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INITIATION OF EXPLOSIVES BY EXPLODING WIRES

V. EFFECT OF WIRE MATERIAL ON THE INITIATION
OF PETN BY EXPLODING WIRES

By Howard S. Leopold

ABSTRACT: Aluminum, gold, platinum, and tungsten wires were
investigated to determine the effect of the wire material on
the initiation of PETN by exploding wires. The wires were
exploded by a one microfarad capacitor charged to 2000 volts.
The results indicate that favorahle wire materials are thoese
into which energy is deposited at a rapid rate. They also
have low boiling points and low heats of vapor.zation, Heat
of oxidation of the wire material plavs only a minor role.
Different wire materials have different optimum lengths for
effecting detonation,
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INITIATION OF EXPLOSIVES BY EXPLODING WIRES
V. EFFECT OF WIRE MATERIAL ON THE INITIATION OF PETN
BY EXPLODING WIRES

This report is Part V of an investigation concerning the
initiation of explosives by exploding wires. The work
was performed under Task RUME-4EV00/212-1/F008-11,
Problem No. 019, Analysis of Explosive Initiation.

The results should be of interest to personnel engaged

in initiation research and design of exploding bridgewire
ordnance systems. The data and conclusions are for
information only and are not intended as ¢ basis for
action.

The identification of commercial materials implies no
criticism or endorsement of these vroducts by the Naval
Ordnance Laboratory.
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TNTRODUCTION

1. This report is the fifth in a series descrilking
experimental results ohtained from an investigation on
exploding bridgewires, Previous investiqationsl'"r3r4 have
shown that the firing circuit inductance and resistance
should be kept to practical minimums, that there is an optimrum
bridgewire diameter for effecting detonation of PETN when the
bridgewire length and circuit parameters are fixed, that there
is an optimum bridgewire length when the bridgewire diameter
and circuit parameters are fixed.

2. This phase of the investigation was concerred with
determining the effect cf the wire material on the growth of
explosion of PETN, The choice of the wire material in an EBW
will depend on both practical considerations and on the
intrinsic properties of the wire material., Practical consid-
erations would include mechanical strength, ease of attachment
and corrosion resistance, Intrinsic properties of importance
might include specific resistance, thermal coefficient of
resistivity, density, specific heat, melting point, heat of
fusion, boiling point, and heat of vaporization, The
importance of the intrinsic properties was not known,
Platinum was used to start the investigation because it was
known that platinum would meet the practical considerations,
Platinum, tungsten, and nickel-chromium alloy are mentioned
as desirable wire materials in U, S, Patent 3,040,6¢€0, which
appears to be the original patent on exploding bridgewire
initiatiors.* In this report aluminum, gold, and tungsten
wires are commred to platinum for their ability to detonate
PETN,

ELECTRICAL CIRCUITRY

A typical exploding bridgewire firing circuit used 1n
ordnance consists of a one microfarad capacitor charqed to
2000 volts, The enerqv in the caparitor is discharged into
the wire throuah a switch, The test circui+ used for this
investigation is shown in Fiqure 1. It is similar to the
previous test circuitsg descrilied in the earlier reports. The
electrical parameteras for the test circuit are:

C = 0,97 microtarad
L = 0,58 microhenry
R = 0,35 ohm
Vo = 2000 volts

* U. S. Patent 3,040,¢00 by Lawrence . Johusrton, Patented
June 26, 1962, Filed Nov, 8, 1944,
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The methods used for determining the circuit parameters are
given in Reference 1 and 2.

TEST PROCEDURE

Various lengths of the four bridgewire materials tested
were compared for their ability to detonate PETN. A 2-mil diam-
eter wire was used for each material. The four wire materials
wvere examined in a series of test shots with wire lengths
ranging from 00,0125 .to 0.400 inch. The probability of deto-
nating PETN was gradually decreasad in each series, by increas-
ing the locading density of the PETN. This approach eliminated
the necessity for changes in the electrical parameters. This
methed was used to determine the most advantageous wire material
and its optimum length., The test fixture and experimental
methods described in Reference 1, were used for observing the
growth of explosion,

Current and voltage waveforms were examined to help inter-
pret the experimental results. The voltage was corrected for
the inductive component, and the corrected vcoltage used to
calculate the derived resistance, power, and energy values,

The vigor ¢f the plasma expansion of the four bridgewire mate-
rials when fluash mounted was alsoc examined with a high spesd
sSmear camera.

EXPERIMENTAL RESULTS

An examination of Tables 1, 2, 3, and 4 shows, that based
on the ability to detonate PETN under increasingly difficult
conditions, gold is the best of the materials tested. Aluminum,
platinum, and tungsten followsd in that order. The tables
also indicate the optimum wire length for detonating PETN for
each material. These optimum lengths are as follows:

Gold - 0,075
Aluminum - 0,075
Platinum -~ 0,050
Tungasten - 0,025

They are indicated by a black dot in the figures. Various
electrical and physical attributes of the different wire mate-
rials were then examined.

