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THE GENERAL TECHNOLOGY CORPORATION is engaged in
the application of science and scientific methods to industrial

problems.

Because of its unique structure, the Corporation is in a position
to supply the services of outstanding scientists having university
positions. These men work in teams as consultants to solve prob-
lems undertaken by the Corporation. The following are typical
examples of the fields of study in which the staff has been actively

engaged:

Elasticity Plates and Shells
Plasticity Magnetohydrodynamics
Viscoelasticity Aerodynamics
Seismic Waves Electromagnetics
Thermoelasticity Systems Analysis
Porous Media Instrumentation
Linear Programming Ordnance

Noise and Random Vibrations

Inquiries for the arrangements of exploratory discussions of
problems may be directed to either of the following offices:

Research and Development: 402 Northwestern Avenue
West Lafayette, Indiana
Phone: Rl 3-3307

Business Office: 47 4 Summit Street
Elgin, lllinois
Phone: 695-1600
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I, DIFFERENTIAL EQUATIONS, BOUNDARY CONDITIONS

AND JUNCTION CONDITIONS

The shell under consideration is in the form of a trunca-
ted right cone. Ite thickness variesllinearly along the length
of the generator of the cone, thinner at one end and thicker at
the other end (Fig. 1). The load applied to the shell is a
distributed load Z = p{s) normal to the middle surface of the
shell and actling over the whole surface., On the boundary, that
is, along the edges at both ends, axlally symmetric forces and
momentse may be prescribed, but the forces cannot be entirely
arbitrary as the equilibrium along the direction of the axis of
the cone should be observed,

The shell is consldered vo be thin, that is, its thick-
ness is small in comparison wilth other dimensions and with its

radil of curvature (px = o, ry).

e A1 T LA I P

The Stresses ILet a local coordinate system be set up in
the shell with the orlgin placed at the unstrained middle sur-
face. The x-axis 1s placed on the generator of the middle surw
face and 1s pointing away from the apex, the y-axis lg set tan-
gent to the principle curvature, and the zZ-axis is set normal
to the middle surfece and is pointing inward.

Consider the stress components at a point in the shell.

From the assumad gymmetry, it is ¢lear that Txy = Tyx = Tyz
= sz = 0, As the shell is considered to be thin, o, may be
neglected,

ml-

/

———



. e e 1oy ER PN SN SR g ey sy gn Ao s pina
Goneral Wechnolony Corporation

Hence the remalning non-zero components needed to he considered
&n ) ‘
are the normal stresges Oys oy and the shear stress Tym = Tyxs

For simplification, the normal stresses o, and o, are considered

to be the sums of two parts, namely, the membrane stress,
(1a) Ox = Oxm * Oxp

i N 4+
(1b0 Oy = Oy *+ Oy

The resultant forces and moments per unit length of the
normal sections (Fig. 2) ave obtained by integrations of these

gtrepnges over the thickness h.

I
ty

(22) N, mf O 43 = opgh
]
5

(2b) Ne xJ’II Iy dz = ”ymh
"7
h
Hy

(2¢) Q@ =‘rl1 Ty 02

]
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.h
13 ,
(2d) Mpp = N 0% 4z = — h (Ox'b}max.
]
h
i K 2
{ 2e) M, m‘f . oy 7zdz = — h (Oyb)max
-7

Egquations of Equllibrium An infinitely small element dods

is defined by two adjacent meridian planes da apart and the
distance ds along the generator of the cone, Consider the equl-
1ibrium of this element.

In the x - direction the equilibrium of forces requives

d
— (N s cosyp dg)ds ~ N.de d8 cosen = O
as @ o
or
d
2 - {5 - =
(3) ds("N@) N, =0

In the z - dirvection the equilibrium of forces requires

a
-(Qms cosp delds + N,ds 48 sing + Zs cosp dg ds = O
ds ¥




or

d
(4) - (8Q ) + N
ds °

etan$+sz=0

The condition that the summation of all moments about the

¥y - axis be zero requires

d
— (M 8 cosp d8)ds - M _ds{de cosy) - Q. 8 cody dp ds = O
gs ¢ g e
or
d
(5) o (st} - My - 8Q =0

In deriving this equation, 1t has been assumed that the
effect of the membrane force on the bending moment 18 neglilgible,

Combination of (3) and (5) gives

d
— (8N

" sing + 8Q, coBy) = - 8Z cOSy
ds " !

