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THE MATHEMATICAL ANALYSIS OF A SIMPLE DUEL 

ABSTRACT 

The principles and techniques of simple Markov processes are used to 

analyze a simple duel to determine the limiting state probabilities (i.e., the 

probabilities of occurrence of the various possible outcomes of the duel). 

The duel is one in which A fires at B at a. rate of r. shots per minute starting 

at time t = 0 and with a single shot kill probability of P., and B fires at A 

at a rate of r_ shots per minute starting at time t = 6 and with a single shot 

kill probability of PB, and this exchange of fire continues until either A or 

B, or both are killed. 



intentionally Left Biank. 



THE MATHEMATICAL ANALYSIS OF A SIMPLE DUEL 

The situation to be considered is one in which two players engage in a. 

duel where they exchange fire, each at his own rate of fire. Let A denote the 

player who fires first, and let the other player, B, react to A*s initial fir- 

ing with a delay time of 6 seconds. Thus A fires his first shot at time t = 0 

seconds and B fires his first shot at time t = 5 seconds. After their initial 

shots, A and B fire continuously at rates of fire of r. shots per minute and r 
th shots per minute, respectively. Thus the time at which A fires his p  shot 

(denoted t .) is given by 
p,.A 

(1) t  . = — (p-l)  seconds, * > p,A  fA 

and the time t _ at which B fires his q  shot is given "by q,B 

(2) t _, = 6 + — (q-l) seconds. * ' q,B      r£ 

It will generally he impossible to predict with certainty the outcome of such a. 

duel. The best that can be done is to determine the probabilities of the var- 

ious possible outcomes of the duel.  Beyond that, it may be of interest to know 

the probabilities that each of the possible outcomes has occurred after a 

specified number of shots have been exchanged. The computational model to be 

used to determine these probabilities will be in the language of Markov processes. 

The duel ca.n be said to be in one of four states at any time. These states 

1. A and B are both alive (neither has won the duel) 

are 

2. B is dead; A is alive (A has won the duel)   PROPERTY OF U.S. iffiHL 
SililFO BRANCH 

3. A is dead; B is alive (B has won the duel)   K^APS^JSJ» 2100-') 

k,    A  and B are both dead. 

A player must kill his opponent while remaining alive himself to win the duel. 

The k state may result when A a.nd B exchange shots simultaneously. Any time 

a shot is fired by either A or B, a. transition from one state to another takes 

pla.ce. (This transition may be from one state into the same state.) Thus the 

dueling process may be indexed by a. discrete variable (such as the number of 

shots fired) rather than the continuous variable, time. Let 

*        it Howard,  Dynamics Programming and Markov Processes" The MIT Press, i960. 



(5) n (sln' s2n' s3n> Bkr) 

+Vi 

be a U-dimensional vector whose i  component s, is the probability that the 
+1*1 

duel is in the i  state after n transitions. Define three transition matrices 

00 

au »ia al3 al4 

T = &21 

a3% 

8 22 

^3 2 

823 

a33 

a24 

a34 

a*i a42 a 4,3 a44 

bll t>12 bl3 bi* 

TB = 
^21 b22 

b3 3 

b23 

^3 3 

b24 

b34 

b41 t»4a b43 *>44 

Cll Cl2 Cl3 Ci4 

Tc = C31 

C2S 

C3 2 

C23 

C33 

C24 

c34 

C41 c4 3 C43 C44 

where a.. is the probability that the duel undergoes transition from state i to 

state j when A alone fires a shot, b  is the probability that the duel under- 

goes transition from state i to state j when B alone fires, and c.. is the prob- 

ability that the duel undergoes transition from state i to state j when A and 

B fire simultaneous shots. 

Let P» be the probability that A kills B on any given shot (i.e., the single 

shot kill probability for A when firing at B), and let P^ be the single shot kill 

probability for B when firing at A. Then the transition matrices can be 

rewritten 

TA = 

(5) 

l-p„ 

0 1 0 

0 0 1 

0 . 0 0 

0 

0 

1 



1-p. B B 

T. B 
0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

T = c 

(1-PA)(1-PB) 

0 

0 

0 

V1-^ 
1 

0 

0 

PB<^PA> 

0 

1 

0 

p p 
ArB 

0 

0 

1 

Since the duel always starts in state 1 (with both A and B alive), the initial 

state vector S will be 
o 

(6) so = (1, 0, 0, 0). 

