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RADC-TDR-64-334 November 196%
ERRATA - JANTARY 1965

The follow:lng errors have bee: noted in the derivetions of the formulss
appearing in Part II of RADC-TDR<64-33%, "Design of Mebsl Space Frame Radomes,’
dated November 196%; Since they occur in the deriwvations tuelr influence iz
reflected *kxougnou" Pexrt IT and thelr correction m.l]. require .substsnbisl
rewriting:- The revision will zopefully te awvailable by May 1965.

Page 75, Equation (3). This equation, h'f(ﬁzbsg 1/2'.«1): L; should
A - i

| N ‘
read Wkt =1/2vd ; L, to accourt for truncation of

the sphera.
Page 75, Equation (5). Tais equsiion ty= V;?d ghonid resd

t =Y 12

Page 82, Eguation (31). The term Oskhould be twice the density cf Szs
actual material used in the radome members since 4 tg 1s epresentat:‘.\w of zgif
the actual volume of mstzrial in the membeis.

Page 86, Equation (41), The R2 in thé denominsfor of the secord Simm
of this equation should be /{

Page 86, Equation (ki). Tnis equsilon is based upon an Buler buckisg
gtress for a f2xed endad colunme Since you carmot acnisve complete fixIty ab

the ends of the radome memkers this is considerad too ilberal an assumptic:s.
Twhe more conservatlve ayxproach would be to assume the members as plsn ended.,

Devzlopmert Englneering Branch

Reome Alr Development Cexter
Resesrcen and Teckrology Division

Alr Porce Systems Commrarnd
Griffiss Ai>» Force Base, New York

UNCIASSIFIED
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Twvaluation

This contractual effort resulted in the development of two classes of
theoretical tools heretofor not availsble to the radome designer -

1. Simplified formulas, charts and graphs for computing the insertion
loss, side lobe perturbation, and boresight shift ceused by a metal space
frame radome. Wheréas these coiputations formerly required extensive time
and computer services,they now may be performed in a timely fashion by
ordinary desk canputational techniques. This allods us to make eralytical
checks on radome performance which until this time, have not been possible
on a practical working basis.

2. An integrated electromagnetic - structural design procedure for
metal space frame radomes. The design is conducted within simmltaneous
structural and electromagnetic constraints rasulting in a presoribed
electrical transmission loss coupled with a prescribed level of structursl
integrity at minimum practical weight. Previous radome design procedure
has been an iterative process.of structural design v.s. electromegietic
checks until an acceptable design was achieved.

The two techniques described above represent-a large step in & long range
program to convert ground radome design to a practical engineering procedure
which is not dependent upon extensive computer programs and electromagnetic
testing. .

This information will be made available, through distribution of the final
report,to those agencies and firms involved in the design and/or application
of mgld ground radomes.

ROBERT B. CURTIS
Project Engineer

AIR FORCE, GAFB, N.Y., 4 DEC C4-117
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ABSTRACT

PART I - Design graphs, formulas and procedures for the design and evalu-
ation of the electrical performance of metal space frame radomes is pre-
sented covering specifically transmi;sion loss, boresight error, and side-
lobe variation. The relative merits of metal and dielectric elements is

analyzed.

PART II - The study consists of developing a straight forward simple pro-

cedure for the optimum sizing of solid beam elements for large space fré.me
radomes-. Equations were defi;ed expressing the relationship between the
element dimensions necessary to satisfy a prescribed electrical transmission
loss and the structural integrity of the spaceé frarne, These equations, con=
sidered as design constraints, were utilized in the se}ection of the element
size which satisfied a defined optimum criterion. Two optimization criteria
were adopted: first, the minifnizat-ion of the transmission loss subject toa
constraint of structural integrity and, second, the reduction of the total struc-
tural weight of the elements which simultaneously satisfy the transmission
loss and structural constraint.

A sample design computation was conducted as an example of the
procedure. The second optimization criterion was applied to a 150 foot diam-
eter radome which was required to sustain 150 mph winds., A procedure for
implementing the first optimization criterion employing the method of
Lagrangian multipliers was presented resulting in four equations to be solved

simultaneously.

-iii-

e e i

S Soer et S ARG R ¥ e it

SO SRS

- R v

4,65

o i AR AN e v 2

e oyl s ks
s gl sadiy




Sy

S

PUBLICATION REVIEW

R e S

'Thié.iepm liés been reviewed and is approved. For furthei technical information 6n
this project, contact 14r. Robert B. Curtis, EMEA, Ext. 6210

Approved: [ LAg
ROBERT B. CURTIS
Development Engineering Branch

o Aramne

Approve

ineering Division

FOR THE COMMANDER:

RVING J. GABELMAN
Chief, Advanced Studies Graup

wlVe

Bt AT koo e 2

AP LG r B P T Y s

T v IR s o<t

o i e




oo s - e AR o e e o e AR S B A TEREC TR

TABLE OF CONTENTS

pes R
A IR

‘,A:‘:::';;Qt)qg.;"y)‘l’ sl s

a3 3 ST IR e s SO Pt
I WY g T e i

AR AR

Page No.

PART 1

INTRODUCTION 1
LOSS DUE TO SPACE FRAME ELEMENTS 1
LOSS DUE TO HUBS , 17
LOSS DUE TO DIELECTRIC SKINS 35
BORESIGHT ERROR 36
EXPECTED SIDELOBE LEVELS DUE TO THE.SPACE

R
AR AT

B
Torn

.
B
Al

RINE, SR N

FRAME 55 EA
COMPARISON OF DIELECTRIC AND METAL STIFFENING 4
RIBS 64 ©

PART II_

SUMMARY 69.

ELEC’TRICAL, CONSTRAINT ON THE ELEMENT T

STRUCTURAL ANALYSIS OF SPACE FRAME : 72
A. External Loads T2

Vg QNS ke

B. Structural Analysis 73
OPTIMUM DESIGN CRITERION 90
SAMPLE RADOME DESIGN 100
MECHANICAL DESIGN OBJECTIVES 112

REFERENCES 115-116
APPENDIX 117

X
N
.
Ve
o s e e . G i A biea——— vor o JONPR. T e it st il Ly e
By TR - = - - s e — _ e - . N
» [)




e N sV T S g e 2 B T .

PART 1

SYMBOLS
(also used in Appendix)

1. G - relative power loss due to space frame radome

2. P - blocking area ratio of space frame radone, i.e. ratio of projected
area of space framse to area of reflector

3. g - the induced field ratio of a scatterer, i.e., the field strength in
the projected blocking area of the scatterer which would produce
the actual scattered far field produced by the scatterer, divided
by the incident field strength

W - width of scattering element
d - depth of scattering element

L = average length of scattering element

A A

g): 8 - values of g when the polarization of the incident field is
respectively longitudinakand transverse tothe length of the element

®

A - free space wavelength
9. £ - frequency of electromagnetic radiation
10, c - parameter depending on curvature of radome
11. D - hub diameter aiso, in context, the dish ai:erture diameter
12, p 1" blocking area ratio of the hubs

13. ¢, § - dielectric constant relative to free space value and thickness,
respectively, of skins

i4. r, N - polar coordinates in the antenna aperture

15. ¢ (r,n) ~ phase error at (r.n)

16. 0, 0' - boresight shift in radians due to a phase error

17. @prms - rms boreaight shift

18. a - radius.of dish aperture

19, £(r) - illumination of circularly symmetric aperture

20. A?ﬂ'g, AW, AL, Ad, Ae, AS - variations in these quantities

21, {B] = [fraction] ¢ .1orents, hubs, or windows having a specified
n number

tolerance or design variation

22, A (gl+gt)/2

23. ¢

0’ €©

s cl', Cpr €31 €40 s Cp = functions of aperture illumination

1 2" 3 "4 b
defined in context

24. A - area of a part of the radome
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25.
26.
217.
28.
29.
30.
31.
3a.
33.
34.

R - radius of radome

0,t - defined in Figure 38

SYMBOLS (cont'd)

Og = angle at which grating lobe occurs

ty - defined in eq(34)

P - defined in eq(37)
Ae’Ao - defined in eq(36)
subscript m - metal

" d - dielectric

E - Young's modulus

S!, a, 7, ¢, - quantities defined in [3J
m

d
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13,
14,
15,
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19.
20,
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22,
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30,
31,
32

33.
34,
35,
36.
37.
38.
39.
40,
41,
42,
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PART I
SYMBOLS

A - area

C - constant

D - constant

d - element depth

E - modulus of elasticity

F - total force

f - unit force

H - constant

I - moment of inertia

k - surface area coefficient

K - Tsien-Von Karman coefficient

L - element length

M - moment or number of panels

N - stress resultant or number of elements
P _ - pressure at wind stagnation point

-q - distributed transverse load

Q - equivalent shell weight density

R - radius of radome

S - effective spacing of elements

t - thickness

u - circumferential displacement

V - velocity of wind

v - meridional displacement

W - weight of elements

w - element width

X - coordinate

coordinate

coordinate

- meridional angle from base

- exponent coefficient

- circumferential shell coordinate

- Lagrangian Multiplier

- Poisson's ratio

- weight density

- normal stress

¢ - meridional shell coordinate

w - normal displacement

subscript 1 - boundary condition one
" 2 - boundary condition two
" R - radome
" r - reinforcement
" s - shell
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SYMBOLS (cont'd)

43, subscript e - external

44. " i - internal
2 45, " cr - critical i
3 46. " yp - yield point §
$ 47. u b - base of radome !
4 48. u Q - direction of meridian coordinate E
QE 49, " 0 - direction of circumierential coordinate P
"’; 50, " ¢0 - direction of § in plane normal to 0 i
&: 51, " n - direction normal to surface of radome
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DESIGN OF METAL SPACE FRAME RADOMES

PART 1 - ELECTRICAL DESIGN

INTRODUCTION

"Electrical Design of Metal Space Frame Radomes. ' [l] by Alan F, Kay,
was prepared and submitted for publication on August 20,1963, A revised ver-
sion dated March 23, 1964 has been accepted for publication in the Transactions
of the IEEE, Professional Technical Group on Antennas and Propagation. This
paper contains the fundamental theory on which most of this present report is
based. The present report gives design graphs, formulas, and procedures for
specific radomes in the .1 to 10gc/s. band, as well as considerably more design
data than incladed in [l] . This data pertains to the three most critical electri-
cal properties of the radome: loss, boresight error, and sidelobe increase.

