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ABSTRACT 

The problem of the rigorous simultaneous adjustment of large photo- 

grammetric blocks is reviewed and extensions to an earlier theory are developed. 

Various matrix iterative approaches to the solution of the very large systems of 

normal equations characteristic of sizeable photogram metric nets are investigated» 

The Method of Block Successive Over Relaxation is found to yield c practical 

and most satisfactory solution to this problem.   Results of an extensive series of 

numerical simulations are reported.   The successful application of the approach 

to a 23-photo strip of actual photography provides final confirmation of the 

validity and effectiveness of the solution. 
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PREFACE 

The objective of this study is to develop o computationally feasible procedure 

for the solution of very large systems of normal equations generated in the process of 

simultaneous adjustment of ail observations arising from a large photogrammetric net. 

Although the theory for forming the normal equations in a systematic and practical 

manner was developed over six years ago by one of the writers (Brown, 1958 a), it has 

widely been held that the sheer size of the normal equations for long strips or large 

blocks of photography would restrict the application of the theory in its full generality 

to photogrammetric nets of relatively modest dimensions.   Consequently, efforts at 

applying the theory have concentrated largely on piecewise adjustments according to 

various schemes ranging from cantilever extension using three or more photos per step 

to extension through adjustment of small blocks.   All such solutions are, of course, 

compromises dictated solely by computational considerations.   Few will argue the 

desirability of simultaneous adjustment of sizeable photogrammetric nets, but many will 

argue its practicability.   We therefore take considerable pride in announcing our 

success in developing an altogether practical, yet uncompromisingly rigorous solution 

to the problem of adjusting large photogrammetric nets.   Surprisingly, there is evidence 

that the efficiency of the solution increases with increasing dimensions of the photo- 

grammetric net and is even greater with blocks than with strips.   The solution of the 

normal equations is accomplished through the application of techniques of matrix iterative 

analysis developed over the past decade by investigators Concerned primarily with the 

solution of large systems of linear equations arising from the numerical solution of systems 

partial differential equations.   A comprehensive treatment of matrix iterative techniques 

is provided by a recently published book (Vorga, 1962). 

Our study has been divided into two major ports.   Section 1 provides the overall 

theoretical development essential to the solution.   It also incorporates a number of re- 

finements (some previously published, others not) of the original photogrammetric theory 



(Brown, 1958 a).   In particular, it fully develops the concept of the 'ellipsoidal 

control point1 (previously introduced in Brown, 1959, as a special case of the awkwardly 

phrased concept of 'relaxation of quasi-observational variances').   The general adjust- 

ment is extended to accommodate observations provided by auxiliary external sensors 

(inertial systems, aircraft tracking systems, etc.).   Provisions are made for the cali- 

bration of such sensors as an integral part of the overall adjustment. 

Section 2 outlines the numerical procedures employed in implementing the 

solution and presents detailed results of an extensive program of numerical simulation 

designed to evaluate the effectiveness of the general approach developed in Section 1. 

Several specific approaches within the framework of the general approach are investigated 

to determine the particular variant leading to the most effective results. 

■vi. 
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SECTION   1 

THEORETICAL DEVELOPMENT 

By 
Duone Brown 

1.01     INTRODUCTION 

In a previous paper ( Brown, 1958 a), the writer presented a rigorous least 

squares solution effecting the simultaneous adjustment of the entire set of original 

plate measurement arising from a completely general photogrammetric net.   It war 

shown that the development of the general normal equations was an entirely straight- 

forward procedure presenting no difficulties even with a digital computer of relatively 

small capacity.   A direct solution, however, was considered to be impractical for large 

photogrammetric nets because of the prohibitive dimensions of the normal equations.   A 

practical means was developed to collapse the system of general normal equations to a 

more tractible system of reduced normal equations whose dimensions were independent 

of the number of unknown relative control points and were dependent only on the total 

number of unknown elements of orientation.   This version of the solution found immedi- 

ate application in space geodesy (Brown, 1958 b, 1959, 1960 a) wherein powerful stellar 

control could be exploited to reduce the number of unknown elements of orientation to 

three per exposure station (the X, Y, Z of each station).   Even rather large geodetic 

nets (up to 100 stations) were considered to be amenable to this approach for in practice 

only a handful of stations in the over-all network would observe a given group of flashes 

thereby  making possible the piecewise formation of the partial normal equations generated 

by relatively small local configurations; the formation of the final system of normal equa- 

tions would thus reduce to a simple matter of appropriate dissection and subsequent summing 

of the partial normal equations of individual configurations.   In such geodetic applications, 

the solution, of large systems of equations would normally have to be faced only at infre- 

quent intervals and hence   would warrant an effort which would otherwise be considered 

prohibitive. 
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In Brown (1958 b) the writer outlined an extension of the general adjustment 

to account for errors in presurveyed locations of exposure stations,    This extension was 

further developed in the Appendix to o later report (Brown,  1959).   Here, the solution 

was modified to cover the case in which any of the elements of orientation and any of 

the coordinates of control ore considered to be measured quantities subject to adjust- 

ment.   In the original solution, these quantities were considered to be either perfectly 

known or to be wholly unknown and the entire adjustment was placed on the measured 

plate coordinates. 

In an unpublished, privately circulated paper ( Brown,  1960b) which is referred 

to by Case ( 1961), the writer further extended the basic solution to incorporate orbital 

constraints applicable to a satellite-borne camera.   Here it was shown that the entire 

vector of coordinates of exposure stations for a given orbital pass could be replaced by 

a 6 x 1 vector of osculating Keplerian elements, these in turn being determined as part 

of the over-all photogrammetric reduction. 

