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ABSTRACT

The problem of the rigorous simultaneous adjustment of large photo-
grammetric blocks is reviewed and extensions to an earlier theory ore developed.
Various matrix iterative appraaches to the solution of the very large systems of
normal equations characteristic of sizeable photogrammetric nets are investigated.
The Method of Block Successive Over Relaxation is found to yield ¢ practical
and most sotisfactory solution to this problem. Results of an extensive series of
numerical simulations are reported. The successful application of the approach
to a 23-photc strip of actual photography provides final confirmation of the

validity and effectiveness of the solution,
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PREFACE

The objective of this study is to develop a computationally feasible procedure
for the solution of very large systems of normal equations generated in the process of
simultaneous adjustment of cil observations arising from a large pnotogrammetric net.
Although the theory for forming the normal equations in a systematic and practical
manner was ceveloped over six years ago by one of the writers (Brown, 1958 a), it has
widely been held that the sheer size of the normal equations for long strips or lorge
blocks of photography would restrict the application of the theory in its full generality
to photogrammetric nets of relatively modest dimensions. Consequently, efforts at
applying the theory have concentrated largely on piecewise adjustments according to
various schemes ranging from cantilever extension using three or more photos per step
to extension through adjustment of small blocks. All such solutions are, of course,
compromises dictated solely by computational considerations, Few will argue the
desirability of simultaneous adjustment of sizeable photogrammetric nets, but many will
argue its practicability. We therefore take considerable pride in announcing our
success in developing an altogether practical, yet uncompromisingly rigorous solution
to the problem of adjusting large ohotogrammetric nets. Surprisingly, there is evidence
that the efficiency of the solution increases with increasing dimensions of the photo-
grammetric net and is even grecter with blocks than with strips. The solution of the
normal equations is accomplished through the application of techniques of matrix iterative
analysis developed over the past decade by investigators concerned primarily with the
solution of large systems of linear equations arising from the numerical solution of systems
partial differential equations. A comprehensive treatment of matrix iterative techniques

is provided by a recently published book (Vorga, 1962).

Qur study has been divided into two major parts. Section 1 provides the overall
theoretical development essential to the solution. It also incorporates a number of re-

finements (some previously published, others not) of the original photogrammetric theory
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(Brown, 1958 a). In porticular, it fully develops the concept of the *ellipsoidal

control point' (previously introduced in Browr, 1959, as o special case of the awkwardly
phrased concept of 'relaxation of quasi-cbservatianal variances'). The general adjust-
ment is extended ta accommodate observations provided by auxiliary external sensors
(inertial systems, aircraft tracking systems, etc.). Provisions are made for the cali-

bration of such sensors as an integral part of the overall adjustment,

Section 2 outlines the numerical procedures emplayed in implemeniing the
solution ond presents detailed results of an extensive program of numerical simulation
designed to evaluate the effectiveness of the general approach developed in Section 1,
Several specific opproaches within the fromework of the general opproach ore investigated

to determine the particulor voriont leading to the most effective results.




SECTION 1
THEORETICAL DEVELOPMENT
By

Duane Brown

1.01  INTRODUCTION

In a previous paper ( Brown, 1958 a), the writer presented a rigorous least
squares solution effecting the simultaneous adjustment of the entire set of original
plate measurement arising from a completely general photogrammetric net. |t waz
shown that the development of the general normal equations was an entirely straight-
forward procedure presenting no difficulties even with a digital computer of relatively
small capacity. A direct solution, however, was considered to be impractical for large
photogrammetric nets because of the prohibitive dimensions of the normal equations. A
practical means was developed to coliapse the system of general normal equations to a
more tractible system of reduced nomal equations whose dimensions were independent
of the number of unknown relative control points and were dependent only on the total
number of unknown elements of orientation, This version of the solution found immedi-
ate application in space geodesy (Brown, 1958 b, 1959, 1960 a) wherein powerful stellar
control could be exploited to reduce the number of unknown elements of orientation to
three per exposure station ( the X, Y, Z of each station). Even rather iarge geodetic
nets (up to 100 stations) were considered to be amenable to this approach for in practice
only a handful of stations in the over-all network would observe a given group of flashes
thereby making possible the piecewise formation of the partial normal equatiors generated
by relatively small local configurations; the formation of the final system of normal equa-
tions would thus reduce to a simple matter of appropriate dissection and subsequent summing
of the partial normal equations of individual configurations, In such geodetic applications,
the sclution cf large systems of equations would normally have to be faced only at infre-
quent intervals and hence would warrant an effort which would otherwise be considered

prohibitive,




In Brown (1958 b) the writer outlined an extension of the general adjustment
to account for errors in presurveyed locations of exposure stations. This extension was
further developed in the Appendix tc ¢ later report (Brown, 1959). Here, the solution
was modified to cover the zase in which any of the elements of orientation and any of
the coordinates of control are considered to be measured quontities subject to odjust-
ment. In the originol soluticn, these quantities were considered to be either perfectly
known or to be wholly unknown and the entire odjustment wos placed on the measured

plate zoordinates.

In an unpublished, privately circuloted poper ( Brown, 19€0b) which is referred
to by Case ( 1961), the writer further extended the basic soluticn to incorporate orbital
constraints applicakle to a satellite-borne camera. Here it was shown that the entire
vector of coordinates of exposure stations for a given orbital pass could be replaced by
a 6 x 1 vector of osculoting Keplerian elements, these in turn being determined as part

of the over-all photogrammetric reduction.

The first unclassified application of the extended form of the writer's solution to
aerotriangulation is probably that of Dowdy and McClure ( 1962). Here, a compute: pro-
grom for the simultaneous odjustmen, of as many as 12 photogrophs was developed for the
IBM 709 Computer. For fong photogrammetric strips, the program employed what might
be called a long base cantilever in which six, seven, or eight successive photos were
corried in each odjustment. Dowdy ond McClure applied the progrom to the adjustment
of 11 sub=blocks of a 50 photo block of actual photography. The solution ollowed not
only for adjustment of plate coordinates, but olso for adjustment of ground control. Al-
though the standard deviations assigned to the ground control ronged typically from 20
to 30 ft., the published adjustment of the ground control turned out to be smoll froctions
of a foot. Dowdy and McClure expressed concern over such unrealistically smoll corrections
but were unoble to offer a specific explanation for the result. The present writer, in seeking
on explanation for this untoward result, carefully studied the flow charts ond program listings
published by Dowdy and McClure. Both were found to be in good order and disployed a

sound understanding of the method. The difficulty was finally traced to on easily mode
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blunder in weighting wherein two different unit variances were implicitly carried in

the same adjustment; the one for the ground control and the other for the plate measure-
ments. More specificaily, the weights assigned to the ground control points were taken

as the straight reciprocals of their variunces thereby automatically fixing unit variance

at unity. Accordingly, the weights of the plote coordinates should also have been taken
as the straight reciprocals of their variances. Actually, they were not, for all plate
coordinates were assigned unit weight. If onewere to regard the standard deviation of

the typical plate coordinate as being 0 =0.025 mm, the weight of the plate coordinate
would then prcperly become l/(.025)2 = 1600, rather than unity. Accordingly, in Dowdy
and McClure's study, all of the plate coordinates were grossly underweighted ( by a factor
on the order of 1000 to 2000) or, equivalently, all of the ground coordinates were grossly
overweighted ( again, by o factor on the order of 1000 to 2000). Hence, essentially all
of the adjustment was placed on the plate coordinates and practically none was placed on
the ground coordinates, For all practical purposes, then, the ground control was actually
treated as if it were perfectly known., Within this context, Dowdy and McClure's numerical

results may be viewed as being valid.

Dowdy and McClure indicate the 1BM 709 running time of the progrom for a twelve
photo adjustment to be slightly more than one half hour per iteration. Inasmuch as compu-
tations required for the formation and for the solution of the reduced normal equations in-
crease as the square ard cube, respectively, of the number of photos, it follows that be-
tween two and four hours would be required per iteration for a twenty four photo adjust -
ment and that between eight and thirty two hours would be required per iteration for a
forty eight photo adjustment ( this assumes that sufficient memory were available to keep
all computciions in core). Nommally two to three iterative cycles would be required for
adequate convergence, thus doubling to tripling the above figures. Small wonder, then,
that in recent years enthusiasm has generally waned for the idea of rigorous and simultan-
eous adjustment of large blocks of photos. Instead, efforts have been directed mostlv
toward development of compromise solutions such as extension by anolytical pairs, t-iplets
or sub-blocks with subsequent adjustment of the model to absolute control ( e.g., Mikhail,

1962, 1963; El-Assal, 1963; Schut, 1964; Harris, Tewinkel, Whitten, 1962) or adjustment

.




of strips or blocks of modest dimensions, typically of 25 photos or less ( e.g., Dowdy
and McClure, op. cit.; Matos, 1963). A broad review of the development of analyt-
ical techniques is given by Doyle (1964).

From the foregoing, it appears that the general impetus towards the implementa-
tion of the uncompromisingly rigorous adjustment of large photogrammetric blocks has in
great measure died out in favor of suboptimal but more easily implemented analytical
approaches, Nonetheless, the desirability of simultaneous adjustment is conceded by
virtually all investigators, Because of the general abandonment of the idaal of simul-
taneous adjustment, o Pandora's box of alternative approaches (most being minor variations
of one another ) seems to have been opened leading, in the writer's view, to the generally

chaotic present state of analytical photogrammetry.

As has already been indicated, the stumbling block to the implementation of
rigorous block adjustment has been the solution of the very large systems of normal equa-
tions generoted by blocks of even fairly modest dimension. As we indicated, the formation
of the nomal equations themselves is a relatively minor problem, In all approaches
reported to date the solution of the normal equations has been effected by one or another
of the numerous variants of Gaussian elimination. This has set a practical limit (on the
order of 25 photos) to the size of the photogrammetric net which can be handled, for
computational difficulties with Gaussian elimination increase severely with increasing

numbers of unknowns,

In 1958, the writer experimented briefly with the Gauss-Seidel iterative technique
for the solution of linear equations only to abandon it as utterly impractical upon finding
its rate of convergence to be insufferably slow. However, in 1962, the writer's interest
in the possibilities of the Gauss-Seidel approach was rekindled upon reading in Faadeva
(1959)of an accelerating process developed by Luisternik (1947, [t was further aroused
upon the writer's discovery that,by means of a scheme of ordering the unknowns of the
general normol equations generated by a 'uniform block' (to be defined later), it was
possible to obtain a coefficient matrix having highly diagonal characteristics. Indeed,

the writer found that with a 'uniform block’ it was possible to develop an ordering which




would confine all nonzero elements of the coefficient matrix to a comparatively

narrow band about the principal diagonal, the width of the bond being completely
independent of the photadimensions of the block. Such strong diagonality, it seemed

to ihe writer, might well enhance the prospects of acceptably rupid convergence of an
iterative process of solution. In further conjectural development of the renewed possi-
bilities of an iterative approach, the writer conceived of a process for the systematic
formation of the normal equations in which an algerithmic scheme of indexing could be
employed to bypass the computation of al! zero elements of the normal equations, thereby
leading to the direct formation of an equivalent ‘' collapsed' system of far smaller dimen-
sions. This concept of ‘ collapsed normal equaticns' further enlarged the possibility of
the ultimate development of a practical approach to the problem of the rigorous odjust-
ment of large photogrammetric nets, In December 1962, these ideas were expressed for-
mally in a technical proposal to Rome Air Development Center, resulting subsequently in

the award of the present contract to investigate their practicability,

As we shall see, the applicability of the acceleroted Gauss-Seidel process tumned
out to be decidedly marginal. On the other hand, the application of a more powerful
iterative technique (that of successive overrelaxation) proved to be successful beyond
all expectation, As aresult, the rigorous adjustment of blocks of large dimensions may
now be said to be entirely practical even though it may entail the simultaneous sol ution
of several thousand equations, Except for the collapsing algorithm, the development of
the normal equations for our present solution remains largely the same as in the writer's
original papers of 1958 and 1959, However, a number of refinements have been added,
foremost of which is a generalized treatment of auxiliary observations which permits the
introduction of any desired statistical or functional constraints on the parameters of the ad-
justment, Before we take up the central problem of the solution of the normal equations,
we shall incorporate these refinements into the derivation of the normal equations, Here
it is appropriate tonote that the extension of the adjustment outlined in Brown (1959) was
given without proof, an omission which has led to a number of private requests for clari-

fication. As we shall see in the development to follow, the proof of the extension




is so emborrossingly simple as to be elusive. This is why it was not discovered until

shortly ofter the publication of the original solution. In brief, it involves nothing

more than recognition of the fact that tha adjusted values of any observations may

be carried in the adjustment as unknown parameters.

1,02 THE ELLIPSOIDAL CONTROL POINT

In the formulation of the general photogrammetric adjustment, we shall
admit the possibility of correlated observations. Properiy exploited, the admissi-
bility of correlated observations provides the investigator with o convenient and
flexibie means for rigorously implementing any manner of variation in the basic
measuring processes without requiring the least alteration of the general adjust-
ment itself, We shall utilize this tool at the very outset to introduce a concept
fundamental to our approach, namely that of the 'ellipsoidal control poiri. '
According to this concept, the metric properties of a contro: point X,, ‘s’}, Z’
are fully cheracterized by its covariance matrix }\.’, the elements of which
specify, in effect, the relative statistical magnitudes and interactions of the

errors in the coordinates, The term ellin<oi-lc! control point stems from the

consideration that the following quadrctic form

x’z Gx’y’ Gx’i’
) _ =1 T _ 0 0 2
M a = /A A = (X=X Y:'Y(: Z,-Z)) |Iny, Oy Oy,z

defines an ellipsoid centered at the observed point X? ' Y?, Z;’ . By incorpor-

ating this quodratic form into the general quadratic form of the adjustment, one
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constrains the adjusted rays from the various cameras to a given control point
to intersect in probability within the space allowed by the 'error' ellipsoid
associated with the point, The concept of the ellipsoidal control point erases
the usual distinction between different types of control points, The difference
between an absolute control point at the one end of the spectrum and a relative
control point ai the other becomes merely one of degree. In the case of an
absolute control point, the dimensions of the error ellipsoid for a moderate
level of probability would be quite small (perhaps on the order of millimeters),
whereas, in the case of a relative control point, the dimensions would be com-
paratively large (perhaps on the order of hundreds of meters). Partially absolute
control points are characterized by either extremely flattened (pancake shoped)
error ellipsoids for the case when only one of the three coordinates is known
accurately, or else by extremely elongated (cigar shoped) error ellipsoids for

the case when two of the three coordinates are known accurately.

The ellipsoidal control point provides a particularly convenient means
of introducing either absolute or partiai control expressed originally in terms of
geographic coordinates ( Q’ )\’ ’ h’ ) rather than Cartesian coordinates (X’,Y’,Zj).
If ‘3?,)? . h‘; denote the ‘cbserved' geographic coordinates, the corresponding

Cartesian cordinates )@’, Y? 3 Zg » may be expressed functionally as

0 = 1 0 0
X3 x’(d",)",h’) '
- 0 0
v/ A A C TR
0 - 0 10
Z] Z’(Q‘:,A’,h’)

If the covariance matrix of the geographic coordinates is
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{3) T, = 0 o? a
! Qt)‘ | )‘1 )"h’
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that of the derived Cortesion coordinates becomes

[ X ] _ T
(4) A, = U T, U
wherein
0 0 0
ax; ax} ax’
g N, k]
(5) u, = aYy vy aY|
0 0 0
a¢) Y 3k’
0 0 0
22} 9% oz
0 0 0
3¢ an aK
o _

The covariance matrix A’ contains all of the information pertinent to the error
structure of the geographic coordinates. In the event that only one of the three
geographic coordinates were known accurately, one could proceed by assigning
comfortably large variances to available approximations for the two poorly known
coordinates and o realistic variance to the known coordinate. The transformed

covariance matrix A’ would then contcin the information that one of the three

geographic coordinates is known with worthwhile accuracy while the other two




are known only nominally. The nonzero off-diagonal elements of A’ are par-
ticularly vital to the correctness of the solution for they define the orientation

of the error ellipsoid.

By applying the concept of the ellipsoidal control point to geographic
coordinates, one circumvents the awkward conventional alternative of forcing
rays to intersect with mathematical precision on quadric surfaces, cones and
planes. Upon reflection, one begir. to appreciate that in the real world
absolutely perfect control simpiy does not exist; all control is subject to error
of varying degree. Moreover, there is really no essential distinction between
an approximation and an observation, for one can arrive at approximations
on'y through a process of observation, however crude and however indirect.
Thus, approximations may be viewed as observations having large and uncertain
variances, We shall adopt this view throughout the development of the general

photogrammetric adjustment,

1.03 OBSERVATIONAL EQUATIONS GENERATED BY THE PROJECTIVE
RELATIONS

As in Brown (1958) we consider the photogrammetric nei to involve a
total of m exposure stations and a total of n control points. We shall employ
the subscript 1(1=1,2,...,m) to denote the |'h exposure station and the sub-
script 4 (1= 1,2,...,n) to denote the 1”‘ control point, When double subscripts
are used, the first will refer to the station and the second to the control point,
No restrictions are placed on camera orientations or on the nature and distribution
of control, We shall proceed at the outset as if every control point were recorded

at every station. Later this assumption will be dropped.

Y : o th . th .
The projective equations arising from the §  control point and 1 station

are shown in Brown (1958a) to be of the form
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1 = Xp + C' ’
! Dl)‘n+E1p‘u+Fluu
(b) [ ] (] [
. Al)‘u+81“n+clvu
y', = Y C' ’
P
1 D'X”+E'IJ“+F'V”
where
7) Ron = plate coordinates of 1”‘ point on 1th photo,
1y Yy
(8) xp ,yp = plate coordinates of principal point of 1”‘ photo,
1 Py
(9) c, = principal distance of 1”1 photo,
At Bt Ct
h
(10) A; B; C: = orientation matrix of o photo,
Dt Et F:
5 ® &
1 &
() o -51'—, s Yf = direction cosines of ray joining 1
» Z, - 7°¢ expos;;\re station at Xf F YT 0 Zf
- - B and §  control point at X, Y,, Z,

(R, = 1 (X, X2 (v, -YE)2+ (2, =262,

The elements of the orientation matrix are functions of the three angular elements

of orientation @, w,, K, .
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All steps leading to the formotion and collection of the ertire set of
linearized observational equations arising from the projective relations will
proceed precisely as in our earlier solution, Thus, we let x‘:’, y?, denote

measured plate coordinates and set

14
(12)

Y?j + Vy (‘ = ‘Izlooilnv 1=1,2,...,n)

Yy
1

where the v's are observational residuals. Similarly, we set

= = 00 c _ €, 00 ,C
a, = o+ 50 1 xp’+8xp’ X; = (X% + BX;
[+ C Cc
(13)  w, = of +5y v, = Yoty Y, o= (Y% + 8y
i i i
k= k% + 6k ¢, = ™ +6¢c 2 = (25 +82° (1=1,2,...,m)
1 1 t 1 1 1 1 | 1 1Erecst

in which arbitrary approximations are signified by the superscript ' ®* and
the §'s are the appropriate corrections to the app-oximations. We likewise

- . ' h )
assume approximations are available for the coordinates of the 1' control point

ard set
00
x: X‘: +8x1 !
(49 Y = Y®+sy ,
] ] i
- 00
Z’ Z’ +SZ’ .

The substitution of equations (12), (13), (14) into (6) and subsequent linearization

by Taylor's series leads to the observational equations
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(‘5) Vl’ + Bl’ 81 + 8118] = 61] (l =l,2,.,,,m; 3=‘,2,...,n)
in which -
) _ Sc\rl
', ax” ax” ax” 5w
Ve 303 = 1
_ 1 - _ | da dw YA £ =
(16) M= , B” = 1 1 " 6l = 8#(l
A\
(2,1) LyiiJ (2,9) Oy By L 9y, . 1) .
c H
aal aw! BZl
i X 62

7)) B = , 6. = |eYy. | , € =
0 00
(2,3) ay” %, %, (3,1 (2,1 ATIRAY

The partial derivatives in 'B” and 'B.” are evaluated at the appraximations
0? ;. u}:o , etc. The quantities x?oj 0 y(:°’ in €, denote the values resulting
when the right hand sides of equations (6) are evaluated using the approx-
imations, Detailed expressions for the partial derivatives are given in our

earlier paper (Brown 1958) and need not be repeated here,

At this point o comment on notation is apprapriate. Throughout tne paper
we shall continue the practice {already begun) of affixing tne superscript '?' to
quantities which are considered to be observed and the superscript '@ " to quantities
which are considered to be approximations or the result of approximations (as, for
example, in the quantities x?",, y‘:oi which denote the plate coordinates computed

from approximate elemenrts of orientatior and approximate cocrdinates of control).
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We shall denote the covariance matrix of the olate coordinates x(: W y(: : by

- -
o? o
Xy *19Y1y
(18) A =
& o o
X ey o Yy

0

ond shall define the weight matrix of Xgyt yf’ to be

-
19w, = A, .

By allowing the f _te coordinates for a given point to be correlated, we admit

a variety of possible plate measuring technigues (e.g., goniometric, polar

coordinate) in addition to those which directly produce Cartesian coordinates,

We also thereby admit the possibility of employing comeras which do not have

flat fields (e.g., panoramic cameras, meteor cameras, Baker Nunn Satellite

Tracking Cameras, CZR cameras), for here the plate coordirates to be carried

in the adjustment would be those derived from the appropriate transformation

(usually from cylindrical to plane coordinates) of the original film measurements,
0

In general, if £ g’ 77:)3 denote the measured coordinates of an image in what-

ever coordinate system is appropriate to the comera or measuring method and if

)

20 [ Y
” x(gi’l’rii’) '

X

(20)

define the transformation to Cartesian coordinates, the covariance matrix of the

derived plate courdinates is given by

(21) A” = C” A” C”,

where
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By employing the full coveriance matrix A“ in conjunction with the derived plate

coordinates, we correctly procpagate and preserve the informational content of the

original observations throughout the entire photogrammetric adjustment .

Retuming now to the linearized projective equations (15), we may express the

entire set of such equations generated by all m exposure stations as

(23)

where

AP}

V2i

Vm,

(2m,9m)

61 - €!

é‘j 0o ... O
O sz LX) 0
0 0 200 é

. B =
(2ml3)

Inasmuch as we shall assume independence of plate coordinates of different

images, we may express the covariance and weight matrices for the ccmposite

th &
observational vector for the ' point as

(25)

A’ =

(2m, 2m)

3 0
() O
e - ® 'Am,

Wy 0
0 Wy
0 0

r €
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(27)

If next we collect all equations generated by all control points, we

shall arrive at the system

B 0
o 8 ..
o 0o ..

(26) v+B6+8B8 = €
in which
N ~
F‘-’I B
Vz o .Bz oo
v = I B = ’ B -
(2mn,)) |- (2mn,%m)] . (2mn,3n)
v B
n n

— -y
A O ... 0
0 A2 se e 0
{25) A= ,
(2mn,2mn) | . . 1
0 0 ... A
n

W =
(2mn, 2mn)

[ -

ee e 0

see 0

ee e w

Equations (26) and (28) contain the entire store of information provided by the

projective equations,

metric net (Brown, 1958a) was based entirely on these equations.

15

Our original treatment of the adjustment of a photogrom-
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1.04  OBSERVATIONAL EQUATIONS GENERATED BY ELLIPSO!DAL CONTROL
POINTS

We shall now turn to other possible sources of information. If we regard
the coordinates of the lth control pcint as also being available from independent

external cbservations, we may write

R

X, = X% * "X, g

(29) Y, = Y‘;"’VY, ‘
= 0

Z’ Z’ +VZ’ .

