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I. DIFFI{RFNTIAL EQUATIONS, BONDARY CONDITIONS

AND JUNCTION CONDITIONS

The shell under consideration is in the form of a trunca-

ted right cone. Its thickness varies linearly along the lernth

of the generator of the cone, thinner at one end and thicker at

the other end (Fig. 1). The load applied to the shell is a

distributed load Z = p(s) normal to the middle surface of the

shell and acting over the whole surface, On the boundary, that

is, along the edges at both ends, axially symmetric forces and

moments may be prescribed, but the forces cannot be entirely

arbitrary as the equilibrIum along the direction of the axis of

the cone should be observed.

The shell is considered uo be thin, that is, its thick-

ness is small in comparison with other dimensions and with its

radii of curvature (rx = o, ry

The Stresses Let a local coordinate system be set up in

the shell with the origin placed at the unstrained middle sur-

face. The x-.axis is placed on the generator of the middle sur-

face and is pointing away from the apex, the y-oaxis is set tan-

gent to the principle cur-ature., and the z-axis is set nornal

to the middle surface and is pointing inward0

Consider the stress components at a point in the shell,

Fron the asrumad syinmetry. it is cl.ear that Txy :yx :yz

= =0. As the shell 1 considered to be thin, az may be

neglected.
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Hence the remaining non-zero components needed to be considered

are the normal stresses Ox' ay and the shear stress B xz = Tzx.

For simplification, the normial stresses ax and oy are considered

to be the sums of two parts, namely, the membrane stress.

(la) gx = m + cxb

The resultant forces and moments per unit length of the

normal sections (Fig. 2) are obtained by integrations of these

stresses over the thickness h.

h

(2a) N rp f x dz = a.mh

h

(2b) N =4 h Cy dz a oMh

h.W 
xzh

(2c) TX-2-



h 12

(2d) N f lJ oxz dz h (oxb)max.

2e) y zdzz -h (Gyb)max.=fh6

Equations of Equilibrium An infinitely small elem'ent dOds

is defined by two adjacent meridian planes d9 apart and the

distance ds along the generator of the cone. Consider the equi-

librium of this element.

In the x - direction the equilibrium of forces requires

d
- (N s cosV do)ds - NedS dO cosf = 0ds

or

d(3) -- (s N )-No = 0
ds

In the z - direction the equilibrium of forces requires

d
- (Q, s cosp dO)ds + Nodds dO sBinq + Zs cosp d, ds t 0

ds
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or
d

(4) - (sQ) + tanV + sZ o()ds OP e

The condition that the summation of all moments about the

y - axis be zero requires

d
- (M s cos-p do)dc - M ds(de cosT,) - Q s cosm dV ds - 0

ds

or

d

(5) -(SM) Op M0 - SQ p= 0dS

In deriving this equation, it has been assumed that the

effect of the membrane force on the bending moment is negligible.

Combination of (3) and (5) gives

d
- (sN sinVp + sQ cosn) = - sZ cosVp

which after integration becomes

sN sirkp + sQ cosqp PZ cosf sd sN sirrp
1

(6)

+sQ co S•s - F(s)

-4-



This equation can be derived directly from the condition

of equilibrium of the portion of the shell above the cross sec-

tion s = S.

Deformations and Stress-Strain Relationships Let um

and vi be the displacement from its unstrained position of a

point on the middle surface in the x and z directions respectivo-

ly. The strains at the middle surface are found to be

dum

(-a) C;M !- = uI
ds M

""um wtanrp(7b) eym-ss

The second term in the expression for ey:T is due to the

deflection of the middle suriface generator. The prime in (Ta)

denotes differentiation with respect to s.

The strains at a poinrt at a distance z from the middle

surface may be approximated as follows:

(ea) = - zC- u Z -z4

zd(w u -% w tan, z

(8) •Y • s ds• s s w

5 5 -
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The second terms in both (8a) and (8b) are due to the ro-

tation of the cross section caused by the deflection of the

middle surface generator.