Then S , the state vector after n transitions, is given by 

(7) Sn = S0 T, T3 T3. n' 

where each T , {ü = 1,  2, .... n) is either T., TR, or T_, depending on the order 

in which A and B fire during the process of dueling. 

To carry this analysis further, it is necessary to know the order in which 

the matrices T., T , and Tn appear in equation 7« A has been designated as the 

initial firer, but, after that, the order depends on 6, r., and r . Since B 
i\ B 

fires his first shot at time t = 6, the number of shots A can fire prior to that 

(denoted k) is determined by the relation 

(8) k = [x] 

where the bracket denotes the greatest integer less than x, and x is determined 

by equations 1 and 2 by setting 

(9)     V ■ *1,B- 



This can be rewritten 

(10)    x = -^+l 

Thus 

ft..]. (11)    k = 

and the first k shots of the duel are fired by A. Therefore equation 7 becomes 

S TA
n for n * k o A 

S T.  T, in T, ^ T  for n > k 
o A k+1 k+2     n 

Starting with T  , the sequence of matrices in equation 12 will be periodic 
st 

(for large n). This can be shown as follows. B fires his 1  shot at t = 6, 
st 

and A fires his (k+l)  shot at t s 6 seconds. The time interval between B's 

1  shot and A*s (k+l)  shot is 

(15)    Vl,A " VB 
=^_ 6 SeCOndS* 

If it can be shown that this same time interval occurs between the shot fired 

by B at time t _ + \i.\  and the shot fired by A at time t,   . + u-X, (n= 1, 2, ...) 

then the sequence will be periodic with period X seconds. Let the rates of fire, 

which are assumed to be rational numbers,be expressed as follows: 

8 C 
r. = T-  and rB = -r shots per minute, where a, b, c, and d are all 

integers. Let 

(1Ü)    z = L.C.M (b,d), 

Z      It 
i.e., the least common multiple of b and d. Then r- and -r are both integers, and 

hence 

2rA = a® 

8 



. V 

I? 

and    zr^ = c(—) are also integers. 
a u 

Let A = L.C.Mo (zr., zr ), and X =      seconds. 
A       a zrArB 

Wow 
r. r 

in \  seconds A will fire UTTT)    shots and B will fire ^(T^T) shots. But 

*($ -&  ^ W ■£ 

These are both integers since A is the least common multiple of zr. and zr_. 

Now let M be the number of the shot that A would fire at time uX seconds after 

his (k+l) J  shot, and let N be the number of the shot which B would fire at 
£t time yX seconds after his 1  shot. Then 

(15)    M^ = k+l+,x(^) 

and    N = 1+»*Q)    ,     H=l, 2, 

The times at which these firings take place are given by equations 1 and 2 

60 /.    , /rA\\  60k    , 

\j,> B 

The difference between these two times is 

+     +     6°k  c, _ +      + 
\. ,A " XU ,B ~  r7~ " ° " Vl,A " \,B 

Therefore the sequence is periodic with period 



(l6)    \  =  -—   seconds 
2rArB 

where   A = L.C.M. (zr., zr ) 

•rAN , .   ,„.„„.   ,/rBi During each period A will fire ^(T?T) shots and B will fire ^(T?T) shots. That is, 

A will fire ^(2^7) = —— shots, and 
B 

r 
B will fire \(rj) = — shots. ^60'  zr. 

The total number of shots, M, fired in a cycle will be given by 

This establishes the maximum number of matrices in each cycle. If there are no 

simultaneous firings, the number of matrices will be M;   of the matrices 

A Zrß 

Tfl and   of the matrices T .  If there is a simultaneous firing in the cycle, 

there will be i-^~ - ±\    of the matrices TA, l-^-  - l) of the matrices Tß, 

and one of the matrices T in the cycle, for a total of (M-l) matrices. 
V 

Equation 12 can now be rewritten to express the state vector after m tran- 

sition cycles (instead of after n transitions). 