A section on the relative merits of metal and dielectric ribs is included.

1.OSS DUE TO SPACE FRAME ELEMENTS

Equation(22) of [1] is the fundamental approximate formula for the loss
due to the spacz frame itself. In the Appendix, p.120, a brief derivation is given

of this expression:

(1) G=|1+pg|®

where G is the relative power loss as measured at (or near) the peak of the
antenna beam due to the presence of the radome space frame, o is the block-

ing area ratio of the space frame and g is the induced field ratio of the space

1
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frame elements. Equation(l) neglects the loss due to hubs and dielectric skin.
We give here simple formulas and graphs by which G may be computed in
most cases,

Consider the space frame to be comprised of triangles of elements of
average length L from hub center to hub center and of width W. Consider
any one triangle as extending to the midline of each of the three elements com-

prising it, If the triangles were exactly equilateral then £ would equal
w w
2N3 I ° 3.46 -

If the triangles were right isosceies then f =3.56 _I“:f_ . /ﬁ generally in-
creases the further {rom equilateral the triangles depart or the greater the
standard deviation of the element lengths from the average value L. For a
well designed radome geometry the element lengths should all be close to the
average L and the triangles all reasonably close to equilateral. A reasonable

approximate value of /9 has been found to be

=359
(2) f=357.

This value is also approximately corrected for a quadrilateral geometry.

The value of g depands on the element crosssection, the average inci-
dence angle @ of the radiation from the dish to the curved radome, and the
polarization, When the projection of the elementa into the aperture plane are

all parallel to E, the appropriate value of g is 8g - When the projection

2
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of the elements into the aperture plane are all transverse to E, the appropriate
1
value of g is g, [ -] In the case of a triangular geometry with L << D,

where D is the dish diameter, the appropriate valuc of g is

gg tg
(3) = == t

Values of 8.y for various rectangular cross sections, W x d, and
frequencies are shown in Figuresl to 3 for 0 =0. These values were ob-
tained by the computer program described in [1] . At sufficiently high fre-
quencies f, ,ev(gav) approaches -1 and )?rvu(gav) approaches zero., How-
ever, the manner of approach is such that each of the curves d/W = constant
spirals an infinite number of times before reaching the terminal point (-1.0).

If the graphs were extended into the regime where this spiraling takes place,

t hey would be difficult to read and interpolation either in f or d/W would

be virtually impossible, It is also in this regime where shaping of the elementD]
can effectively reduce ioss and consideration of purely rectangular elements be-
comes less significant. Figures 4 to 6 are transparent overlays for three values
of # which give G directly in db, according to equation(l) if any of these are
placed over one of the Figures 1-3 with the axes coincident. In any case where
values of /£, W, and d imply that L <\, then multiple scattering becomes

1
important[ l and equation(l) is inaccurate., These cases occur at low f when the

apparent values of G obtained from (1) seem to increase above unity (negative db)

PRI S

st L
Wb
Al

I e AR U T
L LA I

— - - f— e e e R —— R




ey

T S 45

e

B N B f2 e
sel . STk syes
H . . [334 pi3s
* ' | [ .¢- qh-v '”.‘
, LI T . I le4e e 1Y
1T ™~ g rees
. ) : RO
. . i
" e . - R boe
i - -
A s
. , A . e
| ' iR
| U SUNY N S, . S L
" S B W
{ auadi v g peews
. N HE \ i
s } e ’ s i
o " - ces g +
H ) N crbafay
M { S M s i Ppada
: T4 - b o
v t » tay + (3] n . oy
: . S O
« . I i Sy ‘ . - ppi gt
" ? 1 ¥ EE B4 Bee
; ; . T 3RS
¢ . . F P
, ¢ 1o 1 3=t
SR JO |
' ; v+ T T e
.o BN S
v ] i* e s s e § padn
! ! . N PO
3 3 . ppas
; i ! : s pex: I
”. ] + m . PP NS
P o
. ofee T
\ N 1 RN P
R : N Ppie
* 1 > M -
: } 3 i
. . . R PRt
. rage
_ . . A
JUS S SO SO enne
. ] . Y -
L. ! ' A . w
’ 2 1] B E I 13 - el
i ) a . e [ , ] L R
Ta N . N - N et
H 1. Q. : )
Py -
v r R *
M
.
:
T
:
-
. .
Lo

RS

ovfeamyli. e

1

:

T e AR B ot

SR m et

ey

et

s oy

s
e A

v
e
#

e

DM S dyrores REAMIN b+ M o e s e St St

- -




R e

N S Ml S T Rt e B AT DRI TSI e e ot

H

s 19804
A
2 rree]
g e
b4 148
$ed -
) ot
igs
red HIRE]
kd L
e
v 3t
:; < —— ', ':
— rops saen
;Tu :
ia el - -
434 71 'S ST
o *
. . A ¢ -
™~ n shon

38t

- e n
.
. e

183 "’__';‘ Haip
b

i 2

33 v

o ey g

- N - &

1,13 i
T

284

L

ped

Lo
.
>

1
a3 !

*

2.

12381
p3

.
vy

i
u‘

ey o

PRSI

S e Bignae SBE 6o

ET MR

TR Y

L e
(LIS IPRS)

e

v 0] 2 et gl s s BT oy,

o e comene
= -




ey

e D p——

-
[ man e L need s
» '.f;‘ e
1 N ) 3] 1] -
» - . i -
(N H . H ] i
: s : 4 H .
— - — H M
res £ > ) v v i e
B D e ? . h : I
. ., } :
. v T ~]
. ‘ ' =
® 13 - .
-~ o pon e NN
PR B f : Sy
P T f ) ot
e ™ -
» 1 1 w4 "
T .
s : . . e
R Lo - pd ~
iy R STt -+« - ==
pine - . L
5 T N N s et
. . i d
e o ..
' , ve
I -
-t . : i
' . -
! 1 . 1
e
IS
ER .
v f '
[N 50 SIS - . - > _—
e b
. .
+ 4 » >
»o, .
S - —
t T T .
' ! RN 4
H B 1Y *
! s B .
] R .
. “e .
N . i
L ——— e~ -
v ’ >
I f f :
N o . v n Sl ey "
- . - a 4N T A -
> I e T ey I T
Wl , : 3 A B N
Lo H I
. v L . y .
S » .
y " 3 4
' %
' 1—

B pre e

t

:
-

}

i

!
..\
- \

H .
1 :
T « e .
R
: .

ol 0T

SRR R

) 0
_ N . :
..OL— = »fe o—.vl.l.i e sl 8 ,.ﬁ
NS T et IO DR L O P peir L N EE I CPP PR S ! < L' . i
R P IS AR . . Sl ) e P o L i | M i : ]
CEE DIUREY SR I 1§ DUUUE R3S MIRRBICEY EEIEY NS B S P S T A wial. et e ey .llr....!iLill... B S SO SO
133 'SR & ¥ LR v bl St ced s " “ 1 / > ! 11 ! * i J
¥ n " v . ey w ~a s . -, + . - v — .. L] 1 H i
» - 1 } ! ]
? J ey 1 ; ; +
R | * ' ! )
] ; - ...i:f“.v.::. B WA | RO UOURN EL) U UGS SR MONPUPURS S S AU SO SN
3 L3
i i ! | % ! !
{ . o —
w . N ' " !
o poarrn e e .-l . W e ——i - 3
{ | : : . 9
: H — ~
N ! 1 RE SR ; )
.. - A { .
2]l ¢ vt I - :
| ! ‘O '
. | : .
v 1 > 11 i [
R i 1 _
[ g — o b e e B e Lt S P et
»E “ i ; _ L
bt I R | i } : ; [T N S DR N SN NS SN SN PP




R

T

L rar e o« TSR N TGS Ky BT e s S Wl ™ T e i

v e b s s e ey

1 /8

N B o . IR .ok
T e s et Sl Vo S vt i B Y S ONTRPRP IR RN L% v oo T S

e

+ /70

L 4

la

L 3

-

-

FIGURE 4

AP=.0f

R s

T




o R 1 TR A R s Sewe e R T

LS ———

T O

L 4 /6

1,4

1/a2

L 4

FIGURE &




R R s s b i o= o

FIGURE 6




w3

o T
Lt

da 6T

0y

s
3%

R

et

T s
z BT AL s tonst o s o e e simn e e g a4 =

with decreasing f. Figures 7-10 show the loss ofa particular radome versus

frequency for various average incidence angles 0. 0 =0 corresponds to a
flat radome, Typically 0 is 10 to 20° for spherical radomes, Each figure
is for different element widths and depths as indicated. A similar plot was
shown in Figure 10 of [1] for still a different element including comparison
with measured values. Figure 11 is a photograph of measurements of inser-
tion loss of a partial radome. Figure 12 shows measured and theoretical loss
of two such radomes, which were designed for optimum electrical and struc-
tural performance as described in Fart 1II, p. 100.

An empirical formula for G has been obtained by observation of the

general behavior in Figures 1 to 3 and other similar data, as follows:

(4) 10 log, /G = {{39.5w+ 3.5d+ . 1475 A W) 5

where c is a parameter depending only on the curvature of the radome over

the projected area of the antenna, or approximately on the average incidence

angle 0. If 0= 12°, c=4.46. If 0= 250, c =11.8. Equation(4) is reasonably

vzlid provided

W<2h,  W<dglow, |10 log Gf < 3 db.