From Hooke's law,

E(9a) ax = xm + axb 1- v (ex + v ey)

E

S.xm + exb + v(C YM + eyb)]
1 - v 2

y +(ey + vex)
1v

------ + eyb + v(Oxm + exb))
i - v2

Four equations relating the shell forces and shell moments to

the shell deformation are:

Eh um - w. tarq)(1oa) NM-----(u M + v,.....
- v

Eh U- WM tanep
(lob) N + aun

1-v 2  S

•6-



(10c) N Rm + -)
12(1V)

(10) N~- Eh3

12(1 - v

Differ.entiLa Egjjatiqns Differentiating ()and oubrti-

tutitng nzopfrom (4),, gives

62

Using (10b),. (10c), and. (10d), (11) becomnes

F(2 + +~ S"+'q-

12 (1. 2 12(0: - V)

f'ww, II m tEhA ew
- + V+

22

(12)

- -+ VJi j -- 2h~h )+ +~hf Hswre



Eh r um tanu+ ....... tar•n (- -~ -+V•um ).sz =O0

1 - 2  s

Multiplying (12) by s3 gives

Eh 3  4
- V + 2s w + 2sw + su

- V2 ) 
m

Eh 2 h I 3

+ --- r(2 + 3v)s2 m + 2s *swm
4(1 - v2 ) -

(12a)

Es 2 v2 2 9# 2 O+ - - (2hh + h2 h ) sm + Vwm"

4(i - v2)

Ehs 2  4
-... tanep (u. - w tan,5 + vsu ) + s Z = 0
1 - v 2

From (3) after the substitution of N and N from (10a)

and (10b) respectively one gets

Eh 19 V 1 9
-(s Um +um + v u - vwm tarr)

1 -

-8-



c}e~e)'.-a:L Tec.hnolo4. o• Gc>}!j orat i.on~

Eh u m -WW tamnr,•

3. - V 2

Eh.-

+- {s u. + v(ur - •r taro)] 0

Afteor multiplication by s; (13) becomes

2 I0 U11, su vsw , t an.., - um + ta~n o w.

h s+h VSWm m m ] = 0
ha

Equations (12a) and (13a) form a pair of coupled differ-

ential equations in displacements for the given conical shell.

If the thickness of the shell is constant then h is not

a function of a and (12a) and (13a) reduce to

Eh34fil 3ft I-~(•, "" +s - +

12(1 
- v 2)

(12b)

Eho 4
- ~~ tantp (Urn-W tar"' + vk3U )+ , C

9-
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and

(13b) + sum - um - vtano swm + tanm w, = 0

respectively.

Two special cases, for v = 0 (corresponds to a flat plate)

and for m z- (corresponds to a straight cylinder) may be

considered.

For m = 0, tan , = 0, (12b) reduces to

(14) Eh3 S4wm v - 2swm + swm ) = S Z
12(1 - v )

Using the notation D to denote Eh 3d , (14) becomes

12(1 - v

') 1 , Z
(14a) W + 2iWm w-7 - V m + s~wm =1

which agreels with the circular plate equation.

For o = 0, (13b) reduces to

(15) s2u M sm, u =0

i;hich is the equation for a circular plate subject to axially

symmetric radial in-plane force.

- 10 -



It is noted that the decoupling of (14a) and (15) is in

line with the assumption that the membrane forces have negll-

gible effect on the bending moment. However this will not be

true if the membrane forces are large compared to the normal

distributed for:ce Z.

Let r be the perpendicular distance from the point at

s = s on thc generatoy of the cone to the axis of the cone.
2

Write tanT- Let s . then tanr,- ,Sr

Under such circumstance, the cone becomes a cylinder.
S

Substitute R for tanm In (l~b),

Ehd _ 14 3V" •

h s w + 2sW + - 2sm + sel

12(1 -m 
m M,

(l6)
Eh- s3 + 0J
E1 um m + vui - sMZ =0

Substitute R for tan. in (13b),

(17) + su +-um -u V'S2 + S. =0
in M M r Mn

Let s - c, (18) reduces to

- 11 -



U +8) c

where c is the integration constant.