The first unclassified application of the extended form of the writer's solution to 

aerotriangulation is probably that of Dowdy and McClure ( 1962).   Here, a compute, pro- 

gram for the simultaneous adjustmen, of as many as 12 photographs was developed for the 

IBM 709 Computer.   For long photogrammetric strips, the program employed what might 

be called a long base cantilever in which six, seven, or eight successive photos were 

carried in each adjustment.   Dowdy and McClure applied the program to the adjustment 

of 11 sub-blocks of a 50 photo block of actual photography.   The solution allowed not 

only for adjustment of plate coordinates, but also for adjustment of ground control.   Al- 

though the standard deviations assigned to the ground control ranged typically from 20 

to 30 ft., the published adjustment of the ground control turned out to be small fractions 

of a foot.   Dowdy and McClure expressed concern over such unrealistically small corrections 

but were unable to offer a specific explanation for the result.   The present writer, in seeking 

an explanation for this untoward result, carefully studied the flow charts and program listings 

published by Dowdy and McClure.   Both were found to be in good order and displayed a 

sound understanding of the method.   The difficulty was finally traced to an easily made 
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blunder in weighting wherein two different unit variances were implicitly carried in 

the same adjustment; the one for the ground control and the other for the plate measure- 

ments.  More specifically, the weights assigned to the ground control points were taken 

as the straight reciprocals of their variances thereby automatically fixing unit variance 

at unity.   Accordingly, the weights of the plate coordinates should also have been taken 

as the straight reciprocals of their variances.   Actually, they were not, for all plate 

coordinates were assigned unit weight.   If one were ro regard the standard deviation of 

the typical plate coordinate as being    O - 0.025 mm, the weight of the plate coordinate 
2 

would then properly become l/(.025)   = 1600, rather than unity.   Accordingly, in Dowdy 

and McOure's study, all of the plate coordinates were grossly underweighted ( by a factor 

on the order of 1000 to 2000) or, equivalency, all of the ground coordinates were grossly 

overweighted ( again, by a factor on the order of 1000   to 2000).   Hence, essentially all 

of the adjustment was placed on the plate coordinates and practically none was placed on 

the ground coordinates.   For all practical purposes, then, the ground control was actually 

treated as if it were perfectly  known.   Within this context, Dowdy and McOure's numerical 

results may be viewed as being valid. 

Dowdy and McClure indicate the IBM 709 running time of the program for a twelve 

photo adjustment to be slightly more than one half hour per iteration.   Inasmuch as compu- 

tations required for the formation and for the solution of the reduced normal equations in- 

crease as the square and cube, respectively, of the number of photos, it follows that be- 

tween two and four hours would be required per iteration for a twenty four photo adjust- 

ment and that between eight and thirty two hours would be required per iteration for a 

forty eight photo adjustment ( this assumes that sufficient memory were available to keep 

all computations in core).   Normally two to three iterative cycles would be required for 

adequate convergence, thus doubling to tripling the above figures.   Small wonder, then, 

that in recent years enthusiasm has generally waned for the idea of rigorous and simultan- 

eous adjustment of large blocks of photos.   Instead, efforts have been directed mostlv 

toward development of compromise solutions such as extension by analytical pairs, tiplets 

or sub-blocks with subsequent adjustment of the model to absolute control ( e.g., Mikhail, 

1962,  1963; El-Assal,  1963; Schut,  1964; Harris, Tewinkel, Whitten,  1962) or adjustment 



of strips or blocks of modest dimensions, typically of 25 photos or less ( e.g.,  Dowdy 

and McClure, op. cit.; Matos,  1963).   A broad review of the development of analyt- 

ical techniques is given by Doyle (1964). 

From the foregoing,  it appears that the general impetus towards the implementa- 

tion of the uncompromisingly rigorous adjustment of large photogrammetric blocks has in 

great measure died out in favor of suboptimal but more easily implemented analytical 

approaches.   Nonetheless, the desirability of simultaneous adjustment is conceded by 

virtually all investigators.   Because of the general abandonment of the ideal of simul- 

taneous adjustment, a Pandora's box of alternative approaches (most being minor variations 

of one another ) seems to have been opened leading, in the writer's view, to the generally 

chaotic present state of analytical pho tog ramme try. 

As has already been indicated, the stumbling block to the implementation of 

rigorous block adjustment has been the solution of the very large systems of normal equa- 

tions generated by blocks of even fairly modest dimension.   As we indicated, the formation 

of the normal equations themselves    is a relatively minor problem.    In all approaches 

reported to date    the solution of the normal equations has been effected by one or another 

of the numerous variants of Gaussian elimination.    This has set a practical limit (on the 

order of 25 photos) to the size of the photogrammetric net which can be handled, for 

computational difficulties with Gaussian elimination increase severely with increasing 

numbers of unknowns. 