Examination of the current waveforms in Figures 2, 3, 4,
and 5 show the shorter wires, to have the highest current density
at time of burst. The shorter the wire, tae more nearly contig-~
uous the resurge is with the initial current pulse. For all
four materials 0.200 inch and longer lengths give definite
current dwells. Platinum and tungsten show wider burst current
dispersions for the various length wires than zluminum or gold,

2
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Comparison of Figures 6, 7, 8, and 9 show gold to have
the highest peak voltage of the four materials, followed by
aluminum, platinum, and tungsten, The highest peak voltage
was observed with the 0.400 inch length gold wire (not plotted).
This wire had a peak voltage of approximately 6700 volts, or
over three times the original cagacitor voltage, A gold wire
length of 0,075 inch, which avpears to be the optimum length
for effecting detonation, gives a peak voltage of 3600 volts,
These voltages are indicative of the extreme voltage that the
electrical! insulation must be capable of handling using the
experimencal parameters of a one microfarad capacitor charged
to 2000 volts., Examination of the voltage waveforms in
Figures 8 and 9 show that platinum and tungsten wires give
definite vaporization plateaus, The waveforms for tungsteén
show a peculiar dip in the vaporization plateau,.

The resistance curves for aluminum and gold, Figures 10
and 11, show a fairly smooth rapid rise of the wire resistance
with time., The longer the wire, the higher the peak resistance
for the rance tested, The resistance curves for platinum and
tungsten, Figures 12 and 13, show a definite resis*ance plateau
before the peak resistance is reached. The resistance of
tungsten decreases during the first half of the vaporization
plateau, The dynamic resistance values for the four test
materials do not differ greatly for comparative lengths,

A comparison of the power curves in Figures 14, 15, 1€,
and 17 reveals that in general energy is deposited most
rapidly in gold foliowed by aluminum platinum, ard tungsten,
The peak pcwer spikes are much narrower for aluminum and gold
than for platinum and tungsten. For all four materials the
peak power per unit lenath increases with decreasing length,
See Fiqure 18. 7The highest peak power value is observed to
occur at a length which is longer than the optimum length
for effectimy detonation,

If the eiergy deposition is examined Fiqures 19, 20,
21. and 22, one observes with all four materials that enerqy
deposition is initially slightly faster with the longer wires,.
This is due to the higher initial resistance of the bridaewire,
The optimum length for each material absorhbs approximately one
joule of eneray or slightly more than 5™ of the enerqgy
originally stoired irn the capacitor. Enerqy depos:tion into
the longer wires effectivelv stops with the onset of a
detinite dwell, For all four materials, the shorter wires
recaived more enerqgy than necessary for complete varorization
at a time of burst, It wase possilble tn~ vaporize lonqger wires
of aluminum and gold than of platinum or tunasten under
comparable conditicns of diameter and electrical input,
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The resultg also confirm previous observaticons that the wire
does no: have to completely vaporize at burst to effect
detonation, F¥igures 23, 24, 25, and 26 show the energy
profiles for selected times during the normal period of
importarice., Comparison of the energy density on a volume
basis in Figure 27 shows that the shorter lengths have a
higher energy dens.iy.

The plasma exparsion in air of each of the four materials
was exanined for the 75-mil lngth. Figure 28 is a distance-
time plot of tha piasma expansion. Aluminum and gold give
the most vigorous expansions, indistinguishable in strength,
followed by »_.atinum, and then tungsten, The vigor of the
plasma expansion appearc *o be related to the excess enerqy
deposited above that required for vaporization.

The 0,200 inch length gold wire gave a different type of
growth to detonation than previously observed. Figqure 29
shows that there is a definite prolongation of the reaction
before the detonation wave isg avpparent photogramhically, The
incipient conditions necessary for formation of a detonation
wave are evidently estakiished in the veriod up to time of
burst since electrical eneragy input ceases at burst with the
fcrmation of a definite dwell period. Detonation commenced
1.35 to 1.40 microuseconds after burst approximatelv 1,€ mm
from the wire, Normally, detonacion was seen to comrence
approximatel 1,0 microsecond after burst about 1.0 mm from
the wire., ~ie iaitial reaction does not emit light of suffi-
cient intensitv to register on the film even with the use of
rraximum exposure conditions,

DYSCUSSION

The invesgtigation shows that the intrinsic properties cf
the wire material play an important role in determin.ng
whether or not detonation is effected. Russian investigators
in the mid 1950's found that certain groups of wire materials
had similar chararnteristics. Silver, gold, aluminum, and

’

P

copper wire oscillograms were found to have martsd similarities,

Iron, tungsten, molybdenum, and platinum had analogous osciilo-

grams with_different characveristics from the first group,
Webb et al’ have proposed that the wire materials can be
classified into two phenomenological categories:

Class I low boiling pvoint, low heat of riporizaticn
Cclass II high bolling point, high heat ¢’ vaporization

Aluminum and gold, which fall into Class I, were found to
effect detornation in PETN under more unfavorable conditions

4
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than platinum or tungsten, which are Class II materials. It
appears that rfor the parameter magnitudes uged, the heat
cupacity effect of the wire material is important. The use

of wire materials with low boiling vpoints and heats of vapori-
zation will result in a greater energy transfer to the exmlo-
sive, It is, however, conceivable :or special cases, that
Class II materizls might be preferable for initiators where a
higher firing energy threshold is desired.

