thickness 2L with an arbitrary magnet-
ization distribution 1\71(;). A rectangular coordinate system is used with film boundaries given
by x = :tiLX, y = :tLy, and z = L. (z-axis normal to film plane). We eventually go to the limit
Lx,yL— -+ «, so that edge effects may be ignored, i.e., the field from poles on the film_.rinlis
neglected. For convcnience in this section, we introduce a normalized position vector ¢ = r/L =
(¢,n,t), and use the notations v = (8/8¢, 8/0n, 8/0¢) and f'(¢) = af/dr. Maxwell's magnetostatic

equations are given by (I-5a, b):

V. Bleg) =0 (I1-1a)

vx H(s) =0 (I1-1b)
where

B=H+4rM . (1I-1c)

From (II-1a) and (II-1b) we have the boundary conditions
B- —fz continuous at ¢ = #1 (II-2a)

= 4
it

X b continuous at ¢ = %1 (II-2b)

—

where iZ is a unit vector in the z-direction. Also, we require

lim H(g) =0 . (11-3)
[£]-=e

We write M in the form

— -

Ma) = Y mo(0) e —1gergt
K
e
=0 : le] >1 (11-4)

1 In this section we omit the subscript on Hm for brevity.



where

n n
e e X D =
k =kL = 7rL<L 2 0> (nx, ny =0,+1,%2,...) . (11-5)
X i
From (II-1b}, f=- v¢, so that the potential ¢>(E) satisfies
R F I DU 1
V(0 = ary - M=ar ), (I - m_ (1) +id - m_(0)]e -1<r<1
K K
K
=10 le] >1 . (11-6)
The problem now consists of solving (II-6) with the boundary conditions
(47r_i’z 5 L= o) continuous (II-7a)
r=%1
90 3¢ :
; continuous (II-7b)
ax r=+1 9y r=+1
and
lim ¢ = const. (I1-7¢)
Le] =

We adopt a description of the potential ¢ of the form (II-4):

¢(@) = ), o_(1) T _dekicd
K
K
= Z ¢i(§) s ¢+ for ¢ > 1 (11-8)
K
x ¢ fort <-—1
Then from (II-6) and (II-8)
—kZo_(r) + ¢" (£) = 4np_(2) (11-9a)
K K K
k%% (1) + 9T (1) = 0 (11-9b)
K K
where x = |x | and
pL(t) =1, - mi () +ix - m_(2) (I1-10)
K K K

(the volume pole density). The transformed boundary conditions are

ari - m_(£1) — ¢! (21) = — ¢ (21) )
2 K K K
¢_ (1) = ¢>_f(¢1) (II-11b)
K K
lim ¢>j(.t) = const. (IT-11c)

—+t o0 K



For x = 0, the solutions are easily found to be

r
¢o = 4g i, m (v) dv

0

i 1
<¢>0=41r1z m () dt

. -1
¢O=4n1z~\g‘ m () dt

to within an arbitrary additive constant.

q

i p_(v) sinh [x (£ —v)] dv
K

+ B, e_K'r +

=
K K K

and from (II-9b) and (II-11c)

+ +* Fx
¢ =C_ e ¢
I I

Using the boundary conditions (II-11a) and (II-11b), the constants A_, B

ANC,)

K K

1
A =_HS‘ p_tr) e dar+ & T . m_(1)
g K iy K z =
I3 0 «x 13
2 b e 2r -k =
Bl Gl — S‘ p_(r) e de — =% e7™"i . m_(-1)
AT K = x Zi
X 1 3 3
+ 2m ! +xt 2m=% — x - FK
C_,=———S‘ p_(t) e g s ==l - m_(1) e " —m_(-1) e
x = -1 k K x
so that
1 1
$,_g] = —=3 \g p (v)e-Klu"tIdu—’i .m(u)e"'“”] l
L5 e s o o B
K -1 x 3 v=-1
and
+ PA:e 1 + Ky - — + Ky g Fxi
¢(t)=——\g‘ p_(w)e dv —]i_ .- m_(v)e e
= 3 - Z =,
3 -1 3 pv=-1

(II-12b)

(II-12b)

(II-12c¢)

For x # 0, the solution to (II-9a) is

(II-13a)

(II-13b)

and Cf are found to be
K

(II-14a)

(II-14b)

A general answer to the question "Given the magnetization distribution in a thin film, what is

the magnetostatic field?" is provided by (II-14a, b), since

H= ) boto) e %=—ye
e K
K
with
h_(£) = —ikg_ () — 1_¢! (£)
K K K

(II-15a)

(II-15Db)



inside the film, and the analogous expression outside the film. Howecver, in thc cases wc shall
be dealing with, M(c) is not given but must be determined statically (by eithcr minimizing the

total energy or requiring that the torque :fcff = Mx ﬁeff vanish everywhere) or dynamically

(from the equation of motion (I-2) for M, namely oM/ ot = —yTeff). Using the potential (II-14a)

will then lead to an integro-differential equation for ﬁ;_’(g) which might be solved by approximate
K

methods. However, a much simpler procedure — one which is readily applicable to a large class
of problems and through which considerable physical insight can be obtained — is to assume that

l’;l.__ is indepcndent of z. This assumption, which we call the thin-film approximation (TFA), is
K

good providing the Fourier componcnts r—ﬁ__(g) are slowly varying across the film thickness. It
K

will be shown later that for thin enough films, components for which the TFA is not appropriate
have very high exchange energies and are, therefore, only weakly excited.
Using the TFA in (II-14a, b), we find

B () = %’ [— % (1 —e™™ coshkz) + TZ e™ sinhkr|. m_ (I1-16a)
K K
£S5 _ 4 ¥kl . ___. : - — "

¢ (&) = == @ smhx( £ lz)' m__ . (II-16Db)

K

The Fourier components of the magnetostatic field are then found from (II-12a-c), (II-15a, b},

and (II-16a, b} to be

T =—4rii - m (I1-17a)
(o] "z o]

and

h (¢) = —41rii [L (1 —e ™ coshkt) +ii e " sinh xg]
x |« z

(x£0)
+1 e"‘(ii sinhxz + 1 coshxt)l. m_ (I1-17b)
z K z 5
inside the film, and
hE¥-o0 (I1-17¢)
o
-+ FxE . : ;’ s =% y : T =1 "
h (¢) =—dn e sinh K[—;(? + 11Z)+ i, (ﬂ:l = 12)] : m;_ (I1-174d)
K

above and below the film. Note that (II-17a) and (II-17c¢) are also valid exactly, i.e., for
m_ = m (2).
The field inside the film is of primary interest, since only this field contributes to the

torque on M. The TFA magnetostatic torque may be expanded in a Fourier series

T(3) = Mg, n) x i) = ), T.(e) °° (11-18a)

—

K

10




where the components of T are given by

t(0)=m Xk + ) m _ XH(2) (11-18b)
= -k K
xkF0
(0 =m xh () +m XxE + ) m_ _ XK () . (II-18c)
K X K K -k x!

PLE TR
In keeping with the TFA, it is the ¢-average of the torque components which is of physical

interest. Since the H_»(_t) are the only {-dependent factors, we may replace H»(?) by
K K

1

— 1 —

ke, = —y h GE) €8 - (11-19)
-1 x

Then from (II-17b) we have our final result for the magnetostatic field components

e

R, = —4n 50 X+ 3T xte)| - m_ (11-20a)
K K XK
where
-1 -k .
x(k) =x e " sinhk (I1-20Db)
X(x) = 1 —x(e) . (11-20¢)

Note that since x(0) = 1 and ;(0) = 0, (II-20a) holds for % =0 also.

We next examine H_’ in the limits x >> 1 (wavelength small compared with film thickness)

K
and k << 1 (wavelength long compared with film thickness). For the first limit,

x(x) = Sh 4 (r=2 1
so that

~ 1

Yo di= b . 20 (II-21b)
and

. e S A

h_ =~—4n 5%} el SO0 0 (e >>1) . (II-21c)

K K K

The first term of (II-21c) is the usual infinite medium magnetostatic field from volume poles and
follows immediately from (II-1a-c) with periodic boundary conditions. The second term is a
small correction due to the fact that surface poles do not quite cancel themselves out for a film
of finite thickness.

For the second limit,

B (I1-22a)

1]
-

|
x
+

Wt

x
+

x(x)

o) B (11-22b)
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so that

-

o e =
h_; = 47r(T + 1 12) m; (k << 1) . (II-22¢)

The first term of (II-22¢), written with non-normalized wave vector k = :/L, is
h_=-4rL 2% . m . (I11-23)
k

This is just the planar magnetostatic field in the long wavelength limit, calculated by some
authors.26 It is the infinite medium magnetostatic field from volume poles attenuated by a
factor kL. << 1; the reason for this attenuation is simply the absencc of volume poles from the
regions above and below the film. The second term in (II-22c) is the normal demagnatizing
field from surface poles.

To summarize, the magnetostatic field components are given in the TFA by

ho = —4ri 1z . m0 (II-24a)
- BT oo =
h = —4n ~— x (kL) + 1, 1zx(kL) - om_ (II-24Db)
k k k
where
A =h + ) hB_ekT (I1-24c)
© K
k#£0

and x and X are given by (iI-20b) and (II-20c). Equation (II-24a) is the uniform demagnetizing
field of an oblate spheriod in the zero thickness limit. The first term in (II-24b) is from
volume poles, with an attenuation factor ; due to the presence of finite boundaries. The second
term in (II-24b) is from the surface poles, with an attenuation factor x due to finite wavelength
and therefore some cancellation of these poles. We now have the thin-film magnetostatic

field in a simple form which may be used to calculate the static magnetization configuration
(Sec. III) and interactions in large-angle magnetization rotations (Sec. V), and as a by-product
we can also obtain the planar mode spectrum (including exchange fields) for all wavelengths
(Sec. V).
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III. STATIC EQUILIBRIUM: MAGNETIZATION RIPPLE

A. INTRODUCTION: EXPERIMENTAL BACKGROUND

To find the transient response to an external field of the magnetization }\71(;, t) of aferromagnet,
the initial state Iﬁ(; 0) must be known, which in our formulation means speeifying the initial val-

ues of the Fourier components x_ﬁ__(t) for all K. The most important sources of disturbances
k
m_(0) (k # 0) are thermal agitation and inhomogeneities. Thermally excited spin waves, which
k
are present in any ferromagnet at a finite temperature, and whieh result in the well-known de-

crease of saturation magnetization Mo with inereasing temperature, will be important dynami-
cally if they become unstable, However, it will be shown in Sec. V that while such instabilities
do occur,27 their growth times are always longer than the time for coherent switehing, so that
they have no significant first order effects.

Inhomogeneities are present to some extent in any ferromagnetic erystal. However, in a
polycrystalline sample, in which we are intercsted in this work, particularly large dispersive
effects are to be expected, both from crystalline anisotropy forces and from strains between

crystallites. In this section we calculate the equilibrium dispersion-induced components xﬁﬁa(O)

[henceforth the argument (0) will be dropped] for a polyerystalline thin film (<20001°\.), repre-
sented by a two-dimensional model. (The model, however, is readily capable of extension to
three dimensions to treat bulk polyerystals and thiek films.)

The solutions we will find are not only of importance in specifying initial values in the
dynamie problem, but are also of interest in their own right. Before proceeding with the model,
it will be useful to review the pertinent experimental evidence coneerning the equilibrium mag-
netization configuration in thin films. In 1960 Fuller and Hale,28 using a defocused electron
mieroscope, observed the Lorentz deflection of electrons by the magnetic induetion field
B~ 4wﬁ(;), and discovered a wave-like magnetic fine strueture which they ecalled magnetiza-

29,30
and an ex-

tion ripple. This discovery has been confirmed by subsequent investigators,
ample is shown in Fig. 2.

Fuller and Hale deseribed two basic ripple components: longitudinal (LMR), in which
M = M(x) (k [ _i’x), and lateral or transverse (TMR), in which M = ]V[(y) (k il Ty)’ where the
mean magnetization m lies along the x-axis of a Cartesian coordinate system with the z-axis
normal to the film plane. These two ripple components are shown schematieally in Fig. 2. Since
the volume pole density is very small for LMR (V + M ~ 0) but not for TMR (V - M # 0), and
since the two are equivalent with respect to exchange, anisotropy, and Zeeman foreces, the main
contribution to the magnetization ripple should be LMR. Fuller and Hale thus interpreted the
fine-struecture lines they observed as the loci of constant ]VT, orthogonal to 1?10. They found a
mean wavelength of ~2 X 10" era and a mean amplitude of ~10"2 radian,

Fuchs29 has suggested that the origin of ripple is to be found in erystalline anisotropy
forces, which vary randomly in direction from erystallite to erystallite (crystallite size
':10_6 em; erystalline anisotropy energy ~1 O4 erg/cm3). The magnetization does not follow these
loeal wanderings of the direetion of minimum anisotropy energy but, because of exchange ecoupling,
which tends to straighten the path of IVT, follows the mean easy axis averaged over a number of
crystallites. For TMR, this number is greatly increased by magnetostatic coupling, so that the
amplitude of TMR is much less than that of LMR. The mean magnctization direction is deter-

mined by the uniaxial M-induced anisotropy and the external field.
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In addition to crystalline anisotropy, there will also be, as just mentioned, random local
magnetostrictive forces due to inhomogcneous strains between crystallites (or clumps of crys-
tallites), Stresses (for cxample, surface tension) betwcen adjacent crystallites on the substrate
to which the film is bonded result in planar strains; z-directcd stresses, on the other hand, may
be for the most part relieved, since the free upper surface of the film imposes no comparable
constraint. Thus we expcct the local magnetostrictive anisotropy axes to lie nearly in the film
plane and to be randomly oriented in this plane. Experimental evidence for such an anisotropy
is provided by oblique-incidence Permalloy films,31 which are deposited by a vapor beam at a
fixed angle 6, to the substrate normal. (In normal films 6, = 0.) In such films, crystallites
form chains pcrpendicular to the incident beam by means of a self-shadowing mechanism, so
that strain axes are not random but tend to lie along thesc chains. As a result of both aniso-
tropic strain and shape anisotropy of the chains, these films possess a large over-all uniaxial
anisotropy K ~10° erg/cm3, depending on e. and film composition. Shape cffects may be sepa-
ratcd from stram effects by considering the compos1t10na1 dependence of K from this, one
may cstimate random anisotropy energy in normal films of ~5 X 10 erg/cm for a TPF.

The relative roles played by crystalline and strain anisotropies in inducing magnetization
ripple have not been firmly established experimentally. In what follows we shall neglect crys-
talline anisotropy since strain effects are probably greater and strain anisotropy is easier to
handlc analytically. Howevcr, consideration of crystalline anisotropy would not alter the results
in any significant qualitative way. We assume a random local magnetostrictive anisotropy which
is planar, uniaxial, and constant across the film thickness and, using a simple model for a poly-

crystalline film, procecd to calculate thc ripple spectrum in static equilibrium.

B. RANDOM ANISOTROPY MODEL

Our model for a film is a planar array of N right cylindrical cells of height 2L (= film
thickness) and cross-sectional areas am(m =1,2,...N). The a  are assumed to be random
variables with ensemble average a, and thc cross-sectional shapes are also assumed to vary
randomly. By this we mean precisely that the intersections of any line in the film plane with
the cell boundaries occur at random (uncorrelated) intervals along the line (see Fig. 3).

3-24-5580

Fig. 3. Rondom cell model showing
construction used to find outocorre-
lotion function c°(7).

Y
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Furthermore, the mean number of sueh intervals per unit length, rc;i, is assumed to be the same
for all lines in the plane; i.e., cell shapes are on the average isotropie and cell sizes and shapes

are on the average homogeneous. The film plane is of area S = Na, and we shall eventually pass

to the limit N - « (a fixed).

Each cell has a magnetie anisotropy which is the sum of two terms: a uniaxial M-induced
anisotropy, eommon to all eells, with energy density KO and easy axis the x-axis, and a uniaxial
strain-indueed anisotropy with energy density Kim and axis in the film plane at an angle o to
the x-axis, where @, may take on any value between —7/2 and /2 with equal probability. We
further assume zero eorrelation among the quantities an K - and B and that the variations

1
in Kim and ¢ are uncorrelated from one eell to the next. This addition of uniform and random

uniaxial anisortr;opies has been used before to explain some film properties,:”2 but a model was
laeking and exchange and magnetostatie interactions were negleeted; in the present work inter-
aetions play a vital role. Rother33 has analyzed a model similar to ours; however, in his model,
KO = 0 and the eells have equal square eross seetions. He has ineluded the effeets of exchange
interactions, and magnetostatic interactions as a perturbation, but his results are quite different
from ours for reasons whieh will be made clear at the end of this seetion.