This validity is shown in Figures 13-29 where equaticn(4) is cumpared
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with equation(l). From eq(4) we observe that depth d appearing in the second
term, is about one-tenth the importance in producing loss oithewidth w appear-
ing in the first term. The third term expresses the irequency dependence and
shows that the loss of a given radome tends to increase with increasing A ata
rate proportional to d/w. The last term expresses the effect of curvature of
the radome. The latter effect becomes negligible as the element becomes square
(d = w) or at sufficiently low frequencies or low average incidence angles. In
any case the first term usually dominates this expression. InFigures 13-29,
the approximation {4) to the more exact formula (1) is probably more accurate
for the cases where the two disagree considerably, since this disagreement
occurs when mutual coupling is important and the loss indicated by (1) is too
small,

LOSS DUE TO HUBS

Let D be the hub diameter and L the average element length from
hub center to hub center, The analogous formula to (1) including the éffect of

hubs is

(5) G= |1+ pe,, - 4l

where Pl is the blocking area ratio of the hubs, assuming optical blocking

of the hubs., In a triangular or guadrilateral geometry /1 is approximately

ﬂD'2 D2
(6) A=k D)
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Hence (5) can be written as

3.5Wg

l2
L+D ’

(7) G=[1+ -.9(]—5)2 D<<L, :
With reasonable atructural design the effect of the hubs is usually a small

correction to the effect of the elements.

LOSS DUE TO DIELECTRIC SKINS

In a space frame radome, at least up to 10gc, the skins will be thin
compared to a wavelength and the loss will be entirely due to reflection for
practical purposes if low loss dielectric windows are used, The reflection

loss in db is

(l-e)zsin
4e

2 21!8\/-5
(R

(8) 10 loglo(l + )

where 8§ is the skin thickness and ¢ is the dielectric constant, Equation(8)
applies to normal incideace but is a good approximation for spherical radomes,

For thin radomes a sufficient approximation is

(9) 10 loglo(l + (e-l)z(-ﬂrs)z) .

For radomes below 2gc the loss expressed by (9) is usually entirely

negligible, Above 2gc it rises rapidly, Sufficiently thin skinned radomes can
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only be realized above 10gc with considerable care in structural design,

BORESIGHT ERROR

Equation (26) of [l_] is a fundamental approximate formula for boresight
error due to a space frame radome or, if properly interpreted, for any source

of aperture phase errors. This equation is as follows:

s Z}';L
ri(r)) ¥ir,n)cosndr
(10) o= 2 070 nicosq
. 22
%r f(r)dr

Here 0' is the boresight shift in radians in the plane f]=0 where f(r)cos/
is an approximation to a monopulse difference pattern, (r,7]) are polar co-
ordinates in the aperture of radius a, and A\ is the wavelength, V(r,fL) is

the phase error at (r,/]). In this section we shall use this equation to determine

f
R
:
%
i
;,.
i
¢
ﬁ'\:
A

&

the boresight error due to many commonly occurring factors. Equation (10) and
the results of this section apply to monopulse systems, However, they are rea-
sonably accurate for conical scan or peak shift determinations if f(r) is con-
sidered as the aperture illumination of a sum or even symmetry mode,

The types of errors considered are indicated schematically in Figures
30-36 as variations from the small boresight shift of a basic radome or from
no boresight shift at all,

The following notation is used:

\ = wavelength

a = radius of antenna aperture = D/2

36




f(r), 0 < r < a = illumination of aperture (circularly symmetric)

W, L, d = nominal element width, average length, and depth respectively

AW, AL, Ad = tolerance or design variation in W, L, or d, respectively,
for elements specified

/ = blocking area ratio=3.5 W/L for triangular or quadrilateral division
of sphere

.j&g) % imaginary part of the induced field ratio, IFR. If polariz;tion
is random or averages to 45° over particular elements causing boresight shift,
then

_ &y te

g 2 - gav

is the algebraic average of the longitudinal and transverse polarization IFR's,
If not, applicable g) or g, or weighted average must be used.

Ag,‘g) = tolerance or design variation in .;2.(g) of elements specified,

A =total area of radome where tolerance or design variation may occur,
{p} = {fraction} of elements, hubs, or windows having a specified

number
tolerance or design variations 0< p <1,

n

€ ,S = nominal dielectric constant and skin thickness of windows

e, AS = variation in ¢ or f

All boresight errors are in radians,

Note that

AWI(g)L) ~ W (g)AL + WLAJ(g) + L2 (g)AW .
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We now consider six different sourceés of boresight eriors
1) A small niumber n;, n=1, 2, ... of extra elements are located in one local
region of Af.'ne‘ radome, small compared to the antenna-diameter D. The worst
error occurs when the extra elements are at the peak 6§r£hé~di£§g1;enqé pattérn,

when the beam shifts away from this.location by an angle

(11) 0 = aLwi{gle,

where g is the IFR value of the extra eléinénts and co -dépends -only on the

illumination taper

max{t2)]  (.27/2%,  10db taper
(12) o = OSz<a

e ~ (see Fig, 30)
2n gr f(r)dr

z.37/a3, 20db taper

2) Certain elements of the space frame which are randomly distributed in the

space frame and constitute a fraction p of the total number of elements, have

a different width W = dO + Ad from the remaining

=Wt AW- and/or depth d

1
elements which are assumed to be such that if AW = Ad =0 then there is no

boresight error. RMS borezight shift is then

triangulated
(13) o' =X2A(-Y3%Lﬂ—)‘\/’n ¢,

rms radome

38
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where

S .
] 3,57 § rfz'(r)dr

(14) : ¢, = === LR
- ] Za 2 i -
24 (5)“ £(x)dr

If the radome is not triangulated by the space frame, but has some other arrange-

ment of elefents, (12)-applies with. p replaced by

(15)

42»‘/&2 ; 10db taper

?..5()/a2, 20db taper

{see Fig.31).

3) Giizer‘g:tolei'an(:eé AW and Ad in dimensions of all éléments

a) Largest possible boresight error occurs when +AW, +Ad occurs

on one side of dish; -AW, -/\d occurs on other (Figure 323). Béam shifts

towards the least metal arca by an amount

MW,
(16) Q= i
where
a Jl. 19/a,
7érf(r)d,r
(17) c, = —— = ‘(1.30/a.
2 2
T é)r f(r)dr

10db taper

20db taper

b) Variation of AW, Ad is limited to an area A whose maximum

diameter is small compared to D, Boresight shift is

39
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XAA(,W'Q;@”“‘:;
0s —

.5max 40}

ERPY 20db taper  {50€ Fi8-328).
25" x f(x)ax o w

¢) Variations in.dimeénsions of elements of d space frame are random with

© F - -

Aw and’ Ad being $ms values of the variations in. W and d. Then rms value

of boresight érror is
(20) 6. = xA(WQ,gg))cl (see Fig. 32¢)

4) Rms boresight error for a random space frame geometry (most probable
boresight error if a number of elements are randomly distributed over sphere)
is

(21a) 0 = MW(g)wne,’

| T2 3
éf (r)r dr I .13/a”, 10db taper

cl’ = -~ 3
a e
anaérzf(r)dr l 15/a™, 20db taper
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where n = waz P /WL is the number of elements seen by the antenna, For a

triangular o quadrilateral geomeétry

/0 = .33.5)1
i L
and then
(21b) 0 s = xwg)(_g’)cil, (see Fig. 33).
Mutual coupling between élements is neglected in (21a). 3 |
5) A small number n, n=1,2,...0f dielectric windows (each of average
area: 4L2) with variations /\¢ and /_\S in dielectric constant and wall
thickness are all located in an area of the radome whose maxi mum diarmieter o
is small compared to a. The maximum boresight error occurs when these
windows are at a difference pattern peak, and is given by 1
8 € :
(22) 0 =nL% {;M’e-l)AS + i
4 _l :
L Ne %
’g':
. B %
) 4::?23“” S . 68/a3, 10db taper
(23) S ~ 3 (see Fig.34). {
T r f(r)dr L 94/a”~, 20db taper :
0
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1 6) A certain fraction p of windows which are randomly distributed over the
~"apefture have a different dielectric constant ¢ = o + Ae and/or thickness
£ = SO + AS from the remaining elements, which are assumed to be such that

i N\e = Ag = 0, then there is no boresight error,

o » $h ] |
% _(24) | Orms = {i‘\fe—l)/:\s + . y m I.ac5 ; E
— —a - e

V.47 2 s 2 , 9

_— . ) 1 ¢

. | - Orf (.r)d? ] 89/a , 0db taper (see Fig.35)

57 a 5 ( 1,06/a”, 20db taper i

%r £(z)dr

sk
L -

e

-Given tolerances Ae¢ and AS in all windows

o

.a) Largest possible boresight error occurs when +As and + AS occurs

.

.1 on.one side of dish; -/\e, -AS occurs on the other side. Beam shifts towards

1 the most dielectric area by an amount

i i Bk B e

’ 7 Ne _‘* i

;;w {25) e= ('\/-e-l)Ag + l 9 ?

o € ;

:"”, a ¢

< Y rf(r)dr 2.14/a, 10db taper ‘

S (26) e, =2L . (see Fig.36a)

7 6 T a " )2.34/a, 20db taper &

g 2

. fr f(r)dr
0
b) Variation is random and.windows are distributed uniformly over :

-
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surface of radome with Ae and Ag being rms values of the variation in ¢

and £' . Then rms value of boresight error is

SAC

Ne .

Le, (see Fig 36).

(27) Oriﬁs = Eﬂ\/}-l)& +
Figure 37 is a plot of —‘)\Q“gav) for various d/A and W/\. From

__this graph the preceding formulas may be evaluated explicitly. As an example,

we c¢onsidér two cases - the first a gross geometry with loose tolerances, the
second a finér geometry with tighter tolerances.
i el | Gaser
L 30 T
1 : LB
d 10" 3"
Aw . An . 005"
Ad 1" ‘ . 025"
n ‘ 4 4
1 1t
a 60° 60"
taper 10db 10db
13 o2 .2
A . 05(ra®) . 05(ra)
€ 4 4
Ae .5 .1
§ . 1oo" . 050"
AS . 025" . 005"
|gav|2 14, 44 18,84
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FIGURE 33

ALL ELEMENTS RANOOM

CASE | : .02%6 mr
CASE2: .0/988 »v»
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FIGURE 39
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FIGURE_35

SOME RANDDMLY BLACED WINDOWS AT
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The resulting values of boresight shift computed from eqs(14) to (27)
are shown directly on the figures, 30 thru 36 as cases l and2.