which after integration becomes

8
st sing + SQ$ cogy = ”J; Z cosem sds + [st 8inm
1 !
(6)

+st cosm]stl = - F(s)




Thls equatlon can be derived directly from the condition
of equilibrium of the portion of the shell above the cross sec-

tionn 8 = E,

Deformatlons and Stresgs-Straln Relationships Let U

and wm_be the displacement from 1tg unstrained posltlion of a
point on the mlddle surface in the x and z direcilong respective-

ly. The strains at the mlddle surface are found to be

du

= el o
(72) €om = " ut
(75) Uy wmtanw
7o R
' mo g 8

The second term in the expresslon for e ~f113 due to the

Y
deflection of the middle surface generator. The prime in (7a)
denotes differentiation with respect to s.

The straing at & polnt at & distance z from the middle

surface may be approximated as follows:

daw
(8&) e, = € - Geermvzmen 2z U - 29 "
X xm .2 m "
ds
i, _
s z dwm W, - W, tany =z .
(6v) ey = eym - - o= R
8 as a S
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The second terms in both (8Ba) and (Bb) are due to the ro-

tation of the cross section caused by the deflection of the
middle surface generator,

From Hooke's law,

(%a) Op = Oy + Oy = (Sx + v ey)
1 -
E R

= "‘"“"“"texm + exb + \’(Gym + Syb)}

1 -V
{9b) oy P 6§ml + oyb = a(ey + vex)

K REPIY

E

= a[sym + ey, * v(exm +'exb)]

Four equations relating the shell forces and shell moments to
the shell deformation ave:

Eh u_ - W tang
(10a) N, = (u,' +v BB )
1l - va- B
Eh u_ - W _ tang
(10b) Ny = (UL . TR vums)
i - va 8




(10c) M= - (w, + Vo)
- 12(1 - v2) 8
Eh3 Wmﬂ 1
(104) Mg = = ( + VoW )

12(1 - v7) °©

Differential Bguations Differentiating (5) and substi-

tuting -d—-(s ) from (&), gives

a¢ ar, |
(12)  ——(sM_ ) - —= + Ny teny + 82 = 0
a2 © da

Using (10v), (10¢), end {(104), (11) becomes

E 3 [R31 A4S Eh3
et et T(E + v)w + Bu, 4 - ‘
12(2 - Vo) 121 - VA
w''ow Eh%h'
A ' ¥ af1 1 8
{ I LI \)wmmj o e rm————— E 2(1 4 v)wm + 2swm”
g 2 2 i
g {1 -~ v*)
(12)
w ! ' E
-l wsm” JURUURUSS—— i} >} )Y § -} )? + ngh j[sw _- 4 vwmgj
8 4(1 - v 2 |
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Eh u"‘--wm'tanm .
+ s gAY (e kY U} + 87 5 0
1 - v2 s

Multiplying (12) by 83 gives

En3 ,
: by wov 3 (R §] g
- rs w, o+ 28-w + 28w + 8n )
12(1 - Vo) -
2 [ ]
Eh"h & . 2 " 3 AR ]
R E—— T(E + 3v)s wm + 28 wm - awm |
51 - V%)
(12a}
2
Es 2 . .
. 2 [ A} 2 18 ?
L{1 - v)
- taneg (um - W, tane + veu J +82 =0
l - v

From (3) after the substitution of N, and N, from (10a)

and (10b) respectively one gets

Eh e ¥ 1 ¥ .
n_umm; (su,  +wu, +vu - v tan)
1

- Vv

-8 -
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Eh uv_ - w tang - '
- (.0 ;"‘ + v )
3 v2 ’
(13}
3
Eh. . »
4«1 . g{s w, o+ vl - w, tanp)] = 0
SRY

After multiplication by &, (13) becomes

o 13 t
- Ve - :
8w, suy vew, tenm - u. + tanw W,
(13a)
t
h e \
+-m~»-[sum v - Vi tangl = O

h .

Equations (1l2a) and (13a) form a pair of coupled differ.
entlsl eguations in dlsplacements for the given conical shell,

I the thickness of the shell is éonsbant then b is not
a function of s and (12a) énd (132) reduce to

Ehs 4 LA LS '
(s W, +28° W~ 289+ BY )
12(1 - v?)
(12b)
o e G2y (U - W GaDE b ovEBU ) 82 = 0
, i i i i
Ll -y
-9 -
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and

2 " [l ]
(13} 8%u, +su - u - vtane sw + tams Wy = O
regpectlively.