The anisotropy energy density at any point in the film is given by an obvious generalization
of (I-6)
{k_[M(r)- T

X]2 + K, () [M(r) - a(r )% (IT1-1)

where a(r) is a unit veetor at angle o to the x-axis; for T in the m®P eell, Ki(?) = Ky, and

a(r) = o . The anisotropy field is then

ooy E. =2M 2K (T.-MT_- MM 5T - M+K,(@ -Ma - MM~ %) a - M
a M 2 o o X X o) X 1 o
so that the anisotropy torque is given by
T =MxH =2M2Mx(KT. 7. +Kaa) M . (111-2)
a a o o X 1

Since we shall be interested only in the ease of external fields in the film plane, M must lie in
this plane in statie equilibrium? and is, therefore, determined by the angle (p(F) between M and
the x-axis. Equation (III-2) then becomes

—

T, =1, [-K, sin2¢ + K, sin 20a —9)] . (III-2-1)

4l

We next separate the spatially varying part of ¢, writing

olr) = ¢t sp(r) (I1I-3a)
where
0y =<o(®) = 5 g o(T) d%F (II1-3b)
and from (I-1a)
6] <<1 . (III-3c)

=
t This moy not be true if there is a strong eosy oxis normol to the film plone; but in thot cose, deviotions of M
from its meon direction ore lorge 34 ond thus beyond the scope of this lineorized treotment.

15



Inserting (III-3a) in (III-2-1) and dropping terms of order (6<p)2 and higher, we find

T’a = TZ {-K_ sin2¢ + P(r) — 260(T) (K, cos2¢_ + QT N} (I11-4)

where
P(T) = K,(r) sin2 {a(r) - ¢ ] (I11-5a)
Q(r) = K,(r) cos2 [a(r) -9 . (III-5b)

The functions P and Q contain all effects of the random anisotropy field. P may be thought of

as a random perturbing force on 6¢, and Q as a random restoring force. The ensemble aver-
ages of these functions vanish, since

B Ky st(a—-<p0)

"
N

4 Sin2(e — <p0) (since Ky and o oare uncorrelated)
1 57{/2
— sin2(e — ¢ )da =0

17 2 o

and similarly for Q.

We now expand 6¢, P, and Q in Fourier series

sp(Ty= ) oK' T (III-6a)
g A
=0 3 1}—{.;
P(X)= ) p, e (III-6b)
0 k
- ) ik-r
QT)=), q_ e (III-6c)
l—; k

where the wave vector K takes on values imposed by periodic boundary conditions at the film

edge x = iLX, y = iLy:

n n
= X Y 5 =
g - n(L_X, . o) g i 2 0, 01 (I11-7)

with the condition

ki << 1

(f = lattice constant) insuring the validity of our continuum treatment of the magnetization. The
components of (III-4) then become

(T, = 1Z<—KO sin2g_ +p_ -2 »Z q _>'<p__|> (LII-8a)
kK'#0  ~
(t_»)a = 1Z<p—’~ZKO cos 2<p0<p_’—2 Z q_, _»(p_») . (III-8b)
k k — k -k' 1
k'#0
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These expressions will be eombined with the remaining torques aeting on M (exehange, mag-

netostatie, and Zeeman), to determine the ripple eomponents ¢ . In partieular, we will be
k

interested in the "power" spectrum |<p__|2, and to find this ensemble average will require the
k

power speetrum lf__l 2 of a random funetion F of the form
k

-

F(r) = Fm for r in mth ecll (III-9a)

s

F(r)=0 (III-9b)
where F may be P or Q, and

ik (K in film plane) . (IlI-9¢)

F(;)=Zf_.e
E k

To aceomplish this we first find the autoeorrelation function

e (F) = %g Bl g ) B aor (111-10)

by a generalization of a method duc to Kcnr‘ick.35 Consider a straight line in thc film planc de-
fined by the veetor ?, with origin at an arbitrary point r' (sce Fig. 3). We first determine the
probability PO(F, T') that no eell boundary interseets this line between r' and ' +r. From
homogeneity and isotropy, respectively, Po(?, r') = Po(;) = Po(r). Now the probability that
there are no cell boundaries between 0 and r + Ar is cqual to thc probability that there are none
between 0 and r, multiplied by the probability that therc are none in the interval Ar. This
latter probability, in the limit Ar - 0, is 1 — r'o_iAr' (where r'o_1 is the density of cell boundarics
along any line), Thus

lim Po(r) (1 — ro_iAr') = lim Po(r' + Ar)
Ar—0 Ar—~0

Po(r) + Ar‘Pl)(r) +...

or
P'(r) = 7P (r)
o o "o
whieh has the solution
-r‘/r‘0
Po(r') =0 (I11-11)

[sinee PO(O) =i A
Sinee F(r) is a random funetion with zero mcan, the integrand of (III-10) vanishes unless
r' + 1 and ™ are in the same cell, in which case it is equal to FZ. Thus we have the result

— -r/r
eo(;) = eo(r) = F2 c o (II1-12)

This expression is somewhat in crror for two reasons. First, it ignores the effects of finite
boundaries, whieh would result in a eorrection of order N_1 and may therefore be negleeted.

Seecond, it does not eonsider the possibility that because of a concave eell boundary, both T

17



and r' may lie in the same cell although the straight line connecting them passes through one
or more other cells (as in cell m,, Fig. 3). However, unless the cells are serpentinc, which

is not at all plausible physically since crystallites grow outward in all directions from a nucleus,
contributions from such double crossings {and triple, etc.) should be very small and can safecly
be ignored.

The power spectrum is just the Fourier transform of the autocorrelation function:

[£_[?

S —15-5\ co(;) e_lk' B dre
k

F_
S

(o]

°° -r/ro am o-ikr cos @ N X% + y
e rdr do — exp
o

(III-13)

=il X * kyy)] dxdy

where S is the region |x| > Lx’ [y] > L‘y' The first term in the bracket in (III-13) is

w -r/r
27 ( e © Jo(kr) rdr = 27r (1 4l 2) -3/2

Yo

The second term vanishes as Lx, Ly -

' 2 2
’S\S\ exp [— Xr—'{'y ~ itk x + kyy)] dxdy dxdy
o

el

© -r/r 2m -L_/r
o o s’ o
< e rdr de =27r (LL_+1r )e
0's o)
LS o

which goes to zero as I_.S —~ o, where I_.S is thc smaller of LX and Ly. Thus we have the main
result of this section

3]

223/2

&= E 2re 2(1 + K°r

I "= 5

k (III-14)

It may be helpful to know the mean cell boundary spacing ry in terms of the cell areas a__;
this is most easily found by direct evaluation of lf | and comparison with (III-14). The k = 0

component of F is

I =y a2
f —SS‘F(r)dr

N
Z Fmam

m=1

A
S

so that
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i —
- X 2 : -
= SZ Z a (since Fan =
m=1
=2 &
= % 'a__ (since N = $/3)
a
giving
o a2 1/2
o \2rm
Finally, from (IlI-5a,b),
G N ) - 1.2 2
P = K" sin 2[a(r)—¢po] =5 Ky =Q

C. MAGNETIZATION RIPPLE SPECTRUM

The remaining contributions to the torque are now collected.

(I1I1-15)

(I1I-16)

We consider the case of a
steady, uniform, external magnetic field H in the film plane at an angle B to the x-axis (see
Fig. 4).

The Zeeman torque, in the linear approximation, is then

Th=MXH

1ZMOH [sin(B8 — q)o) — b6¢ cos (B — q)o)]
with Fourier components

(to)h = 1ZMOH sm(ﬁ—q)o)
(t]_(_)h =—1i,M_H cos(p —o)e

-

Fig. 4. Coordinate system for static case.

i {normal ta film ptane}

-

i

cal)
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The exchange field is given by (I-4)

= 2A 25>y 2A - 2
B = - vV M(r) ~ Mo( i, sing + 1y cosq)o)V S (II1-18a)
P
o

where A is thc exchange constant. This field exerts an exchange torque

T =MxH_ =T 2av%e (II-18b)
e e z
with Fourier components
(to)e =0 (III-18¢)
= - 2
(t__) =—1i _2Ak"¢_ . (11I-18d)
k'e z k

Finally we have the magnetostatic field with Fourier components in the TFA given by
(II-24a, b), which become

(ho)m =0 (I11-19a)
TR o
(H*) = —4n¥ (kL) ———& (I11-19b)
k’m k
where
X)) =1—x"" e sinh« =K—§ Ko (1I1-20)
The linearized torque components are then
L (I1-21a)
- - 2 b
(t__) =—1_47M “Y(kL) sin"(® —¢ ) o (I11-21b)
z o oF
k’'m k

where K lies in the film plane at an angle & to the x-axis (see Fig. 4).
The equilibrium value of 6¢ is determined by the condition that the effective torque vanishes,
or
=y = = oL .= — k-1t _
Togf) =T, +T, +T +T = Z(t_.) e =0 . (II1-22)
= k/eff
The Fourier components of (IIT-22) vanish independently, so that from (III-8a), (III-17b),
(III-18c¢), and (III-21a)

—Ko sin Zq)o BiE, = 2 _.Z q_l_;(pl_; + MOH sin(pg —(po) =300 (III-23a)
k #0

For k # 0, from (III-8b), (III-17c), (III-18d), and (III-21b)
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—2K_ eos20. ¢+ p.—2 q. _¢_ —[MHecos(B—g )+ 24Kk
o SIBROPL TR =8 B S~ o
k'#0

+ 47M ZY sin2(<1> -0 )Mo =0 (III-23b)
o o i

We solve (III-23a, b) by an iterative proeedure, first assuming ¢ __ = 0 for all K # 0 and solving
k

for ¢ . Equation (III-23a) becomes

: sin2¢ —hsin(f—¢ )= = }—)9- (I11-24)
2 o o 2 Ko
where the redueed field h is given by
HM
H o
he Ao e O, . (I1I-25)
HK ZKO

The term Py is the magnitude of the (spatial) average torque on M due to random anisotropy

forees, and is only nonzero because for any given ensemble of values of @ A0

there is a small but finite probability that this average does not vanish, Of course the ensemble

and K
im

average Bo =0,
The mean square value of the right side of (III-24), obtained with the help of (III-14) and
(III-16) is

Ipol®  p2 2mr]
=T —s (I11-26)

4K’
(o]

where T is the ratio of the rms value of the random anisotropy energy to the uniform anisotropy

energy, or

-
[§¥]

n

] ”‘xrv

(II1-27)
K

SN

Sinee from (III-26) the right side of (III-24) vanishes in the limit S - ©, we may negleet it in a

fir st approximation to @ o obtaining

1

5 s1n2goo—h Sln(B—gpo) =0 (III-28)
whieh is the well-known equilibrium equation for the magnetization direetion of a uniaxial film.13
We shall be interested only in three special cases of this equation, for whieh solutions are

9, =0 (=0, h>—1) (I1I-29a)

9, = /2 (B =7/2, h>1) (III-29b)

¢, =aresinh  (g=1/2, [n| <1) . (I1I-29¢)

It is easy to see, by examining the average uniaxial anisotropy and Zeeman energies
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o 12
Eo = KO sin"¢ - MoH cos(f — tpo) 5 (III-30)

that the solutions (III-29a-c) minimize EO, and are therefore stable,
The next step in the iteration procedure is to assume that there is but one nonvanishing

go_b(E # 0), and using the value we have just obtained for @ solve (III-23b) for ¢ __, with
k
o_ (k' # k, 0) set equal to zero. This just means that to a first approximation the ripple com-
'
ponents ¢  are decoupled. (Note that it is only through the random anisotropy components
k

q, _, that¢_ and ¢ _ are coupled.) Equation (III-23b) becomes
k -k' k k'

2 p
q 2 2nM o

o Ak @ w2 1 K
R, + cos 2(,00 +h COS(B—(JJO) + —Ko— + Ko X sin” (¢ —tpo) ‘pE =05 K—o . (III-31)

The term qOKO'1 in (III-31) may be safely neglccted, for the same reason that the term poKo_1
was negligible in (I1I-24), provided

A(B, h) = cos2¢_+hcos(B—g ) #0 (II1-32)
with @, determined by (III-28). But A is proportional to 32E0/3¢02 [sce (III-30)] so that for
stable equilibrium

A>O (I11-33)

and (III-32) is satisfied. The set of values (Bt, ht) such that
A8, h) = 0 (111-34)

occurs at transitions from stable to unstable equilibrium and are thus threshold angles and fields
for irreversible, coherent rotation of 50.13 We may expect serious difficulties in the theory
near such thresholds.

For A # 0, (III-31) becomes

P

1K Z 2 =T -1
(pR_ "ZRA [ +2 K+ L% sin (@ =y ] (I11-35)
(k #0)
whecre we have defined an "exchange length"
1/2
[ A
e = (‘K_OA) (II1-36)

and a "magnetostatic length"

ZWMOZL
*m T KA (111-37)
o
A(B, h), defined by (III-32), is for cases (a), (b), and (c), respectively, of (III-29)
A{0,h) =h + 1 {h>~—1) (II1-38a)
AfZ,hb=h—1  (h>1) (I11-38D)
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2
A<(%,h)=1_h Gty . (I11-38c)

The mean square ripple amplitudes then follow from (III-14), (III-16), (III-27), and (III-35):

2
2 27 r
T sl O oE2i e oy 7 (I11-39)
K 8A K
(K #0)
where

g. =2k +a_ LT'RkL) sin®(@ —p ) >0 . (I11-40)

K

Equation (III-39), the ripple spectrum, is the main result of Part C. In Appendix B we return to
(III-23b), and earrying our iterationproeedure one step further show that the first order eoupling

[meaning the ¢ are the coupling-free values of (III-35)] introduces a negligible eorreetion to
'

l(p__lz. This gives us some confidenee in our method of solution and in the result [(III-39)],
whieh we shall use in Sec. V. In Sec,III-D, however, we examine this result and show that it

represents a magnetie fine structure with the eharaeteristics of the observed ripple.

D. DISCUSSION OF RESULT

First, it must be pointed out that even though the mean square Fourier components given
by (III-39) are proportional to s~ and therefore vanish in the limit S - =, their density in the

f(.-plane, from (III-7), is

S
(21r)2

(II1-41)

Thus any observable effects of the ripple eomponents are independent of film area S, provided
such effects do not become too large for long wavelengths (of the order of Lx or I"y)' An ex-

ample of an observable effect is the mean square magnetization dispersion

6% = ol = 0 1% = (60T N7 (I11-42)

which we calculate in Sec.III-E. From Parseval's theorem [or from (III-10) and (III-13)]

s%= ) le_I? (I11-43)

K #0
and if the main contribution to this sum is from components with wavelength short compared to

Lx and Ly’ we may replace it by an integral using the eorrespondence

Yt~ S 5 S (k) a%E (IT1-44)
l—(' k (27)

whieh follows from (III-41). [f(l_c') is just {_ with K considered a continuous variable.] We see
k

then that 62 is independent of S, which makes physical sense.
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Ncxt we consider the first factor of (I11-39):

2 S K 5 K
r_ . S o SENNCTESISTE eSS b SN (I111-45)

2T ) 2
8A [2K_ cos2¢ _+ M _H cos(B—¢ )] [d Eo/agoO]

The numerator of (III-45) contains the perturbing effect of random anisotropy forccs (the factor
1 coming from the average over axis orientations «). The denominator may be thought of as a
uniform magnetic stiffness tending to align M along H and along the uniform casy axis (x-axis).
In strong ficlds (h >> 1) the ripple amplitudes go to zero and the film may be considered satu-
rated. As the field is lowered and a cohcrent threshold ht is approached, A — 0, the ripple am-
plitudes grow very large, the condition (III-3c) is violated, and we have a threshold catastrophe,

The static cquilibrium problem becomes nonlinear in the Fourier components ¢ _, and further
k

progress is very difficult without some simplified ansatz for M(r) such as the band model of
Thomas3 or the labyrinth model of Smith and Harte.15 Such treatments are not within the scope
of this work. In the absence of the uniform stiffness, and in the absence of the interaction term

g ., the components ¢ _ do not of course become infinite: M(r) just follows the random
k
anisotropy.

A crystallite cutoff of the ripple spectrum results from the effects contained in the factor

2
r

kz)-3/z
(¢}

(1 + (I11-46)

of (IlI-39): for wavelengths 27/k shorter than the cutoff length ano, ripple amplitudcs arc
sharply diminished. This occurs bccause components of the random anisotropy with wavelcngths
shorter than the mean crystallite size are very small.

