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THE MATHEMATICAL ANALYSIS OF A STMPLE DUEL

ABSTRACT

The principles and techniques of simple Markov processes are used to
analyze & simple duel to determine the limiting state probabilities (i.e., the
probabilities of occurrence of the various possible outcomes of the duel).

The duel is one in which A fires at B at a rate of T, shots per minute starting
at time t = 0 and with & single shot kill probability of PA’ and B fires at A
at a rate of Ty shots per minute sterting at time t = & and with a single shot
kill probability of PB, and this exchange of fire continues until either A or

B, or both are killed.
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THE MATHEMATICAL ANALYSIS OF A SIMPLE DUEL

The situation to be considered is one in which two players engage in a
duel where they exchange fire, each at his own rate of fire. Let A denote the
player who fires first, and let the other player, B, react to A's initial fir-
ing with & delay time of d seconds. Thus A fires hig first shot at time t =0
seconds and B fires his first shot at time t = 8§ seconds. After their initial
shots, A and B fire continuously at ratesof fire of r, shots per minute and ry
shots per minute, respectively, Thus the time at which A fires his pth shot

(denoted t_ ,) is given by
p,A

(1) tp,A = g%-(p-l) seconds,

and the time t at which B fires his qth shot is given by

q,B
60
2 t = § + — (q-1) seconds.
(& =0 (@)

It will generally be impossible to predict with certainty the outcome of such a
duel. The best that can be done is to détermine the probsbilities of the var-
ious possible outcomes of the duel. Beyond that, it may be of interest to know
the probabilities that each of the possible outcomes has occurred after a
specified number of shoté have been exchanged. The Eomputational model to be

*
used to determine these probabilities will be in the language of Markov processes.

The duel can be said to be in one of four states at any time. These states’

are

1. A and B are both alive (neither has won the duel)

0es

2. B is dead; A is alive (A has won the duel) PROPERTY OF U.S. ARME
SITHIO BRANCHE .

3. A is dead; B is alive (B has won the duel) T4k o A€§m_¥92.421094

k, A and B are both dead.

A player must kill his opponent while remaining alive himself to win the duel.
The hth state may result when A and B exchange shots simultaneously. Any time
a shot is fired by either A or B, a transition from one state to another takes
place. (This transition may be from one state into the same state.) Thus the
dueling process may be indexed by a discrete variable (such as the number of

shots fired) rather than the continuous veriable, time. Let

Howard, "Dynamics Programming and Markov Processes" The MIT Press, 1960.
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(3) 'Sn = (Sln’ ®on’ S3n? shn)

be a L-dimensional vector whose.ith compdnent S4n is the probability that the

duel is in the ith state after n transitions. Define three transition matrices

|!511 832 813 814
_I} 821 82p 823 824
CON N
831 83 833 834
41 84p 843 844
b1y b2 by by
Ty = bz bz baa bae
b31 b32 bSS b34
bay byg baa bas
Ci1 Ciz Cis Ci1a
Ca1 Coaz Caa C24
-
C C31 Cag Cas Csa
i Car Cap Caa Casa
where ai3 is the probability that the duel undeféoes transition from state i to

state j when A alone fires & shot, biJ is the probability that the duel under-
goes transition from state i to state J when B alone ‘fires, and cij is the prob-
ability that the duel undergoes transition from state i to state J when A and

B fire simultaneous shots.

Let PA be the probability that A kills B on any given shot (i.e., the single
shot kill probability for A when firing at B), and let PB be the single shot kill
probability for B when firing at A. Then the transition matrices can be

rewritten
I-BA PA 0 0
— 0 1 0 0
TA ) 0 0 1
(5)
0 .0 0 1



1-Py 0 Pp 0
l
0
0 1
| (l-PA)(l-PB) PA(l-PB) PB(l-PA) PPy
r, - 0 1 0
0 0
| 0 0

Since the duel always starts in state 1 (with both A and B alive), the initial
state vector So will be

(6) s, = (1, 0, 0, 0),
Then Sn, the state vector after n transitions, is given by
(7) S, =5 T1 Tz ToereeedT ,

vhere each T, (=1, 2, «ee. n) is either T,, Ty, or T, depending on the order

C’
in which A and B fire during the process of dueling.

To carry this analysis further, it is necessary to know the order in which
the matrices TA’ TB’ and TC appear in equation 7. A has been designated as the
initial firer, but, after that, the order depends on §, Tps and rB. Since B
fires his first shot at time t = 6, the number of shots A can fire prior to that

(denoted k) is determined by the relation
(8) k = [x]

where the bracket denotes the greatest integer less than x, and x is determined

. by equations 1 and 2 by setting

(9) t . =t L.