(18)    S    =S*=STk(T   T    T )m KXOJ mM+k   m   o A uk+l k+2      \+MJ 

Because matrix multiplication is generally not commutative, it is not sufficient to 

know only how many of the M (or M-l) matrices in the cycle are of each type 

(T., T or T ), but it must be determined whether T. is T., T or T for each 

0. In order to determine this firing order, the following procedure is probably 

the most simple: During the first of the m cycles, A fires his (k+l)  , (k+2)  , 

th st  nd       A  th 
.... (k+-■■_,■ -)   shots, and B fires his 1 ,2 , .... (r^-)   shots. The 

10 



time at which each of these firings takes place can be determined from equations 

1 and 2, and then the firings in the cycle can be ordered by these times. After 

this has been done, let T denote the product of the,M (or M-l) matrices, i.e., 

(19)    T = Tk+1 Tk+2 .... Tk+M (or -^_ ) . 

Define a new vector V as follows: 

V = S T. o A 

It is easily shown by mathematical induction that if 

then 

T, 

1-P. 

T„ 

0 1 0 0 

0 0 1 0 

0 0 0 1 

Ci-p/ 
k-1 

P..Z A1-0 (1- ■*A> 

1        0 

0 1 0 

0 0 1 

0 0 0 

Thus k-1 
(20)    V.SoTA

k=((l-p/, P^(l-P/0,0) 

or v = K, v3, o, o) 

where 

and 

Vi = 

Va = 

(i-rA>* 

k-1        . 
PAiio ^"V 

In this new notation, equation 18 becomes 

11 



(21)   S» = VT01 = (■» , s» , a» , s» ) 
m       v Ira' 2m' 3m' km' 

It is of interest to determine expressions for the s! , (i - 1, 2,  3, *0 and 

to determine 

(22) S -   (s», S3, S3, S4) a 
lim 

m 

which is the limit of the vector S' as m 
m 

,th 
The i  component of S is the 

probability that the duel will terminate in the i  state, and the i  com- 

ponent of S' is the probability that the duel will be in the i  state after 

m transition cycles. 

First note that the matrix T is of the form 

(23) T = 

tj ta t3 

0 l 0 

0 0 1 

0 0 0 

o 

0 

1 

since it is the product of matrices of this form. The vector S' will be rewritten 
m 

as the sura of two vectors, one of which is independent of m, and the other of 

which has components which approach zero a,s m increases. The z-transfonn 

analysis as described in Reference 1 will be used. Briefly, the z-transform 

can be described as follows: 
<P 

For a. sequence ff \ for which the sum E f z  is finite for some value 
n=0 

or range of values of z, this sum is called the z-transform of f and is denoted 

F(z). Among its properties are the following five which will be applied to the 

analysis of the duel. 

Property 1. z-Transform of a constant sequence. 

If f - c for n = 0, 1, 2, n t    t    t then 

F(z) = E  C2n = c S zn = ri- 
n=0        n=0    i-z 

12 



Property 2.     z-Transforro of a constant multiple of a sequence.     If 

g„ = cf    for n = 0,  1. 2,   ..... and F(z) and G(z) are the z-trans- n n r    /    * i 
forms of f    and g    respectively,  then 

CO CD.    ■ 

G(z)  =      E      cf z11 = c    £    f zn = cff(z) 
n n v   ' n=o n=o 

Property 3-     z-transform of a. geometric sequence.    If f    = a    for 

n = 0,   1,  2,   ....   ,  then 

P(z)  =    E    (az)n = -ij 
n=0 

Property k.    Recurrence relation of z-transforms.     If F(z) is the z- 

transform of f    and G(z)  is the z-transform of f    n,  then n v   ' n+1' 

G(z)= E      f    ,zn =    2    f.zJ-1 - z"1    2   f.z"3 

n=0      n+1 j=l    J Jl    J 

Property 5>     z-transform of a  sum.     If f    = g    + h  ,   for n = 0,   1,  2, 

....   ,  and P(z).  G(z) and H(z) are the  z-transforms of f  ,  g  ,  h 
' n' °n  n 

respectively, then 

CD CO 

F(z) = E fnz
n - E (gn + hjz

11 

n=0      n=0 

CO CO 

= E gzn+ E hzn= G(z) + H(z) n        n 
n=0      n=0 

The sequences of state probabilities s? in equation 21 (i = 1, 2,  3,   k;  m = 0, 

1, 2, .... °°) satisfy the requirement for being amenable to z-transform 

analysis since they converge to limiting probabilities. The z-transform of a 

matrix or vector ■will simply mean the z-transform of each component of the matrix 

or vector. 