Here, as before, X’ ' Y’ ' Z’ denote the adjusted coordinates, The observed
coordinates are X? 5 Y? o Z;’ and their observational residuals are vy v vYj o VZ’ .

The covariance matrix of the observed cocrdinates is /\j and the weight matrix

s W’ . As we saw in our discussion of the ellipsoidal controi point, by permitting
the covariance matrix A’ to be filled, we gain a new measure of observational
flexibility, Equations (29, simple though they are, constitute the observational
equations arising from externally observed control points, By emplcying the
expressions in (14) for the adjusted coordinates, we may replace (29) by the equiv-

alent relations

00 = 0

X§ + X, X’+vx’
(30) Y"’°+8Y’ = Y‘;+VY’

00 - 0

2y + 6z, 23+ vy

-16-
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A’ ’
X’ 1 X,
(31) Vy © SY’ = €Y 7
] ]
vz -8, = ¢ ,
[} ]
where

(32 €, =x0.x,

(33) V’ 4 6, = € Iy

The observatianal equations arising from independently obtained coordinates

of all n control points are then given by

34 v-85=F¢€,
where
r.oo T -'- . [~ 7
vy & €
- V2 : 8 . €
(35) Vi = ’ 5§ = ; € =
(3n,1) g (3n,1) : (3n,1) i
v 3 €
n n n

-17-
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If we were to assume that the coordinates of different points are independent
of each other, the covariance and weight matrices associated with the obser-

vational vector of (34) would assume the forms

B = i .
A 0 ... 0 W, 0 .. 0
. 0 A ...00 . 0 W, ... 0
(36) A = ., W =
(3n,3n} B i (3n,3n) o .
0 0 e | 0 0 ... W
n n

1.05 OBSERVATIONAL EQUATIONS GENERATED BY ELEMENTS OF
CRIENTATION

{t is clear that we could proceed as in the preceding section to
introduce any independent observations which may be available for elements
of orientation. We shall assume initially that independent observutions are
available for all elements of orientation for all exposure stations. If (y? ¢ W eas

. . . th
denote cbserved elements, we may write the observational equations for the 1

station:
s b c _ c.\0
a =qa’ +v , x =x +v o, X, =(X" )P +v_c ,
! L ay Py Fy xp' ! ! Xl
(37) w, u«‘: +vwl. ypl ypl R e SN AV
P, l
c ¢
Kl=K‘:+vK, A A Z|‘(Zl)°+vzc '

-18-




where the v's are observational residuals. If we eliminate the adjusted
observations from equations (13) and (37), we shall arrive at the equivalent

set of observational equations:

= 00 0 =
va!- b, = a; - a = €q,
(38) RIC IS of -df = €,
[« - C.\00 c.0 _
vae-8Z, = Z)P-(Z) = €5

With obvious notation we may represent these in matrix form as

39) v -6 = ¢

1 t i

The observational equations for all m stations are then

(40) v -8 = €

where
[~ [ ] [ 7]
A4 8] 6‘
v 5, €

@an v = ) , &= [, , € = .

(9m, 1) . (9m, 1) : (9m, 1) .

(G e =

-19-




We shall let ;\1 denote the covarionce matrix of the observations of the
elements of orientation for the 1"‘ station and shall let V.V!= 1.\;] denote
the corresponding weight matrix , We shall not require that these matrices
necessorily be diagonal. We shall assume, for the time being, that the
observations of elements of orientation are independent from one station
to another. Then the covariance and weight matrices for the observed

elements of orientation can be written

s ] ir N
A‘ 0 se e 0 W' 0 L) 0
. 0 Ay ... O . 0 W, ... 0
42 A= ;W=
(9m,9m) i : : (9m,9m) | . i ;
0 o .. A 0 0 . oW

Wc shall ultimately allow A and W to be completely filled matrices.

1.06 NORMAL EQUATIONS IN THE ABSENCE OF DATA FROM EXTERNAL
SENSORS

We now have developed the observational equations arising from

(a) measured plate coordinates,
(b) ellipsoidal control points,

(c) independently determined elements of orientation,

We have yet to consider still another potential source of information which may

be applicable to the photogrammetric adjustment: namely, external sensors and,
in particular, external sensors which may themselves be significantly biased and
which may, therefore, need to be calibrated as part of the overall photogrammetric
adjustment in order that their potential accuracies might be fully realized. Before

we turn to such considerations, we shall pause briefly to consider the form of the

-20-




normal equations generated by the observational equations developed thus far.

The three sets of observatianal equations, namely,

v+ Bs+BE = € (linearized projective equations)
(43) v - 8 = € {constraints on elements of orientation)
v = 5 = (constraints from ellipsoidal control points)

may be mesged into the single matrix equatian

. 'B .
N BT s §
(44) vl + |-1 0 '. = € '
v 0 -1 LS €
and this in turn may be reduced to
(45) v+ Bs = €
where, with obvious notation
i s 21
v B 8 : €
4) v= |vi, B=F o, &= .| , €= |c¢€
(nO'nO) . (nOI 1) 0 -I (POI‘) ) (nm 1) <

where ny= 2mn+ 9m + 3n, py = 9m + 3n,
In o similor monner we may merge the covarionce matrices and weight

matrices of the three basic observational vectors into the single composite matrices

A ond W where

-21-
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r— -1 B -
A 0 0 W 0 0
(2mn, 2mn) (2mn, 2mn)
(47) X = 0 A 0 , W = F{'= 0 W 0
(g, ng) (9m,9m) (ng/ng) (g, ng) (9m,9m)
0 0 A 0 0 w
L (3n,3n) ] | (3n,3n) |
The normal equations leading to the determination of that pair of vectors v, § which
satisfy (45) while simultaneously leading to the minimization of the quadratic form of
the residuals
_ =Tas
(48) s = v Wy
is shown in Brown (1955) to consist of
T = _ =T =
(499 (B WBYSE = B We .
By virtue of (46) and (47) the normal equations may be written
. B T :
T T
B -1 O w 0 0 B B ) B -1 0 w 0 0 €
(50) BTo -1|loc w olla ofls B1 0 -1 [0 wo €
0 0 wl|lo - 0 0 W| e
which, upon reduction, become
(5]) N:TW (X N .o 080 = oco B \vo/ f' f
N N+ W & c-We
wherein
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N = BT w B ’ c = éT w € ’
(9m,9m)  (9m, 2mn)(2mn, 2mn)(2mn, Im) (9m,1) (9m, 2mn)(2mn, 2mn)(2mn, 1)

(52) N = 8 w B,
(9m,3n)  (9m, 2mn)(2mn, 2mn){2mn,3n)
N = B.T w B 7 c = B.T w € -

(3n,3n)  (3n,2mn)(2mn, 2mn)(2mn,3n) (3n,1)  (3n,2mn)(2mn, 2mn)(2mn, 1)

The normal equations (51) are of the form described in our earlier poper (Brown, 1959),
We shall temporarily defef the further treatment of the normal equations until Subsection
(1.12) and, in the next three subsections, shall consider the extension of the basic solu-

tion to incorporate information from externcl sensors.




1.07  OBSERVATIONAL EQUATIONS GENERATED BY AUXILIARY EXTERNAL SENSORS

For the sake of complete generality, we shall now consider the possibility
that there may be certain auxiliary measurements interrelating elements of orientation
and coordinates of control. For instance, the distances between certain pairs
of exposure stations may be known, or distances between certain pairs of con-
trol points, or even distances between certain exposure stations and certain
control points, It is altogether likely in the near future that the relative posi-
tions of successive aerial exposure stations will be measured with worthwhile
accuracy by inertial sensors. Conceivably, the effectiveness and accuracy of
such sensors could be increased if certain parameters peculiar to the sensors
were carried as unknowns in an appropriate modification of the pnotogrammetric
adjustment. To enlarge on this, let us consider an inertial system in samewhat
greater detail. The output of an inertial navigational system of high quality
has a very low random component, but is subject to a cumulative time varying
error upon which may be superimposed a sinusoidal type of error having the
Schuler period P (approximately 84 minutes near the earth's surface). Strictly
for purposes of discussion, let us assume that the follawing equatians adequately
describe the nature of the errors in the navigational output for the latitude 9,

ond longitude \ of the tth exposure of a photogrammetric strip:

.2 7,

¢, - ¢2 = €°1 + +o,(tl—too)+oz sm—pE (tl-too)+o3cosp—"(t’-too)

(true) (measured) (r:rr:g'or;\ + higher order terms,
(assumed negligible)

(53)

% = R = @ & b bile St by SA-NUE ~te) 2T (4 _poy)
[l { xl 1 ] 00 2 $in T { 00 b,, cos T '- 00
(true) (measured) (random + Fitgher farder terms .

)
error ) (ossumed negligible)

24




in these equations

. th
t = timeof i exposure,

too = arbitrary time of reference which would nomally be

selected to correspond to a time near the center of the

strip,
°°+°~" =  zeroing errors at time t = too (ordinarily ag>>ay , bp>>by),
bo* by
o /b = coefficients of first order seculor drift,
02:9 ‘_ =

coefficients of first order periodic drift,

by /by

Let us further suppose that the aititude of the aircroft is measured by means of
a precise pressure altimeter and that a nominally constant altitude is flown,
Aside from zeroing, the systematic errors in pressure altitude are primarily
attributable to the slowly changing departure of the isobaric surface at flying
height from the spheroid of reference, If s, were to denote the distonce along
the flight path of the l'h exposure station (s=0 when =ty ), o suitable error

model for measured pressure altitudes might well be of the form

(54) h’ - h? = Gh + co+c,s’+czsf*c¢s::+...
1
(true) (measured) (random equations defining isobaric
error) departure ‘along flight line

from reference spheroid.

-25




If the velocity of the aircraft were nearly constant, one could replace s,

in this equation by s = v(tl- tgg) where v denotes the average velocity

along the flight interval. By means of appropriate transformations the above
equations for ¢1 . )‘1 ; 'hl couid be expressed in terms of Cartesian coordinates.

Thus, we may write functionally

X; = (8 €, J?*‘x d R+ € L 0 sneeiby byeesicoscrrennit,)
1 1 1

(55) Yl = f21(¢2+€¢ Ix°l+‘x ’ hol+€h 1 %IQIOOI;h[bI[uuu;%'CI[uuu;tt) i
1 1 1

Z:: = f3,(dl+€¢ ,)‘?+ 6)‘ ’H)1+ € @0 seeeibyibysiiaioicsegt)
1 1 1

Here we have expressed the adjusted Cartesian coordinates for the lth exposure
station in terms of independently determined geographic coordinates together

with a set of unknown error coefficients necessary for their calibration. Equations
(55) may therefore be considered to constitute another set of observational equa-
tions involving not only parameters heretofore considered (X::, Y::, Z::) but also

a new set of parameters (al p bl , €. ) independent of the parameters of the photo-

1
grammetric model proper. Nothing in principle prevents us from incorporating
si,ch observational equations into the photograommetric adjustment. By doing so,
we may possibly streng! “er the photogrammetric adjustment to a worthwhile degree

and, in the process, <alibrate the external sensors over the flight interval employed.

The above discussion is intended to provide a heuristic introduction
to the next phase of our formulation of the general photogrammetric adjustment,
namely the incorporation of observational equations arising from external sensors.
We postulate the existence of a general abservational vector.

T
(56) g1 = (BY &% s 0‘;)

-26-




provided by an unspecified combination of unspecified external sensors.

We shall assume that the adjusted values Bk = 9'(: 7 of the external
k

observations must satisfy a set of r equations of the general functional

form

(57) fk(e‘lezl...’ep U],U),---[Ugw U],U)I-..l\.hn, W,Uz,.--cu )- 0

in which
WiVzreeesUgm = elements of orientation (e.g., =0y, U= Wy, etc,)
1:;,:;2,...,03,, = coordinates of control (e.g., vy =Xy, u=Yy, etc.)

U],U),...,Uq

To linearize equations {57), we set

:J’ = :J:” + 8:), ’ 1 = ‘,2,.--,9"\,
(58) U = UesH . 1=1,2...,3n,
.J; - .’w+ su. , k = ]’2’...’q 0

in which the approximations for the elements of orientation u(:o and coordinates

of control u’00 ore the same values as were used in the linearization of the

projective equations, The substitution of these expressions together with the
expressions Ok = 93 + v, into equations (57) and subsequent linearization
by Taylor's series yields

-7~

unknown parameters peculiar to the external sensors.




(59)

where

(60)

(61)

v, Y Qoav, t
Mgy " %29,

€

gh

8g

olare i v,
%g 6o

e

gh

+

+

fig b * fagBup + ...+
flg&)‘ + fzg 5U2 e ia fsn’g 5“3“

flg 80\ & f?g

oo 0/ %; U'mﬁ Ué”r ()

Equations (59) may be expressed in matrix form as

(52)

66

6

Av+ﬁé+395+88'

€
6

8U2 +ooo+f

w L]

.
o7 Ugm s Y

where & and & are t7c same as in (24) and (27 respectively and

(63)

A

(rep

~ D

o

art

ary

0]2 o

022 e

°r2 s

-2

(r ,9m

f‘?m,g 5u9m

1 U?l s s

q:9 "7q

» Bni

..m ..m

U‘, U2[ ss e

€
b5




(66)

r_.. .0 (1] - P..I e o (X1 ’
i hy .o fyga b fo ... fq
. fn fag oo 2,0 fa f22 oo faq
(64) BG - . . . ! B = . . . ! ee *
(r,3n) sz 3 (r,q) o 5 (r,V)
jn frl see fr’Q- Lfn frz LX) f',q 8
€5) & = (54 &u; ... 8uq)T.

(QI])

We shall let the covariance and weight matrices of the observational vector 8

be denoted by Ay and Wy = A;] :

By meons of equations (62 we can introduce into the photogrammetric
adjustment any pertinent information available from independent tources. For
example, in the special case considered at the beginning of this section, the

matrices A_and B would assume the forms

6 6

o Azz s o

A6= o . » where A = oy 9. O -3i-1 Onogm
(3m,3m) | . ; . (3,3

N1 ,31 -2

M1 =2,31 =2 12,311 9y -3,31

%y ,11 = %31

o
..




r-— e
0 0 0
0 0 0
iy
FF" 0 see 0 0 0 0
o Ezz ) 0 0 o 0
(67) ée = where §“= 0 0 0
(3m,9m) 5 - 3 (3,9 g g .
6 0 .. F
_f e re,m-r hGiagsiez By e
G-z, 21 Fay-19a1 faLepa
f3’°2,9’ le-l,m f:u,?l
- N

Becouse no control points are invalved in equations (55), the matrix .B.B would be

o zero matrix, Since the U's (the o, ,bl <, in the present case) are common ta
oll equations, the matrix “8.9 would be a completely filled 3m by q matrix, where
q would equal 12 if four parometers were carried in each of the error models of

(53) and \54).

Inasmuch as different strips of o block may be tlown on different acco-
sions, it may be necessary ta employ fresh coefficients in the error models for
each strip or subgroup of strips. This situation is easily accommocdiated by o
reinterpretation of (62), (65), (66), and (47). We now attach o subscript
to the matrices defined in (64) , (65), (46) to signify that they arise fromthe
1 strip or n'h group of strips for which the gth set of errar coefficients apply.
If we postulate that the black is subdivided inta o total of s subhlocks, each
having o re-initialized error model for the external sensors, the motrices in

(62) assume the forms

-30-




(68)

(69)

LN ] h
Here & refers *o the corrections to the 1™ set of error coefficients (these apply

VlfOf

only to the lth sub-block ). In the present application the elements A
1

A

o

the vectors Vyr & are themselves vectors (applying to the lfh sub=block) ond are not

to be confused with the scalars v ' G appearing in (57) (these should now be rede-

finedas v, , €
9”

arising from the 1

sub-block).

From the foregoing example it should be clear that equations (62) may be

1,
to refer, respectively, to the th residual and ofh discrepancy term

interpreted with sufficient generality to accommodate any available auxiliary data

pertaining, however remotely, to any of the elements of orientation or to any coor-

dinates of control.

-31-
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1.08 OBSERVATIONAL EQUATIONS GENERATED BY ARRIOR!
KNOWLEDGE OF PARAMETERS OF ERROR MODELS

Our final set of observational equations is intended to exploit any
information that may be available concerning the admissible voriation of the
coefficients of error models of external sensors. We assume that the parameter

.;; is itself subject to observation and write

(70) Uk =) U: + Vk ’ k=11210-o;qc

Upon eliminating u_ from equations (58) and (70) we get

R . I B

which may be expressed in matrix form as

(72 v = b € .
(q.1) (q,1) (q,1)

1]

Weshall let A ond W = A7 denote the covariance and weight matrices

(q.9)  (q.q) (q.,9)
of ine a priori values of the error coefficients, In the event no a priori constraints
were to be placed on the error coefficients, \.A./.wouid become zero., By the same
token, if no constroif.\.t.s were to be placed on a particular error coefficient, the

rows and columns of W correspc nding to that coefficient would consist of zero

elements,

22-




1.09 THE MERGED OBSERVATIONAL EQUATIONS

Bringing together the various sets of observational equations which

may apply to the adjustment of a general photogrammetric net, we have

v + B&5+ 8BS

= € (See Section (1.03))
Av +B&§+BSEE+BEE = € (See Section (1.07))
06 6 9 0 6
73) ¥ = 5 = € (See Section (1.05))
" SN TE = € (See Section (1.04))
- 8§ = € (See Section (1.08))
These may be written
1 0 0 o of [v] (8 8 o] _
0 A, 0 0 0 Y B, B, B 5
74 0O 0 | 0 O - + {-1 0 0 3 =
0 0 0 | 0O v 0 -1 0 s
0 0 0 0 | v 0 0 -l
L ) e

which may be represented more compactly as

(75) Av + B® = €
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The covariance and weight matrices corresponding to the combined observational

vectors is

rA 0 0 0 0 W o 0 0 0
0 A O 0 O 0O w, 0 0 ©

9 ]
@ A=1]0 Ao of, w=A"=-1{00 wo o
0 0 0 0 W 0
0 0 A 0 0 0 0 W
L . 9 -

All of the information pertinent to the adjustment is contained in equations

(75) and (76).

1.10 THE GENERAL NORMAL EQUATIONS

The normal equations for the minimum variance adjustment are obtained
from the particular pair of vectors v, & which simultaneously satisfy the specified
observationai equations while minimizing the quadratic form

S .
(77) y = v Wy .
The writer has shown (Brown, 1955) that the solution to this problem leads to a set of

normal equations of the form

(78 N§=c,




in which

1f we set

T
= (A AA ’
(81) G (999)

we can express the matrix (KT\KT)-‘ as

0
0
(82) AAAN = 0

W
0
0
0

0
G
0
0
0

OOi.OO

W
0

LO

, 22 o o O

vl

p

From this and from the implicit partitioning of B in (75) we may express the

coefficient matrix N as

(o1 o 11 IRE
8’ 8 -0 ollw o o o ofls B
(83) N= “T ¥ o 4 o|lo 6 0o o 0)|8 B
8 o 6
o T o o -llo o wo 0f}- 0

L ° ] )

o 0 0 w oflo -
s 0o 0o n wllo o

& L




which reduces to

Jwa+§ce*w1 Bwp+s GB B! G B
9 PR 0
o) N= | B ws+8 GB BWB+*B GB+W B GB
0 0 I’ 9
B G B B GB B GB +W
0 0 9 o8

Similarly we may show that c is of the form

——

BTW€+ BTGGB-W€

6
(85) c= BTWG*-BTG€9-W€

]
..OT [T X ) .00
i B G 69 -We

D

From (84) and (85) we see that the general normal equations (78) can be

expressed as the sum of the following two sets of normal equotions

r * I T.- -. * .7
N+ W N 0 ) c-We
(86) KT ON+w 0 5 = c-We
| 0 0 0 o
r - r‘ o
. ~ Q ru
N N ) c
6 6 6 6
—T (X3 a .e (1]
N'N N 3 =
(%7} P 9 %
NTONT ONsw | s e & i
6 0 ] | 6 |




in which
-8'ws , N =86GB, N =868,
6 o 8 6 0
N=8ws, N -8 Gs, N =B GB ,
6 68 6 68
88 N =8 WB, N =8GB, N =BGb .
6 6 8 0 0
¢ =BTWe, ¢ =BTG€ ;
5 6 8
.r: ‘—'.BqWG, c =B.TG€ '
9 6 8
c =BTG€ ,
9 6 8

We recognize equations (86) as being those derived in 1,06 and in our earlier papers
(Brown 1958a,1959); they arise from the projective relations and from con-

straints placed directly on the elements of orientation and coordinates of

control, Equations (87) reflect the combined contribution of those external

sensors not involved in the generction of the constraining matrices W and W

In the case of the Air Force USQ-28 system, for example, such sensors would
include: o precise inertial system (Hypernas 1) providing accurate measurements
(0=10 arc sec.) of the direction of the camera axis relative to the local vertical,
together with measurements of heading (0 = 40 arc sec.) and of relative position
(0,)); a precise ranging system (SHIRAN) providing simultaneous measurements
(0= 3 ft.) of the distances of the aircraft from up to four ground stations; o
Terrain Profile Recorder providing ¢ continuous measure (0= 10 ft,) of the
distance to the nadir of the aircraft; a precise pressure altimeter monitoring the
altitude of the aircraft relative to an isobaric profile. Bquations (87) are suffi-
ciently general to encompass all of the sensors of the present USQ-28 system

plus anv other sensors which might later be added to the system,
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1.1

the form

(89)

in which

(90)

DETAILED STRUCTURE OF THE NORMAL EQUATIONS

To proceed further we shall confine our consideration to normal equations
of the form (86). From the partitioning of (27), (28), (35), (36), and(41) we can
show that the normal equations (86) (with the third rows and columns dropped) are of

oe (X

N,* W,

From the further partitioning of (24),(25), and (42) we can expand (89} to the form
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Np + W 0 cee 0 : N" Niz ces ﬁ]l 81 o -We
] . (] . . ] ]
0 N2+t Wp ... 0 . Na N2z ... Naa| | 52 22 = W€y
:
. . . ¢ . . . . .
. . 3 i . . . . .
. . . ' L] . . L] L]
. . ' . . > L]
] - - -
0 0 vee P4"m4-VVm_ : hﬁﬂ hﬁmz ve e Pdm_ Sn C-"anfn
() S R SRS | P
[}
T . T = T [ oo (1] (1) s e
N Nav ..o ! PNyt W o ... 0 & q-W €
. ] .. [ e o e e
N‘Tz Nsz 088 NmT2 : 0 N2 + wz cess 0 82 C2 - W2€2
]
]
. . . ! . . . . .
. . . ] . . . . .
. . . ] . . . . .
]
-T - T _T ] oo oo oo oo LI T
Nia  Naa .o N, | O 0 .o NoW LB e
in which

-
.
)
.
.
.
—_

Nn = FZ]BH W” B” ! €y T ’=Zl 14 W” 1y !
p— _ .T . (1)
G2 Wy S & Wi By e
n
(13 _ v..T e L1 _ ..T
1 -l;-‘fBll 1y C1y ! < —l_; 14 W” 1y °

The upper left hand portion of the normal equations consists of m
diagonally arranged 9x9 blacks of elements, each such block corresponding
to the elements of orientation for a particular exposure station, When the
elements of interior orientation are rigidly enforced ta precalibrated values
(as would normally be the case in aerial photogrammetry), the 9x9 blocks

reduce to 6x4 hblocks. In general, any parameter of the normal equations
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may be enforced at the value employed in the linearization of the projective
relations by simply deleting the rows and columns of the normal equections
corresponding to the parometers, This is equivalent to the operation of letting
the a priori weight (in the \;V or V.\; matrix) of the parometer appr oach infinity,
By so doing one forces the solution for the given parameter to assume the value
of zero, which, when substituted in the remaining equations, eliminates the

parometer from the overall system,

The lower right hond portion of the normal equations consists of n
diagonally orranged 3x3 blocks of elements, each such block corresponding
to the coordinates of a particular control point, B, making the appropriate
diagonal element of the \.f;/ matrix for a given point sufficiently large, one
can force the adjustment to reproduce a pre-established value of any coor-
dinate of the point to within any desired tolerance. One could, of course,
rigidly enforce a given control point by striking out the rows and columns of
the normal equations corresponding to the point. Again, this would be tanta-

mount to giving the point infinite weight.