In 1958, the writer experimented briefly with the Gauss-Seidel iterative technique 

for the solution of linear equations only to abandon it as utterly impractical upon finding 

its rate of convergence to be insufferably slow.   However, in 1962, the writer's interest 

in the possibilities of the Gauss-Seidel approach was rekindled upon reading in Faadeva 

(1959)ofan accelerating process developed by Luisternik  ( 1947).   It was further aroused 

upon the writer's discovery that,by means of a scheme of ordering the unknowns of the 

general normal equations generated by a 'uniform block' (to be defined later), it was 

possible to obtain a coefficient matrix having highly diagonal characteristics.   Indeed, 

the writer found that with a 'uniform block' it was possible to develop an ordering which 



would confine all nonzero elements of the coefficient matrix to a comparatively 

narrow band about the principal diagonal, the width of the band being completely 

independent of the photodimentions of the block.   Such strong diagonality, it seemed 

to the writer, might well enhance the prospects of acceptably rapid convergence of an 

iterative process of solution.   In further conjectural development of the renewed possi- 

bilities of an iterative approach, the writer conceived of a process for the systematic 

formation o' the normal equations in which an algorithmic scheme of indexing could be 

employed to bypass the computation of all zero elements of the normal equations, thereby 

leading to the direct formation of an equivalent ' collapsed* system of far smaller dimen- 

sions.   This concept of 'collapsed normal equations' further enlarged the possibility of 

the ultimate development of a practical approach to the problem of the rigorous adjust- 

ment of large photogrammetric nets.   In December 1962, these ideas were expressed for- 

mally in a technical proposal to Rome Air Development Center, resulting subsequently in 

the award of the present contract to investigate their practicability. 

As we shall see, the applicability of the accelerated Gauss-Seidel process turned 

out to be decidedly marginal.   On the other hand, the application of a more powerful 

iterative technique (that of successive overretaxation) proved to be successful beyond 

all expectation.   As a result, the rigorous adjustment of blocks of large dimensions may 

now be said to be entirely practical even though it may entail the simultaneous solution 

of several thousand equations.   Except for the collapsing algorithm, the development of 

the normal equations for our present solution remains largely the same as in the writer's 

original papers of 1958 and 1959.   However, a number of refinements have been added, 

foremost of which is a generalized treatment of auxiliary observations which permits the 

introduction of any desired statistical or functional constraints on the parameters of the ad- 

justment.   Before we take up the central problem of the solution of the normal equations, 

we shall incorporate these refinements into the derivation of the normal equations.   Here 

it is appropriate tonotethat the extension of the adjustment outlined in Brown (1959) was 

given without proof, an omission which has led to a number of private requests for clari- 

fication.   As we shall see in the development to follow,   the   proof   of the   extension 

V 



is so embarrassingly simple as to be elusive.   This is why it was not discovered until 

shortly after the publication of the original solution.   In brief, it involves nothing 

more than recognition of the fact that th« adjusted values of any observations may 

be carried in the adjustment as unknown parameters. 

1.02       THE ELLIPSOIDAL CONTROL POINT 

In the formulation of the general photogrammetric adjustment, we shall 

admit the possibility of correlated observations.   Properly exploited, the admissi- 

bility of correlated observations provides the investigator with a convenient and 

flexible means for rigorously implementing any manner of variation in the basic 

measuring processes without requiring the least alteration of the general adjust- 

ment itself.   We shall utilize this tool at the very outset to introduce a concept 

fundamental to our approach, namely that of the ' ellipsoidal control point.' 

According to this concept, the metric properties of a contro; point X , Y , Z 
lit 

are fully characterized by its covariance matrix A , the elements of which 

specify, in effect, the relative statistical magnitudes and interactions of the 

errors in the coordinates.   The term elliD*oHcj' control point stems from the 

consideration that the following quadrcri: form 

(1)       q    ■ 
"-1     T 

<VX° Y^ vz5 

v*r vx, y,    v/x. z 
J'J      1 J 

C7K. yj        Oy*      Oyt Zj 

CTx.z,     ax.z,     Ozf 
J   1 J   J ) 

1 _             _ 

Vx» 

Yj.y. 

vz; 

defines an ellipsoid centered at the observed point   X° , Y^, Z°    .   By incorpor- 

ating this quadratic form into the general quadratic form of the adjustment,, one 



constrains the adjusted rays from the various cameras to a given control point 

to intersect in probability within the space allowed by the 'error* ellipsoid 

associated with the point.   The concept of the ellipsoidal control point erases 

the usual distinction between different types of control points.   The difference 

between an absolute control point at the one end of the spectrum and a relative 

control point an the other becomes merely one of degree.   In the case of an 

absolute control point, the dimensions of the error ellipsoid for a moderate 

ievel of probability would be quite smoil (perhaps on the order of millimeters), 

whereas, in the case of a relative control point, the dimensions would be com- 

paratively large (perhaps on the order of hundreds of meters).   Partially absolute 

control points are characterized by either extremely flattened (pancake shaped) 

error ellipsoids for the case when only one of the three coordinates is known 

accurately, or else by extremely elongated (cigar shaped) error ellipsoids for 

the case when two of the three coordinates are known accurately. 

The ellipsoidal control point provides a particularly convenient means 

of introducing either absolute or partial control expressed originally in terms of 

geographic coordinates ( y . X. , h   )   rather than Cartesian coordinates (X ,Y ,Z 

If      I'^I' nj   denote the 'observed' geographic coordinates, the corresponding 

Cartesian coordinates  K, i   , Z  ,   may be expressed functionally as 

x;  = x^x^hj) , 

(2) Y*}     =     V^'X5'hl}   ' 

Z°      =     Z   (0°    X°    h°) 

If the covariance matrix of the geographic coordinates is 
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(3) 
I    *l \". 

V*.   °h. ♦A Vi  "h. 

that of the derived Cartesian coordinates becomes 

(4) U  T    U 11     1 

wherein 

(5) U.   = 

3Xj 

3Y° 

axj 

9X° 

8Xj 

ah» 

aV!     ay? 