The ability to effect detcnation under increasingly
unfavcral e conditicns appears *o depend not only on the
heat capacity effect gf the wire, but upon the rate of energvy
depositicn. Scherrer® has shown, assuming the exploding wire

is an blackbody, that . 1/4
r- )

oA

. . [} .
where T = wire temperature in K, P : electrical power
into wire 1in watts, 0 = Stefan-Boltzman constant, and
A = area of wire exploding surface,

Since the explosive decomposition has an Arrhenius dependence
upon temperature, conditions favoring a high temperature will
be more favorable for effecting detona-ion. Th=2 peak power
levels for the Class I materials (aluminum, gold) were observed
to be higher than those of the Class II materials (platinum,
tungsten) over most of the bridgewire length range tested.

The power level appears to be related to the energv needed for
vaporization since materials with a relatively high enerqgy
requirement possess a definite vaporization plateau which in
effect lowers the power input “efore bridgewire burst. The
gslight superiority of gold over aluminum is believed due to
the higher rate of energv deposition in gold even thcugh less
energy is required to vaoorize the aluminum,

1t was previously observed with mlatinum wire that there
wasg an optimum platinum bridgewire length for effecting
detonation in PETN, The aluminum, gold, and tungsten results
confirm that an optimum bridgewire length exists, The optimum
length varies with the wire material, Materials from Class II
arpear to have shorter ovtimum lc¢: vths than those from Class I,
This can be partially attributed to the heat capacity of the
wire material.

Explosions of gold and platinum ir air produce an acrosol
which consists of metallic rather than oxide particles.9
Aluminum and tungsten wires form oxides upon explosion.
However, each is the poorer material iIn its respective class
in effecting detonation in PETN. This indicates that heat
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of oxidation plays a relatively minor role, if any. Assuming
the eventval formation of Al?O . aluminum has a high heat of
oxidation anounting, for a O;O;S-inch length wire, to approxi-
mately 20% of the electrical energy deposition, However, it
has been reported that Al.O, apprarently does not exist in the
vapor state.l0 fThe oxida€idn of aluminum in the gaseous ¥hase
is assumed to occur accerding to the following reaction:l

Alig) + 1/2 2,(g) —» 2Al0 (g)

High pressures will tend to force the reaction to the right,
but high temperature will reverse the reaction. It is quite
probable the high temperature effect predominates during the
wire explosion, delaying the eventual heat of oxidation
contribution,

With gold wire, growth to detonaticn can cccur even with
cessation of the electrical energy input just after the time
of wire buret. The wire length (0.200 inch) giving this effect
fails quickly as PETN density is increased, Previously it had
been found with certain platinum wires, that a sustained
electrical input after burat was favcrable for the growth of
detonation and that wires with currant puise cessation failed
to effect detonation, This illustrates the more favorable
qualities of a Class I material. This phencmenon will be
investigated further. Experiments are 2lso continuing on the
wire material effect. Different wire materials are being
eviluated to observe if they conform to the extrapo® .tions
made from the first four materials described in this report,

The vigor of the plasma expansion in air seems to
correlate well with the ability to detonate PETN, As shown
earlier, the vigor cof the plasma expansion appears to be
relaterd to the excegs enercy deposited above that required
for vaporiration. This excess energy will go into further
heating of the vapor, shock, and kinetic energy forms resulting
in a greater energy transfer to the explosive and the envelop-
ment of a greater number of PETN crystals,

CONCLUSION

i. The existence otf an optimum wire material fc-
effecting detonation is highly dependent upon a low enercgy
requirement for complete vaporization. This appears to be
related &lso to the rate of energy deposition since materials
with relatively high energy requirement exhibit lower peak

powers.
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2, Different wire materials have different optimum
lengths for effecting detonation. Aluminum znd geld (Class I)
have longer optimum lengths than platinum and tungsten
(Class II).

3. Aluminum and gold (Class I) give more vigorcus
explosions than platinum or tungsten (Class II).

4. Heat of oxidation of the wire material appears to
play a relatively minor role in effecting detonation.
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TABLE 1

Effect of Bridgewire Length (iold, 2-mil Diameter)

on Detonation of PETN at Various Loading Densities

N Density of PETN m\nau

Bridgewire Leng+th 1 1.¢c | 1.1 1.15 1.175 1.2 1.225
(inch) D L i D L D L D L L L
0.0125% 2 G 0o 2
0.025 2 ¢ 2 0 2 o 2 0 & 4
0.050 2 0 z O 2 ) 2 ) 0 4
0.075 2 0 2 0 2 0 2 0 0 & 3
0.100 2 0 2 0 1 1 0 2
0.200 2 0 11 0 2
0.400 0o 2
2 oOne unsymmetrical growth to detonation

Detonation
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