1,12 THE REDUCED NORMAL EQUATIONS

When the number of unknown e¢lements of orientation is not exces-
sively large, it becomes practical to reduce the general normal equations
(91) to a system of lower order by a process of inversion of o partitioned system,
The practicability of this approach depends on the fact that, by virtue of diag=
onality, the inversion of the lower right hand matrix of the normal equations
(l:l.+\.ﬁ./) consists merely of the inversion of n individual 3x3 matrices (the ;‘:Jj+\;V.j)
and, hence, can be accomplished no matter how great the number of control

points, As shown in our eorlier paper (Brown, 19580), inversion by partitioning

leads to the following expressions for & ond 6:




(93) 6 = Mic-We) + Mlc-wWe) .

(94) 5§ = iC«T(; - »'v;) + ﬁ/'\(:- We) .

in which

95 M = [N+wW-RN+wW) NTl'l‘

(96) Moo= (W) e ew) T RT MR (;‘:H\Xf)-l,
97) R o= -MREN+wWT

If we set

09 Q = (N+w) R

and note that M in (97) then can be written
= N T
999 M = -mMQ ,
the expression (93) for & may be put into the form
. B . . . . T .o a0 00
(1000 & = Mlc-We=-Q (c-Wel .
We shall refer to(100)as the reduced system of normal squations. A more
convenient alternative expression for & can be derived from (94) by first

using (98) to express M in (96) as

o) M= (N+w +amal
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and then substituting this together with (99) into (94), getting, upon coliecting

terms

(102) § = (N+W) (c-We) - QM c - We - Q' (c-We) ]

in which, by virtue of (100),the postmulitiplier of Q in the second term may be
replaced by 6, thus reducing the expression for & to simply

(103) & = (N+W) (c-We)-Qé .

This expression for 6 differs from that in our earlier paper (Brown, 1958q) in that
the approximations for controi are not required necessarily to be precomputed in

o manner forcing c - W€ to zero.

The partitioning employed in the formation of the normal equations can
be exploited to derive a convenient cumulative process for forming the reduced
. th 2
normal equations(100). From the dota generated by the 1 control point, one

would compute the intermediate matrices

(104 Q, = (KJ,N'/, ™! N,T

(105 R, = N, Q,

(106) s = rll, - R,

(107) ¢ = ¢ -Qf (.c.l -'v'vl .e.,) .

As Sl and El are formed they are cumulatively added to their predecessors

vielding, after the final control point has thus been processed,
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(108) S = S, +S;+...+S

n

C|"’C2+...+C

¥

(109) <

n

In terms of these the solution for & becomes

1oy 6 = (s+W'C-we .

Once § has thus been determined, the solution for each control point con be

computed in turn from

o oo oo -l ]

(my s = (N’+W,) -Q’S,

which iz a direct consequence of the partitioning of (103).

The reduction based on equations(104)through (111)has a number of

attractive properties:

(c) the order of the largest matrix to be formed, inverted or otherwise
operated on, is equal to the toral number of unkriown elements of
orientation and is completely unaffected by the number of control

points involved in the reduction;

(b) the computations are so arranged that data arising from a given
control point are processed independently of the data from any
other control point up to the stage of the cumulative formation
of the reduced normal equations (this means that the internal
storage required of the computer depends almost exclusively on

m and is ~ssentially independent of n);
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(c) for n >> m the total number of computations is essentialiy propor-
tional to min rather thon to  as would have been the case had
the coefficient matrix of the normal equations been completely

filled with nonzero elements.

1.13 THE PROCESS OF ITERATION

Before the final residuals are computed, it may be necessary to iterate
the adjustment a number of times in order to reduce the effects of higher order
terms to insignificonce. For this reason we rewrite equations(110)and (111)to

. th . . .
reflect the solutions resuiting from the 1 iteration of the adjustment:

M2 & = ey M ow

iliEs 8?) ) ‘Nf')*w, ! <.c§‘)-§~/, .E.,(')).

The initial solution corresponds to the case 1 = 0, and each subsequent sclution
results from the relinearization of the original observational equations about the
values resulting from the preceding solution. The process of iteration should be

continued until o sufficiently stable solution is cbtained,

Inasmuch as initial approximations are essentially arbitrary, nothing would
have prevented us from letting the a priori observations of elements of orientation
and coordinates of control serve as initial approximations for the linearization of

the observational equations, By thus setting
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Y
8

%

(114)

e e ‘(0 o0
we would have reduced the initial discrepancy vectors e< )and é( )to zerc vectors,

As a result, the discrepancy vectors ta be used for the first iteration of the adjustment

would have become

RURIES IO RO N
(115)
M Y0, 50 L e

and in general

o)

§0 .+ &V, v t g )

PN Gl

We see then that, although initial discrepancy vectors for . € and € can be made

(1-1), {1-1)

OO TR IR TR

(16)

[f]

equal to zero by the natural and perfectly valid equating of initial approximations
and a priori observations, this does not mean that subsequent discrepancy vectors
; and € arising from the process of iteration are equal to zero, Indeed as (115)
shows, discrepancy vectors for ; and e subsequent to zero initial vectors are no
longer arbitrary, but are equal to the sum of all preceding adjustments of the
parameters. It i; because this fact could have been s easily overlooked that we

chose to give prominence to the vectors € and ¢ by avoiding the natural choice

for initial approximations which would have rendered € and € equal to zero.
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1.14 ERROR PROPAGATION

After the final iteration of the solution, equations (26), (34), and (40)

can be solved for the final vectors of residuals, giving

v = €-B&-Bb

mz v = ¢€-8,

if the process of iteration were carried to the point where the final vectors &, &

were reduced to insignificance, equations (117) would reduce to

v = €,
(118 v = €,
v = ¥

in which the discrepancy vectors are those resulting from the substitution of the

final parameters into the original observational equations.

The quadratic form of the residuals arising from the adjustment is

Wv = vTWv+va+va.

The degree: of freedom associated with the quadratic form is equal to the
number of cbservations in excess of the minimum required for a unique solution,
in the case vhere all control points were to appear on all plates and where

a priori values were available for all elements of orientation, the total number

of observations ng would be equal to 2mn+9m+3n and the degrees of freedom




would become f = ng -(9m+3n) =2mn. In most cases of interest, however, only

a relatively few of the total number of control points will appear on a given plate,
This situation is readily handled by assigning dummy observations having zero
weights to those zontrol points not appearing on a given plate. In this manner

the theory can be made to heid for any observutional situation and total number

of observations ng becomes equal to the number of nonzero diagonc| elements in
the composite weight matrix W. With ng thus reckoned, the degrees of freedom

for the adjustment becomes, in general,

(1200 f = ng - (9m+3n).

If atatal of r:w of the 9m elements of orientation were rigidly enforced (thereby
reducing the order of the normal equations), the term 9m in (120) should be re~
placed by 9m-r;1. Similarly, if ; of the 3n coordinates of control actually were

ta consist of relative control for which the assigned varionces of the approximations
were grossly relaxed, the term 3n in (120) should be replaced by 3n-;. On the
other hand, if the assigned variances of the approximations employed for relative
control were considered to be fairly realistic, the term 3n would be better left

unaitered,

If the observational vector has the multivarinte normal distribution, the

statistic

(121) X5 o8

will have the chi square distribution with f degrees of freedom. This may be
exploited in statistical testing of the adequacy of the adjustment, The estimate

of unit variance arising from the odjustment is given by

(122 & = of.
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Ideally, G: should be equal 1o unity, From the chi square test one can derermine

whether or not the departure of q} from unity is statistically significant.

Ti.e covariance matrix of the adjusted parameters is provided by the
inverse ¢f the coefficient matrix of the normal equations. In particular, the

covariance matrix of the adjusted elements of orientation is

2 3

1
——~
w
+

2
S’

1]
<

ond that of the adjusted vector of coordinates of control is

*9 *9 *9 ‘

(1240 ¥ = M = (N+w) T

+tQMQ .

The submatrix of T corresponding to the ifh control point can be shown to be

o0 o0 (1] -l

_ el
(129 %, = (N+W)7 +G MQ .

The first term of this equation (N‘ + W’ )  represents the covariance matrix of the
adjusted coordinates of control under the assumption that the elements of orientatior
are error free. The second term Q’ A;\, QI represents the contribution to the
error in triangulation of errors remaining in the adjusted elements of orientation,
With a sufficiently strong photogrommetric net, one couid hope to suppress the
contribution of the second term to insignificance relative to the first. This is
generally the case with a ballistic comera net where abundant stellar control

can be exploited to reduce the errors in the calibrated elements of orientation to
insignificonce. Onthe other hand, with aerial photography the effects of residual
error in odjusted elements of orientation are difficult to suppress sufficiently when

absolute control is minimal,




.15 COMPARISON WITH OTHER THEOR!ES

An alternative treatment of the problem of adjusting the observed coor-
dina’es of control points merits consideration. Let us first rewrite the observa-
tional equations arising f-om the projective equations and from the coordinates

of contro!, These are

(126) ,‘f+82+86 = €.
v = 8 = €.

As discussed eorlier, we cre at perfect liberty to choose the approx] mations
for the coordinates of control to be equal to their observed values, thereby

rendering €=0, Assuming this to be done, we may write V '.6. ond then elim=

inate the parametric vector & from the first of the above pair of equations, thus

getting
(127) v+ Bv + 8B = €,
We may rewrite this as
(128) Av +B86 = €
where A and v are now defined as
=
.o . (2mn,l)
(129) A = ( [ 8 ), v =
(2mn,b) (2mn, 2mn)(2mn,3n) (b,1) v
(3n,1)

a0

where b = 2mn + 3n, By virtue of the elimination of the parametric vector & from

the lineorized projective equations, we hove reduced the number of unknown param-
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eters ond, hence, the arder af the generol normal equatiors from 9 + 3n to

simply 9m. The normal equations for the present approach are

10 B aAAY'81s = 8aAA e

where A is now defined as

=

A 0 !

a3 & = (2mn, 2mn) . :

(b,b) 0 A _j
(3n.3n)

The formation af the normal equations is thusseen to entail the formation and

inversion of the intermediate matrix

(132) G = A A A .

(2mn,2mn)  (2mn,b)(b,b)(b, 2mn)

By virtue of (129) and (131) this may be written

- - - - - p—

e oo Q-T

(133) G = 0B lA 0 I = A+ BAB .
0 .T’
LO A.J LB.J

From the partitioning of B and A indicated in (27) and (36) we may write

F_c- r r-w - ’-..T
B‘ 0 L] 0 I\I 0 - . 0 B‘ 0 o0
oo .o ooT
co-aocT 0 Bz o e 0 0 Az see 0 0 Bz eve
(134) BAB
0 0 ee e n 0 0 eee An LO 0 eee




which reduces to

P-oo oo o0T
B]A]B‘ 0 reo e o
3 =
0 0 oo éT
. n nn _

This is a diagonc! matrix of = matrices of dimension 2m by 2m. Inasmuch as A

is a diagonal matrix of mn matrices of dimension 2x2, it follows that the required
inversion of G breaks down to the inversion of n individug! metrices of dimension
2m x 2m, On the other hand, in the approach we developed in Subsection 1,12
the reduction of the normal equations to an equivalent 9mx 9m system was accom=
plished through the inversion of n intermedicte matrices of order 3x3 (the ;:I, e

It follows that the approoch of the present section, though mathemotically equiva-
lent to that developed earlier, entails grossly more computation for large m; in
fact, only in the cate of the single photo (m=1) does the present approach entall
less computation (for this case it provides a practical solufien to the problem of

photogrommetric resaction of » single camero when the given control is subjact

to significant error),

Schmid (1959) published a solution similar in many respects to that of Brown
(1958a). One major difference is in Schmid's treatment of errors in control points,
For the general case in which all n points appear on all m photos, Schmid employs
an approcch wherein the coordinates of each ground control point are adjusted inde-
pendently for each phatograph, Within the fromework of the present subsection, we
can reconstruct t}:? essentials of Schmid's solution as follows, The typical 2mx 2m

submatrix B, A, B,T appearing in (135) may, by the partitioning of (24), be ex-
panded to
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[ ]
By,
oo o0 o0 T 82’ oo oa-'- o.r ooT
(136) B’ A’B’ = A’ [B" 82’ oo Bm2]
B
™
~.' (1] ..T (1] (1] (1) T o0 (1] '.T -
By A,Byy ByA By ... ByA B
o N *8 (1] .'T (1) *e o0 T [ 1] oo .'T
. (1] "T *3 .o .'T o0 o0 ..T
B M8y B AyBy ... BmyAyBy

This is o filled nixm matrix of matrices of dimensions 2x 2, In Schmid's treatment
only the diagonnl elements of above matrix cre actuolly formed. This is equivalent
to setting

(138) B.A B = 0 forailx# 1.

In this manner, the matrices B’ A, B’T in (137) are aol.I"re.duced to diagonal
matrices of m 2x 2 matrices and this in turn reduces B A B' (and, hence, also

A KAT which, in Schmid's solution, is termed A P-‘ AT) to a diagonal matrix
s 252 makvices.  THua byl inemsion.of & KA becomes the equivalent of

the simple inversion of mn 2x 2 matrices in place of the far more formidable inver-

sion of n 2m x 2m matrices as in the rigorous development,

e S, AR 00 S BN 1 et




Tna e‘feci of unlocking the B, '\" B" matrices by the aibitio. imposition
of (138) can be theoreticatly justified only if the coordinates of the coatrol points
were somehow fo shift randomly about their true pasitions from one exposure to the
next. |nasmuch as the world is not made of jelly, such on approach is unsound in

our opinion. Moreover, because the coordinates of a given absol ute control point

are free toshift independently for each plate, they will tend to compensate unduly

for errors in the measured plate coordinates and wili, thus, lead to attractively small,
but spurious, plate residuals. This consequence may also be viewed as stemming from
the fact that the degrees of freedom for the adjustment are, in effect, grossly increased
from the correct value of f = 2mn + :n - 9m (for the case where all control is considered

-

to be subject to adjustment and cppears on all photos) to f = 2mn + 3mn+ m = 9m = 3n,

Schmid (1959, p. 38) discusses the possibility of modifying the adjustment
so that control points subject to error are adjusted only once within a given photo-
grommeiric net, but, instead of developing the approach fully, he advocates (be-

cause of computational difficulties) an alternative fwo step approach in which

(1) the aodjustment is performed first with all absolute
control treated as purely relative control except
for the minimum control needed for a unique solution
(this leads to a photogrammetric model that is approx-

imately correctly translated, rotated and scaled);

(2) . _ordinates of the resulting model are subsequently
further retined by means of o seven parameter transforma-
tion (three translations, three rotations, and change of
scale) detesmined in a secohd adjustment by the minimi-
zation of the sum of the squares of ihe residual distances
between the made! coordinates and the known coordinates

of the withheld absolute control.




Schmid suggests that the above means of circumveniing the computational ditti-
culties inherent in the strictly correct adjustment of control subject to error is
"from tha theoretical standpoint sufficiently rigorous.” Our results and experi-
ence would seem to contradict this, If, for example, ane were to witnhold all
but minimal contral from the adjustment of a long strip that is offected only by
random errors of measurement, the typical result would be a sinuous deformation
of the model because of unfavorable propagation of rondom error (systematic error
would contribute a secular component ta such deformation). When only minimal
absolute contral is exercised in the simultaneous odjustment af ali photos in the
strip, the build-up of quasi-systematic deformation is not prevented, although
the degree of such deformation is not as severe as in the case of a photo-by-
photo cantilever extension. With a sufficiently long strip, the overall defor-
mation is characterized by several slowly changing cycles of positive and neg-
ative deporture, It follows that wher: the model is subjected to a rigid trans-
formation (three trarslations and three rotatians) coupled with a uniform stretch,
only a small port of the totol deformation will be removed, for such a transfor-
mation can accommodate, ot best, only one-haif cycle of quasi-systematic

error over the length of the strip. The end results of such an approach will
ordinarily beor little resemblance to the results one would obtain from exer-
cising all availatle control in the original adjustment of the strip. The effect
of utilizing controi in this manner is to ' pinch' the build-up of quasi-systematic
error to zero (very nearly) in the vicinity of each absolute control paint. Far
the limiting case of absolute control of unrestricted abundance, one can suppress
the build-up of quasi-systematic error to complete insignificance, provided the
cantrol is actually exercised ir the phatogrammetric adjustment, On the ather
hand, if it is for the most part withheld, as suggested by Schmid, such cantral
can da nothing to squelch the inevitable build-up of significant, sequentially

correlated deformation of low spatiol frequency,




A-ide from uiiimaic consideratione of accuracy, there is another cogent
reason why available absolute cantrol shauld be exercised in the adjustment
rather than being withheld for subsequent determination of a ' cosrective' trans-
formation of one kind or another (e.g., the rigid transformation advocated by
Schmid or more complex polynomial transformations advocated by Schut (1964),
Harris, Tewinkel, Whitten (1962), and athers). As will presently be demon-
stroted, we have found that the rate of convergence of the recommended iter~
ative solution of the normal equations is accelerated by the introduction of
absolute control. Once a certain critical level of control is attained, conver-
gence can be soeeded by as much as an order of magnitude. For a long strip,
the critical level appears, on the average, *o be a pair of fresh absolute control

points per four ta five photos.

As we demonstrated in Subsections 1,06 ond 1,11, the rigorous adjustment
of absolute control subject to significant errar is computationally very simple within
the framework of the concept of the ellipsoidal control point, for such control can
pe treated precisely in the same manner as relative control, the only distinction
being in th= lower magnitudes of the elements of the covariance matrices (the K’)
of the absolute control. In view of this and in view of the foregoing discussion,
we most strongly advocate that the entire store of available observational materiol
be utilized in the simultaneous adjustment of a photogrammetric net, The general
theory developed in this paper is sufficiently comprehensive to accommodate vir-
tuolly any conceivable type of information that might be applicable to the ptoto-

grommetric problem,

Before we leave this subsection to take up the problem of the solution of the
normal equatians for large photogrammetric nets, it is appropriate to review the few
remaining differences of consequence between the writdr' s earlier soluiion (Brown,
19580, 1958b, 1959) and that of Schmid (1959). For the introduction of partial

cbsalute contral expressed in terms of latitude ¢, langitude A\, and heignt h, Schmid




employs on approach similar to that of Dodge (1959). A portial control point given
by h, for instance, is considered io deiine G 3piisiGidal surface on which the rave
are forced to intersect through the introduction of the oppropriate observational
equation. By the same token, oppropriate observational equations defining specific
cones and planes ore imposed for partiol control given in terms of ¢ ond A. In the
cpproach of Brown (1959), portial control expressed in terms of ¢, A and/or h is
treated as in Subsection 1,06 of the present report (in the earlier report, the termin-
ology 'relaxation of quasi-observational variances' was employed in place of the
‘ellipsoidal control point' of the present report), Here, instead of forcing rays to
intersect on various mathematical surfaces (or intersection thereof), one constrains
the rays to intersect as closely as possible to the center of on appropriately defined
ellipsoid of probability. By virtue of this concept, all essential distinction between
various types of control points is erased; all possibilities are embraced by the ellip-

soidal control point.,

The extended solution outlined in Brown (1959) provided the first ( and, to
this point, the only ) treatment of the problem of adjustir.g any of the elements of
orientation considered to be observed quantities subject to random errors. This
opened up the possibility of the rigorous incorporation of auxiliary data gathered
by those external sensors which could be considered to ke sensibly unbiased (infor-
mation from unbiased sensors can be fully absorbed by the matrices \;V and ;). The
primory theoretical innovation of the present report is the extension of the solution
to apply to auxiliary sensors whose observations may be biased to a significant degree.
The primary practical innovation is the demonstration of the fscsibility of certain of
the iterative procedures for the solution of the enormous systems of normal equations

generated by lorge. photogrommetric nets,
Aside from the differences outlined above between the solutions of Schmid

(1959) and of Brown (1958a, 1959), there are virtually no further differences of

consequence between the two insofar as the furidamental photogrammetric adjustment
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is concerned. In our comparative analysis we have concentrated mainly on Schmid's

theory because, in our view, it is, in spite of o few lapses in rigor, the only compet-
ing theory which aspires to the simultaneous edjustment of o general pi.otogrammetric

net with comparable theoretical and statistical soundriess., Also, the precise relation-
ship between the two theories has not, we feel, generally been opprecisted by the

photogrommetric community ,

1.16 THE PROBLEM OF ADJUSTING LARGE BLOCKS OF AERIAL PHOTOGRAPHY

The reduction of the normal equations developed in Subsection 1,12 has proven
effective in geodetic applications and in applications ta smali ta medium blocks of aer-
ial phatography (on the order of 20 ta 30 photos), However, problems of raunding error
ond camputing time ultimately render this approach impractical far relotively lorge blocks
{(on the order of 40 photos or more). This means that, if large blacks of phatography ore
to be successfully adjusted os arganic units, on effective alternative ta the reduction of
the normal equatians must be developed, The development of such on alternctive is ac-
tually the primary objective of this investigation, Toward this end, we have concentrated
mainly onthe problem of adjusting iarge blocks of aerial phatography having fairly con-
siste -t patterns of forward and side overlap. Our original opproach was based on the fal-

lcwing considerations:

(1) the coeificient matrix of the general normal equatians for an oerial black
is both highly patterned and highly sporse (i.e., cansists predominantly
of zero elements);

(2) by means af an oppropriate indexing algorithm, it is possible ta collapse
the full coefficient matrix of the normal equatians ta o for more campact

matrix containing few zero elements;

(3)  this ' collapsed system' of normal equaticns can be computed directly,
thus by-passing the unnecessary computation of zero elements;
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(4) o computing algorithm can be formulated to exploit the collopsed
system of normal equations to effect, if practical, the solution by
means of recently developed iterative procedures which are vast
improvements on the classical Gausi-Seidel method;

(5) the computing algorithm can be designed to operate on natural blocks
of elemunts of the normal equations, rather than on a single row at
a time;

(6) through o process called "intertwining, " it is possible to rearrange
the coefficient motrix of the general normal equations in such a man-
ner as to achieve a highiy diagonci form which could conceivably be
conducive to the more rapid convergence of t'e iterative process,

The rationale of our approach is perhaps best presented in terms of concrete
examples, Let us begin with consideration of the form of the general normal equations
arising from what we shall term a ‘ uniform block.' A uniform photogrammetric block
is one which has o consistent, self-reproducing pottern of control and overlop. A
specific illustration of a uniform block four photos wide and five photos long is presented
in Figure 1.1, Each photo in the block has a consistent nine point pattern of control
(we use the term ‘ control' here in the brood sense to denote anything from a relative
control point (pass point) to an absolute control point; all are eilipsoidal control points).
The forwar-} uverlap is sixty per cent and side cverlop is twenty per cent. Except where
boundary conditions prevail, each triple overlop area and each sextt ple overlap area
contains one and only one control point. In practice, of course, it is most unlikely
that one will obtain blocks of photography displaying such uniform characteristics of
overlap. On the contrary, it is not unusual for there to be gaps in the side overlap
and for there to be different numbers c* photos in cortiguous strips, thus rendering the
strips ' out of phase’ insofar as the uniform block is concerned. |n some instances,
such difficulties could be rectified by the twofold expedients of (a) inserting dummy
observations having zero weight matrices, (b) inserting both dummy observations having
zero weight matrices and aoppropriate dummy photos having nonzero weight matrices,

Thus, for example, if a control point for a certain position were to be missing on one




Figure 7.1
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and Photos is According to Rows,
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or more photos (as might easily happen if sidelap were to fall outside of tolerance),
one could assign dummy plate coordinates, say (0,0), to the missing image and assign
zero weights to these plate coordinates. By virtue of such weighting, the dummy
coordinates will in no way offect the finol results. In a similar manner, complete
gops in the photography or phating discrepancies of strips can often be rectified
through the insertion of dummy photos having dummy images. To avoid indeterminacy,
the assigned eiements of orientation of dummy photos must be given finite weights.
When introduced in this manner, dummy photos have no effect on the end results,
but yet do contribute to the complete predictability of the data flow. This is of great
value in the exploratory formulation of simple indexing algorithms for the collapsing
ond subsequent implicit reconstruction of the coefficient motrix of the normal equotions.
For this reason, at the outset of our investigation we confined our considerotion to
uniform blocks. Once the effectiveness of our proposed approach had been demon-
strated, we abandoned the stipulotion thot a uniform block be employed for, even
with the aid of dummy observations and dummy photos, the transformation of an actual
block into a uniform block can prove to be cumbersome, except for the case of the

isolated strip.