90; axj ahj 

az° az° az° 

90° ax5 8h° 

The covorionce matrix   A,    contains all of the information pertinent to the error 

structure of the geographic coordinates«   In the event that only one of the three 

geographic coordinates were known accurately, one could proceed by assigning 

comfortably large variances to available approximations for the two poorly known 

coordinates and a realistic variance to the known coordinate.   The transformed 

covariance matrix    A     would then contain the information that one of the three 

geographic coordinates is known with worthwhile accuracy while the other two 
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are known only nominally.   The nonzero off-diagonal elements of   A     are par- 

ticularly vital to the correctness of the solution for they define the orientation 

of the error ellipsoid. 

By applying the concept of the ellipsoidal control point to geographic 

coordinates, one circumvents the awkward conventional alternative of forcing 

rays to intersect with mathematical precision on quadric surfaces, cones and 

planes.   Upon reflection, one begir, to appreciate that in the real world 

absolutely perfect control simply does not exist; all control is subject to error 

of varying degree.   Moreover, there is really no essential distinction between 

an approximation and an observation, for one can arrive at approximations 

only through a process of observation, however crude and however indirect. 

Thus, approximations may be viewed as observations having large and uncertain 

variances.   We shall adopt this view throughout the development of the general 

photogrammetric adjustment. 

1.03       OBSERVATIONAL EQUATIONS GENERATED BY THE PROJECTIVE 

RELATIONS 

As in Brown (1958) we consider the photogrammetric nei to involve a 

total of m exposure stations and a total of n control points.   We shall employ 

the subscript   1 (i - 1,2,... ,m) to denote the I      exposure station and the sub- 

script i (i - 1,2,... ,n) to denote the J     control point.   When double subscripts 

are used, the first will refer to the station and the second to the control point. 

No restrictions are placed on camera orientations or on the nature and distribution 

of control.    We shall proceed at the outset as if every control point were recorded 

at every station.    Later this assumption will be dropped. 

Tl • • •   • r l 'n i • th 
The projective equations arising from the i     control point and l      station 

are shown in Brown (1958a) to be of the form 
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I) 
X      +    c. 

p,     ! 
Di\i + Ei'iii + ,Vii 

(6) 

i) 

A'X    + B'u    + CV 
y   +  c  

pi DX    +EP    +F 1/ 

where 

(7) xtJ ,yu 

.  th     . th   . 
plate coordinates of j     point on i     photo, 

<8)     "<\ 

<»> 

plate coordinates of principal point of t     photo 

..,_,. ,   th 
principal distance of i     photo, 

(10) 

\ B, 

A; »'. c; 

D, 
E, 

orientation matrix of i     photo, 

(ID 

U 

ij 

U 

U 
Yj-Y< 

th 
direction cosines of ray joining l 

c       c       c 
exposure station at X   , Y   , Z 

and j     control point at Xt, Y , Z 

(R,J 
= l(xJ-

x')2+(Yj-Yt)2 + (zJ-
zt)2,i)i 

The elements of the orientation matrix are functions of the three angular elements 

of orientation   or,, ut, K( . 
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All steps leading to the formation and collection of the entire set of 

linearized observational equations arising from the protective relations will 

proceed precisely as in our earlier solution.   Thus, we let x   , y~    denote 

measured plate coordinates and set 

x.i        =        x?i  +   v 
•I «1 xtJ 

(12) 

ytJ       =       y°j +  v (t = l,2,...,m; j= l,2,...,n) 

where the v's are observational residuals.   Similarly, we set 

a.   =   off + ha, x     =   x00 + 6x X*   =   (x')°° + 6X* 

. 

(13)         w    =   0^+00;,            y     =   yj ♦ 6y              Y^   = (Y^ )°° + 6Y^ 
pi pi        pi 

Kt    =   K*+6K{             c,    =   c»+6ct             Z*   = (Z')°°+6Z'   (i - 1,2 m) 

in which arbitrary approximations are signified by the superscript and 

the 6' s are the appropriate corrections to the approximations.   We likewise 

assume approximations are available for the coordinates of the j control point 

and set 

X,    =   X~ + 6X}   , 

(14) Yj    =    Y^° + 6Y.   , 

Zi   -   Z» ♦ 6Z,   . 

The substitution of equations (12), (13), (14) into (6) and subsequent linearization 

by Taylor's series leads to the observational equations 
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(15) vi,  +   B

n 
8i  +   BtJ6<    =   €il      (• = 1/2,...^; j= l,2,...,n) 

in which 

(16) 

■"         — 

— _. 6«, 

*-              * 
V 

fc.l *".. 
• • • 

6co i 

vn = 

A
li 

' ».J= 

3«, 3a; < 
'   6,   = 6K, 

2,1) 
V 

y<; 
(2,9) 

*.J ".i • • •             * ■* 

(9,1) 
• 

ao, du: «f 
• 

(17) 

(2,3) 

3x u 

ax, 

ax. 

u 

3Y, 

3Y, 

u 

3Z. 

ay,,    3yn    ay 
ij 

az. 

(3,1) 

6X. 

6Y, 

6Z. 
(2,1) 

0 00 
x.,-xiJ 

0 00 
*li -y.i 

• •• 
The partial derivatives in B     and B     are evaljated at the approximations 

cf® , (J* , etc.   The quantities x* , yy    in   e    denote the values resulting 

when the right hand sides of equations (6) are evaluated using the approx- 

imations.   Detailed expressions for the partial derivatives are given In our 

earlier paper (Brown 1958) and need not be repeated here. 