Interaction effects, which are contained in the last factor of (III-39)

g e (IT1-47)
K

are of great importance in determining the characteristics of the magnetization ripple. The

term g, defined by (III-40), is the exchange plus magnetostatic interaction cnergy density for

unit |<p__|2
k

to suppress all Fourier components ¢ | for which g_ >> 1, and lcave unaffected those for which
k

, normalized to the uniform magnetic stiffness. The effect of thesc interactions is

g, << 1. If we define a characteristic closed curve C' in the E-plane by the relation

—

g,=1 for k onC' (111-48)
k
ripple components with wave vectors on C' are attenuated by a factor of 1 due to interactions.

Since g monotonically increases with increasing k, the interactions (roughly speaking) suppress

those components with wave vectors outside C' while leaving unchanged those with wave vectors
inside C'.

It is helpful to transform C' to C in the reciprocal wave vcctor plane, dcfined by ZnE/kZ.
Thus, points on C arc described by a vector in the K -direction whose length is the wavelength

27/k. Figure 5 shows the characteristic curve C for a TPF (unless othcrwise noted, a TPF is
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Fig. 5. Characteristic curve C

: : : UNCOUPLED
showing effect of interoctions REGION
on ripple_components with wove
vectors k (for o TPF).

in zero external field), for whieh Xy = 2.5 % 107° em and P 1,25 % 10-Zem. In aceord with
our rough interpretation given above, all Fourier eomponents of the ripple with wavelengths in-
side C are suppressed by exehange and magnetostatie interactions, while eomponents with wave-
lengths outside C are unattenuated. It is easily seen that the shortest wavelength on C is for
¢ =¢ , Oor wave veetor in the direetion of mean M. The wavelength of this LMR is ane(= 1.6 X
10_4 em for a TPF), and it is apparent from the sharpness of C near the origin that this ripple
is well oriented, in aeeord with experimental observation.

In Fig. 6 we show this region in greater detail, where now we plot angle of wave veetor to
mean M vs wavelength 2r/k on a logarithmie seale, Equipartition of exchange and magneto-

static energies oecurs along the dashed line, whieh satisfies the equation

SRS T,
& m

R kL) sin (8 —0 ) (III-49)

We see from this that over almost the whole reeiproeal wave veetor plane inside C the inter-
aetion is predominantly magnetostatie. For wavelengths mueh greater than the film thiekness,

or
kL.<< 1, (I1I-50)

(III-48) beeomes

2.2 2 B
)\pk + )\mk sin“ (@ —(po) SE (I1I-51)

The eondition (III-50) is fairly well satisfied on C even for the shortest wavelength 27N, for
whieh kL, = L/Ae (= 0.2 for a TPF). Inthe magnetostatie region we may negleet the first term

in (III-51), so that C is determined by
a7 - sinfe—o ) (ITi-52)
m %o !

From this we find that the minimum wavelength of TMR (k L mean M) is Zn)\m (= 0.8 mm for a
TPF).
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Fig. 6. Detoil of Fig. 5 near origin shawing exchange-coupled
ond mognetostotic-coupled regions (far a TPF).

The characteristic curve of Fig. 5 may also be interpreted as the extent of the interactions.
M at the origin is strongly coupled to M everywhere inside C, where ZNI{/kZ has the meaning
of a position vector.

We have seen that short wavelength ripple components have well-oriented wave vectors in
the direction of r_ﬁo and include all wavelengths longer than about iwxe. However, electron
micrographs show a fairly well-defined wavelength of 1 to 2 X 10 " cm (see Fig. 2); one wonders
why this pattern is not completely obscured by the longer-wavelength components. The answer
is that what are observed are spatial variations in the intensity of the electron deflection pattern
caused by spatial variations in the ILorentz force. The more rapid the variation in M, the

greater the electron contrast. As shown by Fuller and Hale,28 the magnitude of the change in

intensity of the electron beam due to the f(.th component of LMR is proportional to “kgo__ | 2.
k

From (III-39),
— ———) ) &
[lko_ |2 = %\ Gé ¢ & rozkz)‘3/4 e ;\:kz)'1 (II1-53)
K

kro << 1 (III-54)

[lkg |7 « k(1 + 226570 (I11-55)
K

From (III-55) we see that the intensity spectrum has a peak at k = Ae_i. Ordinarily Ao is much
greater than the crystallite size, and (II[-54) is satisfied. (For a TPF, ro/xe = 0.05.) The
wavelength at the peak is ane (=1.6 % 10_4cm for a TPF), which corresponds quite closely to

so that for

we find

the actual wavelength observed.
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With an external field applied along an easy or a hard axis of the uniform anisotropy, casecs
(a) and (b) of (III-38) give

2mh, = 27al/? (K, (h + 1% for n>w . (II1-56)
As the field is increased, the peak wavelength decreases until finally (III-54) is violated. How-

ever, this happens at a field

H~AM 'r>% (= 8000c for a TPF)
which is so high that M is nearly saturated and the ripple has disappeared. Thercfore, it is

only for a film with very large crystallites (210'5 to 10'4cm) that crystallite cutoff from the

term
(1 4+ £ 2273/

of (III-53) need be considered. As the ficld approaches a coherent threshold (h = 1), }‘e becomes
infinitc — another aspect of the threshold catastrophe just described. The actual conversion of
LMR into uniform magnetization is prevented by nonlinear interactions which limit the growth

of the peak ripple wavelength. Similar considerations apply to case (c) of (III-38), for which

2mn_ = 27al/? (K, (1 IV A (=57

E. MAGNETIZATION DISPERSION

A vital aspect of magnetization ripplec remains to be cxamined, namely, its over-all mag-
nitude. Pcrhaps the best measure of this is the magnetization dispersion 6, the rms angular
deviation of M(r ) from r_n.o, given by (III-42). This quantity is of grcat interest for a number
of reasons. First, 6 must be no smaller than the observed LMR if our theory is to account for

ripple. Second, if our linearized treatment is to be valid and (III-3c) is to hold, we must find
6 << 1 . (I1I-58)

Third, 6 may be either measured directly or compared with "anisotropy dispersion," measured
by a variety of techniques“”17 but always near a threshold for coherent rotation. Finally, in
Sec. VI we will relate dynamic effects of the ripple to .

From (III-43) and (III-44)

= 2r ———
PN 5 S kdkg lo(K)| % do (I11-59)
(27)" Yo o

whcre Iw(f)l e is given by the right side of (III-39). Replacement of the sum over discrete K
by an integral is clearly valid here, since there is no divergent contribution to the integral ncar
K = 0; for the same reason, the fact that the integral goes over K = 0 while the sum did not is
of no importance whatsoever in the limit S = <,
From (III-39), and substituting g from (IlI-40), the integration over & is readily performed
giving .
2. 2

2 I‘ro

6% = 2 &
16A

E 2,2 22 2.9 gy
So (1 +r k7)1 +2 % )(1+>\ek +Aa, LX)

2.2 =
2+ lkT A LT Y ) kdk (II1-60)
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We now assume that the main contribution to (III-60) comes from k = O()\e- ), If

L&k, o (I1I-61)
which is only moderately well satisfied for a TPF (L/)\e = 0.2), we may approximate X(kL) by
its first term, kL. [See Eq.(III-20).] Therefore, since for nearly all films of practical interest

ry << )\e << )\m (II1-62)

B ag

=2
(for a TPF, ro/)\e = 5% 10" and )‘e/)‘m

value (which is also a lower bound since ¥ < kL)

\o1/2 g (1 + x:kz)'3/2 k2 a (I11-63)
(o]

), the integral in (III-60) has the approximate

m

The integrand in (III-63) has its maximum value at k = 1/()\e N5); this gives us some confidence that
the approximations used in obtaining (III-63) are good. A more rigorous approach — one which is,
in fact, necessary if (I[I-61) or (III-62) are violated, is to split the integral of (III-60) into seg-
ments and in each segment expand each factor of the integrand about its largest term; the seg-
ments are chosen such that these expansions converge as rapidly as possible. However, this is
a tedious procedure, and one which must be adapted to the relative values of the three param-
eters involved, namely, ro/)\e, L/)\e, and )‘e/}‘m' Therefore, in the present work we shall be
satisifed with the approximation (III-63).

Integrals such as (III-63), of the form

o 2

I(p,q)=‘§ (1 +v9) 9P av (—4 «p<Ba—11 (III-64)
o

are easily evaluated in terms of gamma functions. Substituting v = tan¢, (III-64) becomes
7r/2
. -p-2

Ilp, q) = S (sing )P (cosw)Zq P=¢ 4

o

R p+1)

B( 2 » 2

&
Z

where B(x, y) is the beta function?’7 defined by

H&y)=§$f§)

Therefore,

B R R )

Ip,q) = Q) : (III-65)

ool

The integral in (III-63) is then

1.-3/2 3.2
5 Mg fat =

r(3)

and inserting this result in (III-60) we find
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2 3
E i) /I \2

e ( Ao) Ar;i/z)\ea/z : e
16 N7

[The gamma funetion, always written with an argument, is not to be eonfused with T, defined by
(I11-27).]
Using (III-36) and (III-37), and evaluating the numerieal eonstant, we have the final result

for the dispersion

6 = 0.145K,r M-1/21 -1/ 45 378 (111-67)
o o o
where by K1 we mean the rms value Ki2 .
For a TPF
5 = 0.076873/8 (II1-68)

on an rms ripple of about 4° in zero field. This is certainly a reasonable order of magnitude,
although it must be remembered that the value chosen for K1 (5 x 104 erg/cm3) is a very rough
estimate. It should be kept in mind that this dispersion ineludes not merely LMR, but eompo-
nents with wave vectors in all directions and of all wavelengths, Therefore, we expeet it to be
somewhat larger than LMR as measured by Lorentz mierosecopy.

For an isotropic film (Ko - 0), KOA -3 MoH in (III-67); as the external field H -~ 0, the
dispersion grows very large until (III-58) is violated. This is a long wavelength divergence
{not unlike the divergenee of spontaneous magnetization in a two-dimensional 1attice38). The
problem here is that the Fourier components become strongly coupled {see Appendix B), and the
iteration proeedure which led to (III-39) breaks down. In fact, for an isotropie film in zero
field our Fourier transform method is not a good one, and an approach such as that used by
Rother33 is better. (His main result is a ripple with mean wavelength proportional to ro and
magnitude proportional to Kirj/A, where the eonstants of proportionality are ~10.) Using
another method, which differs eonsiderably from ours, Hoffmann?’g'40 has recently obtained the
ripple wavelength given by (III-56) and amplitude given by (II[-67) with a slightly different numeri-
cal factor,

Summarizing the results of See. III-E, we find the magnetization dispersion: (a) to be typi-
cally a few degrees; (b) to be proportional to K1 and the erystallite size; (e) to vary as the —3
power of the uniform anisotropy and of h £ 1 {for fields along m in the easy and hard direetions,

respeetively); and (d) to depend only weakly on the film thickness.
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IV. UNIFORM MAGNETIZATION REVERSAL

A. INTRODUCTION

Before we consider the dynamic behavior of the magnetization ripple, it is pertinent to
examine the process of uniform magnetization reversal, i.e., coherent rotation with M(? t) =
r—ﬁo(t). This process is the starting point in the treatment of nonuniform reversal to follow, and

2 St of rotational

it is important to understand how it occurs. Furthermore, earlier treatments
switching have been based on the uniform rotation modcl (but with a phenomenological damping
term included in place of detailed knowledge of the dissipative processes involved). After a short
description of the uniform rotational mode, we will formulate the equations of motion in an aniso-
tropic film; in Sec.V they will bc used in obtaining the dynamic response of the ripple (no ex-
plicit solution will bc necessary for this purpose). Then we will solve these equations, with and
without a damping term, for an isotropic film; the overdamped case will bc treated somewhat
morec rigorously than has been done previously.

Rotational switching in a film is a two-step process. When a pulse magnetic field 3 (typi-
cally a few ocrsteds) is applied in the film plane at time t = 0, the magnetization r_n.o(t), initially
lying in the plane, starts to precess about H_. In doing so it lifts slightly out of the plane (typi-
cally 10_2 radian), creating a normal demag%etizing field equal and opposite to the normal com-
ponent of 4”;;0 (typically 1020e). The magnetization now processes about this larger ficld in a
nearly planar path.

However, this uniform mode has acquired an energy —Hp : r_ﬁo(O) from the external field; as
a result, in the absence of any dissipative mechanisms, m must continue to precess indefinitely.
If there is a slow energy loss, m will experience damped oscillations about its equilibrium direc-
tion ncar Hp (at H_for an isotropic film); if the energy loss is rapid, m is overdamped and
reaches equilibrium without oscillations. In many switching experiments oscillations are not ob-
served (but see, for example, Dietrich and Proebster42 and Hearnio), so that in the phenomeno-

logical theory of Sec. IV-D the overdamped case is of great practical interest.

B. EQUATIONS OF MOTION

The gyromagnetic equation for a uniform magnetic moment density r—ﬁo(t) is [see (I-2)]

-

dm

TO = —yr—ﬁo X Eo + damping term (IV-1)

where vy is the absolute value of the gyromagnetic ratio and Ho is the spatial average of the
effective magnetic field in the ferromagnet. For a thin film this effective field may be taken
as the external field (pulse and steady), the uniaxial anisotropy field, and the uniform demag-
netizing field —47rr—ﬁ0 : _{z—’iz [see (II-24a)].

As long as we remain ignorant of the specific loss mechanisms, we can only guess at the

form of the damping term. Landau and Lifshitz12 proposed

A

:
EX

= = - 5
7 My X (m0 X ho) (IV-2)

where A is a positive constant of dimensions sec_i. A slight modification was suggested by

Gilbert,18 who used a Lagrangian approach and a Rayleigh dissipation function to arrive at
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— —

dm dm

dto =—yr'r’10><ﬁo+ m x —2 (IV-3)

where « is a dimensionless positive constant. However, it is easy to show that these damping
terms are equivalent, except for a contraction of the time scale. Taking the dot product of r_ﬁo
with (IV-3), we see that

L dmg
Mmoo —g2 =0 (IV-4a)
or
|lm | = const. =M _ . (IV-4b)
o] o]

Note that |r—r.10' is also conserved if a damping term (IV-2) is assumed instead. Now, taking the

cross product of r_ﬁo with (IV-3), using (IV-4a,b), and rearranging terms, we find

(1+a2)d—;1°——*><ﬁ—‘”*x(* xh) (1V-5)
dt ~ Y, o W[;mo my o ’

Thus, if we let t' = (1 + az)_it in (IV-5) and make the substitution
A= ayMo (1IV-6)

the Landau-Lifshitz and Gilbert forms are identical. The contraction of the time scale is unim-

portant if @ << 1, but as a = =, (IV-5) gives

-

dm
dto -0 (IV-7a)
whereas
dm
T'o - (IV-7b)

In other words, in the limit of large damping, the switching speed goes to zero for Gilbert
damping but becomes infinite for Landau-Lifshitz damping. The latter situation seems physically
unreasonable, as pointed out by Kikuchi.“ Callen43 has suggested a more general form of the
damped gyromagnetic equation, the various parameters of which may be associated with specific
physical processes. However, the difficulties one would encounter in attempting to use this
approach to describe a switching process (in which r_ﬁo is initially far from equilibrium) are
probably insurmountable. The Gilbert equation will suffice for the purpose of this section, and
we now proceed from (IV-5).