Two speclal cases, for m» = O (corresponds to a flat plate)
and for «» = g-(correaponds to a straight cylinder) may be
conslidered.

For m = 0, tan » = 0, (12b) reduces to

: o
Eh 4 1y 3, 1 ' ; L
(14) (87w + 287w - 28w +8w_ ) =842
12(1 - vQ)‘ m m m nm
En>
Using the notation D to denote s (14) becomes
12(1 - V°)

' e ] fi¢t '_1 19 1 ? _ Z

(14a} W, tezw, o - ¢;§=wm + ;g-wm = 35

which agree% wilth the clrcular plate equation,.

For » = 0, (13b) reduces to

{15} 8“u +8u. -u =0

wvhich 1s the ecustion for a circular plate subjoct to axlally

symmetric radiel in-plane force,

- 10 -




It is noted that the decoupling of (ll4a) and {15) is in
line wlth the assumption that the membrane forces have negll-
gible effect on the bending moment. Hewever this will not be
true if the membrane forces are large compared to the normal
distributed force Z,

Let r be the perpendicular distance from the point at

g = 8 on the generator of the cone to the axls of the cone,

(62 o o8 |
Write tany = éunggili. Let 8 -~ o, then tang - %3 N - gm

Under such circumstance, the cone becomes a cylinder.

Substitute & for tamm in (12b),

3 . tes 80 L) B
wm?mggwnﬁs{ﬁqwmﬂ + ?ﬂ3wm - zswm +oEw )
12{1 - v

(16)
3
Eh 8 8 ' L,
- imivlvg(um wm > + V\.lm ) - 84 =0

Iet s = », (18} reduces to

[

1] wl’l‘l

- 11 -




vhere ¢ 1s the integration constant,

Setting ¢ = 0, by (3), which is equivalent to setting

N = 0. 1
o
! v
(18a) Ys TF ¥
ﬂ o
Upon subgtitution of u_~ from {18a) into (16) and letting
g - o, {16} becomes
[ 2&

p AN 12 1 -y ) Z
{19) e S -

m °h m D

which agrees with the eguation for a circular cylindrical shell
loaded symmetrlcally wlth respect to 1lts axls,

The palr of differential equations (12a) and (1l3a}, &s
noted before, are In terms of displacements. If one wishes,
one could procezd in a different manner,

sN

Let S denote wgﬂ. Hence
02

hs

{20a) No=

]

1. See Timoshenko ané Wolnousky-Krleger, "Thoory of Plates
and Shells" P, 467, 2nd Editlon, ieGraw Hill, 1959

- 12 =~




From (3)

(200) N, = 2hh'S + h7s'

and from (6)

2
. - F(s) h
(20) Q= - il - s venn

Upon substitution of M _ from (10c), M, from (104), and

d w
! m
Q, from {20c) and using the notation 8§ = ~5 (5) becomes

3 3
Eh ( ' 2] - Eh
- B Vv ) 4B e
12(1 - v°) B 12(1 - vo)
(21)
§ 2'
f ~ 3Eh"h t f
(6 +v2_-vSE)+s 3 (6 +v i
g g° 12{1 - va) 5

3 a 2
_ Eh 5 (% + vo ) = g(.. -S-Eé%-g‘g - % S tanﬂn)
12(1 - v5)

which after simplification becomes

]
[

80+ (1 + 3s %f)e' + (3s %-v - 1)2
(21a)

12 tans ( 2 12F( s
S— (1 - v }S +
Eh~ cosge

(1 - V&)

==

- 13 -




To derive a second equation, solve for w, in (7b).

) = ,
(22) L (um - §) cotm

my
Differentiate (22) with respect to s.

(23) W=

[ I,
" (em - €y = 8 ¢ ym) cotwy

From Hooke®s law,

1 1
l. == o - == -
(24a) €om = B (Oxm voym) o (Nw vNe)
1 1
1. 3 e e - —4 -
(24) Cym T ¥ (Uym dem) Eh (Ne Nm)

Using the values of Nep and N, from (20a) and(20b),(24a) and
@41 ) vecome

(252) e =g (B2 - v(en's + ns")]
. L t ol hS~
(25b) o Eah S +ns + v

respectively.