With the understanding, then, that our consideration of the uniform block
is strictly for exploratory purposes, we may proceed to investigote the character of
the normal equations of the form (91) as generated by the adjustment of the sample
block of Figure 1.1. The form of this coefficient matrix is indicated in Figure 1,2a.
The solid ond shaded areas of the figure corresporid 10 nonzero elements; all other
oreas are filled by zero elements, The most striking choracteristics of the coefficient

matrix are

(a) the regularity of the pattern,

(b) the predominance of zero elements,
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The submatrices N” of the N portion of th> normal equations are nonzero matrices
only when the I'h point appears on the lfh photograph, in which case the .l\-l” inter=-
locks the corresponding I:IH and f.\.l’ portions of the normal equations. The portion
of the matrix corresponding to N may be described as consisting of four ' landings’

of 'staircase’ matrices with three parallel staircases to a landirg, Each individual
staircase is generated by a particular row of control points; the longer the row the
longer the staircase. Each landing is generated by a particular strip; the number of
landings is equal to the number of strips. The number of staircases per laniding is
equal to the number of rows of control points per strip. The last staircase in each
loanding lies directly over the first staircase in the next landing., This is a consequence
of the control in the side overlap (were there no contro! in the side overlap, the nor-
mal equations for the block ‘would degenerate into separable sets of independent nor=
mal equations for strips). From the foregoing considerations, it becomes a simple
matter to generalize the pattern of the normal equations in Figure 1, 2a to apply to

a uniform block of any dimensions, as long as the bazic nine point pattern of control
is maintained and the numbering of photos and controi points corresponds to that of
Figure 1.1, For instance, if the block were 4x50 instead of 4x5, the staircases
would merely become lengthened to 50 steps instead of 5 steps. The r;|+v'v portion

of the matrix would consist of 200 diagonally arranged, nonoveriapping éxé matrices
instead of 20, and the N+W portion would be increased from 43 diagonally arranged,
nonoverlapping 3x3 matrices to 378, In general, the number of control points in a
uniform b! sck of the type of Figure 1,1 is (2s+1)x(p+2) where s denctes the number of
strics and p is the number of photos per strip. If the 4x50 block were now increased,
to, say, a 10x50, the effect on the N portion of the matrix would be merely to in=
crease the number of staircase landings from 4 to 10 with each landing consisting of

3 porzilel stoircoses 50 steps high, the first staircase in each landing being diroctly
below the last staircase in the landing above, The I:U-W and ;:J # V:/ matrices would
increase to 500 diagonally arranged éx6 matrices and to 1092 diagonally arranged
3x3 matricas, respectively, The order of the general normal equations would thus
become 6x500 + 3x1092 = 6276,




As o uniform block bezomes larger and larger, the ratio of the number of
nonzero elements to the total number of elemants in N (the coefficient matrix)

decreases drasticallv, For the type of block of Figure 1.1 this ratio is

riw her of nonzero elements in N 9(42p+ 4s+ p+ 2)
total number of elements in N 9 (4sp + 45+ p+ 22
> _ZE for large s and p.

sp

Thus, in a 4x5 block about 1 element in 12 is nonzero, in a 4x50 black the ratic
is about 1 in 76, and in a 10x50 block it is abaut 1 in 194, The fact that the nor=-
me! equations are so highly patterned with such a small portion af the elements

ing nonzero suggests

(a)  that the normal equations be formed in such a manner that only the
nonzero elements are actually generated,

(b)  that an alternative representation of the normal equations be developed
to exploit to the fullest the patterned characteristics of the equations
and to render the system as compact as possible,

(c)  that the solution of the normal equations be effected by a suitable
iterative process cesigned to operate only on the blocks of norzero
el ements,

With regord to (a) there is rio particular problem, The logic of generating only the
nonzero constitue.is of the normai equations is fairly simple and straightforward. With
regard to (b) there is again no particular problem, far the coefficient matrix cf the gen-
eral normal equatians can be ' callapsed' to the compact scheme indicoted in Figure 1,2b,
Here all zero blocks of eleme:.ts have been ' squeezed' out of the original normai equo-
tions by sliding each nonzera sub=block ta the left cs far as possible, The sclid blocks

in Figure 1.2b correspond to the diagonal blocks of the original norma! equctions., We
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see that the collapsed normal equations are also highly patterned. It is clearly possible
to establish a set of rules or algorithms by means of which the elements of the collapsed
matrix can be related o their counterparts in the original matrix. Inasmuch as the coi=-
lapsed system in conjunction with a small set cf algorithms is sufficient io reconstruct
the original system, there is really no need to generate the original system in the first
place. It is sufficient to generate the coilapsed system directly. Not only can this

be done, but it can be done on a relatively small digital computer such as the 1BM 1620
(not that we necessarily recommend this), This is true no matter what tha dimensions of
the block, for the maximum number of columns in the collapsed sysiemn can never exceed
39 (this again assumes the 9 point pattern of control of Figure 1.1:. The only effect of
increasing the length or width of the block is to lengthen the collapsed matrix of nor-
mal equations; it can never be widened., Thus the computer can be programmed in such
a manner as to generate the collapsed normal equations row by row or, more naturally,
horizontal block by horizental block. The total computational time in setting up the
collapsed system will thus increase only linearly with the aumber of photos in the block.
It is this fact that makes the use of a small computer feasible for this stage of the reduc-

tion.

With regard to point (c) above, it is a relatively simple matter to set up an iter-
ative solution that will operate only on the nonzero blocks of elements. The pivotal
question is whether or not a prohibitive number of iterations will be required for cdequate
convergence, Unfortunately, this question cannot be answered in advance on the basis
of purely theoretical considerations. The answer is to be obtained only by actual trial
through numerical simulation of various typical operational situations of particular inter-
est, The great bulk of our effort in the present investigation has been directed toward
this end, Detaiis of the numerical processes employed and of the results obtained are
given in Section 2. We sha!l confine our attention in the remuinder of this secticn to
further development of the general approach and to a brief discussion of the high pcints

of our numerical results.
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1.17  ALTERNATIVE ARRANGEMENTS OF THE NORMAL EQUATIONS

Let us take the block of Figure 1.1, but, instead of numbering the photos
and control points according to rows, let us number them accor.ling to columns as
in Figure 1.3. The general normal equations then assume the alternative form indi-
cated in Figure 1,40, the collapsed form of which is indicated in igure 1.4b, The
N portion of this system is somewhat simpler than in our earlier system of Figure 1.2a,
This raises the question of whether one arrangement offers any practical advantage
over the other with regard to rapidity of convergence of the iterative process. [t aiso
raises the brooder question of the role played by the arrangement of t»e normal equa=

tions in general, Is there some optimal arrangement offering significont advantages?

In our further investigation of arrangements of the normal equations, we were
able to devise orderings of the unknowns which would confine all nonzero blocks of
elements to lie with o limited band about the diagonal. The normal equations for one
such arrangement are indicated in Figure 1, 5a and, in collapsed form, in Figure 1,5b.
Here, the numbering of photos and points is according to columns as in Figure 1.3,
However, the vector of unknowns has been rearranged according to the following
scheme in which successive sub-vectors of the solution vector are listed hurizontally:

Ist column of photos

8, &, 83, &y 830 84 85, & b &4 b4 8 b and points
810/ S5+ 511/ 812/ 860 &30 Brar & v Br5. 5160 Sg0 E170 Byg

S19 89, S20s 8214 Bry 822/ 823 E11v 5:40825. 8120 240 Oy

2nd column of photos
and points

3rd column of photos
and points

etc.

The control point vectors 64 through &5 generated by the.losf two columns of contre!
terminate the sequence of unknowns. This system of normal equations may be said to
be dominated by elements on and near the diagonal. All nonzero elements are confined
to a diagonal band 225 elements in width; moreover, within this band one can define
five narrower bands (each 21 elements in width) which contain all nonzero elements ex-

cept those generated by the last two columns of control. An attractive feature of this
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arrangement of the normal equations is that the width of the diagenal band confining
all nonzero elements is independent of either the length or the width of the block of
photos. In this sense, then, as the dimensions of the block increase, so does the rel-
otive diagonality of the normal equations. In the case of a 10x50 block, for instance,
the diagonal band containing all nonzero elements will comprise only about three per

cent of the matrix.,

We have employed the term 'intertwining' to describe the process of reordering
the unknowns for the purpose of achieving r=latively strong diagonality. The guiding
principle of the process of intertwining is the devising of an arrangement of the normal
equations such that the coefficients of the unknowns corresponding to a given control

point are as close in the matrix as possible to those photos on which the points appear.

At the outset of the investigation the writer's collaborators devised two cther
schemes of intertwininy of greater compactness and efficiency than that of Figure 1. 5a.
These are illustrated in Figures 2,2) and 2.22 of Section 2. During the course of the
investigation we learned that our initial enthusiasm for the prospective effectiveness of
intertwining as a means for accelerating the convergence of the iterctive solution of the
normol equations was unwarranted, for the simpler and more prosaic orderings of Figures
1.2 and 1.4 actually turned out to be more effective in this regord. As we shall see in
Section 2, the failure of intertwining to live up to expectctions, though 1 blow to our
intuition, is hardly to be regarde4 as an untoward result, particularly in view of the
relative complexity of the collapsing algorithms associated with the process, Moreover,
since future investigators may profit from cur negative finding by avoiding the duplica-
tion of this particuiar approach, we feel our discussions of the concept of intertwining

are justified.
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1.18  OUTLINE OF KEY RESULTS

The results of our initial four months of effort ore summarized in cn interim
report (Brown, Davis, Johnson, 1963) which is now superceded by this, the final
report. By a process of numerical simulation we were able to estoblish in the interim
report thot of the three iterative techniques investigated

1.  Gauss-Seidel,

2. Gauss-Seidel with Luisternik accelerotion (Faadevo, 1959),

3. Method of Successive Over Reloxotion (Varga, 1962),
the first was far too slow in converging to be considered practicol, and the second
blew up numerically. On the other hand, the third provided excellent results,
converging to a satisfactory solution for a simuloted 25-photo strip in less thon 10

minutes on on |BM 7094.

One of our most significant findings concerns the effect of obsolute control on the rate
of convergence of the iterofive process. A strip hoving only the minimal obsolute con-
trol required for determinocy wos found to converge appreciably more slowly than ane
having a moderate sprinkling of control throughout the strip. With o 41-photo strip
generating o system of normal equations of order 633, for instance, odequate convergence
wos obtained within 150 iterotions (6 minutes on an IBM 7094) when o pair of fresh
absolute control points was introduced on about every fifth phcto. On the other hand,
on the order of 600 iterations were required when the same strip was odjusted with
absolute control limited to the beginning of the strip (full detalls are given in Section
2). Our simulations to date indicate that the number of iterations required for satis-
factory convergence is roughly equol to the order of the norma! equotions for the cose
of strips with minimal obsolute control; for strips having a moderate level of well-
distributed absolute control, the number of iterotions may be as few as one fifth to
one tenth of the order of the normal equotions. There is even some indication that
once a certain level of obsolute control is attoined, the number of iterations for
satisfactory convergence may be only very weokly dependent of the order of the normai

equations. |f further investigotion should prove this to be the cose, the distinct

a/l=




possioility emerges that the simultaneous adjustment of a long strip of aerial
photography may entail no more than the general order of computational effort as
is required for the reconstruction of the strip by means of analytic cantilever extension

operating on poirs of photos.

Toward the end of our study we were successful in devising an efficient
collapsing aigorithm for the normal equations generated by a general, non-uniform
block of photography. Our limited numerical simulations with blocks lead us to
believe that, in full scale practical application, the rigorous adjustment of large
blocks of aerial photography will involve appreciably less computational effort than
the adjustment of long strips having comparable numbers of photos and levels of
control. To appreciate this, one should view the conventional aerial block as a
continuous, folded strip. In such a folded sirip, control in the side-overlap is
common te subintervals of the strip and serves, therefore, to reduce appreciably
the number of unknown control points. The resulring reduction of the order of the
normal equations and the bi-directicnality of computational transference made
possible by side-overlap constraints combine to accelerate the convergence of the
iterative solution of the normal equations of the block. It is this that ultimately
renders the block computationally more attractive than the strip, even though the

logic of the data handling for the block is more complicated.

1.19  CONCLUSIONS

Our central goal of developing a computationally feasible procedure for
solving the norma! equations for large photogrammetric nets has been successfully
attained. In particular, we have removed the primory impediment to the implementation
of the rigorous adjustment of iarge blocks of aerial photography. By virtue of the
successful implementation of the concept of the direct formation of the collapsed
normal equations the computing time required for the formation of the normal
equations for an aerial block becomes strictly proportional to the number of photos

in the block rather than increasing as the square of the number of photos as in previous

S




reductions. With sufficiently large blocks having a sufficient level of absolute
control, there is some evidence to suggest that the number of iterative cycles
required for adequate convergence of the normal equations may leve! off to an
almost stationary value, little affected by the inclusion of additional photos. If
this should bear up under further investigation, it will mean that not only the
formation of the normal equations but also their solution will be essentially
proportional to the number of photos in sdequately controlled aerial blocks of
sufficient size. We believe that the simultaneous adjustment of blocks of several
thousand photos will prove to be altogether feasible through the implementation of
optimal buffering procedures wherein external storage (tape, magnetic disks, etc.)
and core storage are both used to maximum advantage. In this regard, we would
point out that Varga (1962, p.1) tells of a computer program designed to accomplish
the iterative solution of a system of simultaneous equations of order 108,000 generated

by the numerical solution of a three dimensional system of partial differential

eguations. in view of this coupied with our success in appiying itsiative procedurss
to the photogrammetric problem, we feel that the time is at hand when the photo-
grammatrist need no longer be intimidated by the enormous systems of equations arising

from the uncompromisingly rigorous adjustment of large blocks of photography.

Our numerical investigations so far have been limited to the realm of classical
photogrammetry where auxilicry sensors play no role. Yet, with the development of
such integrated mapping configurations as the Air Force USQ-28 system, it is clear that
we are at the threshold of a new era in photogrammetry in which auxiliary sensors will
become of increasing importance. Anticipating this, we extended the theory of the
general photogrammetric adjustment in a nonrestrictive fashion to accommodate informa =
tion from any conceivable combination of auxiliary sensors with due allowance Seing

made for the likelihood that the output of many such sensors may be subject to significant

bias and hence may have to be calibrated within the framework of the over=all edjustment.

We are of the opinion that the role of analytical techniques will be increased, rather than

diminished, by the implementation of integrated mapping systems exploiting various
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g

arroys of ouxiliory sensors. Just os the introduction of o certoin level of

obsolute control serves to accelerate greatly the convergence of the iterotive
solution of the norma! equotions, so too, we suspect, would the introduction of
constroints imposed by ouxiliory sensors. In our future work we expect to derermine
to what extent this is the case ond to concentrote on the potential contribution

to the photogrammeiric odjustment of vorious combinations of existing ond proposed

ouxiliary sensors.
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SECTION 2

HUMERICAL ANALYSIS AND NUMERICAL RESULTS

By

Duane C. Brown
Ronald G. Davis
Frederick C. Johnson

2.01 INTRODUCTION

The development of the theory of the gereral photogrammetric adjustment
and of a specific approach to the solution of the normal equations has teen accomplished
in Sectio 1. Our vbjectives in this section are to provide a detailed account of the
steps token ! test and implement this approach and to present and iriterpret results ob-

tained.

The fi-=t part of this section is devoted to an expository treatment of iterative
procedures for the solution of simultaneous linear equations with particular emphasis
on the Method of Successive Over Relaxation. Following this, we describe the
successive stages of our numerical investigation beginning with the simulation of
the basic two photo problem and proceeding to simulated six photo strips, twenty~
five photo strips and forty-one photo strips (the maximum that can te handled in
core of a 3K IBM 7074). Fach stage of these strip simulations was desianed to answer
certain specific questions and each provided unexpected insight into various facets of
the general problem. From the simulation of sirips, we proceeded to the simulation of
small blocks (3x5 photos) and finally to the reduction of a 23 photo strip of actual
photography. As we shall see, the results of our numerical studies confirm the validity

of the approoch developed in Section 1.




2.02 GENERAL BACKGROUND ON ITERATIVE METHODS OF SOLVING
LINEAR EQUATIONS

Because of the excessive dimensions of the system of normal equations
generated by a sizecbie photogrammetric block, direct methods of solving the
system (e.g., Gaussion elimination or one of its many variants) are not gractical .
Unfortunately, such methods tend to collapse due to the excessive amount of
round-off error introduced into the solution of large systems by the required machine

calculations,

To alleviate the undesirable consequences arising from the round-coff
error introduced by direct methods of solution, recourse may be made to itero-
tive methods, The advantage of such methods is that the original system of equa-
tions or some simple transformaticn thereot remains unaltered in memory through-
out all stages of the calculation of the solution thus adding a great stabilizing

factor to the computational process.

The first of the iterative procedures was developed by €. Jacobi (1845).
This method was improved in 1874 to give the Guuss-Seidel method. Unforturately,
both of these methods suffer from the fact that the rate of convergence for large
systems of equations is often very slow; that is to say, many thousands of iterations
are often needed for the iterative procedure to converge to a good approximation
to the solution of a sizeable system of equations. Since the required computations
were necessarily done by hand when these methods were developed, they were
considered impractical and fell into a state of temporary disuse except for occasional

applications to geodetic reductions and minor roles in other applied fields.

With the advent of the modern electronic computer, iterative methods were
again investigated as a method of solving large systems of linear equations. Although

the actual computations involved in the iterative process were no longer formidable,
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the prohibitively slow rate of convergence of the Jacobi and Gauss-Seidel methods
coused these procedures to be used only on moderately large systems of equations

D. Young (1954)
developed the method of Successive Overrelaxation (SOR) which may be viewed as

and methods of occelerating the rate of convergence were sought.

a powerful algorithm for accelerating the rate of convergenc= of the Gauss-Seidel
method. With the development of this method ond its extension to the block itera-
tive technique (to be discussed shortly) the solution of large systems of linear equa-
tions has become feasible for a large class of important problems including (as we

shall see) the cdjustment of large photogrammetric nets,

2.03 THEORETICAL DEVELOPMENT OF ITERATIVE METHODS
Let us consider a system of n linear equations in n unknowns:
apxp *t oapxy t o toapxy = by

(]) Qaz1 %y itz Q72X%3 v BB 92nXn bz
amX) t apaxy t oeee toapaxp bn

If we set

™ ] B
Qe "In.l A by
cz] ° 0 0 Ozn x; bz
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then the system (1) can be written in matrix notation as
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then equation (2) becomes

(8) (D-E-F)x = b
which may »e rewritten as

@) Dx = (E+F)x + b,

From this we may immediately write

® x = D (E+Hx+D'b

provided ncne of the a,, are zero. |f any of the a,, were zero, we could

rearrange the equations to remove this difficulty.

If we let {0) be the initial approximation to the solution x of (1), then

equation (8) can be used to define the iterative procedure

(x+1) -1

9  x = D (E+r)x(")+ L

D b .
This is the Jacobi iterative method.

Since D is a diagonal matrix, we have

= N
2 0 0 0
o
=1 0 L 0 0
(]0) D = 3-2—2- coe

-79-




Accordingly, if we let

- -

(x)
|

(x)
any L=

0

b ad

we can rewrite (%) in its computational form

n

12 xikﬂ) = - e Z a xfk) L

{
11 1= . "

1#1

If equation (6) is rewritten as
(13) (D-E)x = Fx+b,
the immediate result
(14 x = (D-F " Fx+ (D-b
can be used to define the iterctive procedure
1

05 * = p-p' M s o' b .

This it the Gauss Seidel iterative method.

We can also rewrite (15) in the more simple computational form
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1
11 1 il

(x)
x -t
1 = 1

1 ’

1= n
1)
1

it should be noticed that the Gauss=Seidel method offers two advantages over
the Jacobi method. The first is that the Jacobi method uses only the components af
the oth approximate vector in computing the components of the (x*1)st appraximate
vector, while the Gauss-Seidel method uses each component of the (x+1)st approximate
vecter immediately in the calculation of the remaining components of the (x+1)st vec=-
tor. In ather words, the Gauss-Seidel method always uses the most recent approxima=-
tion of the individual components of an iterative vector ta calculate the remaining

campanent while the Jacobi method does not.

The second udvantage of the Gauss-Seidel method is that, since anly the mest
recent appraximations are used, the components of the (x+1)st appraximate vector may
be stored in the same vectar as those af the 0 approximate (as soon as a component af
the (x*1)st vector is calculated, it replaces a component of the kfh vector). The Jacobi
method, on the other hand, requires that the k'hond (x+1)st approximate vectors be stored

as separate vectars,

Yaung determined an effective way to accelerate the Gauss-Seidel method by

(x+1)

the use of the fallowing device, If X represents the (x+1)st approximate vector
as calculated by the Gauss-Seidel method, then the (x*1)st approximatian vector for
the method of Successive Overrelaxation is given by

a7y D (eor) (),

x + w(x' - X

where w is some suitably chosen fixed acceleratian parameter,

(x*1)

Expanding (17) by the repiacément of x by expression (15), we have
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x(k) + w(D-lEx(h') #* D-I Fx(k) & D-lb - x(k))

which gives

19 (1-w0 5" = geon® + 0 'E® + Wb .

1

lfwelet L =D E and U = D-IF,we have

2 & s e 100+ U™ ¢ wlicwy b

This is the formula for the SOR method.

Returning to (17), we con easily obtain the computational form of the SOR
method

1~1

n
(2 xl(“‘) N "Ek) ¥ .‘:— (- E % xfhl) - Z % xsk) + b1 T X‘:)).
sl =14

The SOR method possesses all of the auvantages of the Gauss-Seidel method while, as

will soon be seen, offering a significant increase in the rate of convergence.