Equation 21 can be rewritten 

13 



for equation 21 says 

S»  = S* T where m = 0. 1, ..... and S1 = V 
m+1   m ' '    '    o 

Si = 

s^ - 
s, = 

VT = Si T 

YI?= S{ T 

VT3= SJ T 

etc. 

Taking z-transforms of "both members of equation 2k,  the left hand member is 

transformed to 

z~ (F(z) - V") by property k  of the z-transform, where F(z) is the 

z-transform of S'.  The right hand member of equation 2k  is transformed to 

F(z)T by property 2 of the z-transform. Thus 

(25)    z_1 (F(Z) - v) = F(z)T . 

Solving for F(z), 

(26) F(z) - VI I- zT)  " 

where 

1 0 0 0 

I - 0 1 0 0 

0 0 1 0 

0 0 0 1 

, the multiplicative identity matrix. 

The matrix (l-zT) is given by 

1-Ztj -zt2 -zt3 -zt4 

0 1-z 0 0 

0 0 1-z 0 

0 0 0 1-z 

(27)    (1-zT) 

using T as given in equation 23. The inverse of (l-zT) is given by 

Ik 



1 ztÄ zt3 zt4 

1-Zt, U-z)(l-ztJ - (1- zKl-zti) (l-zHi-zt,J 

0 
1' 

1-z 
0 0 

0 0 
1 

1-z 
0 

0 0 0 
1 

1-z           ] 

(28)    (1-zT)-1 = 

Each element of (i-zT)" can be written in the form 

ex 9 
_— + —° ....    for some a and S and resulting matrix written as the sum 
1-z  1-zt, r ^ 

of two matrices, as follows: 

(29)(l-zT)-1 = -lj 

rfr 
0 

1 

0 

t4 
1-t, 

0 

0 

1 

l-t,Z 

1 T^: i-t. 
-t4 

1-t, 

0 0 0 0 

0 0 0 0 

0 0 0 0 

Substituting into equation 26, 

(50)F(z)  = V 

or 

w 
1 -tl 1 -t. 1-t, 

1 0 1 0 0 
1-z 0 0 1 0 

0 0 0 1 

1-tiZ 

1-t, 

0 

0 

0 

-tp -t4 

— 

1-t, 1-t, 

0 0 

0 0 

0 0 

i»>«»> - nr (°- i£♦ *• i£> fifr)+ üb (*• T&< TÄ» T&) 

Now,  taking the inverse z-transforms, 

K0 J m \ >   1-t,       Vs'   1-t,   '   1-t,  /       H^1'     1-t,'   1-t,   '     1-t,/ 

Thus the probabilities that the duel is in each of the four states after m tran- 

sition cycles and at the end of the duel are as follows: 

15 



State 

1 

2 

3 

k 

Table 1. m-Cycle and Limiting Probabilities 

 Probability- 
Description 

Neither A nor B wins 

A wins 

B wins 

A & B Kill Each Other 

After m Cycles 

v, ♦ ££ (l-t?) 

g£ (l-t?) 

Sit- d-* 

At End of Duel 

0 

^1*4 
l-t. 

The usefulness of this method depends on how easy it is to determine vector 

V and matrix T from the initial duel conditions. If A fires many rounds before 

B fires his first, then the determination of V may become tedious. If the period 

A of the sequence of firers is long, it may consist of many transition matrices 

and the computation of T may be difficult.  Indeed, in the unusual case where 

either r. or r._ is irrational, the sequence of firers is not periodic, and the 

method fails. However, in most cases of interest, both V and T will be fairly 

easy to compute, and therefore the method will be useful. 