Differentiate (25b),

- 14 .
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(26) C L lTan's’ - on's 4 ns +n'st . g’ 4 B8 ndym
| Cym T E M e Toeb Y g BE J
L]
Upon the substltubtion of the valueg of € em? eym and €

from (252), {25k}, and (26) respectively and after some sim-
plification (23) becomes

Ler)
Eo
~ hrcote

Equations {2la) and {27) were firet derived by Honegger.?
They are the alternate forms of a pair of coupled equationsg
for the conical shell, If Melssnerfs operator . and the follow-

ing notatione are usedas

hi

]
) s 1" 9
L(U) = h cotp [SU + (1 + 3 L g]

t
fl = 3Ivh cobm

-
£, = {(2 + v)h + 2sh j cotw
(29)
Ao == 3:.,%(?1 -y )
1® g
‘Xg = e B

¥a) = SEEE) (1 B
Enh™ slnn

2. Honneger, Eu, "F 1+¥ok>1tﬁber¢uhxung von K@gelﬁvnalen
mit linear veranderlicher Wa ndstarke,” Doctoral Thesls,
Zurich, 1919

L=
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equations (2la) and (27) may be rewritten as

(30)  L(e) + £y

it

X8 + F(s)

(31) L(8) + £,8

A9

Boundary Condltions

On the boundarles, forces Nw, Q& and moment Mm may be
prescribed. The moment M& may be prescribed completely arbi-
trgrily on both edges. The forces N@, Q$ may be prescribed
completely arbitrarlly on one end, but 1f at the other end the
forces are also prescribed, ohly one of themléan be arbitrary,

the other one must satisfy (6), namely,
st siny + sQﬁ cosp = - F(s)

Expressed in the dependent varlables in the two alternate
palrs of coupled differential equations (12a, 13a) and (21a,
27), the shell forces and the shell moment are as follows:

Uy = W tanmm has

_ _Eh ' m -
(322) N, = I~i~:§‘(um + v = ) = =

3
D T

f w ]
L] 3h m h
a -12(1 - v2) [wm + (TT” 8 + 1) —F (3&5— - 1)wm

- 16 -
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!
Eh. [

Eh3 " ( 9
sy 0 FVg)
12(1 - v°) ‘

(32¢) ( Cn )
32¢ M = - . W - ) = e

If the forces and moment are not prescribed, dlsplacements
d w
m
Ups wm and slope -5 then should be prescribed. Instead of

prescribling U and w_ an alternate way is to prescribe the

m
quantities (um plng + w_ cosyp) and (um cosp ~ W 8inm) which
ere the dleplecements In the axial direction and In the radial
directlion respectively The latter quantity may be expressed
through redlal strain eym by dividing 1t by s cosw., Expressed
in the dependent varlable of the two alternate palrs of cou-

pled differentlal equations, these displacements and slope are

as followus:

(332) d=u siny + W COSm

(330) ey = %§~a EE?;EEE = (2ph' - v %?)s + ns’
(33¢) w =4

If the pair of coupled differentlal eqguations In g and S

(21a, 27) are used, the appropriate boundary conditions from

2
the first group are to prescribe (32a) N, = E;é-s--and {32¢)
_ EhS * 8 ,
M = - s~ (8 + v <), The appropriate boundary condi-
0 12(1 - v%) 8 ﬂ
tions from the second group are to prescribe (33b) €ym = {2hh
2
-vE2)s + 1% and (33¢) w' = o,

- 17 -
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In some instances it may bs found more convenient to pre-
scribe the radial force (P = $sinw + Q coBg) and the axlal
force (V = Q sins - N_coss) instead of N, and @ on the boun-

dary, With P and V gilven, NM and Q.“‘9 can be solved as follows:

h2
(34a) N, =-g~=F sing -V coss
1" ;
Eho " 3n' h |
Q = - W, (wﬁms + 3) mww + (38— - 1)w

(34p)

= P cogspy - V Binsg

Junction Conditions

If two sections of dlfferent shells are'juined together
without misfit and are put under loads, by the condition of

compatibility, the following conditlions should hold at the Joined

ends: I -
(um)} = (um)z 4, = dy
or
() ) = () (egud, = (ogm,
ot -
3 []

where subscripts "1" and "2" denote section "i" ang "e".