EXPE( TED SIDELOBE LEVELS DUE TO THE SPACE FRAME

As pointed out in pp. 14-15 of [IJ the expected close-in sidelobe level
due to the presence of the radome increases even though the expected avefage
field values are unchanged by the radome. A rough formula for the expeited
increase in close-in .relative sidelobe level relative to the peak of the pattern
is

27w° | g, ]Z

2 ?
a L

(28)

which is derived in the Appendix.

Values of average sidelobe level increases computed by (28) are usually
small compared to peak sidelobe.increases which may even be an order of mag-
nitude larger., However (28) ie useful in showing how the various parameters
effect expected sidelobe increase.

Another sidelobe phenomencon oiten occurs with space frame radomes,
namely at some angle(s) far from the main lobe, sidelobels) may arise as high
or higher than the close-in sidelobes. There are called the diffraction side-
lobes, in anabgy with diffraction grating effect. Since to the extent that the
elements are pa.allel, equi~spaced and coplanar, i.e, a diffraction grating,

these lobes will be higher and more noticeable. At angles out to 0 < 9 <\/2L,

55




e 8

aaaane W

EJRE RESS

e mryx g g
I mﬂ&e

L v
3 I

Y b

%, v s
0
A -]

b

N

Fotrtrrass  ABRRETES TNER I o I I A e

the expected field values with the radome are proportional to those without,
the proportionality constant being indeperdent of 8. Except for the small
effect considered above (or, in detail, in the Appendix), the relative sidelobe
level with and without the radome in the range 0 <0< A/2L is the same. If
the scattering patterns of the individual elements were isotropic outside of
this range and if the scattered fields were randomly. or even better, uniformly,
distributed in phase, the energy scattered by the space frame would be scattered
essentially isotropically, i.e. uniformly distributed in all space and the far-
out sidelobe levels would be well below the isotropic level of the total radiation
and hence usually not observable except on an average basis, by sensitive radio-
metric measurements. However, this is not generally the case and diffraction
lobes do arise.
*

The IBM 7090 program will predict these lobes accurately, However,
in order to obtain an approximate formula for rapid calculation of their levels
and to see how and to what extent they will occur, we derive here an approximate
formula for them.

Suppose L is the average length of an element, and suppose the direction
of propagation is along the z-axis. Suppose an element is at a distance t from
the axis. The phase /\ as observed in direction 8 of the field incident on the

element is

(29) /\=k(OB - AC)=kR |1 - (—1;‘)2 - kR cos(@ - sin-l(%?)

* described in [1]
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where k =2n/\.

B
L

A

FIGURE 38

Referenced to the axial point t =0, this becomes

(30) A - AO = kR( I 1 - (—;-)2 -1+ cos 0 - cos(0 - sin-l(—;-)).

If t << R, this is approximately

2 2
t . A Kkt
(31) A-—Ao,y_kR(R sin 0 - '»RZ)—kt sin @ - —=- .
o

Now if the radome were flat, the last term in (31) would be zero and, it turns
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out, (31) would be exact
(32) A-A():ktsing (R = o).

Hence the last term in (31) is the first order correction term for phase

variation of the fields scattered by the elements due to the curvature of

the radome.

If L is the average element length, the average element center to

center spacing is about L/2 for a triangulated space frame (see Figure 39).

L Figure indicates distance between
a phase centers averages about L/2.
L ] FIGURE 39

To a first approximation, in the case of a flat radome, from eq(32) a

diffraction grating lobe would occur at an angle Og where

L .
(33) >—8in Gg =9,
The curvature correction term in (31) implies that only a certain number
of elements near the axis contribute coherently to the grating lobe, those ele-
ments, in fact for which t is less than t, where

0

(34) =5 =W




Other elements for which t exceeds the limit set by (34) are essentially
incoherent or have random phase., From another point of view, elements with
t< to are in the first Fresnel zone for in-phase contribution to the scatterecd
field in direction @ = Og.

The gain Gs(gg) of the scattered field in direction 0 = Og. equals 1/x

times the gain of a uniformly illuminated disc of radius t, multiplied by the

0
fraction /lgavlz of the relative effective blocking area of the space frame,

multiplied by 2, and finally multiplied by the periodicity fantor P
y y y y

2
t

’ - 2 0 .
(35) Gs\cg) = 8ﬁ]gav| Pr —)‘2 (if to< < R).

The factor 2 is an approximation to the fact that the elements near the center

of the aperture are more heavily illuminated than an average element in the
aperture because of the antenna illumination taper. The factor 1/w is due to
the phase error in the first Fresnel zone (which has a max of w, by definition),
The validity of the use of this factor is proved in ref[S_] » P« 15, case N =1,

The periodicity factor P is a measure of the parallelness and periodicity of
the elements, P may be defined as follows: Consider the Fresnel zones in
the projected dish aperture as observed from the angle Og. These are parallel
strips of width equal to the average periodicity d the space frame (approx L/2).

Let the total element area in the even and odd zones, respectively, be
(36) A ~NLW and A + N LW
e— e o—"0
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where Ne and No are the numbers of elements in the even and odd zones
respectively. Then
37 Ae- Ao
o RS
If all of the elements are parallel (diffraction grating) then P =1 (Figure 40).
If the elements are in a regular rectangular array then P =1/2 {Figure 41).
If the elements are in a regular triangular array then P =1/3 (Figure 42).
For a regular hexagonal array in the orientation shown in Figure 43
P .6.
The preceding considerations must be modified if the elements in either
the even or odd Fresnel zones have a strongly preferred direction which is
not at 45° to the polarization, and if ]ge ! is substantially larger than ]gtl .
For example, in the case of the hexagonal arrays or rectangular arrays,
if ]g’el >> !ggl and the polarization is parallel to the Fresnel zone boundaries,
then P might be close to unity.
Assuming a 50% aperture efficiency with the radome in place, the gain

of th# antenna is
1
(38) G =E(—

Combining {34), (35) and (38) gives GS(Og) relative to the maximum gain of

the antenna,
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G (0) )

5 g
(39) g, =

16AR 2 -
—Pplg, I°» M<:<D
D
2
Pp‘gavf , R=zo

We may make a table of maximum grating sidelobe level as observed in the

IBM7090 calculations and those predicted by (39) for various cases where

the quantity

16\
(40) 6 I; =,045=13,5db
D
Element [IBM7090 Calc. Equaticn (39)
Geometry No, Ma>x: Diff Lobe 101 Max,
Table 1 (db) P °€10 , Diff.
1
of [1] i,)]gav] jLobe(db}
.} Regular Snub- 52 25.4 .33 7.7 26,0
dodecahedron
2) Regular Snub- 6 22.6 .33 5.7 24,0
dodecahedron
3) Regular Snub- 53 22,2 .33 5.4 23.7
dodecahedron
4) Random Icosahedral 52 34,2 . 0058 8.3 34,2

In the regular geometry rase, the value of P =, 33 was chosen because

this geometry i3 close to a regular triangular case.

table shows that this value of P is reasonable.

The agreement in the above

The dependence on element shape

checks out fairly well, In the random case the value of P was chosen to make
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the two calculations of diffraction lobe level agree. This result shows that the

random geometry elements are about five times more uniformly distrihuted

in angle than the elements of the regular geometry

COMPARISON OF DIELECTRIC AND METAL STIFFENING RIBS

In the design of a space frame radome, there is always a compromise
between structural strength and transmission loss, The question arisecs as to
whether one does better in this tradeoff using a dielectric or metal space frame.
In each case we would normally use the highest strength materials available -
steel for the metallic space frame and Fiberglas laminate for the dielectric
frame. If the transverse dimensions of the elements are comparable to a wave-
N -] R : .
length, data exists which indicates that the scattering cross-section or IFR
of metallic and dielectric elements are roughly the same. Since the metal
enjoys a considerable strength advantage, there seems little question that in
this case the metal is superior., Let us consider the case where the maximum
diameter is small compared to a wavelength., In this case, there is no advantage
in shaping the metal element, so that we may as well consider it rectangular
of width Wm and depth dm. There is even less dependence on shape for scattering
5y the dielectric element so that we may consider it also a rectangle of width W

d

and depth d There are two rough criteria for equivalent structural strength

d.
of the metal and dielectric elements! equal exial stiffness and equal radial bend-

ing wstiffness, either of which may apparently govern under different circumstances.

These imply respectively,
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(41) E W d _=EW.d,

(42) E Wd “=EWJ
m

where Em/Ed is the ratio of metal to dielectric Young's modulus, which in

our case is about 15, Let us use (41). We have then equivalent elements satis-

tying

(43) Wd, =15W d =A
mm

dd d

where Ad is the section area of the dielectric. If (42) were used instead,
very little difference would be found in the general results which follow.

We may use the results of Mei and Van Bladel [3] to compare the two
structurally equivalent elements electrically, At transverse polarization, from
Figures 5 and 6 and eq(7) of [3] , we observe that tor both metal and dielectric
the narrow dimension should be transverse to the direction of propagation for best
results, i.e, W< d, sothat Figure 6 is appropriate., It can be observed that
typically a, is about twice as large for metal as for dielectric with the Fiberglas
dielectric .onstant (v 4) and that the term ZS2 in eq(7) is about equal to or smaller
than the term az/e 2 for metal, Accordingly the scattering cross section ratio

0

a"m/ 5. for elements with the same dimensions is about 4 or 5. But botl T

65

- o




Lt

SR e

v e

and .7:1 are proportional to the square of the section area in wavelengths,

and hence for structurally equivalent elements satisfying (43) the ratio is

[
(44) m :401:25 .
~q 15

Thus the meta! i= sv.perior electrically by about 50 to 1,

In the case of parallel polarization the situation is different. The
asymptotic formula (10) of [3] can not be used since it becomes inaccurate
in the range of interest (indeed, blows up when the perimeter of the metal
rectangle is \/2w). However, from [4] eqs(15) 2nd (16), we may relate the

IFR at longitudinal polarization, gl , to o’m as
(45) o =klg, W |2, k== .
m 2 m A

From eq(ll) of [3_] , with a dielectric constant of ¢ in this case,

(e —1)21(3Ad2
(46) 7q 2
and from (43), (45) and (46) o'm_<_ Ty if
(e-1 )2k3225wm2dm2
1) g ¥t s ——
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or

15(¢ -l)kdrn
(48) lgg l < 2

In Figure 44 8.y is plotted for various Wm, dm and frequencies.