2,04 THE BLOCK ITERATIVE METHOD

In the development of the SOR method up to this point each component of
the approximate vector has been calculated individually. Such a process is known
as a point iterative method. |f related groups of components ore solved for simul-
taneously, then the iterarive process is known as a block iterative method. Since
the elements of orientation of the photographs are naturally related in blocks of

order 6 and the coordirates of the ground control peints are naturally related in

-82-




blocks of order 3, the system of normal equations is highly amenable to block

iterative techniques,

Consider again the system of equations

(2]) A = AZI A22 toe AZr

— =]

where the A 's are square submatrices of A and the A”' s (1¥#1) assume the appropriate
dimensions as generated by the diagonal blocks. If A, has order p and A“ has order q

then A will have dimensions px q and A“ will have dimensions qx p.

In a similar manner let both the x and b vectors be partitioned into subvectors

r F
Xy By
(22) x = . - b = o
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If A“ has order p, then both X, end Bl will have dimersions px 1. Then,
in a monner completely analogous to the development of the point SOR method the
computational form of the block SOR method can be obtained.

St . n )
(23 x(lhl) - x(’k) + wA:: _’;‘ A, ka l)_,‘zl A x(k) + B, - A x(k) ]

If oll the submatrices of A are single points (have dimensions 1x1), then the block SOR

method degenerates "nto the point SOR method, The theoretical form of the block and
point SOR methods are identical (see (20)).

2,05 CONVERGENCE

If we define
(24 L, - (- wl)” ((1-w)1 + wU)
then the SOR method becomes

(x+1) _ (x) -1
(25) X = wa + w(l-wbl) DO b,
and the solution vector x satisifies the identity

A1 -

(26) x = wa + w({l-wl) D b,

\ k)
If we define the error at the k”‘ iteration, e( ", to be the difference between x and

i

, then we have




(27) e(lnl) - x-x(kﬂ)

1

Lx + wil-wl)”0™'b - (wa(") + wi~wl) 0" b)

= L x =1 x(k)
w w
= Lw(x-x"’))
=L e(k)
w
and, therefore,
RUT
w
(2 _ m _ 0, _ (0)
(26) = Lwe = Lw(Lwe ) = que
e(k) = Lk e(o) :
W
(0)

Hence, if the initial error vector ' is not equal to the null vector, then it is obvious

that the sequence of error vectors

RORRURNC)

' 1 ? s e
will tend to the null vector if and only if the sequence of matrices
L, LZU j LL,
tends to the null matrix. Any matrix M for which the sequence M, M2, M3, ..

converges to the null matrix is said to be a convergent matrix. It can be shown
(Varga, 1962) that an nxn matrix M is convergent if and anly if p (M) <1 where p(M)

is called the spectral radius of M and is defined by
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pM) = MAX l)‘nl.

1=tEn

where the X:s aore the eigenvalues of M,
Therefore, we hove thot the sequence of iterative vectors x(o), x(l), x(2), cee
will converge to the true solution x only if p(l.w) < 1. Vorga proves that if the matrix

A in the equation
Ax = b

is symmetric and positive definite (as 's the case for vhe coefficient matrix of the

normal equations) then p(l.w) <1if ondonly if 0< W< 2,

Thus, the convergence of the SOR method when applied to the system of normal
equations ha; 1ow been guaranteed provided that w is chosen such that 0< w < 2,
The questior which now arises is the determination of a value for w which will yield
the fastest rate of convergence. In order to be able to develop an explicit formula
for an optimal w, we must be assured that the coefficient matrix A possesses certain
additional properties conjointly with symmetry and positive definiteness. Specifically,
the coefficient matrix A must be what Varga defines as a consistently ordered 2-cyclic
matrix. This is equivalent to Young's definition of a consistently ordered matrix
possessing block Property A, Through the use of the crdering vectors (os defined by
Varga) associated with the arrangements of the coefficiont matrices of the normal
equations indicated in Figures 1.2 and 1.4, it can easily be shown that both of these
matrices satisfy the additional hypotheses,

If the coefficient matrix is a consistently ordered 2-cyclic matrix, Varga

proves that the optimum acceleration parameter @ (optimum in the sense that




p(L )} = p(Lw) for 0< w < 2) can be explicitly calculated by the formula

“b

() o = .

1+ /1-p(G)

where

(30) G = (s-L)"u.

Varga also shows that

L) = w-1.
p“’h W,

Under the above conditions on A, it is also true (Varga) that, if \ is o non-

zero eigenvolue of L, and if p sotisfies
B N+tw-17 = )o?p?,

then 11 is an eigenvalue of B = L + U, Conversely, if L is on eigenvalue of B and A

satisfies (31), then \ is on eigenvalue of Lw'
If w is set equal to 1 in (20) then wa have
-!
(32) Lw = (I-1) "'U = G
and the SOR method reduces to the Gauss-Seidel method,
With w =1 and an application of (31), we see that, if L is an eigenvalue of

B/ then u? is an eigenvclue of G. Hence, p(G) = p(B) and p(G) < p(B) since
p(G) <1,
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The rate of convergence R(M) of a matrix M is defined by (Young)
{33) R(MM) = -log(p(M) .

Hence, we have R(G) = 2R(B) and, under the previously mentioned conditions ,
we have that the Gauss-Seidel methoc {G) converges twice as fost as the Jacobi

method ( B =L+U = D-](&F) ) . It can ciso be shown (Varga) that

34 lim RL ) = 2[RI,
o(B)=1"

which gives us that

4
(35 R(L,) = UAKG)] > R(G).
“

Herice, the SOR method with the optimum acceleration parameter converges approx-
imately twice as fost asymptotica'ly as does the Gauss-Seidel method. It must be
emphasized that, in actual practice, the SOR method can and often does offer o
much larger ircrease in the rate of convergence, This is due to the fact that the

result in (35) is developed only for the limiting case p(B) =1,

The affect of using the block SOR method is to again increase the rate of
canvergence althouyh na general relationship is known, (For a result restricted
ta partial differential equatians see Arms, Gates and Zondek, 1956). Intuitively, we
may view the use of the block SOR method as having the effect of reducing the
order of the system of equations thus making the iterative process converge more

rapidly.
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Rather than ottempt to compute p(G) explicitly, one caon opproximate it
in the following manner (Young, 1962); Set w =1 in formula (21) ard perform

several iterations while calculating

’

“x(m) LW

(3¢)  p(G) x
1x®) - &0
where
@ e me
ISt=n

2,06 OTHER ITERATIVE METHODS

In the eavly stages of our study another iterative methed, that of Luisternik
. as described by Faadevo (1959), was investigated, The formula for this method is

(38) x(k") = x(h‘) * T'I_p' (;(H‘) - x(k))

where }'(k“) is the (x‘l)s' cpproximation obtained by the Gauss-Seidel process ond p

equals p(G) with G defined as in (3C).

We would emphasize thot our studies have by no means covered all iterative
methods worthy of consideration. The fact that other methods were not applied to the
photogrammetric problem is in lorge measure attributable to the very satisfactory results
which were obtained with the Method of Successive Over Relaxation. Also some of the
iterotive methods are highly specialized to apply to matrices generated for the numerical

solution of certain systems of partial differential equations and ore inherently unsuited
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to our problem. The entire field of semi-iterative procedures (Varga) has yet

to be opplied to the photogrammetric problem. A particularly promising solution
referred to as Block Symmetric Successiv> Over Relaxation (Ehrlich, 1963) came
to our attention as we were completing our studies for this report. This is a two
step method in which the solution vector proceeds first from the top of the matrix
to the bottom in the usual manner but, then, instead recycling to the top again as
in normal Successive Over Relaxation, it reverses ond proceeds from bottom of the
matrix backwards to the top. |n some applications the method has been found to
yield a substantial improvement in convergence over Block Successive Over Relax-
ation with no increase in computation. Accordingly, we would strongly recommend
that Block Symmetric Successive Over Relaxation receive serious consideration in

any future investigations of the photogrammetric application.

Within the past decade or so, the field of itera‘ive techniques for the solution
of simultaneous lineor equations has become a very fert le area of investigation with
new and significant results appearing at frequent intervals. It is our intention to keep
abreast of Iatest developments and to investigate those which would appear to have
particulor merit in the photogrammetric application. Although we are immensely
satisfied with the results obtained so far, we ore certain that they can be and will

be appreciably improved upon before very long.

2.07 GENERAL APPROACH TO NUMERICAL SIMULATION

Inasmuch as several possible combinations of iterative techniques and arrange-
ments presented themselves at the outset, we decided to confine the initial phase of
the study to the application of various approaches to the solution of simulated strips
of photography. Both economics and logic dictated such a course of action, for it
was cleor that if an occeptable solution could not be found for o strip of photography
the possibility of developing an acceptable solution for large blocks would be even
more remocte, On the other hond, success with strips of photos v ould warrant extension

of the opproach to embrace blocks.




A orocess of elimination was carried out in order to determine which
specific combination of iterctive method and arrangement of nomal equations
would yield the highest rate of convergence. in order to cbtain results which
would be as meaningful as possible, it was necessary to generate systems of normal
equations similar in general character to those to be expected from actual data.

For convenience, we adopted a perfect 9-point pattern of ground control. This
assumpticn in no way compromises the essential validity of the simulation and

serves to simplify the data hondling. In our initial simulations involving 2-photo,
6~photo and 25-photo strips, the ground points were assumed to lie in the horizontal
X-Y plane and to be spaced ot 18,000 ft. intervals in both X and Y. Flying height
was taken as 40,000 ft. from all photos. This combination of flying height and
spacing of control points is appropriate to two thirds forward overlap with a 150 mm
(6 inch) lens and @ 19cm (7.5 inch) plate format. In our later simulations involv-
ing 41 photo strips and 3x5 blocks, the basic nine point pattern was maintained,

but the flying height was raised (in accord with RADC requests) to 50,000 ft, ond the
spacing of ground control was increased to 30,000 feet (o combination appropriate to
60% forward overlap with a 6 inch lens and a 9x9 inch format). The X axis was
considered to be defined by the flight line, along which the midd'e row of ground
control points was also atsumed to lie. The x,y plate coordinate axes were taken

to be porallel to the X,Y axes, thus rendering the &, w, k for each photo squal to
0°, 0° ond 90° respectively. The general geometry of the simulated photography is
illustrated in Fig. 2.1.

The true coordinates of the control points and the true elements of orientation
were employed to generate the true plate coordinates of the images of the ground
control. Random normal deviates having the standord deviations indicated in Table
2.1 were added to the true elements of orientation and the true coordinates of con-

trol,

-Pl=

-~h
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STANDARD DEVIATION
2-Photo Strip 41-Photo Strip
Quantity 6~Photo Strip 3x5 Photo Block
25-Photo Strip
Oxc,OYc,Ozc 10 ft, 25 ft,
00, Uu, OK .0003 radian (1') . 00075 radian (2'5)
Oy s Opr Oy 10 ft. 25 ft.

Toble 2,1, Standard deviarions of random normal deviates added to true
values of elements of orientation and coordinates of control
in order to create simulated approximations.

No random normal deviates were applied to those control points which were
considered to be absolute in a given simulation. Except for such absolute control
peints, no constraints were piaced on the control points, Neither were constraints
placed on the elements of exterior orientation (the elements of interior orientation
were, of course, enforced). Accordingly, all pass points and all elements of

exterior orientation were allowed unlimited freedom to adjust.

The random deviates having standard deviations as indicated in Table
2.1 lead to fairly close initial approximations by usual standards. Such close
approximations were invoked in order to avoid contamination of the essential
results by second order effects of the process of linearization by means of Taylor's
series. As indicated in Table 2,1, in our later simulations (41-Photo strip and 3x5

block) the errors in the initial approximations were relaxed by a factor of 2.5.

No random errors were applied to the true plote coordinates in any of the
simulations, for had this been done the exact solution of the normal equations

would not have been known, As it is, the sclution of the normal equations should
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precisely reproduce the known random deviotes which had been odded to the true
elements of orientation ond coordinates of control, This, then, provides the
standard needed to gauge the relative effectiveness of various opproaches to the
solulion of the normal equations. One should not lose sight of the fact that the
central objective of our entire program of numerical simulation is to determine
the feasibility of solving the normal equations by means of certain iterative pro-
cedures. Inasmuch as the introduction of random errors in the plate measurements
would induce only a second order chonge in the coefficient matrix of the normal
equations and hence would not alter its essential properties pertaining to conver-
gence, it is clear that the assumption of perfect plate measurements in no way

compromises the validity of our investigation of iterative solutions,

Four different orrangements of the normal equations were investigated in
our simulations of strips, Yhe basic forms of the normal equations are illustrated
in Figures 2.2, 2.3, 2.4, 2.5 for the case of a sample 1x5 strip. In the arrange-
ments A and B (Figs 2.2, 2.3) the elements of orientation and the coordinates of
control are totally separoted, The numbering of control points leading to the form
A is indicated in Fig. 2.6 and that lecding to the form B is indicated in Fig. 2.7,
The arrangements C and D (Figs. 2.4, 2.5) are intertwined forms, Both intertwined
forms correspond to the numbering of control points of Fig, 2.7. The C form may be
viewed as a special case of the block intertwining of Fig. 1.5. In the D form, an
even tighter, and more strongly diagonal arrongement is achieved through a different

ordering process. The unknowns for the C and D forms are ordered as fol lows:

C FORM D FORM
Point 1 Points 1,2,3,4,5
Photo 1 Photo 1
Points 2,3,4 Points 6,7,8
Photo 2 Photo 2
Points 5,6,7 Points 2,10, 11
Photo 3 Photo 3
Points 8,9,10 Points 12,13, 14
Photo 4 Photo 4
Points 11, 12, 13 Points 15,16,17
Photo 5 Photo 5
Points 14 through 2i Points 18,19,20,21,

04~




*0Z°Z *B14 Jo suoyonbs |pwsou jo uwoy pasdojjoy *qz°z

ainb1y4

lﬂ@l

*9°z *6i4 ui so pasequnu sjuiod
|o4u0d pup sojoyd yiim AydosBojoyd jo diys ¢q jo juawysnipo woiy Buisio
suotjonba |ouuou |DJeUIB By JO X1IOW JUBID1§0D Y} SO ULO) '\ By

‘bz °Z 9anb1 4

™ ™ —r .3 ™ .2 \ - v - T — v T
vw*ﬂ_..w.‘nﬁ ;.%‘H.H 4+ rett bt e .4 .“. . ] 4~ . A 1k G __*+..+ i F..";.. M .MH TR .._.+.+
-+ 4 —4ﬁ P R o vhl4a POPTRAE O N CHRR RErapae s S . “a . b s s g s e et b e toa ctppetteeaptatti bbbty PERIR SRR SRS R SRR R
+ 11 +H4._v_.:,1»...++ ey beeddaiets 5 . Ve g Ve f ety Pdae gt d + 44t b .y R PR N
*4 + 1 LI o 1t q.._H R .,,..* N .. e . EEEE + [ -+ * f,_y + h_..._... .4 Ve 4 . t 144
-+ e e e PR ‘.Y.—. e PRI W S e R e e ek ——t - SN I ISEIGOE I WO
trtttreedtirttirdatee iy prbd P TEE DT R bbbttty ERGEEEOR by 44 AP
+ q_lH.....rv‘,_...,.,. b 48 08 +o.+Hw-mLa- - ¢ . ) . IR . + 44 b by 4 t+ 4+ 4 ._-4 [ LI IR A |
t v ._.¢¢T4-++ IR S P . . + __, R . .. - v 4 1 " vt H4.|.|.I+.H.H o4 4 fo4e 44 '] | e
v|0.'|+.ﬂoA..‘HM¢ Lo B 2t ] IR ) £9 4 .o ﬁ. ' v . N . -y . . t4 T JT.T._.M % ..¢a“. L ‘4 EEEEENEE
=ttt + ' + + » -
B9EIFEEIE FHRENGCEHY LFPDYT SROCY bypp BP0 RSRRERSES RESPRTSERTRuTRS Bu S SRR RE RS r 1y MR BT
lﬂ;.‘. FEE S T R I e - . .- ) R .. . R EE e ‘i + .‘ﬁovA.I.Y.v.a.r% .. 4. 40 + ) . . R
SRR o I R T S e A ..A [ErgE G I A PR G R T R B S ‘.H444.4 §
.+r¢w RS IR B IR SRR o b .. ...._.. . R S LR e EEE I %
+ —t + e Bl e S ] + +—+ L b et S S S
A.f SRR IR e A W ¥ ¥ + %r s aih A + 4 ctertr ittt Ld o4 4 4444 s d oy
HA.._A_..44 e $ oo v ' “j ‘e AR B IR O o o e ..t R I
0 4o d - b 40 oo . " ‘e e . .. ' -4 4 . o sy ‘s 4 4o 4
bbb od gy bb-bd ot R T g I SR P S i Fraicr e e (S S
§ — 'S b S " R Y L 1) iR
' H = s M, LG T F T T T ' T ¥ ™ *
vn+w..| I 00 A Ay % -/ b oo iy oes 4 4 . g s + 4+|+._AL4.H.- P + 044
S IR SEREIE B B SR SRR B R B L IR IR R SR o ah e 20 o s o o SRS ST B __q
- .t I ] s 344 v.vH N ¥ . .4 POSTTOR (i S LA O R 4+ v 4 e & T 4+ 4
bbb 44 v et be b ped v ‘ ..*.. I e e s oa.ov..w.._.o# P f 4+ 41t
s SR e - - — T e 4 + + —— -+ s
SEEEE EEEEE N ] __..‘ﬁ.. W B e e e o T e o4+‘._4++.+._[T...A...>4 PR
1;4. o4y e b i 4 . _/...Tr'4.1++r1.+.b. .4..+..Ift_..+;.]r1.._.~<¢ vyt ‘e
T SRR BRSO R B 4 brsdbe o +;4+_.<.....+.._+1TA.|.I+!...... R
1+r4_. RIS SRR O B Foradoa Ly 1R ..43T,|+...+._|,_T+*+.Tt.+ro._r_r,.,|+...o__...._. sk
: _ ; e
..w.gv g [ ' &y +y e 4 ‘4 . b+ 4 4 e #..TT._.._ldlanlﬁ.t.al..;.H;..';_;
-+ L . . . 4. * R . o. it o ”d..‘....+++..|.r n—r._.u.__ et o .4.-1 ;.__4.4_.ﬁ
*.H A oa . I .y LR | .4 o ‘g ot uJ.—.l:ql. 1_-|4.‘+«vTA¢4+_v.4q|
- 4 - ] LR L I TR e ot + oo -t +- 1 .Th.._.[ﬁ...ro.v..+44...‘
A 7 L b oy 4t - _._‘ " il Il + o+
T T t + T T t = + T i T T 7 o t
+tr 4 R + 1+ T O CRCRRE | by i1 a4t 4 4.+_TH| + -t .H.J.-H J.H+ A
- .h RN ted Py e by ,.f..” ey 1+ 1 1-+ t44— bttt ..
s sd bd Flg e d fdiadbla dbien . ISSSESGEEEE N0y BEEL IS B G 61 0 5 0 8 S I
-fe 4 I R __ﬂ.._j./P s i et = s W B e +._.|..4...r+.w +...+Hp o
s + + + + - - o - i o i
) M ¥ x . T 3 T i Ll
R NN R R IEEE SHEESERBES EESSEROERE BN AR EHY:
.o_v.—_ vd st b e r bl ot g dar e ...‘j/ ..r.rn_r++_.r.1..T~Am D e o S e B B T8 BRI
..&;._* sdpe byttt b btrreryed s B S S S -ttt -+t et et gy
ow.,ﬁ ..,H,, IR I IR R LIRS A it T e e e R e e B et o B B T i e o o
1 Tt + - +——+ -t -+ : —t +-
r +.. FORa S (R I IR IR i 4_.....%v+;... ._‘4.+L...1T+|__1,.¢H.10._44
trtpbr bt e I I -1 R T et T TS AN S O S e o T R
-+ 1 4 ,F._ g & _.....v R | 3 b i . RS e I rj.»%%li......v.r. +..+"
& ‘_‘.w. A H.— . SRR ST S R .|_,. ‘. R G RS .-.I.+“+|1¢—|H....-.+l4 4H+H
& - o 4 . 4 F b - 4
—t—t— + + =1+ + +—1—+ +
ESENg R IS 5 6 ST (F TR B 5 LERE SRS ARED, IBSONESHSEREE R
-Mf;v. RS I I B e el SRt e e e et R et et I
= IR R iy T Oh: S PRSI S SO 4 TR T S IR SERTRE R A SEOH R DY
l_ R by s FERCEHTD g i v 54t s SR e N ..11+...~+%.4‘_,:
S f Tt — . -- — o B 44 -
H++14 4 Bl R SR e SR g s ' by 4 o AT.;TT..L.,._
i R 4+ 44 R .m."a.ﬁ O - s - IR St e o s L.o.f‘f LT e SRt T 4 [+ 414+ 1
-.ﬁl.m ﬁ#l b bt e et : yidi g PR SSRGS ——— e e - 4t -
MH.I—ZT. +4++ EEn e St S 8 St PO N, S - 4ot e - 17 -t 4 SN .
- 1_1_.. — - =t =t 1 T + ! i
4*.1 iy F+ - - - - LI S - - <+s|_rl‘...1.._|a..|..|..|¢..,.~|+|..v.1 ._.« + - 4 s S
-+ 44..r.|..rt.v+._ IR0 A - i ke e T iy + —4 +4 + ety o+
u.ul?+ P R T e TGN SEre G U L G R EE . SO S8 R £ IR SR Sha S I S -.....1.+.T+. 1 A1 . = i1 Wil
lwi ‘ R e s bt b ot e - - - 11 ++
+ e ’ Tt i —+—— +-
LJT.T+.1 .!katf IR et 4oe e PV e aegnape. RPN | ER— H -y -
+ __.4. +Httettre 4+ .t - PR - - .- + ]
-+ 4 .HHf . - e e T S - . -4 - . - poe b + ﬁ
ﬁ 1 R i TR N P T 1! - 4 +4+1 11
355 & + .- I . e B
| 4-Lis ' e i & ﬂw.
-+ ++ + $ = 1 b2
4 44 A i
1T . 1 [l ] 3
I.T-_.H+ ﬁ..lLl bttt 3 :
L4+ 4+ 4 + _v.fT.cm..ﬁ... & g +
1..||H.4+ e I e T o \ bee +- s + &+
S ot B At O 4 o bl \ - R ¥ 3+ — e . b d . by
. BOBeE Bw 2 _ | . ;
vv.ﬁL_r.v LR SR b G4k e St i o \\\\\“\‘. = ot 44 bbb ederdtd e
-4+ & 1¢¢.T_v.o|..r . . - 4 4 %4 E bbby b
4+ -+ 4+ _7+++ r++11 Qq 4 o IR SR = NS i \.....- s d e doa 4
T..IM v .”H_—_....Jv i \b._.‘.. .. T -+ o+ st M. +4-+44 s 4+ 4
=y i o ' —— - t t —+ +
-4 1+ 4 + 4+t “\ SRS I Gy s = I R H»*._
F+ +++ + .\s\. £ 4 vyt gy -4 by e dea bos
N 4+ \_ . TSR, LR e + hv...
sassdaaad 77 Snedh ohaks bk 1 GkBARSERA R !
w T+t o trtafaceidoney o o .._+.H 141 ! b
T ._.Iﬁ I .f..*. -H + Tttt +H 4
| HH A et Stk HHH- bosigidy il 7 shuni
5 TS T SOOI .4 .H..4. H¢_4 ‘o
e + + t oy g r -
m. Poros e I I P A S .+|»+HI. + L- % 1 t _1+.
T e TS ._.- ++ ++ b1t B i v + +r4
1 Feabh o sy $2b3 PR S ++—44 DS SRR s S R
1 /. A eeed Bl B .m... |r+..Hl 1+ ++t ++.m. +x__. % e |




o
(]