This can be rewritten

6rA
(10) X=T6+l .

Thus

ér
(11) & =[z%'+ 1]‘ ,

and the first k shots of the duel are fired by A. Therefore equation 7 becomes

for n sk

So TA Tk+l Tk+2 cane Tn for n > k

Starting with T the sequence of matrices in equetion 12 will be periodic

k+1’ .
(for lasrge n). This can be shown as follows. B fires his 1% shot at ¢ = 8,
and A fires his (k+1)St shot at t =z § seconds. The time interval between B's

1% shot end A's (k+1)%% shot is

60k
(15) tk+l,A - tl,.B —'TA - § seconds.

If it can be shown that this same time interval occurs between the shot fired

by B at time tl B
b4

then the sequence will be periodic with periocd A seconds. Let the rates of fire,

which are assumed to be rational numbers,be expressed as follows:

+ ph and the shot fired by A at time t +ph, (=1, 2, «a0),
k+1,A

and rB =

shots per minute, where a, b, c, and d eare all

o|e
a0

Ta
integers. Let

~(1b) z = L.C.M (b,d),

i.e., the least common multiple of b and d. Then % and g- are both integers, and

hence

Z
er -' &(B-)

A ®



and Zry = c(g) are also integers.

604
ZI’AI'B

Let A = L.C.M. (er, er), and \ = seconds.

T r
Now in A seconds A will fire 7\(6-%) shots and B will fire )\(5%) shots. But

T T
7‘(3’3) =-z'x"A-£ and K(B-g) =E%:

These are both integers since A is the least common multiple of 2r, and Zrge

Now let M be the number of the shot that A would fire &t time ph seconds sfter

Bt

his (k+1)°" shot, and let N_be the mumber of the shot which B would fire at
time wA seconds after his 1 K shot. Then

A
B
and Nu = l+u)\(6—0) 2 u=l, 2’ sasnen .

The times at which these firings teke place are given by equations 1 and 2

6 Ta 6
tM)A=;z-(k+ph(€6)-;%{- + uh

The difference between these two times is

60k

- t B e—— = - -t »
tMu,A B T, Yea1,8 - YB

Therefore the sequence is periodic with period




(16) A ='§2A¥ seconds
A”B

where A = L.C.M. (er, er)

r T
During each period A will fire X(E%) shots and B will fire A(Eg) shots. That is,
T, A
A will fire l(Eaj = Es; shots, and

r
B will fire )\(5%) -5 shots.

The total number of shots, M, fired in a cycle will be given by

(17) M:-ﬁ-(;—A +;;—)

This establishes the maximum number of matrices in each cycle. If there are no

simultaneous firings, the number of matrices will be M; EﬁL- of the matrices
B

TA and E%— of the matrices TB. If there is a simulteneous firing in the cycle,
A ) .
there will be (-AL-- 1) of the matrices T,, (-9- - 1) of the matrices T_,
er A 2ry B
and one of the matrices T, in the cycle, for a total of (M-1) matrices.

C
Equation 12 can now be rewritten to express the state vector after n tren-
sition cycles (instead of after n transitions).

' k
(18) S =8 =81

mM+k T T Qol.oQT

m
A ( k+1 “k+2 k+M)

Because matrix multiplication is generally not commutative, it is not sufficient to
~ know only how many of the M (or M-1) matrices in the cycle are of each type

(TA, T, or TC), but it must be determined whether Tk+3 is T,, Tp or T, for each

B. In order to determine this firing order, the following procedure is probably

the most simple: During the first of the m cycles, A fires his (k+1)St, (k+2)nd,

A th st ,nd A th
cvee (kt;5=)  shots, end B fires his 17, 27, oou (2= shots. The
ZI’B : ZI‘A .

10



time at which each of these firings takes place can be determined from equations
1 and 2, and then the firings in the cycle can be ordered by these times. After
this has been done, let T denote the produbﬁ of the M (or M-1) metrices, i.e.,

(19) T=T7 .17 eees T - (or T

k+l “k+2 kM k+M-l) :

Define a new vector V as follows:

It is easily shown by mathematical induction that if

1-p, P, 0 0
r, - 1 0 0
0 0 1 0 ,
0 0
k k-1 i
I(l-PA) Py, (l-PA) 0 0
X 0 1 0 0
T, =
then 0 0 1 ofl .
0 0 0
Thus . o Kol ; ’
(0  v=51,"=((1-p)", p,,5 (1)} 0, 0)
or V={(v, vz, 0, 0)
K
where v, = (l-PA)
k-1 s
and vz = By B (1-p,)

In this new notation, equation 18 becomes



(21) 82 = V" = (s], s}, oL, s))

It is of interest to determine expréssions'fbr the s i=1,2,3,4) and -

' (
im ’
to determine

lim gr

(22) S = (S); S, Bg, 54 ) = e m

which is the limit of the vector S& as m-x, The 10 component of S is the
probability that the duel will terminate in the ith state, and the ith com-
ponent of Sé is the probability that +the duel will be in the ith state after

m transition cycles.