Setting c O, by (3), which is equivalent to setting

N =0°

(l8a ) F "If,

Upon substitution of um from (18a) into (16) and letting

F, ", (16) becomes

(39) wm . .•.. b

which agrees with the equation for a circular cylindrical shell

loaded symimetrically with respect to its axis,

The pair of differentia equations (12a) and (13a), as

noted before, are in terms of d1s~rlacements, If one wishes,

one could proceed in a different manner.

eN
Let S denote Hence

h

(0oa) N -

1. See Timnorihenko an-id Wo"no1T{-,y- ege+, fl:D.;ry of Plater

and Shells" P. )467, 2nd Edition, 4cGraw Hill., 1959
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From (3)

(20b) No =2hh S + h2 S

and from (6)

(20c) Q - s) -- S tanm

Upon substitution of M from (lOc), M9 from (lOd), and

Q from (20c) and using the notation 8 = (5) becomes

Eh +, + Eh3
121- i 2(1 - v•

(21)

(0 + e - +s) - 3Eh 2 h ( +

6 8.2 12(1- v2)

Eh3  (+ ve') = s(- Y he
-s2cods) • S tan•)

12(l. - v 2 BCO5A8

which after simplification becomes

h' hh

so + (1 + 3s ) + (33sI v-i)

(21a)

- 12 tan8 (I - v22)S+)S+ (i v2)

El-i cOSem
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To derive a second equation, solve for wm in (7b).

(22)m = (uM - rays) Cotm

Differentiate (22) with respect to s.

(23) Wm = (exm - Cyst " s G ) cot!p

From Hooke 's law,

(24a) C = (axm - vax) _(N Ne)xm YM, h TN

(2b1a V 1 (
2Zb ym r (ym - •xm) =h 0

Using the values of N and N from, (0a) and(20b),(24a) and

(24b) become

- ý-' v(2hS + hS ,

(25b) E: F" &S + h.. + hS
ym L V Sj

re spectively.

Differentiate (25b),

- i14 -



I! 2 iJ ' " ,• h S hS,.
(26) 2h S .hS . S, +

Upon the substi tutlon of the values of %xm' ,Cy and cymB

from (25a)s (25b), and (26) respectively and after some slm-.

plificaticon (23) becomes

-~+ s~&'+ )(2 + v), - 2s? I j-

(27)

Equations (21a) and (2'7) were firet derived by Honegger. 2

They are the alternate forms of a pair of couopled equationE,

for the conical shell. If Meissner's operator. and the £ollow-

Ing notations are used,:

L(U) = h cot;p SU ± (1 + 3+ h -

f, = 3vh cotrm

= ~ h' + 2sh"cot.

(29) 121 - v2 )

X2  *-

""s 2

2 - V
Eh n.-

2. Honneger, F , v tŽJweit•berech.•ung von Kegelschalen
ml.t llinear v"eranderlic"F 'r " Doctoral Thesis,
Zurich, 1919

"L F



Genera]. Technology Co0r0pcý-&rUion

equations (21a) and (27) may be rewritten as

(30) L(0) + fie = xis + F(S)

(31) L(S) + f2s= x 2 0

Boundary Conditions

On the boundaries, forces N , Q 1 and moment Mn may be

prescribed. The moment M1 may be prescribed completely arbi-

trarily on both edges. The forces N, Q may be prescribed

completely arbitrarily on one end, but if at the other end the

forces are also prescribed, only one of them can be arbitrary,

the other one must satisfy (6), namely,

sN0 sine + sQ% cosp =-F(s)

Expressed in the dependent variables in the two alternate

pairs of coupled differential equations (12a, 13a) and (21a,

27), the shell forces and the shell moment are as follows:

SEh , um - W m tan) hOs
(32a) N E (u + V U = -

I,

EP3 UP (3h --Wm sh•

(32b) QB - h r + __ + 1) -S+ ( 3 h- 1)

- 16 -



(32c) M Eh 3  ( WW Eh +V1
-~=-=-~-, (vim ~ -~(o+~

12(1- V i 12( -v )

If the forces and moment are not prescribed, displacements
d 6m

urn, wm and slope -- then should be prescribed. Instead of

prescribing um and wm an alternate way is to prescribe the

quantities (um sirq + wM cos&P) and (um COST - wm sinn) which

are the displecements in the axial direction and in the radial

direction respectively The latter quantity may be expressed

through radial strain Ey by dividing it by s cosn. Expressed

in the dependent variable of the two alternate pairs of cou-

pled differential equations, these displacements and slope are

as follows:

(33a) d = um sin. + wm cosPM

uM wm tarvp h2  2'
(33b) ey = - -m =)S + h S

(33c) w =

If the pair of coupled differential equations in 9 and S

(21a, 27) are used, the appropriate boundary conditions from

the first group are to prescribe (32a) N = and (32c)

Eh 3  8
M = -•U 2- + v 0). The appropriate boundary condi-

S12(1

tions from the second group are to prescribe (33b) ey (2hh

- v -)S + h2S and (33c) w = 0.