We shall use a spherical coordinate system for r_ﬁo as shown in Fig. 7 where the + x-direction
is the easy direction of uniaxial anisotropy nearest mo(O). In an isotropic film we take mo(O) =
M ix' If we let Eo(eo, (po) be the energy of m in the external, demagnetizing, and anisotropy

o
fields, then the effective field is

h =—9_ B8 (IV-8)
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1, (normal to film plone}

8_(t)
Fig. 7. Caardinate system for dynamic case. =

and the spatial components of (IV-5) are

2 deo Y an ay an
(1+e") = =—§- 3, ~ WM. 56, el
(o] O (o] (o]
and
. do, ., 9E 4 9B
(1+a%) sin®, 5~ = g 55 ~ M- 59 GRAZRE]
(o] (¢} (o] (o]

We consider an external field H in the film plane at an angle B to the x-axis. Then the energy

EO is given by

SR - (Rt S T e~
o o o z oo o X
_ N L #in 6, eoslep. —p) + 27N dca’ o —IK sinc o o (IV-10)
- o) o) Yo fo) o o o) Yo
with derivatives
LE)-—H s O cos( —B) —27M _sin26 ——1H sin 20 s2 (IV-11a)
Moaeo‘ cos P, cosle, o o~ 2 'K*S! 0 €% ¥4
o an 1 2
—o é‘p—o =KL smeo sm((po—ﬁ) + 3 HK sin eo San(po (IV-11b)
where the anisotropy field is defined by
ZKo
HK = ™M . (IV-12)
o
We next let
ks
lpo_eo_—z- (IV-13)

and make the key assumption that during the entire switching process r—ﬁo is confined nearly to

the film plane, or
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lyp | <<t . (IV-14)

It is easy to see from the energy expression (IV-10) that the condition (IV-14) will be well satisfied

provided

41TM0 >>H (IV-15)

because the magnetostatic energy created in lifting r-ﬁo out of the film plane an appreciable angle
is then much greater than the energy available from the external field. The requirement (IV-15)
is indeed met for all experimental situations of current interest. Also, we shall verify (IV-14)
for the solutions to be found in Secs.IV-C and IV-D. The condition (IV-14) will enable us to
separate the coordinates in (IV-9a, b), but even if it were violated we could still proceed in the
next section with the calculation of the dynamic response of magnetization ripple. Ilowever,

the simplification introduced by (IV-14) is so great that at the risk of some loss in generality

we will assume it holds in all that follows. Then with the further requirement

417MO >> HK (IV-16)

which is invariably met in practice, (IV-11a, b) become

1 8E0

M_ 38 ~4™My¥, PR
o] o]

1 BEO 1

—0%—; -"—’HSln((po—B) +E HK San(po . (IV-17b)

We next generalize (IV-17b). Consider a step function pulse field

H (t) H = const. t>0
P P

=0 t<oO (IV-18)

—

at an angle Bp to the x-axis, and a constant bias field Hb at an angle Bb' Then (IV-17b) becomes

4 6E0

M0 1

: : d "
= Hp sm(q)o -—Bp) + Hb sm(q)o —Bb) + 5 HK San(po (IV-17b-1)

o

for t > 0, and (IV-17a) is of course unchanged. We note at this point that in the usual experimen-

tal arrangements either
Bo=m ., By=% (IV-19a)

or

0<Bp<1r e =0 . (IV-19b)

In the first case [(IV-19a)], that of a hard axis bias field and an easy axis switching field, the

notation
H - H
Bl

(IV-19c)
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is conventional. In the second case (IV-19b), 90° switching with ﬂp = n/2 is most common. Other
arrangements are possible, but experimental difficulties invariably render them undesirable.
Inserting (IV-17a) and (IV-17b-1) in (IV-9a,b), and using (IV-13) and (IV-14), we find

2 dwo
(1+a7) o= =wple)-—cw b, (IV-20a)
2 dq‘70
(1+a°) pral wmwo + awhp(q)o) (IV-20b)
where
= yH Iv-21
e T ( a)
Wl S )/471’1\/10 (IV-21b)
5 1 Hk
_p(“’o) = sm(q;o —Ep) + H—p sm(q;o —Ep) + > E sin quo . (IV-21c)

The precessional frequency in the pulse field is Wy

precessional frequency in the demagnetizing field for r_ﬁo perpendicular to the film plane and is

and is typically 5 X 10" sec™; w_ is the

11 - . . St . .
1.9 %X 10 " sec 4 for a TPF; p((po) is proportional to the planar torque on m . It is convenient

to introduce a dimensionless time variable
w_t (IV-23)

and to normalize the angular deviation of r_r.lo from the film plane by the substitution

-1

G5 Ehe s (IV-23)
where
“h
€= [— <<t | (IV-24)
w
m
The small parameter € is typically 1.5 X 10'2. We also define a normalized damping
parameter
a
=2 -2
e = (IV-25)

Equations (IV-20a, b) then become

22 s
(1+e¢v) & = p(q)o) — e (IV-26a)

A 2
(1 +ev7) $5= 9 ¥ & vplo) (IV-26b)

where the dot indicates differentiation with respect to 7. For the purposes of Sec. V, the phe-

nomenological damping will be small (v < 1)}, and (IV-26a, b) may be approximated by

o = p(qoo) —vo, (IV-27a)

@y = 00 . (IV-27b)
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The qualitative description of rotational switching given in Sec. IV-A is reflected in (IV-26a,b)
[or (IV-27a,b)]. The primary precession about the external field (plus uniaxial anisotropy field)
is described by (IV-26a), and the secondary precession about the normal demagnetizing field by
(IV-26b). We see that it is mainly the primary precession which is damped; this leads to a re-
duced demagnetizing field and therefore a slower secondary precession,

Initial values of 9, and ¢, are determined by minimizing the energy Eo for t < 0. Equations
(IV-17a) and (IV-17b-1) give [using (IV-23)]

g (0) =0 (IV-28a)

: it :
Hb sin [(po(O) - Bb] + 5 HK sin Z(po(O) =0 (IV-28Db)

with the added condition

2
g 0 Eo
M > = Hb cos [(po(O) — Bb] + HK cos Z(po(O) >0 : (IV-29)
& a(po t<0

For the usual arrangement Bb = n/2, (IV-28b) and (IV-29) give

H

0 (0) = arc sing®  (0.< H < Hy) (IV-30a)
K

=7 (H, > Hp) (IV-30b)

[The case (IV-30b) is trivial, as no switching occurs.]
To conclude Sec. IV-B, we examine the behavior of the uniform mode inthe vicinity of its new

equilibrium direction at the completion of the switching process. This direction is determined by

lim ) (IV-31)

t-+oo

or, equivalently, that the energy Eo is minimized for %, and @, at t = <, Either way, we find

lim oo(t) = O’O S0 (IV-32a)
t—=+o
lim plp (t)] = E(Zpo) =0 . (IV-32b)
t+o

We expand (IV-26a,b) about 50 and 2;';0 and, assuming that 9, and ((po——J)o) vary as
2, - . S "
exp [2(1 + ezv ) 1‘r], arrive at the characteristic determinant

v

Q+v —p'
" =0 (IV-33)
-1 Q—evp!
where
v dp
= )
p d(po gy (IV-34)
Y07 %0
2

Dropping terms of order ¢, we extract from (IV-33) the critical damping
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v, =2 —p! (IV-35)

or, with the help of (IV-21¢) and (IV-24},
2

) . . . 1/2
o = — [Hp cos(q;o —Bp) + Hb cos(<po —Bb) + HK cos Zwo] . (IV-36)

4mM
o)

-

Ifac< @, r_ﬁo overshoots equilibrium and experiences a damped oscillation; if o > a., my
reaches equilibrium without oscillations. Note that if B' > 0, the equilibrium direction ZJO is
unstable; thus the threshold field for irreversible rotation through any equilibrium point &30 is

determined by

'=0 . (IV-37)

<
i
<

(See p. 22))

C. UNDAMPED UNIFORM MODE

An independent measurement of ¢ may be obtained from the linewidth in ferromagnetic
resonance., Although there may be dissipative processes in large-angle switching which are not
operative in small-angle resonance (and indeed it is one purpose of this work to uncover such
processes), the microwave resonance damping constant - provides a measure of "intrinsic"
loss mechanisms (the details of which we will make no attempt to treat) and a lower bound on the

total damping. Various measurements in Permalloy films at microwave frequenciesm‘M‘iS

give G I 10_2, which is barely less than o, for the usual switching experiments.
As an approximation to this slightly underdamped situation, we solve (IV-27a, b) with v = 0

for an isotropic film without a bias field. The equations of motion, from (IV-21c) and (IV-27a, b},

are
(70 = —sin(p —B) (IV-38a)
?5 =% (IV-38b)

with initial conditions
00(0) = wo(o) =0 g (IV-38c)

Eliminating @5 from (IV-38a, b), we obtain

¢, +sinlg —B =0 (IV-39)

with initial conditions 7

¢, (0) = ¢ (0) =0 . (IV-40)

Equation (IV-39) is the equation of a simple pendulum, and is readily solved by Jacobian elliptic

: 4 5 .
functions. H We introduce a new dependent variable

b tan % (8 — ) (IV-41)

c
u

where

b = cot—g- ; (IV-42)
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Equations (IV-39) and (IV-40) then become

-

i — % +u=0 (IV-43a)
b~ +u

u(0) = 1 (IV-43b)

a0) =0 . (IV-43c¢)

An integrating factor for (IV-43a) is (b% + u®) "2, from which we find the first integral

2 _ (o +ud) (1 -ud

u > (IV-44)
b™ +1
A second integration gives us
u = cn(T, sin B) (IV-45)
. 2

which is the main result of Sec. IV-C.

As expected for a conservative system, the motion is periodic, with period 4K(sinpg/2),
where K is the complete elliptic integral of the first kind. The switching time T4 may be de-
fined as the time it takes m to rotate from P S 0 to G & B, the new equilibrium angle, and is

O K(sin &) (IV-46)

or

H

t y_1(41rMoH)_1/2 K(sinf) (IV-47)

s

Finally, we must verify (IV-14). From (IV-38b) and (IV-41),

9% = z_Zb z b (IV-48)
b~ +u
and using (IV-45), we find
sn(T, sin%)
o, =sing ———4- (IV-49)
dn(T, sin -Z)
This function attains its maximum value at 7 = T, [see (IV-46)], and is
- B ¥
oo(‘rs) =12 sin > . (IV-50)
Thus
- B
(wo)max =2 sing <4 . (IV-51)

D. OVERDAMPED UNIFORM MODE

In contrast to the damping deduced from microwave resonance linewidths, the damping
actually observed in rotational switching experiments is quite high, particularly in the

intermediate-speed region (see p. 3), where one invariably finds
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We leave for Sec. VI the question of why this damping should be so great and solve {IV-26 a, b),

58S 4 (012 >> (IV-52)

for an isotropic film with a damping constant satisfying (IV-52), by a boundary layer method.*®
We first eliminate @ from (IV-26a,b), obtaining
0 % 222 B Pl — 520 (1IV-53)
o o
where for an isotropic film
ple ) = —sin(e  —B) (IV-54a)
@00 =0 (IV-54b)
ezv sinp
Pol0) = S22 (IV-54c)
1+e v
Ncxt we introduce a new time variable
i ol o (IV-55)
7]
and transform (IV-53) to an equation for u(7), where u is defined by (IV-41). The result is
5 A’ __2u e - T (IV-56a)
d?Z bZ o uZ dT dT
with
u(0) =1 (IV-56b)
and
d 2 -1 —az
du S e . (IV-56c)
7=0 1+«
where
2.2 2
5:”;2”:%(1+a2)<<1 . (IV-57)
v o

We start our analysis with (IV-56a-c). It might seem at first glance that since 8§ is a
small parameter, we could neglect the first term of (IV-56a), retaining the second (damping)
and third (restoring torque) terms. This is the "viscous flow" approximation of Smith4 {which
reduces the problem to an integration for the anisotropic case). However, this solution is not
valid in the neighborhood of 7 = 0 because there (unless o > 1) du/d7 is small and the first
term in (IV-56a) is of order unity. This boundary layer at 7 = 0 must be accounted for properly
in order to apply the initial conditions (IV-56b) and (IV-56c) to the "viscous flow" solution valid
past the boundary layer.

Let the solution beyond the (as yet unspecified) boundary layer be G(7), which we expand as

a power series in §:
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=i}

@=y ame . (1V-58)
i=0

Inserting (IV-58) in (IV-56a), we find that the solution to zeroth order in § is
u =C e (IV-59)
o

where Co is a constant which must be determincd. Higher order terms ﬁi'EZ’ ... can be found
without difficulty, but we shall not give them explicitly. It is obvious from (IV-56a) that they will
each contain a single undetermined constant Ci’ CZ’ A

To solve (IV-56a-c) within the boundary laycr, we first cxpand the timc scale through the

change of variable

v=§ T (m<0) (IV-60)
where m will be chosen such that the boundary layer, in which the first term of (IV-56a) is not
negligible, is given by 0 < v < 1. We next lct the complete solution to (IV-56a-c), valid for all
time, be

=07 +8"w(v)  (n>0) (IV-61)
where n will be chosen such that w = O(1) for 0 ¢ v < 1. Since u—~ u for v >> 1, we require

lim w{v) =0 . (IV-62)

Voo

With these new variables, (IV-56a-c) become

_ n E m+n 2
6T1“+62m+n+1w"—26 (u+62w) (u‘+;‘51 Zwv) 2T+ ™ 1 1 54 0 = 0 (IV-63a)
b + (T + 6"w)
u(0) = (o) + 8"w(0) =1 (IV-63b)
+ £ B &
u'(0) = T'0) + 6™ W) = =57 " = —F5 > 1 (IV-63c)
1+ a

where U' = du/d7, and w' = dw/dv. Now let us assume that w is a well-behaved function so that
w' and w'' are of order unity for 0 < v < 1. Then the boundary-layer width is determined by the

condition that coefficients of w' and w'' in (IV-63a) are of equal order in 6, giving
m=-—1 ; (IV-64)

The initial values of w and w' are found from (IV-58), (IV-61), (IV-63b), and (IV-63c) to be
w(0) = 67" [1 =T _(0) — 6T, (0) — ... ] (IV-65a)

and

wi(0) = 67" =67'% ~ T (o) — BT O) — ... ) (IV-65b)
The exponent n and the constant Co of (IV-59) are then determined through the requirement that
w(0) and w'(0) remain of order unity as § - 0. From the first two terms in (IV-65a) we must
have either n = 0 or EO(O) = 1. However, if n = 0, the leading terms in w'(0) are of order § and

ez, in violation of the above requirement. Therefore EO(O) =1, or from (IV-59),
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Cc =1 . (IV-66)

o
But now ﬁé)(O) = —1, so that the largest term in (IV-65b) is e (remembecring that 6-162 < 1),
from which we see that
m = 4 . (IV-67)
Ncxt we expand w as a power series in §:
o0
wiv) = ) wiv e . (IV-68)
i=0
Returning to (IV-63a) with m = —1 and n = 1, we find to zeroth order in 6
Wil tw! =—T' =1 =0 (IV-69a)
o o o o
with initial conditions given by (IV-65a, b):
wO(O) = —ui(O) (IV-69Db)
ozz 1
w'!'(0) = —u'(0) ~ = . (IV-69c)
O © 1 var d1+a’
The solution to (IV-69a) is
v =
w =D e + D (IV-70)
o o o

where DO and ﬁo are constants determined by (IV-69c) and (IV-62), respectively. The result is

w, = —(1+ P e (IV-71)

The condition (IV-69b) determines Gi(O), i.e., the constant Ci' Then from the next term in

(IV-68), w,, comes the constant C2 in u,, and so on to any desired order.

25
Collecting our results, wc have found

u=eT +0(6) (IV-72a)
and
S_E =—e T+ —12 & T, o(s) (IV-72b)
i 1+«

where the second term in (IV-72b) is of importance only within the boundary layer defincd by
0g7T< 6 <<t (IV-73a)
or in real time by

2
0gtg 1+

~ y47rMoa (IV-73Db)

The switching time for this overdamped case may be defincd conveniently as the decay time of

u, which means

»

T = (IV-74a)
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or in real time

tS = o8 g (IV-74b)

From (IV-26b), (IV-41), (IV-55), and (IV-72a, b)

1 2b -7 _ -7/8
T 2 ler —ve ) (IV-75)
o v b2 i e-ZT
Thus from (IV-23) and (IV-42),
€ L
) s & for 7>g8>3
€ g T
2= sin B for 5 >8>0 (IV-76)

and (IV-14) is satisfied. A simple physical interpretation can be found for the boundary layer:
it is the initial interval during which the growth of the component of r—r’lo normal to the film plane
takes place, i.e., the time for the primary precession. [From (IV-73b) we see that this time
has a minimum at @ = 1 of Z/wm =5 figP 1t sec.]