First note that the matrix T is of the form -

ty tq ty ty
(23) T= 9
0 1 0
9] O 1

since it is the product of matrices of this form. The vector Sé wlll be rewritten
as the sum of two vectors, one of which is independent of m, and the other of
which has components which approach zero as m increases. The z-transform

analysis as described in Reference 1 will be used. Briefly, the z-transform

can be described as follows:

) [=~]
For a sequence {fn} for which the sum I fnzn is finite for some value
n=_0

or range of values of z, this sum is called the z-transform of fn and is denoted
F(z). Among its properties are the following five which will be applied to the

analysis of the duel.

Property 1. z-Transform of s constant sequence.

0, 1, 2, evess , then

If f =c forn
n

(o] o
F(z) = £ c2x=c 3§ 2% = TEE
n=0 n=0 -

12



Property 2. z-Transform of a constant multiple of a sequence., If

g, =cf forn=0,1,2, ...., and F(z) and G(z) are the z-trans-

forms of f end g respectively, then

[+ v [« -1
G(z) = © ofzl=c T fz°=cF(z)
n n
n=o n=0

Property 3. z-transform of a geometric sequence., If fn = a® for

n=90,1, 2, «e.. , then

F(z) = & (az)n =
n=0

l-az

Property 4. Recurrence relation of z-trensforms. If F(z) is the z-

transform of f end G(z) is the z-transfomm of £ then

+17

- z'l( T szj . fo) = 27 (F(z) - £)

Property 5. z-transform of a sum. If fn =g, * hn’ forn=0, 1, 2,
veee , and F(z), G(z) and H(z) are the z-transforms of f,g,h
respectively, then

n

[e<] [ar]
F(z) = ¢ ¢ 2% = % (g +nh )zn
n=0 o n=0 o n
0 [>-]
= T gnzn + ¥ hz'-= G(z) + H(z)
n=0 n=0 o

The sequences of state probabilities s " in equetion 21 (i = 1, 2, 3, b; m = 0,

t
i
1, 2, +... ®) satisfy the requirement for being amensble to z-transform

analysis since they converge to limiting probabilities. The z-transform of a

- matrix or vector will simply mean the z-transform of each component of the matrix

or vector.

Equation 21 can be rewritten

13



m+l
for equation 21 says

(24) s! = S& T wherem =0, 1, ...., and Sé =V

S{ =VI =58 T
S84 =VI®=84 T
S5 =VT3=35

Teking z-transforms of both members of equation 24, the left hand member is

trensformed to

2=t (F(z) - V] by property 4 of the z-transform, where F(z) is the
z-transform of Sé. The right hend member of equation 24 is transformed to
F(z)T by property 2 of the z-transform. Thus

(25) 2L (F(z) - v) - F(2)T .
Solving for F(z),

(26)  F(z) = V(I-z1)"*

where .
1 0 0 0
1=f1° Y 9 O the mutiplicative identity matrix.
0 0 1 0
0 0 0 1
The matrix {I-zT) is given by
1-zty -2ty -2tg -2ty
0 l.2 0 6]
(27) (I-2T) <fl © 0 1-z 0
0 0 0 l-z

using T as given in equation 23. The inverse of (I-zT) is given by

1k



I 1 2t Zta zte
1-2t1 Zl-z”l-z‘t; j ‘ (l-Z)_(l—ZtI) (l-Z)(l—Zti)
1 .
~{28) (1.z1)"t o o 0 L 0
l-z
1
0 0 0 1z

Each element of (I-zT)"l can be written in the form

g
i- Zt1

TQE + for some o and P and resulting metrix written as the sum

of two matrices, as follows:

o ta ta g L te -t -ty
1t; I-t; I-t 1-t; 1-t; 1-t;
(29)(I—ZT)—1 - llz 0 1 0 0 + - i . 0 0 0 0
- 0 1 0 “nZo
0 0 0 1 o o 0 0
Substituting into equation 26,
o tz ta t4 l —te -tg —t4
T-t; 1-t; 1-%; =, It I-t
(30)F(2) = ¥ ILE 0 1 0 oq . I‘%‘E 0 0 0 0
- 0 0 0 e 0
0 0 0 1 0 0
s —
or
-1 (o0, hta Nts Vm) x Wtz mnts _Xﬂ‘i)
(31)F(2) = 15 (o, T8y V20 TRy Tty ) T 162 ('Vi’ T-t,” I-t,’ 1-%,