- 17 -



In some instances it may be found more con-rvenient to pre-

scribe the radial force (P =N Ysin + Q0 cosp) and the axial

force (V = Q sino - N cosec) instead of N and Q. on the boun-

dary. With P and V given, N and Q. can be solved as follows:

(34a) N 112S P sinN ; V coso,

II

Q Eh 3 r, 1  + 13 + IAA 12(l -v )

(34b)

= P cos - V sink,,

Junction Conditions

If two sections of di•froent shells are joined together

without misfit and are put under loads, by the condition of

compatibility, the following conditions should hold at the Joined

ends:

(Uý" (U. 2 i d62

or

(3 )1jM)I ( n 2 Yi, ( yra) 2

(wn•) = (w' )
1 2

where subscripts "I" and "2" denote section "I" and "21.

For the equilibrium of a thin ring section containing the

Junction (Fig. 3), and with the second order effects Ignored,

the following condition must hold:

18 -



M ) = (m )2

(36) P1 = P 2

V1 = V2

where P1 or P2 can be exprensed through the given distributed

loading and the end loads (possibly including the not yet de-

termined end reactions). Considering P1 and P2 known., the last

condition V1 = V2 can be written as

N N
(37) (P tan - (P tanp - o

If the second pair of the coupled differential equations

(21a, 27) are used, the appropriate Junction conditions are

(eym)1 = (eym) 2

9 f
wI = W2

(38) (M M)l = (M ")2

N N
(P tanp - ~)l = (P tan- -

Expressed in the dependent variables in equations (21a, 27),

they are

19



h 2 2 1
r (2hh' - v )s + h8 [(2h S + h

(38a)
E+ v F Eh (e + v

+ 1 LV( V )

(P tv - (P tanr -Ji S
(P taiv - sF6•Jr 1 sO,,,,2

The last two conditions in (38a) are more explicit and

simpler to apply than those given by Tsui. 3

3. Tsui, E. Y. W. ".naly of Tapered Conical She.lls" Proceed-

ings of 4th U. S. National Congress of Appied ciecnanics, p. 813

- 20 -



II. SOLUTIONS TO THE DIFFERENTIAL EQUATIONS

Referring to (30) and (31), the Honneger's coupled equa-

tions for the conical shell i'ith linearly varying thickness

subject to normal loading only are

(30) L(9) + fl 9= Xi S + F(s)

(31) Is(s) + f 2 S 2 e

with the adopted notations defined before in (29):

L(U) = h cotV • + (1 + 3S•h-)U -

f = 3vh cot.

f2 = [(2 + v)h"' cot

(29)

X2 = - E .

=12 F(s) - 2)
Eh sint

The linearity of the wall thickness is expressed by the

equation

(32) h = a 0 + b0 s

- 21 --



Recall that in (6)

S

(6) F(S) = Z cos sds - =sN siflf + I coso

For uniform normal pressure, Z = p.

8

F(s) =flp Cosa sds - sN sin4 + sQ cosep
1s

(33) C sa

p cosa •2 - g(sI)

where

(34) g(sI) = Cosa •2+ sN sinn + sQ Op

It follows that

12(1 - v2) r 2(35) V(S) =p E sn Cosa- gs)

E s;7ing, - 2

and (30) and (31) may be written more explicitly as

(36) L(e) + fq = X1+ 1r: j c 2osa YO g~ s
Eh2 sinsm

(37) L(S) + f -= x 2S

The general. solution to (36) and (37) consists of a par-

ticular solution and the solution to the reduced homogeneous

-22 -



equations by omitting the non-homogeneous term in (36).