For the equilibrium of a thin ring ssction containing the
Junction (Fig. 3), and with the sccond order effects ignored,
the following condition must hold:

- 18 .
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-
=
S
i
[
-
S
Sa®

l‘g 1
(36) Pl = Pa
vy =V,

where Pl or P2 can be expressged through the given distributed
loading and the end loads (possibly including the not yet de-
termined end reactions). Considering Pl and P2 known, the last

condltion V’1 = V2 can be written as

N .
(37) (P tanyn - 3-5-275)1 = (P tany - co’;’g)e

If the second pair of the coupled differential equations

(21a, 27) are used, the appropriate junction conditions are

(eyml1 = (eynle
g t
W= v,
(38) | = (M
(M), = (M),
N %
(P taneg - m)l = (P tammn - m)a

Expressed in the dependent variables In equations (2la, 27),

they are *ﬁﬁﬁlﬁgv
PSS
Fa £
- 19 - v & S
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_ 2 |
Monh' - v By + 128" = [(2nn" - v Bs 4+ nes'
. g8 4 8 J2
01 &= 62
(38a) 5} ' E
o +v & T ED (6 +v 2
Lia(n - Vo) 50 7 Lo - By 87.1g

P 2
he8 | LS
(P tanp - goo=)y = (P tamm - wins))

it

The last two conditions in (38a) are more explicit and

simpler to gpply than those glven by Tsui.3

3. Toui, E. Y. W, "Analysis of Tapered Conical Shells" Proceed-
ings of 4th U, S. Natlonal Congress of Appiled Mechanics, p_ 813

- 20 -~




IX. SOLUTIONS TO THE DIFFERENTIAL EQUATIONS

Referring to (30) and {31), the Honneger's coupled equa-
tions for the conical shell with linearly varying thickness

subject to normal loading only are

(30) L{g) + £1 86 =2 8+ F(s)

with the adopted nctatione defined before in (29):

HH ]
h cotw [8U + (1 + 38 $)U -

it

Un
8

L(U) i

[}
f. = 3vh coty

1
e ﬁﬁ
£, = {(2 + v}h | cotm
(29)
)\2 = - K .
¥(s) - .12 E(s) {1 - v?)
Eh™ sine
The linearity of the wall thickness ls expressed by the
equation
(32) h=a_+bs

- 21 -




Recall that in (6)

8
(6) F(s) =LF 7 cosy 848 - rsN sing + Q cos$]
84 - o 5 = 8]

For uniform normzl pressure, 2 = p,.

8
F(s) :mr p cosyg 848 - EsN sing + &8Q coswj
3. " ® g = B8
1 1
(33) o
= p coSq %- - g(sy)
where
(34) (s.) = r cos SZ* sN sinw + 5Q_ cosp |
k Bl8y) = 1P cOSa g ™ BN, BT PR TUPL S 81

It follows that

| 2 2
, 12{1 - P ] i
(35) F(s) = Eig 51:_»5) |p cosa 5 - g(s;) |

and {30) and (31) may be written more explicltly as

+ 2l - ve)

2
i 8 “}
Eh® sinm [p cosa 5 - B(8y) ]

(36) L{g) + fle S

it

Ay
(37) L{S) + £,8 = A,S

The general solution to (36) and (37) consists of a par-

ticular solution and the solution to the reduced homogeneous

-V




equations by omitting the non-homogeneous term in (36}.

Particular Solution

It can be verified by direct substitutlons that the par-

12(1 - v2)
ticular solution to (30} and (31} due to the term == 5

Eh™ 8in "«

o
ﬁp cosg 5 - g(sl)§ 18

= R
° = 8p * Oy

(38)
Sp = Slp + S2p
where A
] _ rx,ls + r_xas
ip h2
(39)
8,8 + 8,8°
S. =
ip h2
with
_ - 6p{1 - v} cotm
By = 2 P
12{1 - v) + b, {3v - 1) cot®yp
(1 - v)bo cote
ap = - = E - 82
(40)

- 8 . ¢ ) N
o | bOTT =V "2 7 Eb_Tcoty 1

- 23 -




(40) contd,

and

(41)

with

(42)

R

820

81

¢

-+

2p

i

=

it

- 2
;aobo cot™m

- , 8
1 4{1 + v) + bogicotam‘(l - V) 2

[

-~ Ea cotp a
(1 - v[4(1 +v) + b =(1 - v) co‘c‘?cp} 2

v} a
h™s h
~ f-l + Bo

h°s  h°

bg(s;) (1 ~ V7

4 girm( 1 - V) + béz coty cosy (1 - v)2

12(1 - v2)

Eh2 sinm

-

b coty{l - v)

o
B Bo

L2
2a b, cot m(2v - 1)