Now, taking the inverse z.transforms,

e Vits nts XLE&.) ‘n( nts -vits :ELE&)
(32)8) (o, Tt P Ve T Toa ) T\ IRED TR on

Thus the probabilities that the duel is in each of the four states after m tran-

sition cycles and at the end of the duel are as follows:

15




Teble 1. m-Cycle and Limiting Probabilities:

Probebility
State Description - After m Cycles At End of Duel
1 _ Neither A nor B wins v;t;m 0
. ' 1t _+m nt
2 A wins : vy + iffﬁ (1-ty) i%%f-+ Vs
. vy tg 4 vits
3 B wins T§€% (l tl) -t
b A & B Kill Each Other Nts (g M) nts
1%, T-ts

The usefulness of this method depends on how easy it is to determine wvector
V and matrix T from the initial duel conditions. If A fires many rcounds before
B.fires his first, then the determination of V may become tedious. If the period
A of the sequence of firers is long, it may consist of many transition matrices
and the computation of T may be difficult. Indeed, in the unusual case where
either Ty OF Tp is irrational, the sequence of firers is not periodic, and the
method fails. However, in most cases of interest, both V and T will be fairly

easy to compute, and therefore the method will be useful.
Three sample duels will be used to illustrate the method.

In the first, let P, = .3, PB = .4, 6§ =15 seconds, and v, = r_ = 2
shots per minute. Then z = L.C.M. (1,1) = 1. Also

b = L.C.M. (zr,, er) = L.C.M., (2, 2) =2

h = EOAT = 30 seconds.
A
L. 1 shot per cycle by A
ZI
B
L . 1 shot per cycle by B
zr
A
T .3 0 0
| o] 0 0
TA =
0 0 1 0
0] 0 -0 1

16



.6 0 A0
TB N 0 1 0 0
0 0 1 0
0 0 0 1
024‘2 018 028 012
0
TC - 1 0 0
0 0
0 0 0 1
dr
— A —_
k = [_36- + l] =1

Therefore A fires one shot prior to the beginning of the first cycle, and the
cycle consists of 2 shots - one by B followed by one by A. Thus

d2 a8 .

b 0 W4 0 7 .3 0 © Ww o
0

T - TBTA _ 1 0O O° 1 0 of_fo 1 0 0
0 0 1 O 0 1 O 0 1 0
0 0 o 1 0o o 1 o) 0 1

From equation 20

v = (1-p)" = () =7

ERCEAS
Vz =P z l-P T = 03
A 1=0 A
and ty = b2
ta = 018
ta = -)4'0

t4=0

The following table, in the form of and using the results in Table 1, gives the

results of this duel.

17



Probability

State Description ~ After m Cycles At End of Duel
1 Neither A nor B wins (.7)(.52)" 0
2 A wins .3+ .2i72h (1-.42") 5172k
3 B wins 8276 (1-.42™) 48276
Y A & B Kill Eech Other -0 0]

The limiting probabilities from the above table can be verified by the following
simple analysis which applies in this example where the duelers simply alternate
fire, with A firing first.

Iet P be the probability that A wins the duel on his ﬁth shot. Then

n,A
Pra=Fa
P2,A = (l-PA) (l-PB) Py
2 2
P3,A = (1-3A) (l-PB) (l-PA) (l-PB) P, = (l-PA) (l-PB) Py
 ¢1 o yn-1 n-1
Pn,A = (1-p,) (l-PB) Pye

Then, if Ty denotes the probability that A wins the duel,

=~

Tp = E Pn,A

-]

n-1 n-1
=P & (1-PA) (l-PB)
n=1 :
Py

= I-(1-P, ) (I-F;)

- -3 _
In the example, T, = TG - 51724

Similarly let P.m B be the probability that B wins the duel on his mth shot. Then
! H
P),p = (1-F,) Py
2
(1-PA)(1-PB)(1-PA) Py = (1-PA) (1-Pé) Py

= (l-PA)(l-PB)(l-EA)(l-PB)(l-BA) Py = (l-PA)3 (1-PB)2 Py

Fon
Py 5

18



L
3

_ m m-1
Pm’B = (l-PA) (l-PB) Py .

Now the probability that B wins, denoted .