At this point a comment on notation is appropriate.   Throughout tne paper 

we shall continue the practice (already begun) of affixing the superscript '0l to 

quantities which are considered to be observed and the superscript '°° ' to quantities 

which are considered to be approximations or the result of approximations (o%, for 

example, in the quantities xy', y,    which denote the plate coordinates computed 

from approximate elements of orientation and approximate coordinates of control). 
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0      ..0 We shall denote the covoriance matrix of the olate coordinates xtJ, y      by 

(18)        A   - 

02 
x. 

1J 

WlJ 

w. J'H 

y u 

and shall define the weight matrix of x°   , y*    to be 

(19) W 
U < 

By allowing the f .re coordinates for a given point to be correlated, we admit 

a variety of possible plate measuring techniques (e.g./ goniometric, polar 

coordinate) in addition to those which directly produce  Cartesian coordinates. 

We also thereby admit the possibility of employing cameras which do not have 

flat fields (e.g., panoramic cameras, meteor cameras, Baker Nunn Satellite 

Tracking Cameras, CZR cameras), for here the plate coordinates to be carried 

in the adjustment would be those derived from the appropriate transformation 

(usually from cylindrical to plane coordinates) of the original film measurements. 

In general, if £   , |j      denote the measured coordinates of an image in what- 

ever coordinate system is appropriate to the camera or measuring method and if 

(20) 
ij 

«1 

define the transformation to Cartesian coordinates, the covoriance matrix of the 

derived plate coordinates is given by 

T 
(21) 

where 

|J 
Cu   AuC., • 
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(22) 
u 

dx        dx 

ay      _£_ 

L ̂ 7X7 
Au = 

By employing the full covariar.ne matrix   A      in conjunction with the derived plate 

coordinates, we correctly propagate and preserve the informational content of the 

original observations throughout the entire photogrammetric adjustment. 

Returning now to the linearized projective equations (15), we may express the 

entire set of such equations generated by all m exposure stations as 

(23) 
•       • #•     •• 

v.  +   B,6 *   B. 6, 

(24) 

where 

(2m, 1) 

vii 

v2i 

mj 

\ = 
(2m, 9m) 

Bu 0 ...     0 

0 B2j ...     0 

• • « 
• • • 
• • • 

0 0 ,..     B mj 

/     6    = 

(9m, 1) 

&1 
99 

^11 

62 

• 

• e 

B2j 

• ' €r 
*2i 

• 
• 
• (2m,3) • 

• (2m,!) • 
• 

9 

6 
m 

es 

U 
~ .- L    J 

Inasmuch as we shall assume independence of plate coordinates of different 

images, we may express the covariance and weight matrices for the composite 

observational vector for the j     point as 

(25) 

(2m, 2m) 

0 

A2 j 

0 

0 

m} 

W. 

w„   o 

0      w2J 

0 

0 

* 

w 
mj 

•14- 



If next we collect all equations generated by all control points,we 

shall arrive at the system 

(26)        V+B6+B6     =   € 

(27) 

in w hich 

r 

v - 
(2mn,1) 

,   B  = 
(2mn,9m) 

,   B   = 
(2mn,3n) 

B,     0      .., 

0     B2    .., 

0 

0 
,    6 = 

(3n,1) 
, e- 
(2nr>n,l) 

The corresponding covariance and weight matrices are 

1 

\.4.o/       n = 

(2mn,2mn) 

A, 0 ... 

0 A2 ... 

e • 

0 0 ... 

0 

0 
w = 

(2mn,2mn) 

W, 0 ...  0 

0 W2 ... 0 

• e • 
• e t 
• • * 

0 0 ... w 

Equations (26) and (28) contain the entire store of information provided by the 

projective equations.      Our original treatment of the adjustment of a photogram- 

metric net (Brown, 1958a) was based entirely on these equations. 
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1.04       OBSERVATIONAL EQUATIONS GENERATED BY ELLIPSOIDAL CONTROL 

POINTS 

We shall now turn to other possible sources of information.   If we regard 

li nates of the J     control pci 

external observations/ we may write 

the coordinates of the J     control point as also being available from independent 

*, - *!♦* 
1 

(29)       Y, = Y^ + vY 

i 

i 

Here, as before, X., Y , Z    denote the adjusted coordinates.   The observed 

coordinates are  X  , Y: , Z    and their observational residuals are v.   , vy , v^   . 
J        J        J 

The covariance matrix of the observed coordinates is A    and the weight matrix 

is W   .    As we saw in our discussion of the ellipsoidal controi point, by permitting 

the covariance matrix  A   to be filled, we gain a new measure of observational 

flexibility.     Equations (29), simple though they are, constitute the observational 

equations arising from externally observed control points.   By employing the 

expressions in (14) for the adjusted coordinates, we may replace (29) by the equiv- 

alent relations 

x»*6xJ = x; + vXj 

(30)        Y^0 + 6Yj     =   Y^ + vy 

J 

700 + 6Z      =   Z° + v 
1 J 1       Z 
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or 

* ? 