Where equality holds in (48) ]gt] ig much smaller than ng | and hence

15(e-1)kd
1
l’l_/ _igzl < 4 = .

(49) le

av

We have plotted where equality in (49) holds in Figure 44 for the case ¢ =4.

67

o n——-—-




- ' Y
Trae 1=Th8 K2 =3 r=T T
E AN PSS S Y £ X s
3 £ . . PETTY O L R
s - v.m.v;.m etk . . .H.
S <t Bl [sBls IR S
T % LIELT SIS LI - i
- ] b4l * -
: PR p 3283 P el i R 5 Gt
Py d 833 B s 85 R £ S
53 s 1 8 fEeNt S
s s e
ad (2] St mod
7088 3 Tu NS
Ly 3K
4 Lo
....ﬁ
Y Nuﬁ_ -
:
oy tHs ..
15 107 .
w14 vett 3 R i
-4 - X} .n - - » -
e e IS .
- v - —
:F iy o I S T T A
. 44 = .
fa 1 i
.3
1R 51 N Iy 99
HIEN SFT8 1 .
I EX
- 1284 v 4 s
redid s
SN P Y
e N p f 14
teds EREN .
U 5 4 .
. ;
g2 AV B 'L B
b 2. R.: .
: .. e d
: .
- - ‘.-
it . R-<ER. | T SEE S S
- . . - - - by
0 3 TTYEE I TS EETT BMERI L
12 - - . - -
: E RIS RN
Iy, . - . i fre
™ B 1 SECIE NANOL TREES MNAE 22X
vm il PPRSY TOR ) 3 =
S | TR [ oanras o EEre Gyws 1
by ft N S g F B W LS
: - s N S
T IR AREEE SRR AT PO AR H
R IR [ IS NS =
: T+ ST T M w 21
< ISOE) OIS 05753 ROUNK I e
e e . ! 1. sodl.
> 3 ppr b I SEEe mr o
. M $ o . Lt Bt L
11+ N L .t . : 23]
e e gees NXES CIREE LN o
mu N i3 e I =
: 21
woregs I IRy 51 N Sec) o I CI NI TEs!
A ] H 2ol ot i RN . R |
SN IR AL st RN - N P IS S iy
v - - - - -
. 1T I I FSArT IR 5T . - e . JEEIENE SEECE £33
. Y . P ARDS . - ~ i . eprts
el N 0SS e g | . :
pe > . M .. . . . . . - o4
P SO S S C R S H N R R IR R OO
N N el ] 2 ENE-nE R S e
e 4-A t - . - -
' . . L. RIS Sl 14
. i fote [0 L... . m Vool Mm-
. - bt et pad
: - o . R
. RN ; 4. t R 5o '
N wypeefs LM . 1 . ! oo
.. e od L B
: IR q1-1. T -y
t uuaww MR .’ .
v o ., - B Taand - -
s RIS 3. . F- 0 H . HH e Y
shin PUURLER S I - 53
1 1eys detsd o FPUPESS SR PO GE® IR =3 19N o33

O e TR s AN, ¢ s
. e b

- FSN

% Admer has

TRER e ok RIS A Y

[a ] .

P e e el




PART II - STRUCTURAL DESIGN AND OPTIMUM ELECTRICAL-
STRUCTURAL DESIGN

SUMMARY

The object of this project was thi -onstruction cf a systematic pro-
cedure, amenable to simple calculation, for the cptimization of large space
frame radome design. Consideration of three design aspects (electrical,
structural, and mechanical) formed the basis of the optimization procedure.
Specific attention was directed to radomes of 140-160 feet in diameter used
with RF systems radiating within a 200-500 mc band.

The project study involved three phases: (1) the application of an
electrical performance evaluation technique to predict radome transmission
loss, (2) a survey of the radome literature for structural analysis and mechani-
cal design concepts, and (3) tke consolidation of pertinent design considerations
into a design procedure for an optimum radome within practical limitations.

The evaluation of the electrical performance of a space frame radome
involved the prediction of the transmission loss due to scattering effects caused
by induced currents on the elements of the blocking structure. The theory re-
iates the gain of the radome to the cross sectional shape and length of the space
frame elements. A specification of the maximum allowable reduction in gain
fixes a holonomic relationship between the width, depth and length of the elements.
This relationship was defined as the electrical constraint on the radome element
design,

The accumulation and survey of the pertinent literature (see Bibliography)

was a prerequisite to the formulation of a suitable structural constraint on the
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element design. In the literature is provided a complete structural design
guide [6] for the sizing of the radome elements which lacks the inclusion of
any electrical constraint. Therefore. it is not possible to quantitatively dis-
criminate the degree of compromise inherent in a particulaxr design between
electrical perforn:ance and structural integrity. This is not a satisiactory
design condition if optimization is the objective. It was concluded that the
simultaneous imposition of an electrical and structural constraint on the
analysis of the elements would constitute the design approach.

In addition to the literature survey, consultation with several radome
developers and manufacturers was conducted. The consultations included
personnel of Lincoln Laboratory, Bell Telephone Laboratory, Goodyear Air-
craft, North American Aviation, and M. L. T.

Other efforts in space frame radome development are being directed
toward hardening against nuclear blast induced dynamic leads. This concept
is not considered in the subject study which directs attention to static load
conditions consistent with norrial environments. The significance of the har-
dened radome development to this study exists in the fact that substantiation of
the general shell analogy concept of analysis has continuously precipitated. If
advances in fundamental design procedures exist, they are apparently numerical
in nature. The STRESS(MIT) and STAIR (LL) routines are examples of digital
computer programs for analyzing space frame structures of high order. The
matrix theory of structural analysis provides a powerful computational tool but

is limited by computer capacity and as yet programs have not been compcsed
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which display general design capability. Since the project specifications
require a design procedure propitious to hand or simple machine calculation,
the equivalent shell analysis was adopted for the optimization procedure rather
than alternatively pu~suing advanced compiter program development.

The formulation of a structural constraint consisted of comparing the
criteria of strength and stability of the space frame which assures the integri-
ty of the structure. The criterion which imposes the most severe design condi-
tions was selected as the structural constraint.

The concept of optimum radome design requires the definition of a
criterior by which comparison of selected designs can ve made, There are
many criteri; relative to which good design principies can be directed. Two
such examples are: (1) the minimization of transmission loss subject to a
structural constraint, and (2) reduction of structural weight in conjunction
with an electrical and structural constraint. Examples of these two approaches
are developed later in this report. The problem of producing the best radome
design within practical limitations cannot be solved by a single direct analytic
approach, It is first necessary to select the element size subject to an optimi-
zation criterion and second o generate sound mechanical design. This study
is predominantly concerned with the optimum sizing of elements and includes
scme recommendations and goals for the ensuing mechanical design effort.

ELECTRICAL CONSTRAINT ON THE ELEMENT

For the purpose of optimum design of a radome over the 200-50C mc

band, we may write ea{4) of Part las

n
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10 1°g10G= I%{39.5\‘4’+3.5d+ db

if we neglect the curvaturz term which is usually small at lower frequencies.,
This is tantamount to observing that at the low frequency end, the curves of
Figures 7 to 10 are almost independent of 0. With this approximatior

it is clear that the loss is greatest at the lowest frequency in the band. Setting
% =61" (194 mc) and 10 logloc} = .5 we may write an electrical constraint, such

that for any radome satisfying

18d

with all dimensions in inches, the loss will be less than . 5db.

STRUCTURAL ANALYSIS O SPACE FRAME

A. External Loads

It is recognized that the most significant load modalities on a spherical
radome are those associated with kinetic energy of the incident wind and the
structural weight. Ice and snow loads are of minor magnitude and experience
indicates that snow and ice build-up seldom occurs on large radomes.

The analytic representation of the wind pressure distribution adopted
for the structural analysis was that based on the potential flow theory. A poly-
. N e [9] . .

nomial representation of the pressure distribution ascertained from wind

tunnel data is more realistic than the distribution of the potential flow theory,
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but, since little deviation between the two formulations exists on the windward
side of the radome and significant difference exists in the case of application to
the shell equaticns the potential flow representation was accepted. The fact
that buckling stability is critical only on the compressive or windward side of
the radome where the t'wo representations agree (see Figure 1) helps justify
the choice, Figure 1 illustrates the variation in magnitude of the two formula-
. . : [7]
tions for typical wind tunnel data.

B. Structural Analysis

The equations which establish tte conditions for stahility and strength
of the radome were developed by applying classical theory of elasticity to a
spherical isotropic shell of structural equivalence to the radome space frame,
This technique is well defined in the literature [6] and was closely followed in
the development of a structural design constraint.