: s 8
(3v - 1)(1 + v)b = cot®m + 12(1 - v¥) ©

2 cot®p)

8, cobm (1 - vF)(12 + b
o e ‘ ~= 8
Er(3v - 131+ v)b02 cotew + 12(1 - va)] ©

- 24 .
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Solution to the Reduced Homogeneous Equations

From (30), (31) or (36), {37) the reduced homogeneous

eguationg are

it

i

(ud) L(8) + £,8 = 1,0

Eliminating S from (43) and (44) gives

(45) LL(g} + L(fy6) + £, L(8) + (£3£, - X200 = 0

A ginilar equation is obtalned by eliminating g,

(45) LL(S) + L{£,8) + £,L(S) + (£1f, ~ AX)8 =0

Assume the following is true,

(47) o + (e + )J ML+ (cp + £ ) -0

where cq and c, are some congtants, then Equation (47) may be

rewritten as

{(47a) LL{e} + L(c2 + fl)e + (c1 + fl)L(e)

+ (cl s + 1 ot c2f1 + flil) = 0

- 25 -




J

Genzell Jeohaologyy Copploablion
Subtracting (45) from {l47a) gives
(48) (°1 + ce)L(e) + (fl - rz)L(e) + (cl + ca)fl

-+ (fl - f2)f1 + 0102 + )"1}’2 = Q0
which c¢an be satisfied if

c +c(

p=-(fy -f

1 2)
(49)

Cy Cop = - MAp

Equation (49) is equivalent to stating that c, and c, are the

roots of

2 , s
(50) e® + {f) - fo)e = A, =0

snd solving (50),

- (fl - fz) - f f
(51) Cisp ¥ 75 s ‘ (”"]‘.‘”T"“"“) + \“1)‘2 ]

Hence (45) can be written in the form of (47) and since
the operators in (47) are commutative, (45) can be split

into two gecond order equatlons as follows:




(52a)  L(8) + (cy + ;)8 =0

(52b) L{e) + (c2 + rl)e = 0

with ¢; and ¢, given by (51).
For the case of linearly varying wall thickness according

to (32), from (29) it is found
[}
(53) £1 = 3vh coty = 3vb_ coby
i ‘ [ 1 :
(54) £y = F(e + v)h + 2sh ] cotyp = (2 + v)bo cotm

and from (51)

2 2)-]%'

Cﬁ"'lz(l“v J

(55) ¢1,2 = (1 - v)b, cote + E(l - v)2bO cot

With these values of f;, f, and ¢;, ¢y, (52a),{52b) become -

1" bo ¢
hcote [Be + (1 + 38(8. 55 g - =
] O -

(56a,b)

&

L] b

% - 12(1 - Vo] | =0

2
+ (1 - 2v)p coty + T - V)b Feot

Making & change of variable

- 27 -
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a
(57) 8 = - ’E’%ts h=a/(l-t)

equations (56a,b) become

- 3 142 1 8 -
(582,0) & + (gt + )0+ (§+ 0y 0) greeoTy =

where

2 _12{1 - 2
(59) o) 0 = 2v,i[(l - V) (bo Y ) tan ?

Comparing (58a,b} to the standard form of generalized

hypergeometric equation(a):

i

g i
1l ~qa - Ll -y - '
(Ao v Doy

v +
(€9)
+("°“" “‘%””‘8 ) =1y
1t 18 found
o =1 y=0
] ]
a = - 1 Y = -2
{61) 3
- 3 9
61,0 =5 % [Ir - 0’1,2]

4, W. Magnus and F, Oberhattinger, Formules and Thecrems io?
the Functions of Mathematical Physics, Chelsea, 1954, P, 12
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expressed in Reimannfs symbol is

0
6 =P3 +1
-1
\
{62}
.
O
= td O
l-c
e
where ¥y
(63)

(64)

1

o

¢ -a-b

> = tP

> = by

satisfies the hypergeometric equation:

From (62) i1t is recognized that

L]
)

f
P

t

n
w

Solution at

Onz o

the

- 29 -

independent solutiong to (63) is

$ §
Let B and 8 stand elther for 81, B, oOF 8y, 82

t(1mt)y+fc-(a+b+1)t]y-a.by.—.—o

8

-3

..31;
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+ +
= o) =1+ Sy s 2N £ 12
+afa+1) - - -(a+n-1)p(b+1) -« - - (b+n -1) tn F - - -

n! cfe + 1) - ==f{c +n ~1)