"x, ■ 6XI = <*, • 

(3D vVj - BY, = 

"zt ■a, 
= 

\ ■ 

where 

(32) ex = *: -x° •        eY «v -vy-vj.   «j = z« - z; 

We thai I express (31) in matrix form at 

(33) 1 V     -    0 
1      i 

-     € I     * 

The observational equations arising from independently obtained coordinates 

of all n control points are then given by 

(34) 

where 

ee ee 

- 5   =   €  , 

(35)        v  = 
(3n,l) 

vl 

5   = 
(3n,l) 

6| 
• • 
*1 

• • 

&2 • • 

• • 

*2 

• 
• (3n,1) • 

» • • 
• • 
6 n 

• • 

n 
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If we were to assume that the coordinates of different points are independent 

of each other, the covariance and weight matrices associated with the obser- 

vational vector of (34) would assume the forms 

(36)        A  = 
(3n,3n) 

A,    0      ...     0 

0    X2   ...    0 

• • 

0     0      ...    A 

w   = 
(3n,3n) 

W, 0 ...     0 

0 W2 ...     0 

• • * 
• • • 
• • • 

0 0 ...   w 

1.05       OBSERVATIONAL EQUATIONS GENERATED BY ELEMENTS OF 

ORIENTATION 

It is clear that we could proceed as in the preceding section to 

introduce any independent observations which may be available for elements 

of orientation.   We shall assume initially that independent observations are 

available for all elements of orientation for all exposure stations.   If «  , w , . 

denote observed elements, we may write the observational equations for the i 

station: 

a= a.0 + v     , 

(37)        w = J * v    , 

Kx   =«° + VKj, 

x      - X     + V 

p, p, \ 

y     - y     * v 
p.   p.   yp 

s -c»*v . 

xJ*(X<)» + v  c    , 

Y,   = (Y.')° + v^c   , 

i 



where the v's are observational residuals.   If we eliminate the adjusted 

observations from equations (13) and (37), we shall arrive at the equivalent 

set of observational equations: 

V 

v     -  6a 00 0 

(38)        v     -  6a; Jf  - JJ 
'(*}. 

vzc - 6Z, 00  _ /7c.o atr -(z,y et 

vVith obvious notation we may represent these in matrix form as 

(39)        v,  -  6,     =    €,     . 

The observational equations for all m stations are then 

(40)        v  -  6   =   € 

w here 

(41) v   = 
(9m, 1) 

vi 

6    = 
(9m, 1) 

6, 

&2 

e 
(9m, 11 
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We shall let  A  denote the covariance matrix of the observations of the 
th • -1 

elements of orientation for the i     station and shall let  W = A     denote 

the corresponding weight matrix .  We shall not require that these matrices 

necessarily be diagonal.   We shall assume, for the time being, that the 

observations of elements of orientation are independent from one station 

to another.   Then the covariance and weight matrices for the observed 

elements of orientation can be written 

(42)        A = 
(9m ,9m) 

0 

A2 

..     0 

mj 

W    = 
(9m,9m) 

W, 0 ...     0 

0 W2 ...     0 

• • • 
• • • 
• • * 

0 0 ...    w 
rgj 

Wc shall ultimately allow  A and W to be completely filled matrices. 

1.06     NORMAL EQUATIONS IN THE ABSENCE OF DATA FROM EXTERNAL 

SENSORS 

We now have developed the observational equations arising from 

(a) measured plate coordinates, 

(b) ellipsoidal control points, 

(c) independently determined elements of orientation. 

We have yet to consider still another potential source of information which may 

be applicable to the photogrammetnc adjustment:    namely, external sensors and, 

in particular, external sensors which may themselves be significantly biased and 

which may, therefore, need to be calibrated as part of the overall photogrammetric 

adjustment in order that their potential accuracies might be fully realized.   Before 

we turn to such considerations, we shall pause briefly to consider the form of the 

■20- 



normal equations generated by the observational equations developed thus far. 

The three sets of observational equations, namely, 

(43) 

c     • ••    •* 

v +   B6 +   B 6 

v  -     6 
• * •■■• 

v -      6 

€ (linearized protective equations) 

€ (constraints on elements of orientation) 

€ (constraints from ellipsoidal control points) 

may be mes ged into the single matrix equation 

(44) 

r 
B      B 

-I       0 

0    -I 

r. c 

c 

€ 

and this in turn may be reduced to 

(45) v +   B6     =     € 

where, with obvious notation 

(46)       v = 

(•vV 
,     B   = 

(n0, 1 ) 

»       •   • 

B e • 

6 
€ 
* 

-1    0 6   = • • ,      *   = € 

0 -1 (Po/0 6 (no, 1 > • • 
€ 

where   n0 
=  2mn + 9m + 3n,    p0 = 9m + 3n. 

In a similar manner we may merge the covariance matrices and weight 

matrices of the three basic observational vectors into the single composite matrices 

A  and W where 
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(47) A-    = 
(n^no) 

A 0 
(2rrut,2mn) 

0 A 

0 

0 
(9m ,9m) 

0 A 
(3n,3n) 

w   =     A"1 ■ 

WO 0 
(2mn,2mn) 

0 W 0 
(9m,9m) 

• • 
0 0 w 

(3n,3n) 

The normal equations leading to the determination of that pair of vectors v, 6 which 

satisfy (45) while simultaneously leading to the minimization of the quadratic form of 

the residuals 

(48) s   =    vTWv 

is shown in Brown (1955) to consist of 

(49) (BT Wl) 6 BT Wc 

(50) 

By virtue of (46) and (47) the normal equations may be written 

BT-, 

VT0 

""' f •    • • 
w 0 

• 
0 B B 8 

• • 
0 w 0 

• • 
-1 0 _6_ 

0 0 w 0 -1 
-J L— 

B'-I 

V 0 

r-     -, 

w 0 0 € 

0 w 0 
• 
6 

0 0 
• • 
w 

• • 

which, upon reduction, become 

(51) 

t            * 

N + W R 

N + W 

w    > • 
6 
*■■• 

6 
L- 

• •       • 
c - W€ 
• • • •     •• 
r. - W € 

wherein 
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'T *T 
N      =     B W B        , c      =      B W € 

(9m,9m)     (9m,2mn)(2mn,2mn)(2mn,9m) (9m, 1)    (9m,2mn)(2mn,2mn)(2mn,l) 

R     =       BT W B      , 
(9m,3n)     (9m,2mn)(2mn,2mn)(2mn,3n) 

N=B W B,c=B W €. 
(3n,3n)      (3n,2mn)(2mn,2mn)(2mn,3n) (3n,l)    (3n,2mn)(2mn,2mn)(2mn,l) 

The normal equations (51) are of the form described in our earlier paper (Brown, 1959). 