*Z °B14 jo suoijonba |owsou yo uuoy pasdojjod *qg°z anbiy

ial

*£°T "614 u1 0 pasequnu sjuiod |osyuod
puo sojoyd yiim AydosBojoyd jo diys ¢x| Jo juawisnipo woiy Buisiio

suojonba |ouuou |03uaB Y} jO X14OW JUBID1§403 Y} Jo uuoy g 9y °og°Z 9nbiy

— T— — - — —— T T T ~ T ~ - —
_..+.— R I B R A BRI SRR S ...__‘.. T .“_4.. ‘w.. ..._._.. IR I B AR .“,;h*w .ﬂ— *hHﬁ._T. H <44 L_.Ahu.. r—t 1 *.— - M-?i[_ 1 *mA LRI h
b e e IR BRI Cr e B o CEE LI TR O g o R (e DRI SRR IR S A + 444 1 W.H.x bt ||A|.+..v..rx.‘lr ﬁ.‘.l._,fv‘_‘ H | Ha. t
0 10 T S W) O 0 (R SR i SR O Hq N T R B bovab oo b r b bbbyl ﬁ_ _++._1'- ; .ﬂ;r ] IREENERR SRS E *... 14441 “_ b4 ﬁ
s e b a e e dada PRI B ) G ISR, R rRR R Lt ' H I N A TR B I ') .____1 AR E R R r._.*L - - § = S Ty . .._v‘.l.l.u.ﬁl.wﬂ:u +. - - + -.4 -
I—Ih.v... PRI S 1 SO SRS (TS G G P ST 55 ISR (i S ) b1+ s ddprrtbdoedtr et braaddaiag ‘ 11 +—— T ; I S -
t + oy doog ol sl v By wle PR | din _+.“ v i R bigo bt ead b PO T O T S S ) H4_. +.—‘ ..HA* O N T W S S B S S U A U R S S 1 .‘1.1* 4444 4 __¢.H 1
ﬁ4”. eS8 (R ) e O R e R R _ AR R [T IERCRRTE N BURRSIE o B AR AN SR S st 11 44 +4 414 . 4+ R Hﬁ
. o v . - b P P S I .4 b ) o . e PR 8 A A 3 + + 4 ¢ 41 + 4 ++ 44 4444 } 4 it 3 % + Fiaias }
*MH. H”_.. ...H ..q.. Pedabugda g 4.. ..H._. GRS IS SERTRESNE NN S SRR rm.m’ +.H+ -4 ﬂ._T.:.._Hll 44 - _.*u +_._v v.—lﬁ } 4 .m.ﬂ ___H
. " - L e + - + . Tl = 4 4 + i i - ' e
Vakiae b I e g v 0% b v Sy R o Lits Ba vono idhs e Eosd bd satndbssebdFiibaq a4t --1_1. 1 ! G250 B A B
R T E R TR b oww ke e o ¥ e I .y ¥ R RIS IR SRR RS e e | MLL_.{.. 80 o o 4+ 4444444+ ; 4 R IR IR
.H_—_. sow owd bow eow ol soe woe R R . . I B b v . ‘s BT IR by +r bttt .TW ‘v.._..l_r._ ﬁ - 4 + I IR IR A B
e e PRI P R T TR I be g b o N R R R ‘_+# H.++ * b H._ 4 411 . A..L_. 4+ H+._ ww‘ ﬂ IR BRI .ML..
— X e s e e i R R sl - P P Fv P "o e R 4+ 4 1+ 4+ + S 4+
”14_. i S e _....‘w. RO (2 7 il ' o - ae ~+ ik ..m* W*AIH.I,++**+ U I 0 0 0 55 W 0 S O 8 IREEAESDEERE SN
e T e y b Wt N S| Ve ' . o cop et rat bbb dp=d i b sdddys b 4radt .__..._..T 4444 4 T ERETE ER R
T T ' P N B I IR SR .AA..y R Il IO AP i SOy O i I e H.. ++1 ¢ + T 4 | 4= a2 R R RN R
s ik wu v b i H — R IR IS ~ R I .H.T, #__.J(Lt.? I A ,T_.,, tHfrtetitpt o ptete
1 4 _ il - e — 4 ——+ <ML.“ TR + 4—+ + + 4 byt -+ +
ey o + j 3ca ¥ G . ....ﬁ. : R E by goednn .._* R ._,q_v_. .“-+ + 1_v..__ Lﬁ } HH by _HH
Ty . " ‘o e R —_— o TR . DI O M + 444 t 4 -4 44 %+A». L4444 -4 + . 4 &l Pl § boboas i
§ i ,” R _ sl e S WA s o A* yow 4 e A .MM% ; e O H.ﬁ.;_...H . 44444444 ._...‘.H e Hl_— I
. ; L T - oo b | Lovwwdd //ll crssphbes ) pbididd .”_.._.Inr..l 114.:_,44 4 L44- Hﬁ bidagiitt
-+ - - e - b ——t PRI PR R R i i RO SRR ' U i i & 14 i 4 e
$5 30 ag Ehad ondnd ik 8 B Aoy e Ry SO TR T T R R R T FTESERIN
bl g T r foe et GIPeRY lr ...,/./. R S R R ER TJE +++ H ik e i I
o B R s R P, b T A . Vbt .‘._.a++~m.—.~L.r4+HT +4 - A* b H
e T T R ._.... o wog ko e ...%... .‘4‘... ‘ Tt e b.._+.+ .‘ﬁ.ﬁ.l_i!u‘q:ﬂ_ 4+ 1-4-4 + 44 ._““" ﬁ 4_
T + T T T T TTr1 T !
TN SR D R . i R ‘ L 2 . ISEBE R RESE ERBE! JENEGREEESRE + H ,.w._ ]
e b g has ona 5 & e L Sl . o T o ] 2w S S EhEe T SOl O B -4 v 4 s 4 SN FV I U SN B — 4 L 44 44
. . . _ boee e . . ks / .. . TR . . . It + = 0 4 4 f! +++++ ,.fdl.._l% e +-+ +4 e 44 4 4
.v““” 1 ‘H“.—,... st M .. .Aﬁ..<. oo ba b dbd o4 P + + +4 + + - ++ ...,+44
PR B R N waa b ! 4 ‘ +—+ L 0
Tpesipeas meeri ers baiig e - el 4 E35py peyes sa T T s
“v.A.. s R R » f T N e k il REESS o (R = + 4 .r.ﬂ. 3 M.M“. R 1 S48y T
S e o S e o i 4 2 g PR Tm P11 Y 11
Vg L Es e B (Pesc Bl ol < SRR B8 S G RE RS ! T+ g oee! i
= L2 l . + - +. 4 . + - i 4
4 b O N Tt T RPTRVRCy) P | S ] » ik . § .. H t gy + - + _.. 444 4ttt WA_.
vyt T R G T ) A . b 5 T — L+ ot +41 L4 44 4
.+H. A B i 8 k- - ‘ﬂ.. N . . + a.+4<nAr...—.+. +—— 44 R i I |...*.n|m..h b
Gpals ebhh aadoastSaiiel Bl o N Caid bR Pea bEERF LR L i 8 BESesbaspe!
LD § TP DT SR TR i S g - FIRS CHERE BRI SEROE SRa HRaehe B ' B ERASIENEE ISR ENE 5!
”HH_A__. PP et R R ChA L .‘.._.. b . ‘e R R e _..iLI.TT._ — -ttt e o b
T I ...Aﬁ.. N - | ~ N h PR (I, 5 R R R .....IT._ + 4t d bbb | bt bt b bpeetq
&1 " ? i ..{ ST GRS 4 PR S a S s + & R = = S TSI SR AR R I
B U S : — E S ; | i I ; ey i I BESEAESDEE 8
T A L IR R i PRI 3 & " i R R ARG o . Ve va bl dpdoed b ..+fp..p. S 8 A 0 O v+hp 4
i S S S +._ T T R N 4 *- . _ ‘. m I IR _,+r+A_ .ﬂ_ .4.+,...+.+4.4 4
H 3.4 Lo g o W e R . PP Javbrbrasdenssye P PR T R <5 4».'_.‘..-.»! = .T.*H 4 444 \.ﬁ..w..» spdr bt idts
ER 5 TS D I i & RO IS P S e SRR U T s b e e 4.1.._;4‘.; -7 iy 4.:H t4 44 4
-l. ! + - . + 4-- ' 1 - ._—..— h
S0 -.1414”;.M.W*wa.-ulu-,rw,””.‘u TRER PRUSE BSOS RORGE PIOERSERRS DESARE L1 L1 SEISURRASEESRBERRE By
.+.H H “...... Ve ok R TE ) (T PO ) SR » el i, 8 P O, (91 [ Tb»u.r .|_1+H.JP._...__.+ i .:.H.,vIIT 344 4 %. a4 4
B0 BT PR ASRERESURL ot [ $ogl Gig % SR SRt hd iR EEEeR SRNE & R BEREE £ peesaRiden ia0ebeastl i
+ % B Ly H..,. P s ¥ b owa > S M. . ....u‘»'47+14. +_ M.I.__..v.r 414 44+ 4 .w.ﬂ.. HHM.W .__..r
-+ - - : ! — — i — 2 et .35 /5] 5 [ t T e T =
. R ST 3 & g s P R B i o e e + 1ottt 4=
H».H .M“ | ik N b foe s ad a0 e s e n b b eregdl & .__.+I+._ -+t S + 1 1 4+ 44 4+4+1 4ttt M++& 4
O T ! e (R i ) YR A PR (R | i 2 . i R A <..__4.1:++.._. = Il_w i R EE TR IR T R
Bedh R S AT S I R e S oy . ' B R R e e + * *TH...T s g bbb Pt
Y i G ||.|-|. E—— i -— .- - L i _vi..lI! 4 - _ 4 e e t—t i L “ it _ n d
2 eGSR FEbe T gl DRENS PRI pite Bl BBt (OGS PRSSS FRONURISNE PENE T [ T T
o R e o - . T I + e R e - R bttt bedtteet bt
..Hwo .Hh PP H-‘ A e e | [ e PR A B D O & e = | 44 q Hl_. |+ 4 4 4 toat
”4",4.. PRI ‘H PP & m ; % b . . T (R P 1) 0 U o 8 11 R - O +4- ++4+44 4 4+ td ¢4 4 _ﬁ“
I L e + 4 st
850 SRR (Y : . ¥ VRN 1 O ) __ ANpEae J 4
M“l—. pooa b § H. e 3 /] ) d 4 4 “+ 1 -+ [EREE R _.__m.. 1 1
Sk da il e ey B . . .W.._‘ P +-.~4 I }
sl P EIREE L 7/ et HH AL T
" . + + + + +—+ .
PREER G o g P44 D % i G T HTH “m
4#...H.<. P T 1 4 “\. 5 LI P | I+. e } 44+ . ' B | 4 y
e R e B : = g + thtt i4 1y s+ttt
b ¥ig Foq e ' & J e t4t9 1 d H ++ 41
_v.. oeoe LR ". \!L\ .... __ .—*$4 H.v.‘l_._ + ML ) 4
.,“ e iRl \. .. o4 L4+ 4 4 \* 44+ 4+ _. ]
i . ” i LR s “ - . i - \q e . & * LR SR . -y W . &0 &. - - ._.. I.viw.4.l - 4 4
Tiadl i £3 s ’ \\\\ PV [P {5 &5 e G0 At 3 L] B
T TR R R . . H
;_4 BB Y } A i 2 =l +4bedipidely L L]
++4 wHH.w._.-—. . w Y piaie «ah ¥ s ‘1 mHh;.. '4»M b it
ERESIRET) BUSERN g i ek : Lok} I8 HSUEH 8¢
r”“H ...“H. _...Hw A + Ml DR RS O RS DS B G .LM 4 ﬂ.v. SERnE
—tr ' gl o Pl ol | I e e R | 4. RS REEES . = 1114l +4+4 44
FSEfg S R SRl B R R R et o2 3 1H
W.Hor ”Hﬂl”. hoﬂa‘.“ .\\Nl.. “ .. ““ -mov.. o .4..“ s ki et .;.v.ﬁ. —+
853 ehnweasuass s o S badad chni Saussues
.‘Hl.aor-+.+..t JUNE I e ; “ e 0 g doew e bl i PO S 5 B S a;p.ﬁ #v..r.v.:H* +++4+44++4 4444+
R S L4+ + 4 4 P T SR e _. B i e ST T e o S S S o o H 4 +1 +144 ++ 444 +4
J4ia i B L r = DA B U B RS NS P S RE0 CREE! i 1
b44ad 4 b 4+ ¢ ¢ A, Tl R B _ H ti1 LH b T
P L gttt g HH THHH




= =66~

*£°C 614 ut so pasaqunu sjuiod |014u0d puo sojoyd Yitm
AydoisBojoud jo diys ¢x | 4o yuauysnlpo wosy Buisiio suoyonba joussou
"of°Z *614 jo suoyonba |owisou jo wioj pasdojjo) *qp°z aunbiy [033u36 ay4 4o x11yDW JUIZ 144903 Ay} D WIOy (PAUIMIIAUL) D) 3y] ‘Dz dinBiyg

D T AT L § : " . : frge DT R D _
R BB e B o o : : _ : | _ e I3
B e e ] _ : ; : . : ! fab oo s fodid o
el ot & -3 del R AT LR BRI SR ” o ! S S B 3 : rerfaumepzes fs o
R H R OB St ob b b st e Sillbell L RS RE I NN _ § : | G, F -
.rlu..”.a_-”11-.4-l.uuul..-ua+."a.;..‘..<..r“..... .« s P g .“... ...... b . wi - Fa— PUNPIRPEES S — - & A
[t e ! ) _ BN : : . : 3 JSca | ﬂ
.. . ' i ¥ [ .F.r./ — (ulu [ [ ] ’ L
] ] ' 1 L [ [ (] . +
il e R 3 Wﬁb w./t_. ._ S RIS ; _
! ; ; N N | . 1 55 i ;
MKy v m R n e i‘m i n ' ”‘J_ /.r . " . " ] ﬁ
T : et A B S R O TA:.. =t SIS Sonth oRtas SRt aRis PRGos Detenl
ﬁ | | N T W ! | 1= : ; B G
5 POy Er D R R _ RN | | R
FRREHEREER N N - m Y i T
B TB SR G 1 . e (NSRS BONREE .\ > B e R R L
% : 3 : , _ : “ ! : SeREL !
” \\“\ ’ \\ ' ! J |
: | : 7 : { \ i
S SN M SR °. 7. +-4. SN Cos%s 0 o 2o o2 oo’ I : S 1
ik i } X : |
: 3 " ! !
S R SY FUSTIRET _ . e ]
. _ 7Y, : -
. i
e e e A" . - +
| WA, 3
- ¥ . ' LY “
] . ] ' .
} 2o 2o 0e=o-= IR + ........ I.J . . m
e 4 N | !
T = = . . y< .J : “
e ' / . ;
e h % _
o it _. ! .
- - + — & F e e SR e M
....... - : b A i i
...... ok : ! : ; :
2 A _ :
I B

! _ . ” &
Y e d . R Rt
LA L = L4 * 1 . " .
= + e N S R . 5 - . 4 ‘ < | T
. b ..... i i | ¢ ! e
e s e % 4 b T N ;) ! p | b
_ { AREEReE . - MRS s et et dsantot)
-w b .. . Q 3 H ..... ._. “ $wE PN e . 1
it e R 5 - OO IO I KKRR N A S ] 0 T ] - (P Y (- i
[ P —— T o~ ..'r.“‘...4..““““w..|.h'.'|l+a.rai,-i . [ O (T, Z
e e el i S S i . e qoe s PSS (R SO WS T S R .
TS T e s o 4 .. . I TR = s ¥o5 yig PRl G P e R AR e doaany ar ek .. T - R T
el mi ¥ b A e R W WA T o e R et AR = = A s i ¥ = PR . o &% ae ‘- .a Ay g
1 L I ] [] ¢ 1 !




. - - — - ——— —— - e ey
. .<.......l.H.,....f‘........'. T R e e e R
. - ........,{.,.‘ PN (SR PSS (P U I B S P S |
. P ST T LT T TP S T e AT R B R SR I S
"+"'"""‘f’"""""‘“““" T T T e e e |
B B T I I SRR - e TE A4 ARk alie sceie ae s §
YU T RS S S Vs $ew e e fin el i wia m g el ! &5 O
| PP S TG CIPUS SPTPISE G | s e w o g P + . S e wim mmow el F
SRR S S U WU SIS GHSS I (I S S S 4L L. Y
e PR e . v B g e e e T e .o ' . ' - . § v .= P
booo . TR TS S ) v i - AP | e : . - . SR Seu e R A
5 @ At PR | P a s v Hw - e 4 . ' . . ! PT—— . .
g | B T SRR A O iz . i s i ' SE - ¢ 2 e _—
R R I 4+ > 20 -2 ey . s .. 4 - » > = s - P S ———
. T R $os din Fam ve fia . . s = . ' . . b oo v . oe
" . + & s .4 . - » eow e . . o4
t A ¥ - . =4 . Sl $ - 3 E e i
v 6w . s Yg . s ' $ . v e e
e e R A P N e e e e S e T el e
f oo o4 b b ae . . T P F i + . e s - b - e e e ‘
fore b I. a3 i ) (e . i . ' s s . et e B :
| R _— - . - PRI . v 4o . 4 - . - .. a $ o wa wa i
| O SRR Ul S e i A I e i A o e row, e bt )
| P RN - ‘o - . ! 4 . O - - e T .
I.-.-n SR = — i ' i e EaE . ol s Rl . ‘- - & % ale
— [T . . T AT . s » ol e . § a RS
yo-oroad T e oed 4 { . § e weih e .
S SOEAE S .. Tiai S BERES Rkl R B b
Fos via gae. ' . . - . § . . = Y T . ¥
l..... y Voo o e SN R ’ ; I S
vie eu g . h »or i AN e .. . e e e mide W
booee ' ' k Y - . . .
oo dgn w e S o e e #
iw vy s 1 - el ulE &
F. oifa you P “ry - L
Ve win kG PR A
', + ey . o . R T
ERERREEE ? SEREEBASSLERea
’ ¥ -
/:/ r rr - -
e - - - .
4 ——
PH T O TS o by die e gy ' R e A N T S BT T SR . o ‘ogoe s + . R e e s m
A -j-- o | A S ‘. ‘.....I.. SRS SRR SR | R N o i W g e b i e R e e e
R I RN SRR SR RN P e ORI SR O M S v SOl PRORE T P U R W “NREE WL == P S wa s eie ey
S U S PP yis & TSP S T R IR Lk W FEiN e 908 R e dw e gie " § ke E% Y 4
e S T e PRI, PO U T T S SR . D e T T SRR = s s s e A e e e e ———— . ——— il e
I O TR R (N R ity D ] g AR ) et e EUb a0 W i i sk ke e B g e el e e N i = S iTETE Gy
T T I I S S S PR SRR G Y R diele el 4k wialg ale Woey se ek T e T, T =R HEIE e
-+<—-o4—l-|-o—-v¢¢--a-l—---vv-4v---§~-—.4--—- et --.---~»»§‘»-«---.-1--. T RIS (—— P a  A——
I 2 B S Bl R e . b ‘e ' PO ST TN T T T T T T N T T T ST . - I B T T - s oy o= /:....-, —
R PR S R T o O T S T B R T I L T T e e e T T e S - - A - - e - i -
T e - A T T | PR SR ...‘.,‘..I . ¥ e P e e on > =R ik ee e e
4 Kb e P ,....1....11--;1....| PR T S S sa 2 m h o b oa - g e - S R T N
b r o R T S S ST S S O . b ..-..*»...-..‘. o e B
- + . P PR U (Y EPUNPRNSIN RSN SIS S S S PO
Vs G iy <5 S (pHES R O RO (i | e e fe e af K T e A e e e ey PR e A
+ 4 oo+ $or b “ 4 ov o .o owow T S T I 'Y . PRI T T S ST D |
BREEREHOS ahat s 00eE IS TR ERSORHRCBELOOGLEN GIETBLIS S Sw R S =hesindl
|;»LT¢¢-- I S S TR L R I L I S S o ow s ke b e - S P S —————
+ 4 b T R S " I . B I S S R S + s . . T e e I I |
b4 bbb A b ey T P il I A I R S A T S | b T T S |
b4 vt R IR I i S [ S I e T e _ g - — b e
~ - + + . - e -
;1,4 T P G R (R S S Foaaid ek owossdodicd Eododu-dil Lo 4 1 T dol Rask oy e b+ v .- .--------I..-... S
- e b4 o S B G . ..;.;..L....;.... - - B =5 G T O
D T L S .o (O NCIE RN O O A S I S i e R
LESR G i o oo mon i o i S ol S S e . D T e S b — 13 4 -
»t+—+ rit} + 4 ¥ "'-I"'-I‘l" LR R S e ¢ - - - - - B T e ]
p+r+-.'-11 I R A IR I R BN SRS S e | PSR & SN SCAGREE SR
;-;th 1*.1. 44 + b N .. $o4ob e . . boeohy et FCp—— ¢ S PR SN el S |
+ 4+ 44 f-+i-+ -+|oTo+ PO B I---v P I e e TP € B e
e+ -~ + ——— R .
+ 4+ ,+.+4+4 F"‘t*.‘. -4 T P TSR Y T SR - S = - ey - - ﬁ_---‘_--.i‘..;-..-L--_.
+++ R e e N PRI R TR ‘g d PR i DR UL UV SIS WSS U |
#@-4{ R R i bk -‘--?<'-‘;-<v .+ P S PV P A AP |
4+ o ok o R I T T O S SR S S S RS IS A S +.|f‘/.. g e ..--4__,....t..‘._.._,‘..__._..4'
— s e L B B B e T e e i B il S - - - -
-4+.>4+4¢- I R R SR PR S ST T [ PR S, » s ey PRENSRPUS DU PSS S S |
Rt SR RS d gt bt b T A R I S A . e A .o w S TP S ._....._..-...-..}.....,1._._..‘..
s i#—«--crt+«—+-+ I e PSS WPe |- 4+ BEFEVES DI IS SPEP USSR TIPS IS S UDS S
+4—4+ 4——++I1— L b4 e gk e ,.4_...1_._._.._+_..‘...._-.._+_-._-.._-.
- e e . — ' + ' i
* L SR o o ++ + L o by “‘\% e -__....._,_{_,.,,1__,‘_____ GHEFESEH W
-+t 4 r++-1[+¢l¢4+4.1 PREy T N, S ST | T T O B e S S
SRt B e B S G i o S S S S ttt e by T - i A e
I e o SRR B S e It{i— P R L b --—-—.---4_t--o_¢_;o.>._--4-4---4-1-----—4-—--—-
4+ et T—¢—f—+——- B . + + + AP
4+ s+ 4+ 4441 4+ + *v-vT t+ 4 v R = bbb HEPER IS SR DU S50 SN S SRR (SO SN S
e ++ + 4+ O e e e e | + o R + % = + 4 bbb e e s £ WAL 1 [N W P SR P L S T S
T e e I e R boe PSS S e, S S S EROR S A Sl AP SO SEPESPEEF (e SRR S
s S i B e T -r-+o—Ioov+- .k — T . .._....._,‘_.._...._._._.._._.._‘_.._._.___;-.,-_._T_....__..,...._.._4._.
+—+——+ = + 4t t + +- + = + +
-+ - bbby -+ R B T T e e R S e i e e S
R I o TS . e oas 44— DTS S (DD S (DS S A T s s
D e S e o T S e L+ B S T T T T S R RI
4 4 e B e T T T o o T T e e S e IS
+ + B o o s ——t- B ] - - 4= -t
14— 4+ + e e \\ R bt b —— D T — B T e i e
+ : o +——-4 4t e B i S R e B S S e
e 4+ bbb e S PRSI S S GG FEPUR G S (PGNP D G (S S S S S |
b+ 444 4+ bt b - .--4.1_‘4.._‘[.-.4‘.4+.4.~¢__._~4--’...-.-.,-.-—....-f--‘—-q.-a
Jok H A + i
— 4+ 1’~—-f4_—+ + 44 IR S A R e —‘-----.j..4-—--";4o_‘-q..-.-‘;»_.-hA-L._-4-—‘o----r--w-—--<'-—--‘-—.4
ek ik o At S Yo e 4+ o+ + ot 4 R R B e I o T S S I N Il e,
+ + bt ‘o BRI S S R T LRSS TP (S e + —— +
1 i R T + e = T - .-_‘i._._._ + — - - 4
1 - I + e - + + + - 4
- b — - 4 o PR . e e T * +- .- + -
_T-I.I_-.-.q,-.._HA4 —— e B R B S B + e +
+++4 e . L4 e d R T B e T e e T Mt ——
44-+T++.4.;‘4; WP + + R
+ + - T T
I RPN (Gl W N 4‘+'L¢1-O0 SRS S W U G S SN S S S S G S e e
- . T o = "SI VUSRS, SRS SPA SR - ._,-4-—.0-1-4-_—4--"44_..4_‘
N M A | B S S e ..4-.44..1...4-—.4.*_._4._...._;.4__4_4_‘-*.._.._4 SIS NI T—. S ———
- R SR I 0 B S *..‘-““_*H.,..*_M.‘H-,,.._,.-..*__F-‘}-___._H_ Ei]
e +—t ———— +— . ' e
- + +—4— - . YT -+ - D i B T i B S e e R S T e S e S B
e S S YOFERED SV B R T T T e e T T e T e o T e o I T S T T ua—
+ 4+ 4 P S B R U N e i - S e e
i---b--.& +- + e an SRS + e = e e e e T B St T R S e
4+ + — + + —— — - + +
F+—+ -+ e e e R R e B o T T B e e I B T e s A e e e T I S S SR
-I-+ . v LI S T T S S S e e S e ety 4+ B e S il meoon e o S ey o ol i
L B I—- g SR Ooof|-¢+v-&+-|-*++-l— e + — % —-— + B S SRS B N
4 a—--—-'—{v—« e dl S B e R e e + + + + s - e T T SRR S WY
- +ov e+ IR + -~ e e -+ +
44 + i P S O 0V ) 0 S S D O S + 4 . — T T S T e S
- e S e S A I S S e B R o 5 D e e T T T R S R T . ——t
+ USSR s B S TR S + SPUSSED P e s
4|- !‘ e B ‘—-r-i-:-—-t B T T e e e o e + -+ t ~fot PP . -
A Ll A Ll ) i i i