The conversion of the radome t. an equivalent shell requires two inde-
pendent equivalences, elastic and stress. The elastic equivalence is stated
by equating the extensional and flexural stiffness of the radome to that of the

shell, This is represented as:

(1) E_I_=E_

(2) E A_-EA

The stress equivalence is required due to the inherent difference in

elastic behavior of a space frame compared to a shell. The stress equivalence
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relationship equates the cross sectional area of an element to a comparitive
cross sectional area of shell, If a large number of elements make up the

radome structure the equivalence condition is satisfied when the volume of

e Yt SR Y g L S V)

the shell is one-half the volume of the space frame, [7'] or for elements of

rectangular cross section, .
N
1
(3) anR%_ = Swd X L, .
i

Then, since the element resists th.e same stress as some equivalent section

of shell
(4) wd = St

The equations expressing the eq_uivalent shell thickness and modulus of

elasticity are

(5) ts=~fnd
E w

(6) ES=——5--— .
NS

In order to apply these equations the effective spacing must be derived
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in terms of the radome parameters. This was done by letting M equal the
number of panels making up the surface of the radome and N equal to the total
number of elements. If the space frame is considered to be a triangulated struc-

ture typical of radomes with random or regular geometries then 3M = ZN*and

the area of an individual panel equals

(7) A = 6nR 'k

1

where k is a constant accounting for the truncation of the sphere. The value

of k is expressed as the ratio of areas of a truncated to complete sphere and

is:

1l - cos ¢0

(8) k= 2

where 00 is the meridional angle to the radome base. The average panel

area was also expressed in terms of the average element length and is
N3 2
<
(9) A <=L

depending on the radome geometry. Since the larger Ap is the more conser-
vative the design must be, FEgquation(9) was taken as an equality, Equating

equations (7) and (9) and solving for the total length of elements gives

— v e wme  wee  mmm v wee e e A e emE cam  Wem e o e e wwm mAe ey wa amm W e ewe b T W Them cme e e

This is exact only for a non-truncated radome. For small truncated ra-
domes it is an approximation.
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(10)

2
NL = Z4mR k

A 3L

The effective spacing, S, was expressed by combining the equivalent

stress equations (3) and (4) such that

(11)

S= = and substituting

for the total length of elements gives

(12)

(13)

(14)

_ 8nR> _ 243 L
T (N-1)L T 3(l-cos 90)

S

The elastic equivalence relations were then written as

t.= A~Npd

. 3Ep(l-cos ¢o)w

S 2N 3 L

The general buckling stability of the radome was evaluated by applying

the Tsien-VonKarman equation [Z] to the equivalent spherical shell, Substitu-

tion of the equivalence relations into the buckling equation defines a critical
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buckling pressure in terms of the element dimensions which is

3

z %

3KE p.(l-cos’ ywd !

R 0 -

(15) Pcr - 2 %
2N 3k R'L P

The axial stress developed in the space frame elements was evaluated
by applying the general membrane theory of shells. The partial differential
equations of equilibrium for the equivalent shell subjected to a wind pressure

distribution are

(16) Ré% (sin § N¢)+ R%(N o) - RNcos $=0

(17) Rk (s ¢ N )+Ra—(N)+RN $=0 3
5; sin ’o 30 ’ QOCOS =

(18) N’+ N, =- PR sin $ cos @

where the angles 0 and 0 are defined in Figure 2. These equations have

[3]

the general solutions

1

cC.+C cC.-C
r 1 2 + 5 2 cos ’+ POR(coszo - %(:0840)

N, = cos @
¢ sin3QL 2

(19)
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C.-C C1+C

(20) N’O = sig 01 1 5 2 + 3 2cos ’+ POR(cos ’ - ;-cos3§)l
8in ’
(21) N°=-E~x’+pon sin § cos 0] .

In order to obtain unique solutiorns for the stress resultants (N’. NO’ N’O)
equations (19) and (20) were made to satisfy two boundary conditions and the in-

and C_ were determined.

tegration constants (:1 2

The first boundary condition was that the external more nt about an axis
in the plane of the radome base-a.nd normal to the wind vector must be equal to
the moment due to the internal reaction forces of the shell about the same axis.
Since the axis is in the plane of the hase the only stress resultant contribtii:ing
to the reaction moment is Nf'

The external moment is caused by the x component of the normal wind

pressure (see Figure 2) and is equal ¢o

2n ’0
(22) M_ = g g P Rcos §,sin>§cos’0 dp do .
0 o

The reaction moment due to the meridian stress resultant at the base

(N, ) equals
%
2n
(23) M, = | R%sin’ N, cos 0
i b ¢b
0
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where N’ indicates the stress resultant evaluated at the radome base.
b
Integrating and equating the two expressions gives the following equation

which sat’sfiss the first boundary condition

(24) = %—POR cos ¢bE2 - cos ’b(sinz’b + 2)_] .

The second boundary condition was that the total horizontal external

force be equal to the total horizontal reaction at the radome base. Two stress

resultants contribute to the horizantal reaction, N’ and N’ o The total
horizontal external force equals
2n ¢b
_ 2 .2 2
(25) F = \ X R R"sin“§ cos“9 a¢ do.
00
The total horizontal reaction at the base equais
Zn 2n
= 1 3 + :
(26) in R sin ’b §N¢b0 sin 6 dO + R sm¢bcos 60 gN¢bcos 0 4o
0 0

wiiere the stress resultants N¢ and N¢ are evaluated at the radome base,

0

Integrating and equating the two expressions gives the following equation

which satisfies the second boundary condition.

cos O b 3 0

N
%, ¢ 0 =
(27) cos ¢ }sm ¢ -1p RII_ - cos ¢b(sin2¢b+ 21{ .
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The simultaneous solution of equations (24) and (27) provide the solu-
tion for the integration constants as a functicn of the meridian base angle ’b'
One-half the sum and difference of the integration constants are plotted in
Figure 3.

A secondary axial stress is'developed in the equivalent shell due to the
weight of the structure. The equilibriumn equations for a spherical shell sub-

ject to a uniform gravity load are

(28) R%(sin dNp+ RS- (Nyg) - RNgcos 0= tocos §
(29) Ra%(-in $ Nyl + Ra%mf) + RNy gcos 020
(30) N’ + NO = pt sinzﬁcos 0 .

The solution of these equations for the stress resultants are given

a4l
PRtg
(31) N~ Tvcos §
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(33) N° = ﬁRts[l—&(ﬂ - cos ’:’

The total axial stress resultants are equal to the combination eof
each component due to the external loads of wind pressure and structural
weight,

The axial stress that the space franmie elements must sustain is
related to the stress resultants produced in the equivalent shell. The maxi-
mum element stress consists of the product of the effective spacing of the
elements and the maximum compressive stress resultant divided by the

cross sectional area of the element, or

2N3(N )L
_ max
Omax 3(1-cos ¢b)wd *

(34)

The maximum compressive stress.resultant exists at the wind stag-

nation point where 0 =0 and ¢ =w/2. The general stress resultant equations

simplify to
_1
(35) ¢max -E(Cl+ CZ) /’RtS
1
(36) Nomax = - E(Cf’ CZ) - POR + /JRtS
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(37) N’o =0

at the stagnation point and become the principle axjal stress resultants,

The wind pressure distribution on the surface of the radome transmits
a transverse force to the individual elements. This force distribution on the
elements causes flexure stress to be developed in addition to the axial stress
expressed in equation(34). In analyzing the flexure stress, the transverse
force distribution was assumed triangular with a maximum unit force located
at mid-span. A distribution was assumed in order to eliminate contention
with the elasticif); ‘of the dielectric panecls and the consideration of elastic
foundation theory.

The magnitude of the transverse force distribution was defined such
that the total maximum force resisted by the element equalled two~thirds of
the total external force applied to the entire panel., The distribution varies
from zero at the ends of the element to a maximum at mid-span and was ex-

pressed as

L
j \/-3P0x, 0<x<3
(38) q= NE
3 L L
= Ppl - N3Pylx-3),  F<x<L.

The maximum flexure stress developed from simple beam theory for

a condition element end fixity equalss
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(39) a’ -

The design criterion adopted which governs the selection of element
dimensions when combination of column (axial compression) and beam (flexure)
loading occurs, was such that the sum of the ratios of actual to allowable axial

.. [id]
and flexure stress be equal to or less than unity. The allowable flexure
stress at the outer fiber of the element was chosen to be the material yield

stress and the allowable axial stress was defined as the critical Eulu buckling

stress, The design criterion was expressed as

a; a
(40) f max + ar:xax < 1
g'yp cr

which upon the substitution of the maximum flexure stress equation (39) and

Eulu's critical stress equation (40) becomes

N 3POL3 23N L3
max
(41) z Y2 3
160’ypwd R°Ep(1-cos §,)wd

<1,

The development of equations (15), (39), and (41) completes the deri-
vation of the structural design constraints. The constraint equations were
developed within the framework of simple beam theory and the shell membrane
theory, It is shown in ref [3] that the ratio of membrane stress to bending

stress is small. Therefore, the assumption that the radome equivalent shell
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behaves like a membrane is valid, provided that the base edge of the radome
is free to expand. However the base of the radome is fixed by a restraining

ring causing a discrepancy in the boundary conditions., This situation is recti-

fied by superimposing a distributed moment around the edge of the shell of such

a magnitude that the membrane displacements are made to vanish. The addi-
tion of a reaction moment to the base results in an increase of stress in the
neighborhood of the base and element reinforcement design is required to ac-
commodate this condition,

The calculation of the reaction moments at the radome base requires
consideration of the general theory of bending in shells. A formulation and
solution of this problem is available in ref [3], section 130, which gives two

particular equations

22%sin ¢b 2RZ sin2¢b
(42) g¢ "Eax. My T TEL H
b °SS b S'S
42> 22%sin §,
(43) = e ————M,; t—————H
%b RE t Qb Egtg

where S¢ and ;LQ are the displacement and rotation of the radome edge
0 0

and M¢ and H are the reaction moment and force at the radome edge.
0

(44) 2% = 3087
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In order to utilize these equations for the solution of the reactive moment
at the base the displacement at the base must be evaluated.

The computation for the displacement is greatly simplified if the external
loading is assumed symmetrical. Therefore a modified external load is imposed
on the radome to facilitate the calculation of the reaction moment, The loading
is assumed to be a combination of a uniform normal pressure equal in magnitude
to the wind stagnation pressure and a uniform structural weight,

The displacerient is shown in the ref [3] to be equal to

S R sin ’b
(45) = ———— (N~ gN,)
Qb Egte 0" ¢ Qb
where

PR QR
(46) NQ =-( 2 * 1+ cos Qb )

0

1
(47) N0 z - L—z— + QR(cos ¢ —mﬂ.

I—P R

By substitution of equations(46) and (47) into equation (45) the displacement

becomes

Rsing, [ PR QR

(48) g% = - Ests L( 5 +1+coswb)(1-“)+QR cos ¢b .




The boundary conditions of radome base consist of requiring the rotation
to equal zero and the displacement to be equal and opposite of g ’ « Therefore
b
by setting ¢¢ equal to zero and substituting equation (48) into equation (42)
0

the reaction at the radome base was evaluated directly and equals

(49) M’ = - ——-l-l—-ts——-— {E;)Q -1 c?s X1-p)+ Q cos QJ .
b ZY 3(1_"2) b

The optimum elements which satisfy the structural constraint expressed
by equation(41l) must be reinforced to accommodate the reaction moments dis-
tributed around the base. The degree of reinforcement wag determined by re-
quiring that the maximum stress in the modified elements be no greater than
the maximum stress in the optimum element.