The qualitative results we have obtained here for overdamped switching (and in Sec. IV-C
for undamped switching) will still be valid for anisotropic films. But if accurate numerical
results are desired, the presence of anisotropy (except for some limiting cases) so complicates
the integrations that a computer solution becomes advisable. However, a rather good approx=-

imation is to replace H in the solutions for @, and % by Hp - B where H , is the threshold

pt’ pt
ficld for irreversible rotation [see (IV-37)].
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V. SPIN-WAVE THEORY: QUASISTATIC SPECTRUM
AND TRANSIENT RESPONSE

A. INTRODUCTION

We now turn to the dynamic behavior of magnctization fluctuations, i.e., spin waves, paying
particular attention to the transient response of ripple to a pulse field; we also obtain the quasi-
static spin-wave spectrum and briefly discuss instabilities. The microwave resonance situa-
tion, in which the amplitudes of uniform and nonuniform modes are small, is rather well under-
stood in the short-wavelength 1imit43’46 (in which magnetostatic fields for all modes with 1?# 0
may be replaced by their infinite medium values) and in the long-wavelength, or magnetostatic
limit47’48 (in which exchange fields may be neglected). Our treatment differs from these in two
important respects. First, the amplitude of the uniform mode cannot be considered small (it
may be 180°) and must therefore be retained to all orders. We avoid some of the difficulty this
nonlinearity introduces by using a coordinate system rotating with the uniform mode. Second,
neither the infinite medium nor the magnetostatic approximations are adequate for a thin film
in low fields, since the spin waves most important in switching have wavelengths somewhat
greater than the film thickness and also involve exchange fields. In resonance also, these ap-

49

proximations break down. This difficulty is surmounted with the help of the thin-film approxi-
mation (TFA) of Sec.II, which enables us to consider magnetostatic and exchange fields simul -
taneously. (This has already been used to obtain the static solution of Sec.III.)

We shall assume that random, local anisotropy forces have no first-order dynamic effects.
Since these forces are, on the average, isotropic, their dynamic perturbing effects should be
approximately as great as their static effects; but we shall find that magnetostatic fields grow
very large during magnetization reversal, so that we may expect local anisotropy fields to be
relatively unimportant. This, together with the assumption that fluctuations of M from r:ﬁo are
small [see (I-1a)], implies that ripple components are uncoupled dynamically (as well as stati-
cally), since the only linear coupling is via spatially varying anisotropy fields, as was shown in
Sec. III.

Another assumption we make, in order to avoid excessive complications, is that damping
may be neglected. As far as the uniform mode is concerned, the intrinsic (resonance) damping
is small, as was noted in Sec.IV; the large damping observed in switching is precisely what we
are attempting to find a physical basis for, and we therefore avoid any phenomenological treat-
ment of it. Damping of spin waves can safely be neglected if it results in relaxation times which
are longer than the switching time. If, on the other hand, relaxation times are short, the initial
Fourier components do not maintain their identity during switching, and the problem is quite
different. Since the important components are relatively long wavelength (~ 10_4 cm), we may
expect their damping to be about the same as that of the uniform mode in resonance, and we are,
therefore, justified in neglecting it.

Finally, we assume that the z-dependence of GN[(;,t) may be ignored (z-axis perpendicular
to the film plane). We saw in Sec. III that exchange fields sharply attenuate all components with
wavelengths shorter than an exchange wavelength 21r>\e [see (III-36)] which is typically an order
of magnitude greater than the film thickness. Thus, any components with appreciable z-
dependence would be expected to have very small amplitudes. In somewhat thicker films

(2 20001&), standing, z-directed spin waves,50 which can be excited by microwave fields and which
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depend on the boundary conditions for 5M at the film surfaces, might play a role in magnetization
reversal; we will not consider this possibility in the present work. (Note also that in our model
for the microstructure of a polycrystalline film, local anisotropy forces are constant across

the film thickness, precluding z-dependent dispersion-induced fluctuations of M.)

B. EQUATIONS OF MOTION
The gyromagnetic equation for the magnetization 1\71(;,t) of a ferromagnet, as given by (I-2)
without damping, is

aM(r,t) = o~
—am o T gt kel

where

—

Teff = M(r,t) X Heff(r,t) . (V-2)

Separating the spatially varying part of M by (I-1b) and ﬁeff by

H

off = Ko(t) + 8H(r, t) (V-3)

[where Ho(t) is the spatial average of ﬁeff(;,t)], and taking a spatial average of (V-1), we find

-

dm
0

dt

= —yr'ﬁo x }TO —y<{6M x 6HY . (V-4a)

This equation for the uniform mode, with the second term on the right side replaced by a phe-~
nomenological damping term, was discussed in Sec. V. The nonlinear reaction of spin waves
on the uniform mode is described by this second term and will be computed in Sec. VI. Sub-

tracting (V-4a) from (V-1), we obtain the dynamic equation for fluctuations of the magnetization
% 6M = —y(r}io 5% BT }TO x 6M) — y(6M x 6H — (6M x 8HY) . (V-4b)

Since (as we shall find) 6H is proportional to M (or, strictly speaking, to an integral operator
on 6]\71), the assumption (I-1a) enables us to neglect, to a first approximation, the second term
on the right side of (V-4b), which contains the effects of interactions among the components of
8M.

This becomes clearer when we expand 6M and 6H in Fourier series:

I
ik r

SM(T,0) = ), m_(t)e (V-5a)
kg X

sH(EY = ) ho e T | (V-5b)
K0

Then (V-4a) becomes
dm, P PR
= = —Ym X ho -y _’Z mi{. X h_f{’ (V-6a)
K#0
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and the k # 0 components of (V-4b) are

dm_,
K

—g - = —yim xh, - xm_)-y ) m._ xh, . (V-6b)

fo) — —

— — —._ ' '
K K pAro K K

We will show below that the l—{th component of the field is related to the Eth component of the

magnetization by a field dyadic F_. al
k

m_ (t)
— Eond k
h_(t) = H_(t) - ; (V-7)
k k Mo

Then the same iterative procedure that was used to solve (II[-23a,b) may be applied to (V-6a,b),

with the resultant first approximations

dﬁio s
& T X a5 (iHeey
and
dm_
k — —_ — —
_ = — — X =
at Y(mo X hE ho mE) . (V-8b)

We use a coordinate system based on r;;O, as shown in Fig. 7, in which the spatial compo-

nents of rtr.l_’ are written

k
m,=M (i m_ +1,6_+1i¢)=zM(m_,0_,0_) . (V-9)
K I A A ° ¥ Kk

=4

With the spatial components of }—1._. given by
k

b= 0™ 0%,0%) (a1 ¥) (V-10)

kK K kK Kk

and using the relations

i S (0, eo'(po sin 90) (V-11a)
e (—90. 0,9, cos 90) (V-11b)
Voor = (~¢, sin®_,—¢_ cos6_,0) (V-11c)

(which are most easily found by inspection of Fig. 7), we obtain for the _fm-component of (V-8b)

dm
Tk = dd—eto o, + % sineo(ﬂ_,—y(h(pe_’—he(p_’) : (V-12)
K K ° Kk 9k
| > -
1 1f spatially varying farces such as local anisatrapy are present, (V-7) has an additional term Mo L, -m,
kl k_ 1 kl

and the camponents are coupled.

45



However, (V-8a), in terms of the field components (V-10), becomes

deo .
dat yho
de
Off =z _ .0
W 51n 00— ‘)’ho

and inserting these in (V-12) we find
dm_

K _

a0

Since m__ is initially zero,
k

m_(t) =0
K

(V-13a)

(V-13b)

(V-14)

(V-15)

in our first (linecar) approximation. [We could also have obtained (V-15) from the constraint

IMI = const. = M _, which follows from (V-1) and (V-2}.] From (V-13a, b) and (V-15), the

o’
i(p components of (V-8b) arc then

do__

dtk = —y(h" + hoe cot o ) 0 + vhl_:f
de_,

_ﬁ = yh )"+ hoe cot® ) e _ - vh 9

k k

The exchange contribution to }_1’_’ is found from (1-4)

k
H, = —2% v*M
M
o
with Fourier components
(}1) 28 25
k'e MO k

The magnetostatic contribution is given in the TFA by (II-24b):

(%)

KK ~ - - ~
—4n [—2 x (kL) + i 1Zx(kL) m_

m k k
where
X(K)=K'1e"‘ sinhk (=1 —=x +... for x << 1)
X(x) = 1 = x(x) (=x =% «% 4. for x << 1)

Finally, the effective uniaxial anisotropy field [see (11I-2}] is

—

Ha:HKxx.

e S
b

e
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(V-16a)

(V-16b)

(V-17)

(V-18)

(V-19a)

(V-19b)

(V-19c¢)

(V-20)



with Fourier components

(b)), = Hpi i - iy (V-21a)
r_rl.—b

] ST RE - == V-21b

-~/ 7 UK 'x'x M ’ (W= )

k’a o

We see from (V-18), (V-19a), and (V-21b) that }_1._. can indeed be expressed in the form (V-7),

with -
- ~ KK - > 2A 2+ - >
HE = —41rMo(x kz N 12) — Mo k"1 + HK Ly (V-22)

where T is the idemfactor, or unit dyadic. The vectors in (V-22), in the (m, ©, ¢) coordinate

system, are

B _ i o e .

" = &(d) = [smeo cos(<pO @),Loseo cos(¢o—d>),—51n(<po—d>)] (V-23a)
1= (cos® , —sin6 , 0) (V-23b)
z o fe}
i, = €0 (V-23c)

where the wave vector K lies in the film plane at an angle ¢ to the x-axis. We also note that
(V-16a,b) contain the factor

m
o

h +he cot® =cscO® hP (V-24)
fe} o o0

where hé) is the component of the uniform field along the projection of r_ﬁo onto the film plane.

It is convenient to write (V-16a,b) in the form

de

K
= =—w 0 —w ¢ (V-25a)
dt 0 v
de
ks b
_(it—_weee—'+w0 [ g (V-25Db)

K YK
For the case of an external field H in the film plane at an angle g to the x-axis, and r—ﬁo nearly
in the plane such that

lo l<<1 @ =6 -3) (V-26)

we find, with the help of (V-21a), (V-22), (V-23a-c), and (V-24),

2 2.2 ~ 2 2
Yge = Wy cos(cpo—ﬂ) + w, cos g, + weL k™ + Wi [xzpo cos (¢o— $) + x] (V-27a)

e ~ .2
Wy cos(<p0 —B) + w, cos 2<p0 + weL k™ + w_x sin ((po — &) (V-27b)

&
I

oy
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~ 1 . ~ }
we‘p = w909 A=y zl)o [—wa s1n2<po + w X sin 2(<p0 — d)) (V-27c¢)
where

w, = yHK (V-28b)

w, = ZAZ (V-28¢)

M L
o
@ = y47rMO . (V-28d)

Note that our definition of the exchange frequency We is not the conventional one, since it is based
on the half-thickness of the film L, rather than on the lattice constant {. Equations (V-13a,b),

which describe the uniform mode, now become

ay
o) : T =
at - Wy, sin (<po —-B) - w, 7 sin ngo (V-29a)
dgpo 2
& - 11)0 [wh cos(q)o —B) + w, cos @, + wm] : (V-29b)

The coupled, linear equations (V-25a,b), in which the coefficients w,; are, in general, time
dependent through the time dependence of @, and zl)o, describe the motion of the components of

8M out of the film plane (6_) and in the plane (¢_). In Secs. V-C and V-D we will find quasistatic
k k
spin-wave solutions (with 11)0, @0 constant) and transient solutions (with H turned on att = 0).

C. QUASISTATIC SPECTRUM

Here, we assume that there exists a time interval over which zLO(t) and cpo(t) may be con-

sidered constants while ©_(t) and ¢ _(t) are rapidly varying. Then solutions of (V-25a, b) are
k k
spin waves with time dependence

iw_t
g = (V-30)
where the eigenfrequencies w__ are given by
k
2 _ el A
wE = weew‘p‘p wew (V-31)

We first examine the spectrum (V-31) for the usual resonance situation of oscillations about
a stable equilibrium. Then 11)0 and ¢, are given by their equilibrium values 1\1/)0 and (}30 [which

may be found from (V-29a,b)]

z}»’o ) (7823

H sin(¢_ —6) + 1 Hy sin2g_ =0 (V-32b)
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with the stability condition

H cos(?,fo —B) + H,, cos zZJO >0 . (V-32¢)

K
AV v
Inserting Lbo and @, in (V-27a-c), (V-31) becomes

24 v 2 v 2, 2
wl_(_—[wh COS((po B)+wa cos <po+weLk +wmx]

v v 242 ~ 2,V
X [wh cos(q)o —B) + w, COSZ(po + weL k™ + WX sin (<po — d)] . (V-33a)

The eigenfrequency of the uniform mode may be found by expanding (V-29a,b) about d!o =0,

= (; , or from (V-33a,b) in the limit k — 0, and is given by

(pO (o]

2 v 2 v v v
O [wh cos(qu - B) + w, cos" ¢ + wm] [wh cos(q)o —B) + w, cos 2<po] : (V-33b)

If the external field is much greater than the anisotropy field, (;o =B, and (V-33a,b) become

(for H along YX)

2 _ 2! 2 202 ~ .2
wl_(, = (wh + weL k™ + wmx) (wh + weL k™ + w X sin d) (V-34a)
2 _ { ¥ ) V-34b
wl=w (o, +w (V-34b)

which are shown in Fig. 8 for a TPF in a field of 800 oe. In the infinite medium limit kLL - «
2 202 2,2 )
wl_(’ (wh + weL k™) (wh + weL k™ + “m sin™ &) (V-35)

which is the dispersion relation for a thin disk magnetized in its plane as given by Callen.43 Ex-
tending this spectrum to K = 0 (see Fig. 8), we see that the uniform mode lies at the top of the
spin-wave manifold (¢ = 7/2), in contrast to the TFA spectrum (V-34a), which collapses to a
point as K —~ 0. We also show in Fig. 8 the magnetostatic modes found by Damon and Eshbach.48
Since the location of the uniform mode relative to the spin-wave manifold determines the coupling
of the uniform mode to spin waves,43’46 the distortion of the infinite medium spectrum at long
wavelengths by magnetostatic fields will have profound effects on resonance phenomena in thin
films. Such effects have been observed by Comly, Penney, and Jones51 at high microwave
power levels; their results show that the bottom of the manifold is indeed correctly described
by Eq.(V-34a) with & = 0°2

Spin-wave solutions of the linearized equations of motion (V-25a,b) and (V-29a,b) also exist
about unstable equilibria of the uniform mode (/d}o‘ 60), which are associated with magnetization
reversal processes, and which may be found from Egs.(V-32a-c) with the inequality of (V-32c)
rcversed. The dynamic trajectory of the uniform mode may not pass through the point Lbo =0,
but because of the condition (V-26) [see (IV-51) and (IV-24}] this makes very little difference in

27,53,54

the dispersion relation for w__. It has been pointed out that the spin-wave eigenfrequen-

k
cies will then be imaginary for a certain set of wave vectors, and that unstable solutions with

time dependence
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Fig. 8. Resonant mades of a thin film in a planar field of 800 oe in thin-film
appraximation (average aver thickness), spin-wave appraximatian (neglect

magnetastatic boundory conditions), and mognetostatic appraximatian (neg-
lect exchange fields) (for a TPF).

3-24-5585

INVERTED SPECTRUM (M, unstable)
——— NORMAL SPECTRUM (f, stoble)

Fig. 9. Schematic illustration of inverted
and normal planar mode spectra (thin-film
appraximatian).
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4

e (2_ = iw_ >0) (V-36)
k k

may be important in switching. We now show that the growth time (for increase in amplitude by
a factor e} of the fastest growing spin waves is approximately the same as the coherent rotation
reversal time, so that switching is completed before any spin-wave amplitudes increase much
above their equilibrium values.

It is easy to see from the dispersion relation (V~33a) (remembering that we are only inter-
ested in low fields, i.e., w, << oW << wm) that unstable spin waves (wi < 0) will exist

h
providing

/A0 A A
—(wa sin ?, + wmx) < Wy cos(<po —B) + wa cos Zq;o

2542 ~ .2, N
+weL k <—wmx sin (<po—<I>) : (V-37)

The fastest growing of these will have ¢ = $o (propagation along r;;o) and kL. << 1, so that their

growth rates are

-

i S " A 2,.2.1/2
Q ~w [—wh COS((PO—B) Sl coqu;o—weL k™) >20) . (V-38)

In Fig. 9 we sketch the "inverted" spectrum (ﬁo unstable) and, for comparison, the normal spec-
trum. From (V-38) we have the important result that the growth rate of spin waves in a thin
film in unstable equilibrium in low fields (<< 41TMO) is bounded by the growth rate of the uniform

mode, or

-

k
(K5#0)

_ 1/2 " N A /2
Q < Qo = y(41rMo) [—Hp cos(q;o — Bp) - Hb cos(<po — Bb) - HK cos 2<,oo] (V-39)

where we have generalized the external field H as described on p-34. This result, which strongly
suggests that spin-wave instabilities will not greatly influence the behavior of the uniform mode,
may be made more precise by comparing the maximum growth rate for spin waves, Qo’ with

the inverse switching time, ts_1, obtained in Sec.IV. From (IV-47), and using the approximation

suggested on p. 42, we find

-1 1/2
Uty [47TMO(Hp = Hpt)] J(Bp,Bb) (V-40)

where J ~ 1, except for Hb = 0 and Bp = 7.7 and reduces to 1/[K(sin%B)] for H. = H_. = 0, The

b K
pulse threshold field H _ is the field at the transition from stable to unstable equilibrium, or

pt
n N N e
Hpt cos(q;o—Bp) +Hb cos(goo—Bb) +HK coqu;o— 0 . (V-41)

Inserting (V-41) in (V-39) we obtain

1B =7 is a pathalagical case af balanced unstable equilibrium, and we shall exclude it fram aur treatment.
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Q =v [—47rMo(Hp = Hpt) cos ($o —B)]i/2 (V-42)
which is never much greater than ts_i.
The results obtained in Sec. V-C are valid whatever the origin of the magnetic fluctuations

— thermal agitation, inhomogeneities, anisotropy dispersion, etc., — and are, therefore,
completely independent of our random anisotropy model. In the following pages we shall consider
transient spin waves in a step function field -ﬁp, taking as initial values the dispersion-induced

ripple components of Sec. III.