Particular Solution

It can be verified by direct substitutions that the par-

ticular solution to (30) and (31) due to the term

hE sin -m

s 2
7p ost 2 - g(s 1 )S is

Op = 8 1p + 02p

(38)

Sp = Slp + S2p

whewh
wheyte •s + a2s2

O1p = h•

(39)

1 8s + 8 2S2
S lp hg

with

82- 6pl - v cotm

12(1 - v) + b (3v - 1) cot

(i - v)bo cot 8

0. a2. 2 C2

S23-



(40) contd. 2
3aobo cot A28

4(1 LI1 v) + b0 cot~ M(i -v)

SEacot b 2l_ c 2tjc
(1 - V) [4(Q + +) b0 (1-) oep

and

an ao
02p = - + .-

hs h

B -1 s os2p = - _+ -L

with

4 g(sl)(1 _ 2 )

4i sinr( 1 - v) +bo cotv cosV (1 -V)

12. Q-v v.

Eh sinm

bo cotP(1- V)ao = 0S

(42) 2a- b COX(& - 1)

0

a. cot, A - V2)(12 + b '_2 oo .•

EF(sv - 1)(l + v)b 2 cot + 12(1 - V-)] 0

- 24 -



Solution to the Reduced Homogeneous Equations

From (30), (31) or (36), (37) the reduced homogeneous

equations are

(43) L(O) + fl1 = klS

(44) L(S) + f23 = x 2

Eliminating S from (43) and (44) gives

(45) LL(e) + I(f10) + f2 L(O) + (f1f2 - xlX2 )e o

A similar equation is obtained by eliminating e,

(46) LL(S) + L(f 2 S) + f 1L(S) + (Pff2 - xlx2 )S = o

Assume the following is true,

(47) FL + (c + fl)l rL + (c2 + fl) =

where c1 and c 2 are some constants, then Equation (47) may be

rewritten as

(lila) LL(9) + L(c 2 + fl)e + (ci + fl)L(e)

+ (c 1C2 +c 1f1 + c 2 f 1 + f1 fl) = o

- 25 -



Subtracting (45) from (47a) gives

(48) (ce +c 2 )L(G) + (-f - f 2 )L(O) + (C1 + c2)fl

+ (f 1 f2)fl + C1 C2 + xl02 = 0

which can be satisfied if

C3. + C2 = - (fl " f 2 )

(49)

cI 02 = - Xl12

Equation (49) Is equivalent to stating that el and c2 are the

roots of

22

(50) c•"+ (f - f 2 )c - xlx 2 -=

•nd solving (50),

(51) - - 2 ) f 1 - +_1).

Hence (145) can be written in the form. of (417) and since

the operators in (47) are commutative, (45) can be split

into two secon-r order equations as follows:

- 26 -



1 . y ''f;;

(52a) L(e) + (c1 + f)a -o

(52b) L(G) + (c2 + f0)@ - o

with c and c2 given by (51).

For the case of linearly varying wall thickness according

to (32), from (29) it is found

(53) f, = 3vh cotvp 3vbO cotV

Sf II

(54) f2 = r(2 + v)h + 2sh ] cotT = (2 + v)b 0 cotep

and from (51)

(55) cl 2 - (1 - v)bo cotm + f(i - v) 2bo cot2t - 12(l - v2)ji
2 0

With these values of f,, f. and Cl, C2, (52a),(52b) become

hcota IsG' + (1 + b0  -
0 0

(56a,b)

+ I 2v)bo cotf + r(i - v2 )bo 2 cot 2 2.0 12(1 - v2 )BI1 " a

Making a change of variable

- 27 -



. .. .. ....

(57) a = 0  h ao(1 - t)
00

equations (56a,b) become

(58a,b) + ( -T + Y )q + ( 1+ Ol12) t '- o

vie re

(59) 1 ., 2  2v- - bo Ia2

Comparing (58a~b) to the standard form of generalized

hpergeometric equation(4):

+(I - - -,x. + X-)y

+ + + B3 y

It is found

I y =0

I 2a~ = -o y =-2

(61)
01 3 + -g al, 2

B1,2 S= f - V "r. 2

4. W. Magnus and F. Oberhattinger, Formulas and Theorems for
the Functions of Mathematical Physics, Chelsea, 1954, P. 12

- 28 -



(58) Let P and s stand either for Bi, 81 or R2. 82

expressed in Relmann's symbol is

0 F 0 1

S= P +1 0 F t =tP 0 0 1 + 8 t

- -2 -2 + ,t

(62)

0 1

= tP 0 0 a t =ty

I-c c -a-b b

where y satiefies the hypergeometric equation:

(63) t(l - t)y + re - (a + b + I)t] y - aby = 0

From (62) it is recognIzed that

c=3

(64) a + 8 5 + 9 - C,

b 1 + 9 4 -(i.