The reinforcement design is completed by specifying the number of
elements to be modified., It was necessary, then, to investigate the nature of
the bending solutions in the neighborhood of the base. It has been shown [4] that

the bending moment equations can be expresssd in the form

(50) M¢ = ”i%‘ e'ﬁ“ [}A1+ A,)cos fa - (4,- Az)sinﬂ a]
(51) MO = M¢
where
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(s52) A= b2
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The exponential term in the moment equation causes the rapid decay .
of the moment at the radome base as the angle a (see Figure 2} increases, and
by evaluating the rate of decay the number of panel tiers requiring reinforced i

elements was determined,

This completes the description of the structural analysis which provides

W et s mbaae

the equations and techniques to evaluate, (1} a structural constraint for the

majority of elements distal to the radome base, (2) a procedure to calculate

S v aepeg e

the reinforcement required by the elements proximal to the radome base, and

(3) the member of elements vequiring reinforcement,

OPTIMUM DESIGN CRITERION

STy

The concept of optimum design implies a methodilogical assignment of

system parameters such that the system performance is maximized relative

€L g

a to a defined criterion, There are several possible criteria which could be ap-
plied to radome design. Two criteria were selected for consideration in this
study and are (1) minimization of the radome transmission loss subject to a
holonomic structural constraint, and (2) the reduction of the total element weight

subject to an electrical constraint which fixes a minimum transmission loss and

R e S IR I L TR S

a structural constraint insuring radome stability and strength,
A description oi the optimization procedures initially requires a defini-

tion of a single structural constraint based on the equations developed in the
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structural analysis., The structural constraint utilized was the most severe

RIPE A

design condition imposed on the element sizing by either the general or local

YOTR A

buckling equations exp-essed by equaticns (15) and (41). A comparison of the

et

two design equatione was made by graphing the maximum allowable wind velocity
permitted by each equation (see Figures 4, 5, and 6). The equation which per-~
mits the least wind velocity for a particular set structural and environmental

conditions becomes the constraint and is written in the form
(53) F(L, w, d)=0.

The equation for the transmission loss is also a function of the element dimen-

sions and is written as
(54) G=G(L, w, d).

The procedure for obtaining the element dimensions which will result
in an extremum for the transmission loss (G) subject to the constraint (F) in-
volves the application of the method of Lagrangian Multipliers [1 IJ and is out-
lined below,

The total differential of the transmission loss is written and set equal

to zero:
. _9G 9G 9G
(55) 4G —Ede-P-a—;v-dwi"ga—dd- 0.
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The total differential of the structural constraint is written

A& oSt ek

i b, o B

oF oF oF
(56) dF—ﬁdLi'dei'ﬁdd—o.

The differentials of L, w, and d can not all be independent. Arbitrarily

specifying the differentials of L. and w as indepgndent the remaining dif-

ferential (dd) is solved for from equation (56) by setting

%{dld--g—%dw)
(57) dd = - g-g-

d

provided 9F/dd is not equal to zero, By substituting equation (57) into

equation (55) the dependent differential is eliminated and the resulting equation

is
9G 0.G oF oF _
(58) EdL + de - X(ﬁdL +FV—JdW) =0

where for brevity 8G/8d) /(0F/9d) is defined as \. Equation {58) can be

written by collecting like terms as

9 aF G OF
{59) ('5—% - X‘a—c)dL + (W - )‘W)dw =0,

Since the differentials of L and w were defined as independent, the coeffi-

cients must' vanish in order to satisfy equation (59). In this manner a system
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of four independent equations in four unknowns (L, w, d, \) are obtained, the
simultaneous solution of which will yield the element dimensions that cause
the transmission loss to be an extremum,., The transmission loss must be
evaluated for each unique set of element dimensions to determine if a mini-

mum exists. The system of equations to be solved is

aG | OF _
;o (60 5L " 5L ¢ f
i

aG oF ;

(61) Tw " Mow " f

i

G R, e

2G 9F _
(62) —a—g - )\a‘—d =0
(63) F(L, w, d)=0.

A direct extension of this procedure would consist of imposing an
additional constraint on the method of L.agrangian Multipliers, The additional
constraint would conceivably be placed on the maximum weight of the space
frame. In such a case five independent equations in five unknowns, the three

element dimensions and two Lagrangian Multipliers )\1 and )\2, would be solved
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simultaneously. A complete description of the method of LLagrangian Multi-
pliers can be found in ref [1 1] or most any text on advanced calculus,

An _alternative optimization procedure based on the reduction of the

P et U

structurzl weight subject to an electrical and structural constraint was de-

o A

veloped and is essentially graphical in complexion, The method description
is firast precluded by the formulaiion of the required equations, The structural
constraint will be the severest design condition imposed by either the general
or local buckling equations. The electrical constraint is established by substi-
tuting a value for the minimum allowable transmission loss into the gain equa-
tion, G =G(L, w, d}. The electrical constraint equation is plotted in Figure 7
for constant lengths and a maximum transmission loss of 0, 5db. The remaining
equation to derive is the expression for the total element weight in terms of
element dunensions. This equation was written by taking the product of the
total volume and the weight density of the structural elements. The total vol-
ume is equal to the element cross sectional area times the collective length
of the elements., The weight equation was, then, expressed as:

N

(64) W= PwdyLi

b]

where the summation of element lengths has been shown to be equal to
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2
{10) NL = 24™R k

A 3L

Substituting equation {i0) into equation (65) gives
2, ~wd
(65) W =13.857R k/—L-— .

A graphical examination of the three equations, electrical and structural
constraints and the structural weight, provides, perhaps a less direct approach
to the optimum selection of element dimensions. However, the necessary solu-
tion of a system of equations, which may be tedious and cumberscme, is avoided.

The objective of the graphical approach was to generate a set of curves
which display the behavior of the weight and constraint equations for a practical
range of element dimensions and arrive at a design decision by graphical exami-
nation. The curves generated for the example design were: (1) the maximum
wind velocity permitted by the local buckling equation, (2) the maximum wind
velocity permitted by the general buckling equation, (3) a comparison of local and
general buckling, (4) the electrical constraint equation for constant lengths,

(5) the weight of aluminum elemesntis for a range of widths which satisfy both an
electrical and structural constraint, (6) the weight of aluminum elements for a
range of lengths which satisfy both an electrical and structural constraint, (7)
the exponential decay function for the bending moments due to the radome bound-

ary conditions,
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SAMPLE RADOME DESIGN

An example design of a 150 foot diameter space frame radome was
performed to provide an illustration an« detailed description of the optimi-
zation design procedures. The design calculations were based on the follow-
ing radome and environmental specifications:

1. Radome diameter - 150 feet.

2. Structural description - triangulated space frame of regular (snub-~dodeca-
hedral) or random (icosahedral) geometry.

3. Truncation base diameter - 130 feet.

4. Structural material - £G61 Té6 aluminum.

5. Maximum wind velocity - 150 mph sustained.

6. RF band - 200-500 mc.

7. Maximum transmission loss - 0. 50db.

The general radome design equations developed in the preceding sections
are:

1, Transmission loss - gain equation

79w2 F7wd +18d
2Lw

G=

2, General buckling, Tsien-VonHarman equation
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3KEp(l-cos ¢b) wd2
P’ 2 L
cx 2N 3p R

3. Local buckling criterion

N 3P0L3 2V3(P R-Vis /st)L3
+ <1
)

2 3
16 O“YPwd 7 E(l-cos §, )wd

4, Total weight of elements

2 wd
W =13,85nR k’T

These equations become specific design formulas upon substitution of

the appropriate parameters which are:

1, ER = 107 psi
2. K=0,50
3. k=0,75
- o
4, ¢b 120
5. R =900 inches
6. ¢~ =40,000 psi
yp
7. / = 0,098 pcf
8. Q=0,004 pcf
9. PO =0, 3125 psi
10, G=.5db
101
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The design formulae are equal to

(66) Lw = 79w’ + 7wd + 18d

(67) P-4 64—‘5’5-2—

(68) (1.316 + 0, 0832d)L3 x 1077 = wd>
(69) W = 2643 1"1-“1— (kips)

The sample design description includes the method of Lagrangian
Multipliers to minimize the transmission loss subject to one constraint and
a graphical method to reduce the total weight of elements subject to an elec-
trical and structural constraint.

In both illustrations it is necessary to eliminate one of the structural
design formulae by determining which dictates the most severe restriction on
the element dimensions, Figures 4 and 5 are plots of equations(67) and (68).
Figure 6 is a comparaive plot of equations (67) and {68) and displays the fact
that for all element widths and lengths over one inch and 14 feet, recgectively,

the local buckling design restriction is most severe, Since a width of one inch
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or less is impractical for the size radome considered in the example design,
the local buckling equation was selected as the structural constraint.
The method of minimizing the transmission loss subject to a single con-

straint was previously outlined where equations {53) and (54) take on the form:

(53) F =(1.316 + 0. 0832d)L2x 1075~ wa>= 0

2
_T19w + 7dw + 18d
(54) G= 2Lw

The system of equations to be solved for the element dimensions which
minimize the transmission loss are obtained by performing the appropriate

differentiation. The equations in terms of the four unknowns L, w, d, and \

are:

: 2 - 5 ,0°5
(55) 39.5w +3.5dw + 9d + 3Aw[1.316 + G, 0832d]L"x 10 "= 0
(56) 39. 5w - 9d + Aw“d’L = 0

3 2 -5
(57) 3,5w+9 - \w[0,0832L"- 2wd JL x 10 =0
(58) [1.316+0.0832d] L x 107°- wa>= 0,
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The method of Lagrangian Multipliers, which requires the simultaneous
solution of the above equations, is a direct analytic approach to the evaluation of
the element dimensions consistent with minimum transmission loss. The above
system of equations was developed as an illustration of technique only, and the
solution was not attempted. However, attention is directed to the degree of al-
gebraic complication involved in obtaining a complete solution which would be
increased by the addition of a second constraint. Therefore, emphasis was cen-
tered on a graphical aporoach which although less analytically direct, is more
favorable to hand calculation and visual interpretation,