D. TRANSIENT RESPONSE

We first rewrite (V-25a, b) with the normalized variables [see (IV-22) to (IV-24))

T =thwmt = yJ4nMoHpt (V-43a)
e (V-43b)
ol o)
where
“h 131 -2
= P - 0(10 ) (V-43c)

<= e ITM_
m o

These variables have been chosen such that during magnetization reversal {ao, I(rol, and o, are
O(1), as may be inferred from (IV-38a, b) and (IV-50). (The dot indicates differentiation with

respect to 7.) The equations of motion of the spin-wave components are now

6.=-G .6 .-G ¢ (V-44a)
K g9 TERUR
o =GCon®_ +G, o (V-44b)
x99 f fvy
with initial conditions
e _(0)=0 (V-45a)
k
¢_ (0) given by (III-35) (V-45b)
k
where
-1 2~ 2 2 Y2 . -1 2
Gy 56 KHE {ao [x cos (¢o—<b)—x]+(A>\ek +sin"¢ ) hp —p‘(<po)} +O(e”) (V-46a)
i~ 2 2.2, A 2
G¢<ﬂ = € ¥ sin (<p0—d>)+ € [A)\ek hp —p'(¢o)]+0(e ) (V-46b)
G. =€ . =—g % sin2le ~&)+0(e) (V-46¢)
O T 2 oX %o : G

Here we have written the exchange field in terms of the exchange length Ae' defined by (III-36).

The remaining parameters in (V-46a, b) are

A(ﬁb, hb) = cos 2<po(0) + hb cos [Bb - ¢o(0)] (V-47a)
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oo o _
hi = H (i =p,b, etc.) (V-47b)
K
hb 1
=l = = L pocs i Tr.
p((po) cos((p0 Bp) + hp cos((pO Bb) + hp cos2¢ (V-47c)

[see (11I-32) and (IV-21c)]. The uniform mode is described by (IV-27a,b} without damping, or

o, =0, (V-48a)
hb 1
& p((po) = —sm((po - Bp) - h_p sm((p0 —ﬁb) ~ 5 sin Z(po (V-48b)

with initial conditions

hy, sin(g_(0) — B, ] + 1 sin 2¢,(0) = 0 (V-48c)

0,(0) =0 (V-48d)
so that

plogl0)] = sin[p, — o (0] = p, >0 . (V-48e)

For the case (IV-19a, ¢) of a hard axis bias field and an easy axis pulse field,

h
sin @y + h—l- cos ¢, — 2}11_” sin Z(po (V-49a)

N

po=h) (V-49Db)

The finite rise time of the pulse field will not be considered in this treatment; thus, p(7) = 0 for
TS 0%

We next eliminate ©_ from (V-44a,b), obtaining

Kk
G G
¢ — % R Gezw =g % -G, g =D (V-50a)
with initial conditions
@ (0)=0 (V-50b)
Kk
¢E(0) #0 . {V-50c)

As can be seen from (III-35), and as discussed in Sec. III-D, short wavelength ripple components
are suppressed by exchange forces. We therefore confine ourselves to the long wavelength end

of the spectrum

-1

kSAe (V-51)

and in Sec. VI we will show that the main contribution to the spin-wave torque on the uniform
mode comes from components with k ~ 7\e-1. With this restriction, the coefficients of powers

of € in the Gij's of (V-46a-c) (and their time derivatives) are all O{1).
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We are now in a position to greatly simplify Eq.(V-50a). Inserting the coefficients Gi'

from (V-46a-c), and dropping negligible terms, we find

v+ ezx_iai(T) @+ e-zx;{ sinz[q) (r) —®]g_ =0 (V-52)
K K © K

where ai(T) = O(1). We next define a large parameter A by

e @ Sdlmr (V-53)
For kL. << 1
R L A T R S (V-83-1)

6

and for a TPF with k = >‘e—1 and Hp =50e, A ~20, Equation (V-52) may now be written

b+ A ayn) o+ i) g, =0 (V-54)
K K K
where
a,(r) = Xa, (1) (la,| < |a,]) (V-55a)
f(r) = sin [q)o(T) -3¢ . {V-55b)

Clearly the "damping" term A-ZaZdJE is negligible compared to the "potential” term Azfzw__,

since |¢__| ~ AIf(p_.I. With the notation
k k

@_ (1)
) (V-56)

(1) =

our problem is now reduced to solving the equation

. 2
¢+ [Af(T)])]" @ =0 (V-57)
with initial conditions

¢(0)

7l (V-58a)
@(0) =0 (V-58b)

where f(r) is given by (V-55b), @y is determined by (V-48a-e), and A >> 1.
The potential (Af)2 has arisen essentially from volume poles which, in equilibrium, strongly

attenuate ripple components propagating in all directions except along :tr_ﬁO; we recall from

Sec. III-D that the zone of nonattenuated components is extremely narrow. (See Fig.5.) In fast
magnetization reversal, however, volume magnetostatic fields quickly build up to large values,
since components initially propagating along ir—r;o "have the rug pulled out from under them"
when m rotates, and go through a transient state resembling the energetically unfavorable
transverse ripple. This is shown schematically in Fig. 10. On the other hand, although the

initial very small amplitude components with K in all directions other than ir—ﬁo do go through
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Fig. 10. Schemotic illustrotion of initiol ond transient spin-wove stotes
(LMR) in rotationol switching, showing creotion of volume poles.

a transient state of low magnetostatic energy, their amplitudes will not grow much above
equilibrium values unless very fast relaxation can occur (relaxation time << ts). However,
there is no evidence for such a rapid process, and in any event we are neglecting all relaxation
in this treatment. Thus, we can conclude that the primary effects in magnetization reversal will
come from spin waves with ¢ = (pO(O) and ¢ =~ (pO(O) + m, that is, the initial LMR. But since

6M is real, we see from (V-5a) that

25
=m

=¥

(V-59)

-

-k

=~ o

and it is therefore sufficient to solve (V-57) for ¢ =~ gpo(O).

The presence of the large parameter A in (V-57), coupled with the fact that f(r) is not
rapidly varying, suggests the WKB method, for which we refer to Appendix C. Our main interest
is in the asymptotic solution (C-14), which is valid except near free points, at which f(r) = 0,

The magnitude and phase of this solution is determined from the initial conditions (V-58a,b);
but for the components of interest, T = 0 is at or very near a free point. Therefore, a solution
joining the asymptotic region to the neighborhood of the free point must be found. We first

make the substitutions
n(r) = ¢ (1) ~ qu(O) (V-60a)
v =9 — gpo(O) (V-60Db)
so that (V-55b) becomes
f(r) = sin[n(r) — ¥] (V-61)

with n(7) determined from (V-48a-e), which become

filr) = o (r) (V-62a)
dO(T) = p(n) (V-62b)
n(0) =0 (V-62c)
00(0) =0 (V-62d)
pO) =p >0 . (V-62e)

The asymptotic generating function for [)\f('r)]2 is given by (C-15)
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=
glr) = S f(¢) de (V-63)
T

[e]

where T is a constant, as yet unspecified. We examine g in the vicinity of the free pointn = ¥,
with

|e | << 1 (V-64)
in accord with the previous discussion.
Consider first the case ¥ >0, for which we let
Ar = (V-65)

Since n is initially zero and ¥ is small, the free point T, may be found by expanding n(7) in a

Taylor's series about 7 = 0, with the result

7313 % (V-66a)
provided
¥ << Py - (V-66b)
Now we let
X=T -1 (V-67)

and expand f about L obtaining

f(x) = po(Tox i XTZ, t oty )3(—,3 e 21(_:1 + .. ) (V-68a)
where
Py = p' (0} . (V-68b)
Inserting this result into (V-63), we find
2 3 4 5
g(x)=Apo(To-)2(—.,+§—.,+p1702(—.,+p1§—!+...) (V=6

For the limiting case ¥ = 0 (TO = 0), the x3 term of (V-69) will approximate g for x in the range

R ,» given by

2 G A (V-70)
Then, following the argument of pp.79-80, we find that the approximate solution to(V-57) in 'RZ is

@(x) =~ [)\%%]1/2 Jﬂ/b[g(x)] : (V-71)

The asymptotic expansion of ¢ |given by (C-11) and valid in R  defined by (C-10b}] is valid in
part of R, if the inequality (C-23) is satisfied for some x, in R,; withv = 1/6 and e pO/Z,
(C-23) becomes
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3 2
'le >> 37\/30 . (V-72)

Then, combining (V-70) and (V-72) we arrive at the condition for overlap of iRZ and R

(V-73)

which is well satisfied except as po-'O, the excluded case of a pulse field antiparallel to r:ﬁo(O).
{See footnote on p.51.)

Now, suppose ¥ > 0. Under what conditions will the solution (V-71) still join the asymptotic
region ‘Roo to the vicinity of the initial point, x = —TO? First, (V-73) must be satisfied; but,
second, and more important, the largest value of |x| for which the x% term of (V-69) is not
negligible compared to the x3 term must be less than the smallest value of [x| in Ro iHor,
otherwise, the asymptotic solution will join not with (V-71) but with a solution involving also

(or exclusively) the first term of (V-68a). This condition is met if
-1/3 y
L (Apo) (V-74)
as may be seen from (V-69) and (V-72); using (V-66a), (V-74) becomes
1 1/3.-2/3 _
¥ << > pO A = \I'O << 1 : (V-74-1)

If ¥ <O, To @8 given by (V-66a) is imaginary; there is a nearly free point at 7 = 0, but no
free point near n(r) = 0 for real 7. However, we may consider x, defined by (V-67), as a
complex variable and by analytic continuation extend the definitions of f(x) and g(x) into the
complex domain. Then all the results for ¥ > 0 are equally valid for ¥ <0, provided x, To
and ¥ are replaced by their absolute values in (V-66b), (V-70), (V-74), and (V-74-1).

Collecting our results, we have found that a solution to (V-57), valid from thc neighborhood
of T = 0 up to, but not including, the next free point (nearn = 7), is

x) 11/2 (B,J, /gt + B_I_, /[e(x)]) (V-75)

o= [}\f X

provided the angle ¥ between the initial direction of r?lo and the wave vector K of the component
¢_, satisfies
k

¥ <<wr <<d . {(V-76)

Note that what we have found is essentially a ¥ = 0 solution, as it is based on the ¥ = 0 generating
function [(V-69) with T = 0]. For |¥| >> L it is not hard to show that a solution of the form
(V-75) cxists with v = 2. But for I\I'l ~ \Po, no such solution is posszible begause the asymptotic
form must be connected to a solution in a range of x for which the x and x~ terms of (V-69)

are the same order of magnitude. However, we shall show in Sec. VI that the strong incquality

(V-76) does not exclude any physically important components of the ripple.

The constants B:t are evaluated from the initial conditions (V-58a,b). Atr =0, x = s
so that from (V-69) and (V-74)
Ap
3
(SR Sl L ol 5 S (V-77)
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Then, using the expansian of Ju(g) about g = O,55

00
m
g o g,2m (—1) 3
L= Y O e me D (V-78)
m=0
and retaining only the leading term of g
Ap
glx) = TO x3 (V-79)
we find
B Ap \-1/6 B, /A \1/6
olx) = —— [—; (1—20) + —’; (1—20) x+...] . (V-80)
N3 Bre) F(g
Then, since att =0
| x| <<()\p0)_1/3 (V-81)

the initial conditions (V-58a,b) lead to the result

B, =@ (V-82a)

B_~0) /o 08 313 (V-82b)

Finally, we obtain the asymptotic expansion of ¢(r). The asymptotic region ®_  is given by
(C-10b)

lel >> 3 (V-83a)

or [see (V-79)]

(% >\p0)'1/3 i g (V-83b)
where
"(71) ~ T+ ¥ (V-83c)

The upper bound Ty = O(Ts), and since we will not be investigating the behavior of spin waves at
the end of the reversal process, there is no need to specify Ty precisely. From (C-11), noting
that ¢ =0 in R _, we have the resultt

2
G in® L NTaf(r) €08 lg(r) - %] (V-84)

1 Except for chonges in the constont B_ ond the phose 1/6, (V-84) is the osymptotic volue of ¢(1) for oll ¥. A
computer solution of (V-57), however, hos shown thot the true constont is opproximotely equol to B_for w<v ,
with moximum error, ot ¥ = \I/o, of 15 percent. R
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Fig. 11. Transient response of a planar spin-wave component in rotational switching.

or [using (V-56)]

(pK(T) ﬁn_ﬁt; (pK(O) wa-1/3 ,ooi/6 [f(T)]-i/Z cos [g(T) — %] (v-85)
where
- 31/3 [2 15
C, = (2) J:F(é) . (V-86)

Figure 11 is a sketch of ¢(r). The spin-wave component normal to the film plane may be found
from (V-44b) and (V-56):

-

©_ = Ggg [9(r) = Gg ,@(1)] 0..(0) (V-87)

and with the help of (V-46a, c) and (V-53) we find

<@ (o) G~ 2 p;/b\/%{[f{‘r}]i/z sin[g(r) — 1+ oa™h)} . (v-88)
K

Q. _(r)

in R
K TinR,

Equations (V-85) and (V-88) comprise the main result of Sec. V-D, They show that except
at the beginning and end of the reversal process, ¥ = 0 spin waves (LMR) precess in an ellipti-

cal path about r;o(r) at a frequency

wT{(T) /
= o XX

§ sinn(¢) d¢ . (V-89)

I

The ellipticity is given by
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S]

X
X

r_(7) = sinn(T) . (V-90)

k his
—= cot(g— 7)
K 4 e

-—

[In a TPF the important set of components with k ~ }\0-1 have, at n(r) = /2, w _ ~ 35X {0 sEg
k
and r  ~ L.] We note that the results we have obtained depend only implicitly on the uniform
k
reversal mode, except at the very start of switching. Thus even though we have neglected damp-

ing, any real loss mechanism will require a finite time to becomc cffective, and thercfore may
be included through its effect on <po('r). In particular, the perturbation of the uniform mode by
spin waves, which will be treated in the next section, necd not be small for the theory to be

valid; l’;o(T) may be determined self-consistently from (V-6a), (V-85), and (V-88).
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VI. EFFECT OF SPIN WAVES ON MAGNETIZATION REVERSAL

A. INTRODUCTION

Although in static equilibrium ripple has very little influence on the mean magnetization
r_;lo, the dynamic situation is quite differcnt. As noted in Sec.V, volumc magnctostatic fields
attain large values during fast rotational switching becausc k (for the largest amplitude compo-
nents) and r_ﬁo no longer remain parallel. From an energy viewpoint, this transient transverse-
component ripple is created at thc expense of the energy —Hp 3 mo(O) which the uniform mode has
acquired from the pulse field. The transient spin-wave statc therefore providcs a sought-after
dissip;ation mecchanism for r_n.o, at least during the first quadrant of switching [0 < n(7) < 7/2,
where n(r) = (po(T) - (po(O)]. When n > /2, if these componcnts cannot lose their energy to the
lattice or to other components they will return it to the uniform mode, thereby conscrving cnergy
(since magnetostatic fields are dccreasing). Thus we expect damping in the first quadrant and
anti-damping in the second; this is indeed what we shall find in the calculation to follow.

However, a much more striking effect is anticipated: spin-wave locking of the uniform re-
versal mode, which will occur if thc magnetostatic energy of the intermecdiatc statc is greater
than the energy available for rotational switching. Since this latter energy decrcases with dc-
creasing Hp, we may expect to find a critical field HpC below which the uniform modc is locked.
In Sec. VI-C, we calculate this critical ficld, which provides an important point of contact with
experiment. We also suggest how rotational switching might takc place with Hp < Hpc'

These phenomena r:ny 21so ke understood from a torque viewpoint. The nonlinear spin-wave
reaction torque on I’_I.lo, which we shall find to be predominantly z-directed, retards reversal in
the first quadrant and accelerates it in the second. If at any point in the reversal process with
r_ﬁo in the first quadrant the reaction torque becomes equal in absolute magnitude to the uniform
reversing torque iZ ©my X ho, the uniform reversal mode will become locked. We now put these

ideas on a quantitative basis by computing the reaction torque, using the results of Sccs. IIl and V.