- = (el v)y n

(65) =1+§=1 HFT

where

(66)  [al, = &8 _ata 1) - - - (a4n - 1)

It 18 noted that 1 - ¢ = ~ 2, but neither 2 or b 1s

equal to 2. The other independent solution is (5)

(66) Yo =y, logt + F; (a,b,c;t)

vwhere

¢ l-c c-2 n
Fl(a,b,c;t) = {(-1) ¢ b¥ (nl)

Eaed

(67)

_{5 (c-1)! (cn-2)! gn | }

"(a-1)(a-2) - - - (a-c + n + 1)(b-1)(b-2) - = - {(b-c +n + 1)

-

5. T. M. MacRobert, Functions of a Complex Varlable, MacMillan,
1954, P. 230,
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Solution at t =1
Making & substitution ¢t = 1 - £, (63) becomes
2
g(1 - g) ag%-+ E(a +b+1-¢c)-(a-+hb+ l)g] %%.~ aby = 0

The two independent solutions are respectively

(68) y; = Fla,b,e’s 1 - t)
]
(69) Vp = ¥y logt + F; (a,b,e 5 1 - t)
vhere
£
(70} c =a+b+1l-c=3

Solution at t = «

Put t = %~and y = 8%, It is found from (63) that W

satisfles

- 31 -
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(71)

Hence

{73)

by symmetry of a2 and b in (63},
1

Other Solution
a;m

aen . AT
g1 -8) SH o Ti1+2-v) - (ra+2-c)8 §
ag s dg

-~ afa +1 . c)¥

5 .
Chi
L

-~ b

m

yq =t Fla, 1 +a -¢, 14

~b
Vo =t F{lb, 14+ - ¢, 1L +b - aj;

From (63) it is

found that VW satisfies

wlwv~and y = E°W,

g - 1 -
A Sl v

Put ¢ =
. 1Ak
(H. + ¢+ 1 - b) g _; 3?»

t

+ f{a +1 -b)
ale - bYW = 0

Hence

’ -8 1

({5) Yl = <1-t) F‘t'ﬁ;\ C - bj; & - b -+ }, Tm":wf j
«b

(1 -t) Fle, ¢ ~8, b ~a + 1, ¢

it

(76)

H
Lo
g
l ,




The range of convergence for (65), (66) is - 1L <t < + 1;
for (68), (69) 18 0 < t < 2; for (72), (73) 18 ©o <t < - 1
and 1 < t < + «; and for (75), (76) 18 -» < t < 0 and

2<t <+ m¢(6) The overlapping solutions form analytlc contlnua-
tion to one another.

Iet the solutions to {56a) and (56b) be denoted respectively

by
(78) 8xy = €85 + Doy

whers A, B, C, D are srbitrary constants; €1y 0y &TE the two
independent solutions to (56a) and 6, 8, are the two inde-
pendent golutions to (56b). The corresponding S may he obtalned
through (43) and (52a) and (43) and (52b)

¢, 8p
(79) SI = - -;'3.‘
¢,0
_ %%
(80)  Spp = - 5=

From (32) and {57) it 18 seen that if the wall thickness
tapers off &s the sectlion moves away from the apex of the cone,

t wlll be positive and increasing. When the wall thickness

6. A. R, Forsyth, A Treatise on Differential Equations,
MacMillan, 1956, P, 218
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approaches zero, t approaches + 1, On the other hand, if the
thicknese grows as the section moves away from the apex, ¢
will be negative and decreasling. Appropriate solutions should
be used which are convergent for the range of t in the prob-
lem on hand.

Though presented in somewhat different forms, part of the
results In this sectlon could be obtazined indirectly by spe-
cilalizing Honneger's results, Reference 1s made to Honneger's

original thesls.
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Fig. 1 -
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Fig. 2
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Section 2

|
i
|

Fig. 3
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/”“(65),(66)
A

{\;é68),(69)

[ Ol///zl111111‘
Pt~ A VA

(\(72),‘ (73)

(N (75),(76)

Lot s eedsefonndimefmdinofiad ol et el bododdndndond. O 4 +/E)
frforepmfimiirmfomefoifpefefinfof ot ofpffofom et { e foefieefefofffet—f

rHAA+AA4A4+ Tndicates range
of convergence
(end points not
included).

Fig. 4 Range of Convergence

for Various Solutions.
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Fig, 5 Variation of Wall Thickness

and Values of ¢t.
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