Figure 2.4b. Collapsed form of normal equations of Fig. 2.5a.

ing from adjustment of 1x5 strip of photography
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1ons aris

with photos and control points numbered as in Fig. 2.7.

normal equat

Figure 2.5a. The D (intertwined form of the coefficient matrix of the general
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Figurs 2.7. Generol scheme of photo ond control poirt numbering leading to B, C, D forms of normal squations for strip.
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In the next several subsections we shall describe the results of our simu-~
lations and shall show haw each series of simulations answered certain specific

questions while raising still others which were in turn answered by subsequent

simulations.

2,08 SIMULATIONS OF 2-PHOTO STRIPS USING POINT ITERATIVE METHODS

The basic 2-photo combination is, of course, the fundamental unit for
photogrommetric triangulation and is the combination which has traditional ly been
exploited os the ‘building biock® for cantilever extension. We concentrated
initially on the 2-photo unit mainly in order to become fomiliar with the ' mechanics'
of the vorious approaches to be applied later to more extensive photogrammetric
nets. The four corner points of the first photo were taken as absolute control
points, The middle control pcint of the first column and all three control points
of the last column were considered to be known perfectly in Z in order to preserve
the basic nine point pattern (since these particular points do not lie in overlap
areas, they must be constrained in at least one coordinate in order to be carried
in the adjustmeat; being constrainad only in Z, the can have no influence on the
results of the adjustment and accordingly may be viewed as dummy control introduced
merely for convenience). With a total of 12 control points being carried, the
general normal equations for the 2-photo strip become of order 48x48, All four
arrangements of the normal equations (A,B,C,D) were generated on an IBM 1620

computer and solutions were attempted by means of the following * point-iterative'

processes
1. Gouss-Seidel,
2. Gauss-Seidel with Luisternik Acceleration,
3. Successive Over Relaxation,
The results for Gauss-Seidel iteration for all four arrangements of the normal
equations are summarized in Table 2,2, Those for Successive Over Relaxation
are summarized in Table 2.3, The Gauss-Seidel process with Luisternik acceleration

was found to diverge for reasons to be discussed later,
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N ribek &f ARRANGEMENT OF NORMAL EQUATIONS
Iterations A B C D
m s, e @] s oG s e G S p (G
’ S 9.320 .8184 9.320 .3184 8.527  .8062 13.630 .6462
10 4,339 .8523 4,339 .8523 4,485 .9058 5.370  .9063
15 2,210 .8468 2,210 .8468 2.366 .9117 3.016 .9392
| 20 1.302 .9086 1.302 .9086 1.667 .9257 2,210 .9448
5 25 .982  .9861 .982  .9861 1.397 .9440 1.808 .9534
| 30 | .839 .9881 .89 .9881 1.231 ,9583 1.532 .9593
35 | J73  .9890 773 .9890 1.130  .9932
40 | 699 .9897 699 9897

Table 2.2 Volues of convergence porameter Sm ond estimated spectral radius pm(G) for every

basic 2-photo strip,

5 iterations of point-iterative Gauss-Seidel process applied to normal equations for

Number of ARRANGEMENT OF NORMAL EQUATIONS

iterations B ! C D
m Sm pm(G) Sm pm(G) Sm pm(G) Sm pm(G)
5 9.321 .8184 9.321 .8184 10.180 .8088 13.630  ,6462
10 6.871 8531 6.158 .4974 6.657 .8187 8.485 .7293
15 3.164 9036 3.071  ,9050 3.291 ,9009 6,367  .8185
20 2.289 .9730 2,478 11,0020 2.836 .9878 4,171 .9147
25 1.855 .9483 2.049 .9718 2.439 .9625 2.714 9501

Table 2.3. Values of convergence parameter Sm and estimated spectral radius pm(G) for every

normal equations for basic 2-photo strip,
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In Tables 2.2 and 2.3 the quantity Sm, defined by

n
$ = § (x(m)- x(m-‘))
m t 1
1=
- (m) (m-1) .
serves as the criterion for convergence. Here X and x are corresponding

1
components of two successive approximations to the solution vector of the normal

equations. 1ne quantity pm(G) denotes the approximation to the spectral radius
resulting from the mth iteration. The time required per iteration on the IBM 1620
was 28 minutes in all cases. it should be pointed out that all operations were per-
formed on the full 48x48 coefficient matrix, for the collapsed form was not employed

at this stage of the investigation,

From Table 2.2 we see that the results for the A and B arrangements are
identical and are superior in convergnece. to those for the C and D arrangements.
in comparing Tables 2.2 ond 2.3 we see that the point-iterative Gauss-Seidel
process actually converges more rapidly than the point-iterative Method of Successive
Over Relaxation. This indicates that the Method of Successive Qver Relaxation did
not realize a good approximation to its optimum acceleration parameter within the

span of iterations considered,

The most important finding of the simple 2-photo simulations was the demon-
stration that the Luisternik acceleration actually leads to divergence. Upon
reviewing this result from the theoretical standpoint the reason became obvious.
The Luisternik process may actually be viewed as a special case of the Method of

Successive Over Relaxation in which the acceleration parameter w is computed from

1
39 = .
O B O
As was indicated in Subsection 2,05, the SOR process will converge only for
0< w< 2., Thus when w is computed according to the above formula, convergence
will result only if p(G) < 0.5. In the general photogrammetric problem, on the

other hand, p(G) is generally close to unity. This makes Luisternik's acceleration
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coefficient greater than 2 which in turn causes divergence. When p(G) < 0.5,
Luisternik's choice for the acceleration parameter is related to the optimum

parameter by the follow:ng approximation

(40) (1+p(G))

“Luisternik QOptimum'

Hence even when it ieads to convergence the Luisternik acceleration parometer
tends to overshoot the optimum acceleration parometer by o factor equal to the

spectral rodius.

2,09 SIMULATIONS OF 2-PHOTO STRIPS USING BLOCK-ITERATIVE METHODS

Having dismissed the Luisternik method in our initial point-iterative simu-
lations, we proceeded to aoply block-iterative methods to the basic 2-photo case.
Here, as in all subsequent simulations, we employed an IBM 1620 computer to
generate the normal equations and an IBM 7094 to solve them, At this point we
decided to concentrate on one non-intertwined form of the normal equations and
one intertwined form. The B arrangement was selected for the non-intertwined
form because its implementation was considered to be somewhat easier thon that
of the A form, The D arrangement was selected for the intertwined form becouse

it is more strongly diagonal than the C arrangement,

The method of Block Successive Over Reloxation was opplied to both the
B and D forms. To serve os a control, the Block Gauss-Seidel process was oppiied
to the B form, The convergence criterion Sm ond estimated spectral rodius pm(G)
were read out at the end of svery tenth iteration and are listed in Toble 2,4 for

the three caies considered,

The results in Table 2,4 demonstrate that the rate of convergence of
Block Successive Over Relaxation far exceeds that of the Block Gouss Seidel
Process, being on the order of 40 to 50 times faster ot 100 iterations, In com-

paring Tables 2,2 and 2,4 we see that the block-iterative Gouss Seidel process
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TYPE OF ITERATIVE SOLUTION
Number of | p. SCK GAUSS-SEIDEL BLOCK SUCCESSIVE OVER RELAXATION
cabise B FORM B FORM D FORM
Sm pm(G) Sm P m(G) Sm pm(G)
10 5,693 9239 18.34 .9590 8,013 .8978
20 3.098 9197 1.798 9268 3.644 709
30 1.819 9254 5516 9316 A8 7909
40 1.125 9449 L2600 9320 A297 9573
50 .7198 .9498 320,93 0635 9454
60 4769 9522 0648 9253 0357 9485
70 .3302 .9836 0318 .9323 0202 9373
80 . 2413 .9847 .0158 .9G42 .0151 .9317
90 .1818 .9826 .007¢ .9163 .0065  .9509
100 140 .9829 .0039  1.0370 .0037  .9556
110 .38 .9824 .0019 .9612 0022 1.049

Tabie 2.4. Values of convergence parameter Sm ond estimated spectral radius pm(G) for
10 iterations of block=-iterction Gauss-Seidel Process and block-iterative Method

of Successive Over Relaxction applied to normal equations of basic 2-photo strip.

ARRANG EMENT OF NORMAL EQUATIONS
'I‘::::f;n:" B FORM D FORM

s_ p_(G) s 2 (G)

T 10.68 743 7538 7708

3c 6.186 9847 5.067 9716

50 3.049 9614 3.634 9930

70 1,511 9770 2.746 9827

9¢ 7854 9760 2.159 9953

1o 4976 9651 1.777 9947

130 4020 9793 1,537 9955

150 3490 L9510 1,389 9954

170 3077 9948 1.281 9961

190 773 9975 1,199 9974

210 . 2404 1,002 1.134 9971

Table 2.5. Vafues o'f convergence. parameter Sm and estimated spectral radius Pm(G) for every
20 iterations of block-iterative Method of Successive Over Relaxation applied to
simulated 1xé strip,

-108-




actually tends to converge less rapidly than the point-iterative Gouss-Seidel
process. On the ot'ier hand in zomparing Tables 2.3 and 2,4 we see that pre-
cisely the opposite is true with Successive Over Reloxation; here the block-
iterative procedures aofford o very considerable improvems: : over point itsrative

procedures,

The general rate of convargence with Block Successive Over Relaxation
is seen from Table 2.4 to be uoout the same for the B ond D orrongements, Cer-
tainly, thz D arrongement in this case does not provide the hoped for improvement

motivating the concept of intertwining,

2.10 SIMULATION OF 6~-PHOTO STRIPS

At this point it wos thought that the failure of intertwining to offer o
significant improvement in convergence might well be attributable to the fact
that with such a short strip only o weak ineasure of relative diagonality is pro-
vided by intertwining. For this reason, we decided to continue our investigo-
tions of intertwining in further parallel simulations of the B and D orrangements
of the normal equations, Accordingly, the original 2-photo strip was extended
to a 6-photo strip. This produced a system of normal equations of order 108x108,
thus providing the D intertwined form a chance to achieve o fair measure of

diagonality.

The results of 210 iterations of the process of Block Successive Over
Reloxation are indicated in Table 2.5 for every 20th iteration starting with the
10th. We see that instead of leading to an improvement in convergence, the
intertwined form D actuclly retords convergence to on appreciable degree ond
at 210 iterations is about five times slower in converying than the B form. Thus
the actual effect of intertwining would appear to be just the opposite of what

was desired,
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in an ttempt to account for this result, we investigated from: the
theoretical standpoint the structural properties characteristic of intertwined
forms. As stated in Subsection 2,05, through the use of ordering vectors it
con be established that the simple orrangements A und B of the normal equc-
tions are consistently ordered 2-cyclic matrices. | a similor manner we have
been able to establish that the more complex intertwined arrangements C ar.d
D cre not 2-cyclic. It follows that formuia (29) for estimating the optimum
acceleration parometer is not theoretically valid for the intertwined forms,
Varge (1962) states that the rate of convergence of Successive Over Relaxation
can be extremely sensitive to changes in the acceleration parameter, It is
evident from our numerical results that equation (29) does not yield the optimum
acceleration parameter for the intertwined arrangements and hence the naximum
rate of convergence of Successive Over Relaxation is not achieved with inter-
twining. Inasmuch as no formula is known for computing the optimum accelerotion
parameter for natrices which are not consistently ordered 2 cyclic, we decided
to abandon further consideration of intertwining in subsequent numerical simula-

tions.,

2.11  SIMULATION OF 25-PHOTO STRIPS

The investigations to this point were largely explocatory, serving to
suggest avenues meriting more intensive investigation. While the iterative
reduction for the é~photo strip did lead to a satisfa~tory solution of the normal
equations, the over-cll computing time was almost tenfold greater -han that which
would have been required by the direct reduction of Subsection 1.12. Nonethe-
less, the fact that a sotisfactory solution had been obtained at all was considered
to be encouraging because the iterative approach was not expected to be computa-

tionally superior for such small photogrammetric nets,

=110~

B SR AR B P T A M3 Sy .




Having settled on a single arrangement of the normal equations (the
B form) and a single iterative method of solution (Block Successive Over Relax~
ation) we proceeded to revise the soiution to incorporate a collapsing algorithm
in order to bypass unnecessory operations on blocks of zero elements. With this
successfully accomplished, we tested the resulting varsion of the reduction on
the 6-photo strip and found that the collapsing olgorithm speeded the reduction
by more than one third. By implementing the collapsing algorithm, we not only
speeded the reduction but were also able to handle much larger matrices in core,
for storage of blocks of zero elements was no longer required. This set the stage
for our next series of simulations which were concerned with 25-photo strips.
The 25-photo strip waos selected because this was judged to be close to the cross-
over point where the iterative approach would possibly emerge as computationally
superior. The order of the general normal equations for the 25-photo strip is
393x393.

In the 25-photo simulations the basic nine poini pattern was maintained

and two levels of control were considered:

(1) four absolute control points at the beginning of the strip and none
elsewhere (minimal control case);
(2) four absolute control points at the beginning and another four ot

the end of the strip and none elsewhere (uugmented control case).

Three non-collinear control points (or more precisely 2-1/3 points) actually consti-
tute a minimai control situation; by including a fourth control point in the set, we
obtain a practical check thicugh redundancy. Since such o check should, we feel,
be con:'dered to be virtually indispensible in practice, we regard o set of four

absolute control points as constituting the ' minimal controi case’.

Inasmuch as the plate coordinates were completely uncontaminated by
random error, the root mean square (rms) error of the residuals of the plate

coordinates was adopted as an olternative criterion of convergence. This was
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felt to be more meaningiul for the problem at hand than our ecrlier criterion,
For a perfect solution, the rms errcr would, of course, be precisely zero. With
real data, on the other hand, the rms error would stabilize at o higher level and
a more appropriate criterion would be one based on the change in the rms erres

per, say, twenty iterations.

The new convergence criterion was computed and read out every 20
iterations until an arbitrary cut-off level of 300 iterations was reached. The
resuits for both cases are listed in Table 2.6. On the surface, the level of
0.38 and 0.35 microns attained by 300 iterations is quite impressive, particularly
when considered in the light of normal plate measuring accuracies. However,
gauging the convergence criterion in this manner is deceptive for reasons to be
brought out in Figs. 2.8a through 2.12b. Here we have presented curves de-
picting the actuai errors in the solutions for the various unkrowns of the normal
equations. For convanience in making comparisons we have placed in juxtaposition
ccr-esponding figures for the ‘ minimal control case’ and the ' augmented control
cose' . Corresponding figures are given the scme number with the suffix 'a'
referring to the ' minimal control case' and the suffix 'b' corresponding to the

' augmenied control case' .

In comparing Figs. 2.8a ond 2.8b we have the first indication of what we
shall call the 'pinch' effect of absolute control. The truncation errors in @, w, K
in Fig. 2.8b, unlike those in 2.8a, are reduced almost to zero at the 25th photo.
This reflects the effects of the absolute control present at the end of the strip for
the ' augmented control case', Not only does this extra control pinch the truncation
error almost to zero at the :nd of the strip, but it also reduces somewhat the ampli-
tude of the intermediate excursions. The tip (@), tilt (w), and swing (k) errors are

suppressed for the most part to !ess than 5 seconds of arc by 300 iterations.

Ti.c pinch effect is also evident in the comparison of Figs. 2.9a and 2.9b,

. . . . . c
By the end of 300 iterations, the errors in the values of the zoordinates X~ Yc, viad
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Number of iterations RIS ERRSR WHIGRON
1 Minimal Control Case Augmented Control Cuse
0 183.8 179.4
20 1.8 1.85
40 1.20 1.25
60 1.01 .94
80 .84 .73
100 .73 .48
120 .66 .61
140 .61 .56
160 D7 51
180 .53 .48
200 .50 .45
220 .47 .43
240 .45 .40
260 .42 .38
280 .40 P74
300 .38 .35

Table 2.6. RMS errors of residuals of plate coordinates after each 20 iterations
of solution of normal equations generated by simulated 25-photo strips.,

are generally suppressed to less than 3, 5 and 2 ft. respectively, for the ' minimal
control case' and to less than 2, 4 and 1 ft, for the 'augmented control case .

To place these in proper perspeciive one should recall that the assumed flying
height for these simulations is 40,000 ft. and that the strip is on the order of 60
miles in length. Relative to the measiiing errors normally to be expected for such
an operation, the errors in the truncatiun of the iterative process at 300 iterations

are acceptably small,

InFigs. 2.10a through 2.12b we have plotted the errors of truncation of
the X,Y,Z ccordinates along each of the three rows of control points. Mot sur-
prisingly, these curves are rather well correlated with the XS, Y¢, 2% curves of
the exposure stations (Figs. 2.9a and b). Their amplitudes are generally under 3

feet at 300 iterations, although the error in the Y coordinate does become as large
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—— wm—— ——  After 100 iterations
After 200 Iterarions

---------- Afrer 300 Iterations
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SWING (k) ERROR (ARC SEC)
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Figure 2.8a. Errors remeaining ir @, w, k fur /S-photo strip ofter truncation of iterative
solution ot 100, 200 and 30C :.erations; minimal control case,

~-114-

e SR e




= e = After 100 iterations

10" 4 ————————  After 200 !terations
g + ——memreeeeee= After 300 iterations
(V2] -+
o 4
(-4
< 1
5 o—r—tw-bﬁﬁ-ﬂﬁﬁﬁWFyH—
& - - —==2
& N 5 10 15 -
3 o~ s i T e i | e — -
o 4
Lol _Ion_‘
]GII !
v
4 4
19
&
L |
& ) 4
O 04— —
£ 7
(V9
— - /’
&
[
— 4
= -10". 4
0% <

SWING (k) ERROR (ARC SEC)

PHOTOGRAPH NUMBER

Figure 2.8, Errors remaining in ®, w, k for 25-photo strip after truncation of iterative
solution at 100, 200 ond 300 iterations; augmented centrol case,
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— —— = After 100 lterations
After 200 Iterations
------------ After 300 lterations

X° ERROR (FEET)

Y® ERROR (FEET)

Z° ERROR (FEET)

PHOTOGRAPH NUMBER

c S¢ . :
Figure 2.9a. Errors remaining in XS, Y, Z° for 25-photo strip dfter truncation of
iterative solution at 100, 200 and 300 iterations; minimal control case.
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Figure 2,9b. Errors remaining in x°, Y¢, Z€ for 25-photo strip after truncation of
iterative solution at 100, 200 and 300 iterations; augmented control

case.
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— == —  After 100 {terations
After 200 Iterations
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Figure 2.10a. Errors remaining in X,Y,Z of st row of control of 25-photo strip ofter
truncation of iterative solution at 100, 200 and 300 iterations; minimal
control case,
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— —=— = After 100 Iterations

+5.1 _—  After 200 ltergtions

............ After 300 Iterations

CONTROL POIMT NUMBER

Figure 2,10b. Errors remaining in X,Y,Z of 15t row of control of 25-photo strip after
truncation of itsrative solution ot 100, 200 and 300 iterations; augmented
control cose,
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5 —  After 200 lterations

+ —  eemeeecc-ea- After 300 lterations
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Z ERROR (FEET)
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Figure 2.11a. Errors remaining in X,Y,Z of 2nd row of control of 25-photo strig after
truncation of iterative solution ot 100, 200 and 300 iterations; minimal
control case.
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____________ After 300 iterations
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Figure 2.711b. Errors remaining in X,Y,Z of 2nd row of control of 25-photo strip after
truncation of iterati * solution at 100, 200 and 300 iterations; augmented
control case,
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Figure 2.12a. Errors remaining in X,Y,Z of 3rd row of control of 25-photo strip ofter
truncation of iterative solution ot 100, 200 and 300 iterations; minimal
control case,
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Figure 2.12b. Errors remaining in X,Y,Z of 3rd row of control of 25-photo strip after
truncation of iterative solution at 100, 200 and 300 iterations; augmented
centrol case.
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as 5 feet ot one point {to a great extent, this is a reflection of the truncation
- " . .

error in Y ). By normal standards, the truncation errors at 300 iterations are

acceptabiy small for the most part. However, further iteration to suppress the

maximum error in the Y coordinates to u lower level might be considered advisable.

A remarkable property of the error curves of truncation is that their general
characteristics closely resemble those of error curves of measurement. I, for
example, one were to add random errors to the plate coordirates and iterate the
solution to perfect convergence, the resulting error curves would bear a marked
similarity in the domains of spatial frequency and autocorrelation to those curves
characteristic of truncation of the iterative process. We believe that a full scale
investigation of the autocorrelation and crosscorrelation spectra of error curves of
truncation and error curves of measuring would prove most enlightening and wou!d

recommend this to future studies.