B is given by

o«

n,= ¥ P
=1 m,B

_ ) ) m-1
Py (1 PA) mfi (1-P (1 PB)

Py (l-PA)

1-(1-3A)(1-PB)

In the exsmple T, = %:%%%f%%?T = L8276

P P.(1-p,)
Since W, + M_ = A B A

L TR el 0 -0y B T E)

P, + PB(l-PA)
- I-(I-P)(I-F

= 1 s

the duel cannot possibly terminate in either state 1 or state L,

As a second example consider the following somewhat more complex duel
situation vhich does not lend itself to the simple analysis used as a check

in the first example.

Py = .2 Py = .8 8 = 30 seconds
T, = 5 shots per minute rp = 2 shots per minute
Here
.8 .2 0 0
0 0
TA - 0 1
0 1 0
0 0 0 1

19



2 0 .8 0
_ 10 0
B 0 1 0
0 0 1
.16 Ob .6U .16
1
TC=
o] 0
e, Jfews . ]
= 5o~ =% =

N
]

= L.CeM. (1,1) =1

A = L.C.M. (er, er) = L.C.M. (5,2) = 10

A= 60Ar = 628 = 60 seconds.
2x,Tp
A will fire A _1 = 5 shots
2r. 2
B
B will fire <2 = 22 _ 5 hots
zr, 5

Thus the period is 60 seconds long. During that time A will fire 5 shots and B

‘will fire 2 shots. In particular, B will fire his 1°° and 2°¢ shots, while A

hth, Sth, 6th 7th ,

fires his Y and Bth shots. The following table gives the times

at which each of these firings tekes place; (using equations 1 and 2).

Shot - Times to Fire
Number A B.
1 30
2 60
3
h 36
5 48 .
6 60
[4 T2
8 84

20



Ve

Thus the firing order for the cycle is
B (at 30 seconds)
A (at 36 seconds)
A (at 48 seconds)
A & B simultanecusly {at 60 seconds)
A (at T2 seconds)
A (at 84 seconds)
S0 '
T = TB TA TA TC TA TA S

Carrying out this multiplication of matrices,

.0131072 .0844928 .8819200 .0204800

e o - . 1 0 o
0 0 1 0

0 0 - 0 1
From equation 20,

vy = .8 = ,512°
2 (1 + .8+ .64) = 488

Vo
ahd from the matrix T above

ty = 0131072

t, = 0844928

ty = .8819200

t, = .0204800

The following table~gives the probabilities which describe the state of the duel
after m c¢ycles and at the end of the duel.

. _ Probabilities
State Description After m Cycles At End of Duel
1 Neither A nor B wins (.512)(.0131072)" 0
2 A wins 488 + ,0b3835(1-.0131072") .53183
3 B wins L5754 (1-.0131072") - . 4575h
4 A & B kill each other .01063(1-.0131072") .01063




In the first two examples the rates of fire have been integers so that
z=l. In the last example this will not be the case. Let ‘

1 2 )
T3 and ry = 3 shots per minute
and : 8 = 10 seconds and PA = ,2 and PB = .1
Then z = L,C.M. (2,3) =6,
A = L,C,M, (z;A, er) = L.C.M, (3,4) =122
- o 360 seconds per cycle.
2T, Th

= L shots.

U1E

In each cycle A fires‘—é— = %2 = 3 shots and B fires L .
2ry ZTy

Prior to the first cycle A fires

[GrA ] [(10)(%) ] :
k=5-o—+l =—-66-—+l = 1 shot.

In the first cycle, B's 4 shots (his 1st, 2nd, 3rd, and 4th) are fired at times
10,100, 190, 280 seconds; A's 3 shots (his 2nd, 3rd and L4th) are fired at times
120, 2h0 and 360 seconds. Thus the sequence of firers in each cycle is

BBABABA,
The transition matrices are
.8 W2 0 |
T, - 0 1 0 0
0 0 1
0 0 0 1
.9 0 .1 0
, - 0 1 0
and 0 0 0
0 0 0 1
Thus «3359232 3626208 «3014560 0
0 1 0 0
T = Ty TB T, Ty Ty TB_TA = 0 0 1 0
0 0 0 1



1

4

From equation 20

v, =.8

Vg = .2

end from the above matrix,

t) = .3359232
ty = .3626208
t; = .3014560
ta =0

The following table summarizes the results of this duel.

Probability
State Description After m Cycles At End of Duel
1 Neither A nor B Wins (.8)(.3359232)" 0
2 A Wins .2 + 4368420 (1-.3359232") - 6368k
3 B Wins .3631580 (1-.3359232") .363158
b A & B Kill Each Other

zﬁa522124zn.1,<f2 *éEZL4rv"51z_—a~

ARTHUR D. GROVES
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