Three sample duels will be used to illustrate the method. 

15 seconds, and r. = r = 2 In the first, let PA = ,3, PB = .h,   6 B 
shots per minute. Then z = L.C.M. (l,l) 

A = L.C.M. (zrA, zrß) = L.C.M. (2, 2) 

1.  Also 

2 

X = 60 A 
2rArB 

■ 30 seconds. 

—— = 1 shot per cycle by A zr B 

  = 1 shot per cycle by B 

i. 

T  = 

• 7 .3 0 

0 1 0 

0 0 1 

0 0 0 

16 



.6 0 .k 0 

TB = 
0 

0 

1 

0 

0 

1 

0 

0 

0 0 0 1 

.1+2 .18 .28 .12 

Tc = 
0 

0 

1 

0 

0 

1 

0 

0 

0 0 0 1 

k = BH = 1 
Therefore A  fires one shot prior to the "beginning of the first cycle, and the 

cycle consist ,s of 2 shots • . one by B followed by one by A. Thus 

.6  o .k 0 .7  .3  0  0 .1+2 .18 .ho 0 

T = T T = 
B A 

0   10 

0   0   1 

0 

0 

0    10  0 

0    0  10 
= 

0 

0 

1 

0 

0 

1 

0 

0 

0   0   0 1. 0    0  0  1 0 0 0 1 

From equation 20 

v.i = (l-PA)
k = (.7)1 = .7 

k-1 
T2 = PA s (I-PA)

1
 - .3 

i=0 

and    ta = .1*2 

t3 = .18 

t3 = .1+0 

t4 = 0 

The following table, in the form of and using the results in Table 1, gives the 

results of this duel. 

17 



Description 
Probability- 

State After m Cycles At End of Duel 

1 Neither A nor B wins (.7)(.^)ra 0 

2 A wins .3 + .2172U (i-.l+2m) .5172^ 

3 B wins ,1*8276 (l-.U2m) .U8276 

k A & B Kill Each Other 0 0 

The limiting probabilities from the above table can be verified by the following 

simple analysis which applies in this example where the duelers simply alternate 

fire, with A firing first. 

Let P . be the probability that A wins the duel on his n  shot. Then 
II * A 

V ■ PA 
P2,A = ^-PA) (1J,B> PA 

P
3,A = ^ <1J*J   ^"PA) ^V PA = ^-PA>2 ^-PB)2 PA 

Pn,A - ^V^ CI-FB)"1 PA- 

Then, if n, denotes the probability that A wins the duel, 

\=    =  Pn,A 
n=l   ' 

n=l 

PA 
I-(I-PA)(I-PB; 

In the example, TT =  * '\>  s\  = .51721+ 

Similarly let P. ^ be the probability that B wins the duel on his m  shot. Then 
m,B 

P1,B " (1"PA) PB 

P2,B " (l-PA)Cl-PB)(l-PA) *B -  (I-?/ (1-PB) PB 

P
3,B = (I-PAXI-V^-V^^B^1-^ PB " (1-V3 (I-*B)

2
 
PB 

18 



Now the probability that B wins, denoted n , is given "by 

nB= =  Pm,B 
m=l   ' 

. PB d-pA) E d-p.r-1 d-PBf-
1 

m=l 

PB ^ 

1-(1-PA)(1.PB) 

In the example TT    = [  /   i](&) = .^8276 

Since TTA + rrB . ^.p^^j + 1^1-Pj (l-PB) 

PA + V1-^) 
l-(l-PAKl-PB) 

the duel cannot possibly terminate in either state 1 or state U. 

As a second example consider the following somewhat more complex duel 

situation which does not lend itself to the simple analysis used as a. check 

in the first example. 