* 0 1,2j

Solution at t =1 0

One of the. independent solutions to (63) Is

- 29 -
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ab + •a+1))_ t2+1
Y= F(a,b,c;t) = 1+ a-Tt + a- +1 .+ t 2 + ....

. + +),n .- 1- + nn + -- -

n! c(c + 1) - - - (c + n- i)

S[a] n[b] n n
(65) o + [ t

n=l nq- Tn"

where

(66) [a]n ra + n= a(a + 1) --- (a + n-)

It is noted that 1 - c =-2, but neither a or b is

equal to 2. The other independent solution is (5)

(66) Y2 = Yl logt + F1 (ab,c;t)

where

c 1-c c-2 nF (a,b,c;t) = 1- ) t Z (-l)
n=0

(67)
1-i

.n. -),2 (Ca-)! (c.e--2)! t

"ýT(a-l)(a-2) - - - (a-c + n + 1)(b-1)(b-2) - - - (b+c

5. T. M. MacRobert, Functions of a Complex Variable, MacM'llan,
1954, P. 230.

-30-



(67) [ainCb)n n-I n-i1 n
(67) + 71 C a + r + + r r

(Cont) n;=O =

n-1 nF- -I--) t
r=O 0 r

Solution at t = I

Making a substitution t = I - g, (63) becomes

2y

S- g) d---+ [(a + b + 1 - c) - (a + b + 1)g].- - aby = 0

The two independent solutions are respectively

(6B) Y= F(a,b,c';

(69) Y2 = yl logt + F1 (a,bc'; 1 -t)

where

(70) c = a +b + 1 c = 3

Solution at t =

Put t = 1 and y = W. It is found friom (63) that T1

satisfies
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(TI F 1 ~ ) d y + a -b) P,- (2dW - c

2 Y F a, I + a - c, 1 - a -b;

by symmtltry of a and b in (63),

-b
(7'3) y 2 =t F(b, 1 + b - c, b+ - a;

Other Sol.ution

Put t orF,- and y aj , o. (63) it, :Is

found that W satisfie

d2 dW(74) ( - •) . + V(a + . - b) - (a + c ± 1 .. b),° o
d E,,cu

- a,:c: b .)W° = 0

Hlence

(75) yl (1-t) F•a, c - b, a -b + 1ý, I--V
-b

(76) Y= (14) ,( c a b -+ 1a T T -
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The range of convergence for (65), (66) is - 1 < t < + 1;

for (68), (69) is 0 < t < 2,,; for (72), (73) ia*- ! < t < - 1

and 1 < t < + w-; and for (75)p (76) is -w < t< 0 and

2 < t < + m(6) The overlapping solutions form analytic continua-

tion to one another.

Let the solutions to (56a) and (56b) be denoted respectively

by

(77) 01  Ae 1 + Be2

(78) ezz -- 3 + Do 4

wherse A, B, C., D are arbitrary constants; 81, 02 are the two

independent solutions to (56a) and 0-, e4 are the two inde-

pendent solutions to (56b). The corresponding S may be obtained

through (43) and (52a) and (4.3) and (52b)

C, 61
%79) S

(80) S - 2

From (32) and (57) it .'s seen that if the wall thickness

tapers off as the section moves away from the apex of the cone,

t will be positive and incý.•easing. When the wall thickness

6. A. R. Forsyt'h, A Treatise on Differential Equations,
MacMillan, 1956, P. 218
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approaches zero, t approaches + 1. On the other hand, if the

thickness grows as the section moves away from the apex, t

will be negative and decreasi.ng. Appropriate solutions should

be used which are convergent for the range of t in the prob-

lem on hand.

Though presented in somewhat different forms, part of the

results in this section could be obtained indirectly by spe-

cializing Honnregerls results. Reference is made to Honneger's

original thesis.
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Fig. 4 Range of Convergence

for Various Solutions.
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