We shall temporarily defer the further treatment of the normal equations until Subsection 

(1.12) and, in the next three subsections, shall consider the extension of the basic solu- 

tion to incorporate information from external sensors. 



1.07     OBSERVATIONAL EQUATIONS GENERATED BY AUXILIARY EXTERNAL SENSORS 

For the sake of complete generality, we shall now consider the possibility 

that there may be certain auxiliary measurements interrelating elements of orientation 

and coordinates of control.   For instance, the distances between certain pairs 

of exposure stations may be known, or distances between certain pairs of con- 

trol points, or even distances between certain exposure stations and certain 

control points.   It is altogether likely in the near future that the relative posi- 

tions of successive aerial exposure stations will be measured with worthwhile 

accuracy by inertia! sensors.   Conceivably, the effectiveness and accuracy of 

such sensors could be increased if certain parameters peculiar to the sensors 

were carried as unknowns in an appropriate modification of the photogrammetric 

adjustment.   To enlarge on this, let us consider an inertial system in somewhat 

greater detail.   The output of an inertial navigational system of high quality 

has a very low random component, but is subject to a cumulative time varying 

error upon which may be superimposed a sinusoidal type of error having the 

Schüler period P (approximately 84 minutes near the earth's surface).   Strictly 

for purposes of discussion, let us assume that the following equations adequately 

describe the nature of the errors in the navigational output for the latitude 0 

and longitude X   of the l     exposure of a photogrammetric strip: 

0,-0°       =       ^    +   QO + Qi(t,-too) + a2 sin-p-(t1-t00) +03 cosy-(ti-t00) 

(true)  (measured)    (random , ,. . , 
error \ + higher order terms, 

(assumed negligible) 

(53) 

X,    -   X°      =      €x  +  bo + b^-toeJ+bj sin-^^-too^cos-^-too) 

(true) (measured)     (random ,. , 
. + higher order terms   . 

error< / A       i-  >u \ (assumed negligible) 
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In these equations 

f   th 
t =     time of i     exposure, 

tgo =      arbitrary time of reference which would normally be 

selected to correspond to a time near the center of the 

strip, 

^   * =      zeroing errors at time t = too (ordinarily Oo»©}, bo»^), 

aj ,b) -      coefficients of first order secular drift, 

2'^   .      =      coefficients of first order periodic drift. 
b2,t>3 

Let us further suppose that the altitude of the aircraft is measured by means of 

a precise pressure altimeter and that a nominally constant altitude is flown. 

Aside from zeroing, the systematic errors in pressure altitude are primarily 

attributable to the slowly changing departure of the isobaric surface at flying 

height from the spheroid of reference.   If s   were to denote the distance along 

the flight path of the •     exposure station (s=0 when t=too), a suitable error 

model for measured pressure altitudes might well be of the form 

(54) hf   -    h° <Th        +    qj + c,s(+ c2sj + C3S; + ... 
i 

(true) (measured) (random equations defining isobaric 
error) departure along flight line/ 

from reference spheroid. 

•25- 



If the velocity of the aircraft were nearly constant, one could replace $ 

in this equation by   s   = v(t -too)  where  v denotes the average velocity 

along the flight interval.   By means of appropriate transformations the above 

equations for  Ö , X , h     could be expressed in terms of Cartesian coordinates. 

Thus, we may write functionally 

X,       =      fii(0j + €.   , X{ + £    , ht + C,    ,   ao ,a1#...; bo,^,,..; co^p...; tj) , 

(55)        Y^      =      f2i(0; + ^ /X°+'     , h°+C    ,   ca,,...;^,^,...;^,^,...;^)   , 
M 1 1 

Z,       =      ^iCw, + €    , Xt + €     , ff + €^  ,   ao ,0,,.. ./bo/D,,...; Co ,c,,...; t{)   . 

Here we dove expressed the adjusted Cartesian coordinates for the •     exposure 

station in terms of independently determined geographic coordinates together 

with a set of unknown error coefficients necessary for their calibration.   Equations 

(55) may therefore be considered to constitute another set of observational equa- 

tions involving not only parameters heretofore considered (X  , Y  , Z   ) but also 

a new set of parameters (a , b  - c ) independent of the parameters of the photo- 

grammetric model proper.   Nothing in principle prevents us from incorporating 

soch observational equations in^o the photogrammetric adjustment.   By doing so, 

we may possibly str^np* ier, the photogrammetric adjustment to a worthwhile degree 

and, in the process, calibrate the external sensors over the flight interval employed. 

The above discussion is intended to provide a heuristic introduction 

to the next phase of our formulation of the general photogrammetric adjustment, 

namely the incorporation of observational equations arising from external sensors. 

We postulate the existence of a general observational vector 

(56)      e1 -- (f>?   6\ ... ß°p) 
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provided by an unspecified combination of unspecified external sensors. 