From the error curves of Figs. 2.8a through 2.12b it is evident why the
error remaining in the ground control points (typically 1 to 3 feet and as much as
5 feet) is seemingly inconsistent with the very low mean error of the plate residuals
(less than 0.4 microns) attained ot 300 iterations. Truncation errors in the
elements of orientation of successive photos are seen to be highly correlated.
This leads to a gradual and subtie deformation of the model wherein the property
of intersection of free rays is preserved ro a remarkably high degree. Because
of tnis pronounced serial correlation of errors in orientation, systematic ex-
cursions of the model are very poorly reflected by residuals in the plate
coordinates, For this reason, adequate convergence is not actually attained
with simulctad data free of rondom plate measuring errors until the rms error

of the plate coordinates has been suppressed to appreciably less than one micron,

Simulations of the 25-photo strips provided the first really convincing
evidence of the feasibility of the iterative approach. The computing time re-
quired for 300 iterations on the |EM 7094 was approximately 7 minutes, a value

compefitive with the direct reduction of a 25-photo strip.
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2,12 SIMULATION OF 41-PHOTO STRIPS

Having definitely established the promise of the iterative approach through
25-photo simulations, we proceeded to impiement the final stoge of our program
of simulation on strips, nomely, the adjustment of the longest strip which could be
handled totally in the memory of a 32K IBM 7094, Thiswasoriginally computed to bea
48-photo strip for the particuler computer we were using. However, we were forced
to cut this back to 41 photes ofter an expansion of the monitor of the computer con~

sumed almost 3000 previously available cells.

In order to gain a more definitive evaluation of the ‘pinch' effect of
absolute control, we considered five different levels of control throughout the
41 -photo strip. These are pictured in Fig. 2.13. InCaose 1 (Fig. 2.13a.) five
absolute points were established at the beginning of the strip. The four points
controlled only in Z do not lie in overlap areas and hence are actually dummy
control points introduced solely to preserve the convenient nine point pattern,
in Cuse 2 (Fig. 2.13b,) five additional contro!l points were established ot erd of
the strip. Cases 3, 4 and 5 (Figs. 2.13c., d., e.) correspond to the introduction
of additional control at approximately the half, quarter and one-eighth divisions

of the strip.

For each of the five cases the rms errors of the residuals of the plate

coordinates are listed in Table 2,7 for every 10 iterations to 50 iterations and
for every 50 iterations thereafter to 600 iterations. The computing tims. required
for 600 iterations averaged about 24 minutes. In general, the computing time for
p iterations of an n photo strip having the basic nine point pattern of control is
given very nearly by

T (min,) > knp
where

k = a constant depending on speed of the computer,

= 0,0010 for ani IBM 7094,
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Number of RMS ERROR (MICRONS)
|terations

Case 1 Cose 2 Case 3 Case 4 Case 5

0 336.0 336.0 336.0 336.0 336.0

1G 8.2 7o 8.0 8.3 8.6

20 5.1 4.9 5.0 5.1 9.2

30 4,0 3.9 3.9 3.9 3.8

40 3.4 3.3 3.3 3.2 2.9

50 3.0 2.9 2.8 2.7 2.3
100 2.0 1.8 1.9 1.7 1.0
150 1.5 1.4 1.5 1.4 .63
200 1.3 1.2 1.3 1.13 .49
250 1.15 1.1 1.2 1.01 .44
300 1.00 1.05 1.10 .92 .43
350 .96 .97 1.00 .81 .42
400 9 .90 .96 72 .43
450 .85 .36 .90 .67 .410
500 .81 .83 , 84 .62 . 407
550 .79 .85 .80 .59 . 405
600 .75 .82 .75 .56 . 403

Toble 2,7. RMS errors of residuals of plate coordinates after various numbers of
iterations of solution of normal equations generated by simulated
41-photo strips,

From Table 2.7 we see that the improvement in convergence with in-
creasing control is not very pronounced until Case 5 is reached. Here, the inclusion
of but four additional points (one new point per 10 photos) leads to a marked and
sudden improvement in convergence, This is perhaps most strikingly illustrated in
Figures 2. 14 ugh 2.18 in which the individual errors in the elements of orienta-
tion and coordinates of control are plotted after 600 iterations for Cases 1 - 4 and
after 200 iterations for Case 5. The errors in the X,Y coordinates of control are for
the most part suppressed to less than one foot in Case 5 and those for the Z coordi-
nate are generally suppressed to less thun 3 feet. The results for Case 5 after 2C0
iterations are actually suparior to the resuits for Case 4 ofter 600 iterations. It
should be pointed out that because of a quirk in the program not discovered until

very recently, the full value of the acceleration parameter for Block Successive
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O Relative Control Point
 Absolute Control Point

@ Control Poirt Constrained in Z
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04dO0OO0OO0000000000000000000000000000GCO00CO0C0O00E
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Figure 2,130, Ccsa |

4q0€00000C0000C0000000000000000000000000040d
0400000000000000000000000000000000000000048®
4040000000000 0000000000G6000000000000000040d

Figure 2,13b, Case 2

4q0d0000000000000000004O0000000000000000Cc04d04d
0400000000000000000004OC0000000000000000048®
4q0d4O0000D0000000000000040O0000000000000000040d

Figure 2,13c. Case 3

4dqO0qO00000004go00000000004O00000000C004O0000004¢q0Od
0400000000000 000000004QO0O0000O0000000000000C00CHEe
q0qgO00000004000000000C04QO0000000004Q0O0000000C4COHd

Figure 2,13d, Cate 4

40400000004 0000000000400000000004VO0000004O0¢Y¢
040004000000200400000QO00V0O0QO0000C000004O0004qEe
4qo0d00000004O00000000004000000000040000000404d

Figure 2,13 e, Case 5

Figure 2,13, Illustrating different levels of control considered in simulations of 4i-photo strip,
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Figure 2,14, Errors remaining in @, w, K after truncatior of iterotive solution of normal equations at (00 iterations for cose of 41-
photo strip with 5 different leveis of controi.
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Figure 215. Errors remoining in xc, Yc, 2° ofter truncation of iterative solution of normal equations at 400 iterctions for case of

4)-phote strip with 5 different levels of control.
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Figure 2.16. Errors remaining in X,Y,Z of st row of controi after truncation of iterative solution of normal equations ot 600
Figure

iterations for case of 41-photo strip with 5 different ieveis of controi,
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Over-Relaxation was not actually realized in the simulations of the 41-photo strip
(the resuits for the 25-photo strip, on the other hand, were not affected by this
difficulty which has now been corrected). For this reason, the results in Table 2,7
and Figs. 2.14 through 2,18 may be regarded as a cony:rvative indication of the

power of the iterative method.

Figs. 2.14 through 2.18 fully confirm the existence of the pinch effect of
absolute control first suggested by the results of the 25-photo simulations. They
also provide some insight into the possible reason for the sudden improvement in
convergence which is realized once o certain level of control is established, All
simulations performed so far suggest that error in truncation cf the iterative process
for the minimally controlled strip hos a natural fundomental spatial frequency of
about one cycle per 12 photos. Therefore, the pinch effect exerted by control
introduced at any multiple of the half cycle (6 photos) hes a tendency to be in phase
with this fundemental spatial frequency and hence does not exert nearly as strong
an influence on convergence as control deliberately distributed to be out of phase
with the fundamental frequency. By this reasoning, control introduced at the quarter
cycle mark (i.e., centered on every third photo) should be especially effective in
accelerating convergence. Fresh control introduced at the center of every fourth to
fifth photo would 'ikewise significantly disturb the notural frequency of the system
and should therefore also exert a marked influence on rate of convergence. Clearly
the topic of optimal distribution of limited absolute control is one warranting further
investigation in future studies. Here, a power spectrum and autocorrelation analysis
of the truncation error of the iterative process as oppiied to extremely long strips

(at least 150 photos) would be of particulor value,

Perhaps the most important single finding of the 41-photo simulation
is that once a certain minimal level of well-distributed control is attained the
convergence of the iterative process is greatly improved. This minimal level would

appeor to entail the introduction of fresh control on at least every fifth photo,
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2.13  SIMULATION OF 3x5 BLOCKS

Because of the success of the iterative approach in applications to photo-
grommetric strips, we proceeded to implement the approach for pnotogrammetric
blocks. This necessitoted the development of a more complex collapsing algorithm
and development of a more comprehensive computer progrom. The resulting IBM
7094 program was tested on the pair of simulated 3x5 blocks pictured in Figs. 2.19a
and 2,19b. The block with the greater level of absolute control (Fig. 2.19a)
wos reduced first, The cutoff level for iterations was set ot 200 iterations or an
rms error of 0.5 microns, whichever came first. The rms error was set to be com-
puted every 50 iterations. As it turned out the solution converged to 0.16
microns by the end of the first 50 iterotions, Hence no intermediate readout was
obtained for this case. The errors in the X and Y coordinates of the control points
were suppressed to less than 0.2 ft. ot 50 iterations. The errors in the Z coordinates,
on the other hand, were, in some instances, appreciobly larger, growing to as
much as one foot., The time required for the solution (50 iterations) was under one

minute,

Because the extraordinorily rayid rar2 of convergence experienced with
the initial 3x5 block hod not been anticipated, details on the nature of the con-
vergonce were not obtained. To remedy this, the second block {Fig. 2.19b)
was generated with o lesser number (four) absolute control points ond results were
read out every 10 iterations for a total of 120 iterations, The rms errors of the
residucls of the plate coordinates listed in Table 2.8 would seem to indicate that
extremely rapid convergence was obtained. On the other hand, the errors in the
elements of orientation (Table 2.9) and the coordinates of control (Toble 2,10),

while generally acceptably small by normal standords, are quite large in some
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Number of RMS Error
iterations (Microns)
0 155.0
10 2.7
20 1.1
30 .70
40 .49
50 .37
60 .29
70 .24
80 .20
90 A7
100 .14
110 .13
120 A

Table 2,8, Convergence of iterative solutior:
of 3x5 block with four absolute

control points,

:3;’;’“ A® A K ax© AYS Azt

(sec) (sec) (sec) (ft) (ft) (f
] - 11 1.4 ‘4 .35 - .26 - .06
2 -11.0 1.6 4.9 .39 -2.40 -1.81
3 23.3 1.6 6.0 .36 5.65 - .02
4 - .9 .9 6.0 .20 -0.12 -.19
5 -11.3 1.1 5.4 .28 -2.55 2.01
6 23.5 1.1 5.8 .29 5.74 - .2
7 - 1.0 .} 5.6 .05 -.n - .23
8 -11.4 . 5.6 .04 -2.55 -2.05
9 23.5 02 5.6 .07 5.76 - .29
10 - .9 - .7 5.2 -.14 - .13 - .21
N -11.> - .7 5.8 -.15 -2.57 -2.03
12 295 - .8 5.4 -.16 5.76 - .24
13 - 1,0 -1.3 4,8 -.30 - .24 - .10
14 -11.3 -1,2 6.3 -2 -2.43 -1,89
15 23.2 -1.1 5.0 -.23 5.63 - .12

Table 2.9. Errors in elements of orientation after 120 iterations of solution of
normal equations of simulated 3x5 block having four absolute con-
trol points,

-136-

% m_d'.k;“ W SN a2




{
POINT NO.! AX(ft.) AY(#.) AZ(ft.)
1 -.31 10 .00
2 -1 -.12 .00
Column 1 3 .35 12 .43
4 .96 .37 .00
5 -9 A5 -3.50
6 -.16 -.06 00
7 -2.13 -2.24 00
8 A2 .06 .02
g .00 .10 00
Column 2 10 13 A2 .00
13 .00 .02 -1.82
12 -.10 4 -3.80
13 .00 .00 .00
14 .05 .02 3.39
15 -.06 19 -.X
16 .00 R -.26
Column 3 17 .05 N4 -.30
18 .02 .18 -2,03
19 -.02 .13 -3.75
20 .00 .06 -.30
21 .03 .06 3.18
22 .01 .23 -.30
23 .00 .01 -.04
Column 4 24 .01 16 -.38
25 .00 .02 -2.12
26 .03 13 -3.84
/4 .00 .00 -.38
28 .03 .08 3.09
2 .08 A7 -.2
30 .03 BB -.26
Column 5 31 -.03 .15 ~.30
32 .02 .20 -2.05
33 .06 .14 -3.79
34 .03 .07 -.32
35 .00 .08 3.15
36 13 .06 -.03
37 .00 .00 .00
Column 6 38 -1 14 -.02
39 .00 .28 -1.92
40 4 16 -2.74
41 .00 .00 .00
42 -.05 .09 3.40
43 .28 .03 00
44 .07 -.12 00
Column 7 45 -.05 14 .37
46 -1.01 .40 .00
47 .36 6 -3.75
48 .06 -.08 .00
49 2.01 -2.14 .00

Table 2,10, Errors in coordinates of control points after 120 iterations of solution of
normal equations generated by simulated 3x& block.
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instances (e.g., a value of almost minus four feet for AZ of point 26). Such
errors are seemingly inconsistent with the extremely low rms error of 0.11p
attained at 120 iterations. The explanation, we believe, lies in an inherent
instability of the system of no. nal equations. To apprzciate this, one should
contemplate Fig. 2.19b. Taken by themselves the three horizontal strips form-
ing the block are individually indeterminate, The first and third strips are in-
determinatc i1n tip (®), for the entire model can rotate about the line joining

the two absolute control points in zach of these strips. The middle strip is,

of course, completely indeterminate because it contains no absolute control.

By virtue of relative control in the side overlaps, determinacy is achieved when
the three strips are treated as an integral block. However, there is a basic weakness
of the linkage between the first and third strips, for closures of rays to the points
in t' e side overlaps are not strongly affected by smali biases in the tip angles of
strips 1 and 3. Inceed, if the control points in the side overlaps were measured
only on those pairs of photos having the same Y coordinates as the control points
themseives, the block would degenerate to indeterminacy, for intersection of rays
in the side overlap would then be perfectly preserved under any @ rotation what-
ever of strips 1 and 3. The general tendency towards instability of the particular
block under discussion would be strongly domped, we believe, if a single point
in each of the side overlaps was an aksolute control point, A particularly good

choice would be points 24 and 26 of Fig. 2.19b.

The order of the normal equations generated by the 3x5 block is 237x237.
The form of the normal equations employed in the simulation is indicated in Fig.
2.20. For whatever academic interest they may hold, we have presented in Figs.
2,21 and 2, 22 twe intertwined forms of the normal equations for the 3x5 block.,
These wer2 developed before the theoretical shortcomings of the concept of inter-

twining had been appreciated.
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Our limited simulations of photogrammetric blocks indicate that the rate
of convergence of the iterative solution is several times faster for o compact
block than for a strip of comparable number of photos and level of control.

Thus the iterative approach is even more attractive for lorge blocks than for long

strips.

Unfortunately, time did not permit a more extensive investigation of the
block within the fromework of the present study. This will be remedied in future
work. Our IBM 7094 routine for block odjustment is designed to handle in core
any block of dimensions of n photos by p photos where nxp = 45 for n,p > 2,
When buffering teci»aiques are implemented as outlined in Subsection 2,15, it
will be possible to adjust blocks of virtually unlimited dimensions.

2,14  ADJUSTMENT OF 23-PHCTO STRIP OF ACTUAL PHOTOGRAPHY

The various routines developed during the course of the investigation were
designed expressly for simulated data and were intended primarily as tools for
analysis and studies of feasibility of iterative solutions of the rormal equations
orising from the adjustment of lorge photogrammetric nets. In order to process
real dats a number of auxiliary routines had to be written, most notable of which
was a routine for cantilever extension designed to obtain sharp initial approximations
for elements of orientation and coordinates of control and also to pre-edit the
observational material. With such aux'liary routines and with appropriate modi-
fications of the routines for simulation we were able to process real data in a rather
awkward fashion. As in our simuiations, an IBM 1620 computer was employed for
all preliminary reductions of real data including the preliminary cantilever extension
and the formation of rhe collapsed system of normal equations. The solution of the

normal equations wa, accomplished on an IBM 7094 computer.
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The photography employed in our study was taken over the Annex to
the Phoenix test range and was supplied to us by Army Map Service through
RADC. The photography was supplied as diapositive plotes ond was general ly
of very good quality. Flying height was nominally 10,000 feet above the
average terrain. The aerial comera employed o calibrated 6 inch Planigon
lens; the photo format was 9x? inches. A layout of the strip ond its absolute
control is provided in Fig. 2,23. A total of 24 absolute control points in 4
groups of 3 were included in the strip. Unfortunotely, practically all of this
control fell outside of triple overlap aoreas and thus could net be accommodated
by our adaptation of the simulation routines. Because of this shortcoming of the
routine, we elected to adjust the strip with o minimal array of four absolute control
points. These consisted of three points across the center of Photo 1 (XY-3,
XY-4, XY-5 of Fig. 2.23) ond a single point near the centes £ Fiuic 4 (ZB-4
of Fig. 2.23). The images of these points were of excellent quality. (The
first three were signalized by special ground targets.) A nine point pattern of
relative control was selected such that each point lay in o tripie overlap area
{except ot the ends of the strip). The plates were measured on our Mann 422 G
comparator which had been calibroted to one micron, The plote readings were
referred to the calibrated principal point and were corrected for distortion, The
calibrated principal distance was altered by o precalculated amount in order to
compensate for atmospheric refraction (compensation for refraction in this manner

is admissible for nearly vertical photography over all but very rugged terrain;.

The output of a special, analytical leasi squares cantilever extension
operating on single pairs of photos at o time served os initial cpproximations for
the linearization of the observational equations for the rigorous, simuitaneous
adjustment of the strip, The iterative sciution was set to compute the mean
error of the plate residuals every fifth iteration and to stop when the difference
between successive mean errors was less than 0.01 microns or when a maximum of

250 iterations was reached. As can be seen from Table 2,11, the criterion
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i
Number of | Mean Error Difference
iterations (Microns) (Microns)
0 21,57 11.96
1 9.61 .70
2 8.9 .41
3 8.50 .30
4 8.20 .21
5 7.99 .88
10 7.1 12
15 6.99 077
20 6.963 .009
! 25 6.954

Toble 2.11. Successive mean errors of plate coordinate residuals
from iterative solution of normal equations arising
from adjustment of 23-photo strip of actual photography.

for convergence was satisfied by only 25 iterations, a total computing time of
less than 40 seconds for the effective solution of a system of equations of order
363x363. We attribute this remarkably rapid convergence to the excellent

approximations obtained from the preliminary cantilever extension,

The final mean error of 6.96p is a substantial improvement over the
21,57y resulting from the preliminary cantilever extension. The individual
residuals for each point on each photo are provided in Table 2,12, These ore
seen to be highly random throughout the strip. From the standpoint of internal

consistency the results of the adjustment are most satisfactory.

Despite the substantial improvement in the mean error, the adjusted values
of the relative control points generally differed from the cantilever approximations
by less than 2 foot with only a few differing by as much as 2.5 feet. The largest
adjustment to the angular elements of orientation was 40 seconds of arc and most

were well under 20 seconds of urc; the largest displacement in the positions of the
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exposure stations was neorly 3 feet, In view of this, the cantilever extension
in its own right provides a quite satisfactory result. We would not expect such

good agreement to exist, however, if a liberal sprinkiing of absolute control were
corried in the simultoneous adjustment of the strip,

Neodless to say, much more extensive experience with reol dota is
required before the full potential of the photogrammetric solution developed in
this report car: be definitively evaluated. In order to handle real data in volume,
it will be necessary to develop progroms expressly designed for large scale pro-
duction. This is on entirely straightforward task ond is one fully justified by the
results obtained in the present study.

2,15 COMPUTER TECHNIQUES

The maximum coefficient matrix generated during the course of our
simulations is the 633-order matrix associoted with the normal equations for the
41-photo strip. This constitutes the largest coefficient matrix which, together
with the iterative progrom, can be stored in the moin memory of the IBMV. 7094
computer. However, this by no means represents the limit for the theoretical capo-
bility of the SOR technique, nor is it a limit for the order of the normal equa-
tions which con be solved using somewnat more advanced programming techniques
that are currently available, In fact, on o computer with o 32K main memory
it would be possible to generate and solve systems of normal equations of order
approximately 10,000 with very iittle loss of efficiency. Since further research
in this field onticipates the use of the CDC 1604 computer of RADC, we will
limit our discussion of advanced techniques to software which is currently avail -

able for this machine,

The almost unlimited capobility of the iterative progrom can be realized
through the use of the most advanced version of FORTRAN, FORTRAN-63,

available for the 1604 computer in conjunction with auxiliary storage devices
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such as high-speed, high-density magnetic topes or a mognetic disk or drum,
ond with the buffering facility that the 1604 possesses for the transfer of dato
from on ouxiliary storage unit to the main memory of the computer,

Instead of storing the entire coefficient matrix of the normal equations in
the main memory of the computer, the dato would be stored in binary form on an
auxiliory storoge unit (storage of the data in binory form permits o higher rote of
data transfer thon if the information were stored in the standard BCD form). The
only information which at all times remains available to the iterative program in the
main memory of the 1604 is the constant vector b and the iterative vector X(m)

(os in (9)). To initicte the iterative process, the first row of blocks of the co-
efficient matrix, consisting of the 6x6 N submatrix for the first photograph and

the nine &3 N submatrices associated with it, are transferred into the main memory
of the computer from the auxiliory storage unit, and then the first block of the new
iterative vector is computed in standord fashion. While this calculation is being
performed the second row of blocks of the coefficient matrix is buffered inta memory
by means of the BUFFER IN statement avaiiobie in FORTRAN-63, The advantage
of the BUFFER IN statement as the instrument of data transfer from auxiliary storage
to main memory is that as soor. as the transfer has been initiated, control is returned
to the iterative progrom, This then permits the computation of the first block of the
iterative vector and the transier of the second block row af data from auxiliary
storage to main memory to occur simultaneously, The second block row of data

is then used to compute the second block of the iterative vector while the tr.ird
block row of the coefficient matrix is being buffered into the main memory. Thus,
through successive applications of the above procedure it is possible ta compute the
entire iterative v=ctor even though at any one time only two block rows of the co-

efficient matrix are in the main memory of the computer,

The only possibly significant loss of time thraugh the implementation of
this procedure would occur if magnetic tape were used as the means of auxiliary

storage. In this case, a delay would occur ot the end of each iteratian to permit
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the tape containing the coefficient matrix to be rewound. Of course, this oroblem
would not present itself if a random access device were available for use as auxiliary

storoge of the coefficient matrix,

The delay caused by the rewvind of the data tope could be eliminated if
sufficient tape drives were available to permit the coefficient matrix to be stored
on two or more mognetic tapes. In this case, at the completion of one iteration on
alternate tape would be used for the computation of the succeeding iteration while
the original tape were being rewound. A more sophisticated procedure could be
put into use should the Block Successive Symmetric Over Relaxation iterative technique
prove feasible. As previously stated in Subsection 2,06, this method alternates a
forward and a backward iteration which thus eliminates the tape rewind completely
since at the end of each forward iteration the coefficient matrix must be entered
into memory in a reverse order to perform the backward iteration. In fact, should
the computer be equipped with the COC 607 tape drive, which has a backward read
capability. all superfluous motion of the tape would be eliminated, for tape motion

would occur only during the actual process of data transfer.

From the foregoing it is clear that through the use of optimal buffering
techniques, essentially no time need be wasted because of limitations of core
memory. We believe that a comprehensive reduction of a general photogrammetric
block leading to normal equations involving as many as 10,000 unknowns could
readily be accommodated by a computer having an internal memory equivalent to
32K werds, preferably of 36 binary bits or greater (total word length for the CDC
1604 is 48 bits),
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