.8 PA='2 "B 
5 = 30 seconds 

r„ - 5  shots per minute r^ = 2 shots per minute 

Here 

TA = 

.8 .2 0 

0 1 0 

0 0 1 

0 0 0 

19 



.2 0 .8 0 

TB = 
0 

0 

1 

0 

0 

1 

0 

0 

0 0 0 1 

.16 .OU .6k .16 

Tc = 
0 

0 

1 

0 

0 

1 

0 

0 

0 0 0 1 

SH=hF-] = 3 

z = L.C.M. (1,1) = 1 

A = L.C.M. (zrA, zrB) = L.C.M. (5,2) = 10 

A = 60 A 
zrArB 

600 
10 

= 60 seconds. 

A will fire zr. B 

10 
2 

= -— = 5 shots 

.B will fire 
zr. 

10 
5 

= 2 shots 

Thus the period is 60 seconds long. During that time A will fire 5 shots and B 

will fire 2 shots.  In particular, B will fire his 1  and 2  shots, while A 

fires his k    ,5 ,  6 , 7  and 8  shots. The following table gives the times 

at which each of these firings takes place; (using equations 1 and 2). 

Shot 

Number 

1 

2 

3 

h 

5 

6 

7 

8 

Times to Fire 

A B 

30 

60 

36 

1+8 

60 

72 

84 

20 



Thus the firing order for the cycle is 

B (at 30 seconds) 

A (at 36 seconds) 

A (at k8  seconds) 

A & B simultaneously (at 60 seconds) 

A (at 72 seconds) 

A (at 81+ seconds) 

so 

.0131072 .081+1+928 .8819200 .020U800 

0 1 0 0 

0 0 1 ■ 0 

0 0 0 1 

T = TB TA TA TC TA TA 

Carrying out this multiplication of matrices, 

T = 

From equation 20, 

Vl = .83 = .512' 

v2 = .2 (l + .8 + .6h) = .1+88 

and from the matrix T above 

tx  = .0131072 
ts = .08W+928 

t3 = .8819200 

t4 - .020 WOO 

The folio-wing table gives the probabilities which describe the state of the duel 

after m cycles and at the end of the duel. 

Probabilities 
State Description After m Cycles At End of Duel 

1 Neither A nor B wins (.512)(.0131072)m 0 

2 A wins .1+88 + .01+383 5 (l-.0131072m) .53183 

3 B wins . U575M1-. 0l3l072m) .J+5751* 

k A & B kill each other .01063(l-.0131072m) .01063 

21 



In the first two examples the rates of fire have been integers so that 

z=l.    In the last example this will not be the case.    Let 

r.   = 7T   and r^ = TT   shots per minute 
Ad B      3 

and 

Then 

5 = 10 seconds and P. = .2 and P„= .1 
A D 

z = L.C.M. (2,3) = 6, 

A = L.C.M. (zrA, zrB) = L.C.M. (3» = 12 

60A \  = 
2rArB 

In each cycle A fires 

36o seconds per cycle. 

A 
zr. B 

lO A       1 Q 
T— =3 shots and B fires   = ■=— - k  shots. r* zrA  3 

Prior to the first cycle A fires 

K   1    r(10)(?'    1 shot. 

In the first cycle, B's h  shots (his 1st, 2nd, 3rd, and kth)  are fired at times 

10,100, 190, 280 seconds; A's 3 shots (his 2nd, 3rd and Uth) are fired at times 

120, 2*i0 and 360 seconds. Thus the sequence of firers in each cycle is 

BBABABA. 

The transition matrices are 

TA = 

and 

Thus 

TB = 

.8 .2 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

• 9 0 .1 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

.3359232 .3626208 .301U560 

0 1 0 

T T 
t B A TB TA = 

0 0 1 

0 0 0 

0 

0 

0 

1 
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From equation 20 

vi = .8 

v2 = .2 

end from the above matrix, 

ti - .3359232 
ta = .3626208 

t3 = .301^560 

U = 0 

The following table summarizes the results of this duel. 

      Probability 
State Description 

Weither A nor B Wins 

After m Cycles 

{.8)(.3359232)m 

At End of Duel 

1 0 

2 A Wins .2 + .1+368420 (l-.3359232m) .636842 

3 B Wins .3631580 (l-.3359232m) .363158 

k A & B Kill Each Other 0 0 

$tZJu<s<->' & <<Mstnf*^  
ARTHUR D. GROVES 
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