The graphical method was instrumented by the generation of a set of
curves, Figures 4 through 9. The total weight versus element width curve,
Figure 8, clearly defines a consequential design objective which parallels the
reduction of weight, which is the minimization of width. However, it is neces-
sary to establish a minimum width below which the advantage of suppressed
structural weight is totally masked by unmanageable mechanical design difficul-
ties. The total weight versus element length curve, Figure 9, provides a cue
to the selection of a minimum element width, The weight equation is not a single
valued function and displays a point of minimum element length which satisfies
the electrical and structural constraints., The element width which corresponds
to the minimum element length is of a practical magnitude and is defined as the
goal for the ensuing mechanical design. Therefore, the requirements for struc-

tural integrity during sustained 150 mph winds, minimum transmission loss of
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0.50db, minimum element length, and minimum total weight of elements within
practical limitations are satisfied for a structural element of the following di-
mensions:

w=1,10 inch

d = 3.42 inches

1, =167 inches

The remaining design consideration concerns the reinforcement of the
standard element. The reinforcement calculation involved the evaluation of the
shell displacement and derivatives at the radome base and substitution into
the bending moment equations (48) and (49) which gives for the resultant mo-

ment at the base;

PoRd

(70) S S
M¢o 4 Y300
p(l-p

The bending moment applied to the elements at the base are then equal to the

resulting moment M¢ times the effective spacing (s).
0

(71) M0 = 15, 95dL.
0 )

The standard element was modified such that the maximum flexure
gress of the reinforced elements was maintained equal to the maximum flexure

stress of the standard element. This requirerent was formulated by equating
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the flexure stress of the two elements, one of standard cross section and the

other of modified cross section,

3 3
N3 PyL _ N3PL , 6M%s
16wd” LotwrAw)dr Nd)° (wrAw)arAd)?

(72)

Equation (72) was solved explicitly for the incremental width Aw and equals

2 3
(73) Aw = ¥4, (1530 +290d)wd W

(&Ad)z N3 P L (drAd)z

The most convenient manner tc reinforce the element is to maintain a
fixed element depth and increase only the width. By fixing the element depth
for the entire space frame the requirement for special transition hubs or adap-
ters is avoided. The reinforcement equation is simplified by letting Ad

vanish and reduces to:

wd

LZ

(74) Aw = (2830 + 1674d)

The requirement in element width for the sample design equals 0, 459
inch and the reinforced element dimensions become

w = 1,559 inch

d = 3,42 inch

L =167.0 inches
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The number of elements requiriny reinforcement was determined by
examining the rate at which the bending moment at the radome base damps
out at points away from the base. The percent reduction in the moment was
plotted as a function of meridian angle (a) receding from thie base as dictated
by the cxonential term of equaticn (50), Figure 10 shows that for the sample
design the moments are reduced by 98% at an angular displacement of 10° from
the base. An equation for the number of reinforced elements was derived in
the following manner:

Let Ar be the total area of the radome composed of reinforced ele-

ments. Then Ar is equal tos
(75) A_=2nR% sin(§, - 2)
r had 2 a 8sin b 2 3
The number of reinforced panels (Mr) equals the area divided by the unit

panel area and equals

81rR20. sin(¢)0- %
(76) Mr = 3
N3 L

and the number of elements corresponding to Mr panels is

(77) N = %M
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PERCENT PREDLCTION OF SMELL BENDING
MOMENTS DUETO RADOME BOLUNDARY
GCONDITKONS IN REGKESSION FROM THE BASE.,

Mo = Mg, e™**

PERCENT PEDLICTION OF BENDING AMOMENT
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or

2 a
127Ra sin(éb- -z-)

{78) N =
- ¥ N3 L
The value of Nr for the sample design and a 98% reduction of shell
induced bending becomes 66 elements. The total number of elements of both
cross sections is determined by substituting the element length into equation

(11), which gives

N =977,

The complete specification of the elements of the sample design is

1, Standard Element

Number - 911

Width - 1.10 inches
Depth - 3.42inches
Length - 167, 0 inches
Weight - 55,400 1bs

2. Reinforced Flements

Number - 66

Width 1.48 inches
Depth 3.42 inches
Length - 167.0 inches
Weight 5,594 lbs
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MECHANICAL DESIGN OBJECTIVES

There are numerous mechaniczl design deficiencies existing in many
of the large radomes which have been built in the recent past. This fact was
made apparent during consultation with the personnel of se¢veral prominent
manufacturers cf large space frame radomes as well as by the inspection of
the Haystack Installation. The most blatant deficiency seems to be in the area
of dielectric panel to element attachment. A result of manufacturing panels
of reinforced plastics within reasonable tolerances seems to be a condition of
relative slack in the individual panels’ membranes after assembly, Such a
condition allows considerable furling of the panels due to wind pressure fluctu-
ation. Fatigue failures of the panels frequently occur at the panel vertices
which require undue and excessive maintenance, A possible solution or sup-
pression of this type problem would be effected if an attachmuxnt design was
generated which produced a pretension in the panel during installation. Such
a design objective is complicated by the optimum design conclusion that mini~
mum element width is desirable., A design concept is depicted in Figure 11
which has the merit of simplicity and warrants development consideration. The
extruded V-slot in the edge of the element would cam the reinforced panel taut
during depression of the panel into the slot by the cover plate, The camming
action would induce a prestress on the panel dependent on the pitch of the slot

and depth of depression,
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A second deficiency seems to exist in obtaining and maintaining ade-
quate weather seals. The panel to element seal could be significantly improved
if and when prestressed panels become reality due to the ‘ncreased bearing
pressure and area of contact at the seal., The panel to hub seal is generally the
most difficult to obtain, By providing a panel-hub engagement slot in the hub
a forced and continuous attachment of the panel to the element and hub is poussible,
Therefore, direct contact of a hub cover plate and the panel would allow for
generous surface for a continuous weather seal. Figure 12 schematically il-
lustrates such a panel-element-hub attachment scheme.

The preceding recommemndations are intended only as conceptuzl pro-
posals which could be evaluated for derign feasibility and refinement, A multi-
tude of design improvements in the mechanical design of radomes all of which
require considerable analysis. Some of the areas for improvement include
erection procedures, reduction of manufacturing tolerances to a minimum pr
mating radome components, elimination of superfluous assembly hardware,
and the aforementioned panel pretension and weather seals each of which re-

quires individual and special attention,
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APPENDIX

DERIVATION OF EXPECTED SIDE LOBE LEVEL DUE TO RADOME

From eqguation (24) of D.] we may write the far field pattern in the

presence of a space frame as

Zn a
(Al) F(u) = g dQ g r dr{l + gav/’(r,q ))f(r,(l)ejur cosrj
0 0

where f(r,n) is the antenna aperture illumination, / (r,n) is the blocking
area ratio considered as a function of the polar coordinates r,/] (see p.12

of [1_]) and u=k 8in 9 where 0 is the pattern observation angle. We shall
now find the expected value of the power pattern ]F(u)l2 under the assumption
that /p(r, N) ie one of a large set of functions denumerated by a variable a
of known statistics approximating those of typical space frames. Hence we
write ID(r,Q) as /)(r,fl,a). The average value of /)(r,Q,a) is the average

blocking area ratio £ 8o that

(A2) P(r,fl,a)do. = /9 ) where Yda =1

and the integrais are over all admissible a, normalized according to (A2).
We may then write the expected value of the power pattern from (Al)

as
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where F 0(v,) is the unperturhed pattern and the inner integral

(A4) I= (daf(r,(l,n))o (p,Q,a)

may be computed for any given space frame statistics., On the basis of some
detailed computations a good approximation is believed to be Gaussaian with the
scale length, the vidth of the element. It is quite obvious that two points more

than W apart are not highly correlated.

2 -|7-pj/w?

+fze_, pe

, -lTpi%w
(A5) Lo (P e

- —2 _ 2
where |r -p| =r +p2- 2rp cos($ -1 ).

If we make the further reasonable assumption that in the reighborhood
of appreciable correlation, I; ~5] < ~W, {(r,n) is virtually constant, we

may explicitly integrate the last term in (A3) to obtain
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, ~(uW/2)
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(A6) ‘sig‘(u)] da=|lrg PI7|F ()| +npWiig [e

2m
\
0

The increase of pattern in the neighborhood of the first few side

2z, $)dr.

Ok—-""\ﬂ’

lobes, where
(A?; € Lad 1,

relative to the peak is given then by

2r 2
wpwelg, |* $ap fet'ie prax

(A8) ys
[ $ag S rf(x, §)ar |
o ©

The expression (28} in the text is an approximation to (A8) using (2) and

typical values of £(r, ¢’).
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DERIVATION OF EQUATION (1) Part 1

The far field F 0 of an aperture antenna may be written as the

Fourier transform of its aperture illumination f(r,q):

(A9) FO = FO(E) = ‘( f(r,rl)ejk rdr dn

Ao

when 0 is a unit vector in the direction of observation, T is a vector from

the origin to the integration point, k is the wave number, and r and n

are polar coordinates in the aperture.
The induced field ratio IFR of a set of scatterers in the antenna
beam (1) whose mutual coupling can be neglected and (2) whose dimensions

projected into the antenna beam are small compared to variations in

- —

f(r, rl)eJkr‘ 0 and are non-overlapping, can be defined as g(r,/), equal to
either the IFR of the scatterer projecting to (r, q) or equal to zero if no

scatterer projects to r,/] . In this case the scattered far field may be

written as

/ Nl
(A10) F = F(0) = Hg(r,il)f(r, e 0 ar ay.

49

If all of the scatterers have the same IFR, g, a constant, then (Al0)

becomes

(All) F = fg “f(r,rl)ejk ‘or dr d/

-2

Ag
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where P is the ratio of the projected area occupied by the scatterers to the
total area of the beam, or the blocking area ratio. From (A9) and (All) we
may w.'ite the total far field as

(A12) F=F +F_=(1+pg)F,.

In the forward direction (2) above is satisfied for all practical

space frames and the relative power loss due to the radome is

(A13) G= E‘%IZ = |1 +/ng .
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