B. NONLINEAR REACTION TORQUE

The spatially varying part of the magnetization, (‘SIVI(;, t}, will react on the mean magnetiza-
tion through the spatial average of the ensemble average of the nonlinear contribution to the
effective torque. (By nonlinear, we mean second order in the small quantities GIVI/MO and
éﬁ/Mo; there is, of course, no linear reaction torque.) This appears in the equation of motion

for r_ﬁo(t) [see (V-4a}] as a reaction torque
(t),. = (6M x 6H ) (VI-1)

or, in terms of the Fourier components of M and 6H [see (V-6a)],

Ty, = 2 B RAE (VI-1-1)
K#0
We recall that the bar denotes an ensemble average and the bracket a spatial average. The

spatial components of r_ﬁ_. are
k
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m_=M(i.6_+1¢) |, (VI-2)
K ° 9% ¢k

while the spatial components of h . are found through (V-7) as linear funetions of 6 _ and
-k -k
¢ .. Using (V-59), we see that m__ X h _ will contain terms of the following four types:
-k k -k

5 5
le_ | ;e ;. 6. 9%* ; 9.6

s " (VI-3)
k k k k k

s

For 7 in J(eo (to whieh we shall confine ourselves in this section), we have seen that the

spin-wave eomponents ¢_ (1) and 6_(7) oseillate at a frequency w__ (7) mueh greater than the
k k
precessional frequency of m . Therefore, m will respond, not to the instantaneous reaetion

torque, but to an effective torque whieh is averaged over the period of this oscillation. Since

f(1) is slowly varying, we may consider it to be constant during one period of oscillation. Then

since ©_ and ¢ __ are 90° out of phase, terms of the last two types in (VI-3) give no contribution
k k

to the effeetive torque, and we are left with

> o =r (370} 2 2 -+ Mg 2 =+ ., m6 2
m_xXh =M |i H (Ie*I —I(p_’l R I(p__| — 2 A Ie*I (VI-4)
K -k olmyg K K 9% K ¢ K K

where the factors sinz(g — 7/6) and eosz(g — n/6) of IG_’IZ and |(p_’|2, respectively, are to
k k

be replaeed by their average value 1. We note that exchange fields (whieh appear in the diagonal

elements of H ) do not eontribute to the effective reaetion torque. Also, since H, << 417M0')2'

K
k
[exeept for extremely long wavelength components which, we will find, make no significant

contribution (_fo)r], the anisotropy term in‘}T_’ may be safely neglected, leaving only magneto-
k
static terms. Equations (VI-4), (V-22), (V-23a,b), and (V-26) then give

- 2,7 o~ 1 . 2 2
m__Xh_T(_ =4t {1 9 x 7 sin2(e - &) (I(p_k_l —Ie_k_l )

- ~ 1 2 - ~ 2 2
+1gX 7 sin2(e @) I(pEI — i 1 =X sin" (o —@)] legl [ (VI-5)

We now show that only the i -eomponent of (—{o)r ean have a physieally important effect on

S}
m . Taking the ensemble average of m_ X h _ and performing the sum over k, we write
k -k
(T =4amm’(d tigsg+ 1 ) (V1-6)
o' o' !m¥%Sm * le%e 1(pwoscp -
where
1 ~ : 2 2
Spat@d B Z x (kL) sin2(o  — ¢) (Iwk’l - Ieil ) (VI-7a)

K#0

1 Strictly speoking, the ensemble averages in (VI-7) should include the factors containing ¢,. However, as was
noted on p. 21, rondom fluctuotions of ¢ vonish in the limit S — « ond are therefore of no physical importonce.
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|

1 ~ »
seley) = 3 Z X (kL) sin2(¢p  — &) |<pr(, (VI-7b)
K#0
s (p) == Y [(-x(kL)sin’(p_—a&)] |o_|° (VI-7c)
s @y - :
K#0
From (I-1a), (V-5a), and (VI-2) we obtain the condition
2 o sl F
1>> 3222 = b (le_.l +lo_l ) (VI-8)
M N K K
K#0
from which we deduce the separate conditions
2
Y w Iel_;l <«< 1 (VI-9a)
K#£0
2
Y, w_ le %<1 (VI-9b)
. K K
k#0
where w__ is any weighting function satisfying
k
lw s o (VI-9c¢)
k

[Note that with w_ = 1, (VI-9b) leads to the restriction (III-58) on the magnetization dispersion. ]
k
Since 0 < < 1, these conditions may be applied to the sums of (VI-7), and we see that

|sj(¢o)| <<1 j=m, 6, ¢ . (VI-10)

Next we insert the effective reaction torque of (VI-6) into the equations of motion (V-4a) for
r_ﬁo and, with the help of (V-43a-c) and (V-48a, b) obtain

m
D =
m - T%ml?o A
(o]
S =2
B = p((po) —rgl se(q)o) (VI-11b)
¢O=oo[1—sw(<po)] (VI-11c)

where we have neglected random fluctuations of m and o, as well as @y (See footnote, p. 62.)

We note first, from (VI-11a), that |{ﬁo| = mo('r) is no longer a constant of the motion (|M| = Mo

still is, but now M; and mj differ by <|5M|2)). However, the relative change in m during
switching is small (since |sm| << 1), and no profound effects are anticipated. We next note,
from (VI-1ic), that the direct effect of spin waves on @, is small (and therefore of no physical

importance); with the help of (VI-11ic) we may integrate (VI-11a), obtaining the implicit solution
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(1) (0) 2ol (¢) d (VI-12)
m (7) = m (0 exp—S‘ s_ (&) d¢t . VI-
© 2 o (0)

(o]

However, because the change in m is probably not measurable, we shall carry this solution no
further (although evaluation of S is straightforward) and turn instead to the one potentially large
spin-wave effect — that of Sg-

Since €-2 >> 1 (~104), the second term on the right side of (VI-11b), which comes from the

i
(S]
the uniform field torque term p(q)o). To compute Sg We take ¢ _(7) as given by (V-85) and, re-
k

-component of the reaction torque, is not a priori negligible and, in fact, could even dominate

calling the definition of A (V-53), obtain

1 2, /8 s ~2/3 -1/3 2
sgle) = 3 (e7p) / Co 2 X /31 cos (¢ — &) |¢>}_{,(0)| . (VI-13)
K#0
The initial ripple amplitudes are given by (III-39) and, converting the sum to an integral [see
(I11-44) ], we find

rr C. N2 ©
1/3( ) 15‘ )(2/3)(-1/3(1 e z 2, -3/2
o]

2
Se(qoo)=(e P Y =

w0(0)+n/2 2
7 kdkS‘ (1+g,) " cos(p - @) ds . (VI-14)
¢0(0)-n/2 k

We have used (V-59) to relate ¢ _ to ¢

-

and it must be remembered that the solution for ¢ _ (1)
k

we are integrating is valid only for |\Il| << \Ilo. The second integral in (VI-14) is

n/2
252 -1~ 2 _.=2
I, = 5 (1 +AJk" + A L7 sin“9) 7% cos [n(r) — ¥]d¥ ~ > 2’351'1(_;)2 (VI-15)
-n/2 (a”b)
where
a=1+ }\:'kz (VI-16a)
b =2 L'1; (VI-16b)

m
and we have made use of the fact that for k = O(}\e_i), b >>a. The main contribution to I\b is

from \Ilzb/a < 1; using (III-37), (V-74-1), and (V-53), we see that for components with k = O(>\e-1)

h

2 b 2/3
Voo BAX (o) : (VI-17)

Since y, A, and hp are all ~1, if A >> po_1 (we recall that A >> 1 and the limit 85,7 0 is excluded),
then

¥

2 >> 1 (VI-18)
o

p|o

and only components for which our solution is valid contribute to I But for typical values of

the parameters involved, (VI-18) is satisfied only marginally, e.g., ¥ b/a ~ 2. However, as
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noted in the footnote on p. 58, the solution may be extended to |\I/| < \I/o without serious error.
We estimate the possible error in I\I/ to be +20 percent.

Equation (VI-14) now becomes

T'r C \2
1,2 .1/3 » L Ya/2
Sg = 32 (e po) / (-—49/\—) (:n-) / Ik cos n(T) (VI-19a)
where
I - g e APl r2k%) (1 +2 2% 72 hax (VI-19b)
O

We evaluate Ik by the same method used to find 62 on pp. 27-29, with the result

i uLVég (1 +;\:k2)‘3/2 k7/6 dk
(o)

- L1/6, -13/6,7 3
SR =) (VI-20)

where I(p, q) is given by (III-65). Thus

Z o8 15
C,T({3) rig3) (Tr\2
1/3 Z=" 12 12 ( o) AL cosnim L vz

2
s, =(e p)
(5] o 2 NT 4A m e

It is convenient to express Sg in terms of the zero field magnetization dispersion 60, given by

(III1-66) or (I1I-67) with A = 1, and we finally obtain for the reaction torque contribution to éo

-2 . -2/3
€ Sg = hp doR cos n(T) (VI-22a)
where
_ 1/3, -5/12
dy=pn,""A (VI-22b)
M:);Lz 1/3 ,
R = CI‘ ST 60 (VI-22¢)
(o]
and
5.92
r{(7)
_.9.,1/3 ., 13 5 6 n
S - I 1 G [—r l)] =2.45 . (VI-22d)
4

Before we investigate the effect of this reaction torque on the uniform mode, it is helpful
to recall the meaning of the factors in (VI-22a). h_ is the (constant) magnitude of the pulse field
H , normalized to the uniform anisotropy field HK = ZKO/MO. The factor do is a function of
the initial state of the film and of the direction of Hp' and with Py and A given explicitly by
(V-48e) and (III-32) is

5/12

d, = (sin (6, — ¢ (0) 2 fess 20 (0) + hy cos [By — @ (O} (VI-23)

For the case of a hard-axis bias field and an easy-axis pulse field [see (IV-19a, c)]
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1/3 2)-5/12

d =h 1—h VI-23-1
A 1 { i ( )
and for the case of zero bias [see (IV-19b) ]

d_ = (sin a3 (W28 -2)

The reaction torque coefficient R is a function of the thickness and magnetic parameters of the
film; for a TPF, R = 45602 = 0.26. The last factor, cosn(T) = cos [(po('r) - (po(O)], introduces

an implicit timc dependence into the reaction torque. The change in sign of the torque at n = n/2
is expected, since for K || ;10(0) the magnetostatic field and planar spin-wave components are

parallel, producing no reaction torque.

C. ROTATIONAL MAGNETIZATION REVERSAL: DYNAMIC LOCKING

The equations of motion of the uniform mode, as modified by the ripple, are [from (VI-11b, c)
and (VI-22a)]

g, (1) = p[n(r)] =V cosn(r) (VI-24a)

n(r) = o (1), (VI-24b)

where the uniform torque [from (V-48b)] is
hb "
p(n) = —sin[n + (po(O) —Bp] - h—p sin [n + (po(O) —Bb] - ﬁ sin2 [n + (po(O)] (VI-24c¢)

and

-2/3
hp d_R (VI-24d)

v

providing 7 is in R _, given by (V-83a-c). (The initial reaction torque is not V, but zero, since
M is in equilibrium.) If V is small ("small" will be defined below), rather than solve (VI-24a, b)
we compare them to the corresponding equations with phenomenological damping, (IV-27a, b},
and verify the observation made in Sec. VI-A, namely that the reaction torque results in an
effective damping in the first quadrant and an effective anti-damping in the second. An explicit
solution for n(7) would then show retardation in the first quadrant and acceleration in the second,
with a net effect of somewhat slower switching since, without damping, the greater portion of
the time for reversal is spent in the first 90°. This may account for the anomalous damping
observed in coherent rotation (see p. 2); however, to compare theory and experiment on this
point the intrinsic damping torque (—vao) should be included on the right side of (VI-24a)}, and

a machine computation becomes necessary.

But now suppose that

V cosn(Tt) > p[n(r)] for (O}t el o (VI-25)

o0

where 7_ is the smallest 7 in 5100 (usually 7 << 1), Then the effective torque

Pepp(m = p(n) — V cosn (VI-26)
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becomes negative after a short initial buildup time for the reaction torque, and rotational reversal
is prevented; the uniform mode has become locked. However, the inequality (VI-25) is sufficient
but not necessary for locking, which may occur later in the reversal process. We define a crit-
ical value of V, Vc’ as the minimum value for which the uniform mode becomes locked; this

will occur at an angle ne with 0 < 1. <7n/2; VC and n. may be found most easily by a generali-
zation of (IV-37):

Peff(‘ﬂc) =0 (VI—273)
Pering =0 . (VI-27b)

These relations determine e and either VC (at fixed field) or, alternatively, the critical pulse
field hpC for irreversible rotation through i (at fixed R). We shall adopt the second viewpoint,
since the field is conveniently varied experimentally. With the help of (VI-24c¢) and (VI-26),
(VI-27a,b) become

, g
X sin - + Y cos ?oc— 7 Sin Zw'oc =10 (VI-28a)
X cos Con— Y sin ¢ o — COs Zwoc =0 (VI-28b)
where
Brea ™ W + (po(O) (VI-29a)
X =—h. conb —h cos.— 12 & R sing (0) (VI-29b)
pc p b b pc o) o)
¥ =h _ sing. % by, sing. =h 7> 4 R cos . (0) (VI-29¢)
pc p b b pc o o i
We find from (VI-28a,b) the relations
X = cos’ (VI-30a)
Poc
Y = sin’ (VI-30b)
N %oc

provided Poc > cpo(-rw), from which we obtain the equation for the critical field

X.2/3 N Y.2/3 =l . (VI-31)

In Appendix D we examine (VI-31) for two field configurations of experimental interest
[(IV-19a, b)].

For ?oc < ¢o(-r°°), locking occurs at the start of reversal — at some time between 0 and 7_.
Then to find the critical field we would compute the reaction torque from spin waves given, not
asymptotically, but by (V-75) and (V-82a,b). We shall not attempt this formidable integration,
but instead make the rather crude assumption that R = 0 for 7 <7_. Then in the limit 7 =0,

the critical field is determined by the disappearance of the initial torque

Bt =0 (VI-32)
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from which we obtain

2/3 _ _
hpc =d R csc[Bp <p0(0)] : (VI-33)

Note that (VI-33) implies a cube-law dependence of hpc on the dispersion 50, which should be
very striking if it actually exists.

We conclude with a general discussion of the critical field and its implications. It should
first be noted that for R =0, hpC becomes hpt — the usual threshold field for1'3irreversible uniform
rotation [see (V-41)], and (VI-31) reduces to the Stoner-Wohlfarth asteroid

(—h

2/3 ! ! 203
pt cos Bb) + (hpt s1an + hb sme) =4 . (VI-34)

cos Bp — hb

Then from (VI-29b, ¢), (VI-30a, b), and (VI-31)

ahpc = 1/3 cos [(pot - (po(O)]

oR R=0 pt o sin (Bp — ‘pot)

S0 . (VI-35)

For small R, therefore, hpC —h _, is proportional to R, and from (VI-22c¢)

pt
hpC = hpt o 65 for R<<d : (VI-36)
We next note that for
h >h (VI-37)

rotational switching is modified but not locked by the ripple. Thus we identify the ficld region
(VI-37) with that of high-speed switching, or "coherent rotation" (region 3 of Fig. 1), and thc
critical field h " with the threshold field for coherent rotation (h 3 of Fig. 1). Preliminary
experiments performed by T. D. Rossing and G. P. Weiss at the Laboratory have verified thc
dependence of this threshold on the bias field hb’ as given by (VI-31). (See Fig.D-2.) If 60
can be measured independently, the dependence of hpC on the magnetization dispcrsion, as
given by (VI-36) or its equivalent for R not small (see Appendix D), should provide a sensitive
experimental test of the theory. Analogous with the replacement suggestcd on p. 42 to approxi-
mately account for anisotropy effects, we may replace H, in the solutions found in Sec. IV for
@, and 0 by Hp == HpC and thereby approximately account for both anisotropy and spin-wavce
effects.

For

M Sl <l VI-38
pt < Pp <Ppe )

r_ﬁo starts to rotate but at some point in the first quadrant becomes dynamically locked by the
magnetostatic field of spin waves propagating in the direction of mO(O) (LMR). We identify the
field region (VI-38) with that of intermediate-speed switching, or "noncoherent rotation,"
(region 2 of Fig. 1), and offer the following conjecture on thc reversal process following locking:
We have seen that the occurrence of dynamic locking depended on the relaxation time of initial
ripple components not being short compared to the switching time. However, with the uniform
mode locked these components can now relax, either to the lattice or to components propagating
in the instantaneous direction of r-ﬁo, thereby losing their large magnetostatic energy and un-

locking the uniform mode. Thus we envisage a highly damped rotational process, with switching
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speed controlled by the spin-wave relaxation rate, and with a threshold field hpt (hpz ofiFig. 1)
This is in agreement with experimental observations (see Sec. I}, but no quantitative assessment
of switching speeds expected can be made until spin-wave relaxation processes are better under-

stood, or at least until relaxation times have been measured.
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APPENDIX A
NOTATION; PARAMETERS OF A TPF

I. NOTATION

The following subscripts appear on i (magnetic field), ay (torque = M x H), and their Fourier

components H_, and _t’_‘:

k

Subscript Meaning
eff effective
m magnetostatic (omitted in Sec. 11)
e exchange
a anisotropy
h external field (at an angle g8 to -{x)
p external pulse field (at an angle ﬁp to Tx)

The following subscripts appear on H (external field magnitude), B (angle of external field
to -i.x), and H (=H/H
Hpe =-2K /M );

K external field normalized to uniform uniaxial anisotropy field

K
Subscript Meaning
p pulse
b bias
i pulse along __{x (easy axis): By =
1 bias along -i.y (hard axis): ﬁl = /2
t ideal single-domain threshold
€ critical value for dynamic locking:

coherent threshold

II. PARAMETERS OF A TYPICAL PERMALLOY FILM (TPF)

Parameter Symbol Value
Gyromagnetic ratio v 1.87 x 10" (oe sec)_1
Saturation magnetization M, 7.96 X 10° gauss
Exchange constant A 10_6 erg cm_1
Uniform uniaxial anisotropy K 1.6 x 10° erg e
Root-mean-square local anisotropy K1 5 X 104 erg cm-3
Mean crystallite boundary spacing P 1.25 x 10°% ¢m
Half-thickness L 5x10™° cm
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APPENDIX B
COUPLING OF RIPPLE COMPONENTS

Here we carry the iterative procedure that was used to find the equilibrium state of the
magnetization one step further. We shall find that the correction thus introduced, which arises

from coupling of the ripple components ¢ _, (K # 0) by random anisotropy forces {but not from
k
contributions to the torque nonlinear in ¢ _, which are still assumed negligible), is small

provided fluctuations of the magnetization from its mean direction are small or, more precisely,

provided

1]

8% Z I(p_’,2<<1 . (B-1)
k

K#0

In order to evaluate the mean square amplitudes [(p_blz, we will require ensemble averages
k

of the form f f ~_ where f_ is the Fourier transform of a random function F(r) satisfying
k k'-k k
(IlI-9a-c). To find this we first obtain a generalization of the autocorrelation function [see

(111-10) ]

() = 4 S F(& + 0 F(r) e K 7 g (B-2)
K

Following the same argument used to derive co(?), we find

- 3 T/r - P
c (M =Fe O%S L =
k
— -r/r
= F2 e ° 6_,
k, 0
= c,(r) 6, (B-3)
° Ko
and using the inverse Fourier transform
ot %SF(?) e_lk'r dZF (B-4)
k
we have the result
_ e e | (TS T T g ) P
Ll = 5 LZ SS F(r) F(r'") e ik r+{k'-k) r'] dzrdzr"
k k'-k S
L P T i
kl
=11, |%s, (B-5)
k k!0
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We now turn to (III-23b) for the ripple components ¢__, which we write in the form
k

ks
| 1 g
R e DR TN A 'S 2 (B-6)
- 20 U :
k ] T = k-k' k'
K'#£0
where
W =+l = K _ cos2¢ +MHcos(ﬁ—go)+Ak2+21rM2')Zsin2(<I>—go)
X T o o o o o o
=K A(1 + g_) (B-7)
o 5
k
" (n) . th . . . .
and ¢_ "’ is the n" " approximation to ¢_ . Starting with
k k
00 -0 (B-8)
k
we rederive (III-35);
1) "
AL (B-9)
. K
Then the next iteration? gives
(2) LN O
il - _k-k' k' »
Clalte o T (B-10)
k = k e g
K'#0
with mean-square amplitude
(2),2 (1,2 1 Ay
@22 L) § EEEk,
K 4US [\ o
k k'#0
Teoithe, leab o,
% _.Z _.Z T oo : (B-11)
kl%o kllaéo k' k"

To find the ensemble averages in (B-11) we first observe, with the help of (B-4), that

q, _, P_.p _ may be written as a sum of terms each of which has a factor
k -k' k' -k

Q P (B-12)
05 e My

t At this level of opproximation there is olso o correction to @ through the term =2 L q _ ¢ of (I1I-230),
() (2) k#0 -k k
where ¢ here is ¢ '. This leods to o correction to ¢ which, however, may be neglected since it is non-
k
M

k k
lineor in ¢_ ",

k
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where Qm = Q(;) with T in cell m,, etc. However, from (III-5a, b) we see that
1

P=Q=QP=QP°=0 (B-13)

and therefore each factor (B-12) vanishes (whether or not any of the b abe equal) so that

Qe PP =0 . (B-14)
k-kK' k' -k
Similarly,
- 2.2
Q. Q P P =Q P 6 6 (B-15)

m, ¥m, m, m, m,, m, m,, m,

so that the last ensemble average in (B-11) may be split:

Gis, Gl RSP SRAL AL, PL P,
Kk -kK' k'*-k k' -k' K -k' K-k K' -k"
2 2
= )
| K -K' l IPK' | K"K (B-16)

where we have used (B-5) for the second step in (B-16). Inserting (B-14) and (B-16) in (B-11),

we have the result

2 2
(2),2 1), 2 1 qu( I{'I IpI{'I
P P e D T . ——
k 4UK —k.'aéo UK'

But now let us assume (to be verified below) that the main contribution to the sum in (B-17)

is from components with

1

[k'| <<r_ {B-18)

IZ is independent of k', and since P2 = QZ, (B-17) may be

-

Then we see from (III-14) that |q
k -k'

written

2
lp_ | lp_, |
lo P22 o2y K 3 K (B-19)
k — U
o R#o g

Finally, using (B-9) and (B-1), we obtain the main result of this appendix

le!? 2 = |o!1)|% (1 + 48% (B-20)
k k

where 6 is the magnetization dispersion with ¢_, = go_(_i). The assumption (B-18) is then
k k
justified for exactly the same reasons that the term (rok)2 was neglected in (III-60).
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We conclude that

g 2 e 2 (B-21)

and it seems unlikely that further iterations will change Icp_» l . by very much. Thus, unless
k

(B-1) is violated (in which case the entire theory breaks down since the nonlinear torque terms
will no longcr be small), the assumption we have madc — that ripple components are uncoupled

in static equilibrium (and also dynamically — see p. 43) — is indeed correct.
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APPENDIX C
ON THE WKB METHOD

Consider the general linear, homogeneous, second-order differential equation, which may

be put in the normal form
o'+ F(x) ¢ =0 . (C-1)
We first show that a pair of solutions to (C-1) is

@(x) = h(x) I [g(x)] (C-2)

provided a generating function g(x) can be found for the potential F(x) such that

Fio = (817 - 3 €07 v 20+ g 0P )7 (C-3a)
= (g')z - I;T" (C-3b)
where
1-2v\1/2
r= ( . ) 5 (C-3¢)
g
h is given by
h(x) = (5)1/2 . (C-4)

The proof requires only the Bessel function recursion relations

JV(g) = JV_i(g) + JVH(g) (C-5a)

Slgl =T leh=J . dbm) % (C-5b)

Rle =¥

differentiating (C-2) twice with the help of (C-5a,b), we find

2
@' = [h" — h(g"? (1 - V—z)] Jg, (@) + gl + % hg'' — %% (g)°)
g

X (I, 48—, (@] (C-6)

so that (C-1) is satisfied if

2 Vz

h'' —h(g") (1 = _2)_-_ —Fh (C-7a)
g

h'g' + % hg'' — %% (gu)z =0 . (C-7b)

Equation (C-7b) may be written

1 ' n 4
ol (C-8)
which we integrate, obtaining (C-4) (where a multiplicative constant, clearly of no interest,

has been set equal to unity). Finally, eliminating h from (C-4) and (C-7a) we arrive at (C-3a).
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Equation (C-3a) has the significance that every g(x) generates an exactly soluble potential F(x),
which depends on v. If no g can be found for a given F, it may be possible with some v to find

a g such that F approximates F (and has the same zeros and poles) in some range £ of x. Then

e \1/2
¢ (x) = (%) Iy, 8 (x)] (C-9)
gl
will be an approximate solution of (C-1) in ®. We give a few examples of generating functions

and their potentials:

(@) gix) = cxM (n # 0)
e it e |
F(x)= (Cpx ) for v 7
(b) glx)=cC ehX
Bl S e e e
(c) g(x)=Clnx
Fix) = (€2 + 372 for v=o
= G- 9% flasl ©  fop = xiz

We also note the asymptotic behavior of the solution (C-2), which follows from the asymptotic

expansion of the Bessel functions Jiu(g). For

g=|g| (C-10a)
lgl >+ 13 - v° (C-10b)
we find56
@(x) — ’,nz_g’ Cos[g—%(:tu+ %)] —r<¢ < (C-11a)
O ex [1ri(:tu+1)]cos[ +£(:tu+i)] RS D 22 (C-11b)
ng ©XP 2 E¥2 2 m

L exp [2mi(zv + 1)] cos(g — T (v + i)] <¢p <3 (C-11¢)

Nrg' €XP 2 €2 z i T 2

etc.
This approach to the solution of (C-1) is especially appropriate if the potential is of the
WKB form
2
F(x) = [Af(x)] (C-12a)
where
A>>1 (C-12b)

and f(x) and its derivatives are O(1) in some range R_ of x away from "free" points f(x) = 0.

In particular, if f(x) is slowly varying near a free point or has other unusual behavior there,
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i.e., an inflection point, the standard methods may fail, and the procedure we now give may be

useful. For x in Roo we assume there exists a solution of the form
X
@(x) = exp i%g p(£) d§ (C-13)
X
o

where X, is a constant. Letting p(x) = po(x) + k—i pi(x) + ..., and dropping terms of O(A_Z), we
substitute (C-13) and (C-12a) in (C-1) to obtain the usual WKB asymptotic solutions

X
¢lx) — exp [mg £(¢) ag| . (C-14)
NT X,

Comparison of (C-14) and (C-11a) shows that the asymptotic value of the generating function for
a WKB potential (C-12a) is

x in R

2.8 ~
_ k‘g £(§) d& = g(x) (C-15)

xoing R X,

g(x)

which is easily verified by substitution in (C-3a), giving

F(x) = P15 1+ 079 . (C-16)
Now inserting (C-15) into (C-2) and (C-4), we find that

~.1/2
(8) 9., = (C-17)

@ (x)
x in R
00
is an asymptotic solution of (C-1) and (C-12a) for any v.
The solution (C-14) breaks down, of course, near a free point f = 0, But if a v can be
found such that E(x) generates a close approximation to the potential [>\f(x)]2 in a continuous

range of x which includes both a free point and K then Z)(x) will be a good approximation to

o0’
¢(x) in that range. For convenience we locate the free point in whose neighborhood we seek a

solution at x = 0, and expand f(x) about this point:
o0
ERE Z fJ.xJ (C-18)
=1

where p > —1. If f(x) is analytic at the origin, then

p=0 (C-19a)

|
P 3 (C-19b)
J I dxd [x=0

and if there is a small residual potential at x = 0 (a "nearly free" point), a j = 0 term may be
included in (C-18) instead of the j = 1 term. It is usually advantageous to have the lower limit
X in (C-15) coincide with the free point, and with X, = 0 the expansion of (C-15) about x = 0 is,

from (C-18),
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o0
)i .
Six) = axPt? J
g(x) = AX Z m X 0 (C-ZO)
=1

e

Now suppose that for a continuous range Rm of x, which includes both the neighborhood of the

free point and part of R_, g(x) may be approximated by the j = m term of (C-20)

Af
= Y m ptm+i
glx) = o5y 1 X (C-21)
Then g(x) generates a close approximation to [)xf(x)]2 in ‘Rm providing
v . (C-22)

T2 fm+ 1)

as may be seen from example (a}), p.78. The requirement that Rm and R overlap is satisfied

if there is some g in Rm for which condition (C-10b) holds:

1/ o -;_— B= o . (C-23)

2y Ifml | x 1

Ll

It may be that no suitable ‘Rm exists; for example, two terms of (C-20) might be required to
connect the free point with ® . Nevertheless, it may be possible, using (C-3a), to find a glx)
which approaches g(x) for x in R and generates a good approximation to [M"(x)]2 around the
free point.

To summarize, ¢(x) as given by (C-17) is an approximate solution to (C-1) and (C-12a) in
R, and ‘Rm, with g(x) given by (C-15) with s 0 and v by (C-22). The asymptotic formulas
(C-11) may then be used to establish the connection between the coefficients of the solutions
(C-14) in R on either side of the free point. The approximate potential generated by g(x) differs
from [)\f(X)]Z by an amount given by the second term of (C-3b), and this may be used to improve

the approximation if necessary.
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APPENDIX D
THE CRITICAL FIELD

In Sec. VI we obtained a critical field, HpC =5H, which we identified as the theoretical

h
K 'pc’
pulse threshold for coherent, high-speed switching Equations (VI-31) and (VI-29b, ¢), which
determine hpc’ cannot in general be solved in closed form. In this appendix we use graphical

and numerical methods to find hpc for the two field configurations of greatest interest.

I. HARD-AXIS BIAS FIELD - EASY-AXIS PULSE FIELD

In this, the most frequently used arrangement,

= L -
3p =m » 3b = 2 (D 13.)
e =h hy = h -
TR ! Sl
(po(O) = arcsin hl (D-1c¢)
and therefore from (VI-29b, ¢) and (VI-23-1)
X=h||c—fo (D-Za)
Y = hl = fyR (D-2b)
where the reaction torque coefficient R is given by (VI-22¢) and
. 1/3 _4/3 -5/6
fe=hile P’ ] (D-3a)
o 1/3. 14/3 _4/6
fy—h”c h /7 g (D-3b)

2
g ’1 —h = cos (po(O) ) (D-3c)

A necessary condition for Eq. (VI-31) to determine th is ¢ . > (po(o), or

o
3
P>
% hl
which leads to

2/3 3/2
R<hl/ gl/ (D-4)

where we have used the relation

fx hJ.
- = —= =tang (0) . (D-5)
fy g, o

We shall assume that (D-4) is also sufficient for (VI-31) to be valid, which is equivalent to
assuming that 7 << 1. Equation (VI-31) is most conveniently solved for R (given th and hl)
by the graphical method sketched in Fig. D-1, where we have made use of (D-5). In Fig. D-2

we plot h vs h, with R as a parameter.
lle

Al
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G.P. WEISS (unpublished)
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Fig. D-2. High-speed switching threshald curves with reactian tarque caefficient R as a parameter:

theory and experiment (hp3 = hllc with hard-axis bias field hl).
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For
2/3 3/2
th is given in first approximation by (VI-33), which becomes

R3/2

hy  =———F=
Ile Wik

(D-7)
However, this expression may be seriously in error since it neglects the growth time of the

reaction torque; we show it as a dashed line in Fig. D-2.

II. ZERO BIAS FIELD

In this arrangement (which is more frequently used to study quasistatic than pulse switching)

Bp=T—B (0<Bg ) (D-8a)
hp ==l p hb =0 (D-8b)
@00 =0
and therefore
X = h, cosf (D-9a)
Y =h_sinf — (h_ sinf)? R . (D-9b)

The condition for (VI-31) to determine hc is now

R<(tanE)2/3 . (D-10)

We solve (VI-31) for hc cosf as a function of hc sinE and R, and the result (with R a parameter)
is plotted in Fig. D-3.

For
R > (tanp)2/3 (D-11)
(VI-33) gives the first approximation
R3/2

hc = = (D-12)
singf

which is shown as a dashed line in Fig. D-3.
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Fig. D-3. High-speed switching threshold curves with reoction
torque coefficient R os porometer (hp3 = he at an ongle B to
eosy direction opposite initial magnetizotion).
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