We shall assume that the adjusted values 0, = 8* + vfl     of the external 
k 

observations must satisfy a set of  r  equations of the general functional 

form 

.    . .       •*   .. ..      ••• ••• ••• 
(57) f, (0! ,02,...,0 •  ul/U2/...,u9m;   U|,u2,... ,uj„;  U|,u2,...fu   ) =   0 

in which 

Uj,u2,... /Ugm      =      elements of orientation (e.g., m = a^, U2=u>i# etc.) 

uj,U2/...»U3n       =      coordinates of control (e.g., uj-X), UJ=YJ, etc») 

... ... 
it],u2,... i u =      unknown parameters peculiar to the external seniors. 

To linearize equations (57), we set 

Uj     =      u* + 6u(    ,       l = 1,2, ...,9m, 

(58)       ü}    =     u^ + Su*,   ,      1 =1,2,...,3n, 

uk    =      uk   + ^uk   '      k = 1/2, ...,q , 

in which the approximations for the elements of orientation u,   and coordinates 

of control u      are the same values as were used in the linearization of the 

projective equations.   The substitution of these expressions together with the 

expressions    6.  -   0,   + vA    into equations (57) and subsequent linearization 

by Taylor s series yields 
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(59) °lgvfli 
+ a2g^+— + Qpgva)   

+    f'9 6ü»   + f2g 6u2   + • •• + f9m,g ^m 

• • •• 
+    f,g6u,   + f2g 6u2   + ... + f3n,g 6u3n 

• a* ••« ••• ••• 

+   f,g 6u,  + f2g 6u2 •••+fq,g8uq 
=    € 

w here 

(60) 
Oh 

df 

30. gh 

df 

9u, 
gh 

df 

30 'fgh = 

3f 

du, 

(61)       e 
9 

.40 f    / flO   o0 flD      "00   *00 *00     *T»   "W 'DO   "1» '"OO        "**\ 
a       ''     2'   • ••' T*'   ul'   u2 '   •• •'  u9m / °\ i  u2' • ••'  ^n ' °1 '  u2 ' • • • 'uq'* 

Equations (59) may be expressed in matrix form as 

«        • ••    •• •••   ••* 
(42)        Aeve ♦   Be6 .l,6*(f     =   <„ 

where   6 and 6 ore the sar^e as in (24) and (27) rcsp«ctivelv and 

(63) A = 
e 

(r,p) 

°11       a12 

°21       °22   •••      a2p 

• • 

ari       °r2 Jrp 

"   " . . * 

\ *n f i 2     .. •       fl   9m / 
• • • 

(p,l) 

V 
02 

• 
t 

e 
(r ,9m) 

»21 

• 
• 
• 

f22    .. •        f2,9m 

• 
• 
• 

\ 
frl fr2     .. 'r,9m 
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L 

(64)        Bfl = 

(r,3n) 

• • •• 

?21    *22 

f*    f r2 

f1,3« 

r2,3« 

*r,3» 

••• •• • • •• 
',1 'n • • • f',q 

• •• •«• • •• 

• •• *21 *22 • • • f*,q 
,     B   = • • • 

(r,q) 
• 
• 

• 
• 

• • 
• •• • •» • •• 
'n ffl • • • V 

€0 = 

(r,D 

(65)        6 

M) 

• ■•• ••* "** T 
(5 o\   6uj   ...   6u )   . 

We shall let the covariance and weight matrices of the observational vector 0 

be denoted by   Aj  and   Wj   =    A$     . 

By means of equations (60 we can introduce into the photogrammetric 

adjustment any pertinent information available from independent sources.   For 

example, in the special case considered at the beginning of this section, the 

matrices  A„ and B„ would assume the forms e      e 

(66) A = 
.    9 
(3m, 3m) 

A„ 0 ...     0 

0 A22 ...     0 

• • • 
• • • 

0 0 ...     A 

where A 

(3,3) 

°3l -2,3» -2      °3I -2,J1-1      °li-I,3l 

°3«-1,3»-2       °3l -1,31-1       °Sl-1,31 

°3i ,31 -2 °3l ,H -1 °3i ,3 1 
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(67) B = 
9 

(3m ,9m) 

F„     0 

0       F 

...    0 

22      • • •     0 

0 0 

0 0 

0 0 

0 0 
■ 

where F    = 0 0 

(3,9) 
0 0 

* 
'3. ■h VI -2 •H-',,9i-2 

hi ■h 91 -1 hi -i,9i-i 

hi "2 91 fy 1-1,91 

0 

0 

0 

0 

0 

0 

f 3i,*!-! 

f3l,9l 

Becouse no control points are involved in equations (55), the matrix B  would be 

a zero matrix.   Since the   us (the a ,b ,c    in the present case) are common to 

all equations, the matrix   Bfl would be a completely filled  3m by q matrix, where 

q would equal 12 if four parameters were carried in each of the error models of 

(53) and 04). 

Inasmuch as different strips of a block may be flown on different occa- 

sions, it may be necessary to employ fresh coefficients in the error models for 

each strip or subgroup of strips.   This situation is easily accommodated by a 

re interpretation of (62), (65), (66), and (67).   We now attach a subscript  i 

to the matrices defined in (64), (65), (66) to signify that they arise from the 

i     strip or t     group of strips for which the t     set of error coefficients apply. 

If we postulate that the block is subdivided into a total of s subblocks, each 

having a re-initialized error model for the external sensors, the matrices in 

(62) assume the forms 
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(68) 

\ 
0        ...     0 

A = 
0 

0 

• 

Art      ...     0 
02 

*                                              • 

% 

v   - 

01 

02 

e* 

B   = 

* 

(69) 

B, 

,      6 = €_  = 
02 

Ö, 

Here 6   refers *o the corrections to the •     set of error coefficients (these apply 

only to the «     sub-block).   In the present application the elements v.  , €    of 
1       l 

the vectors v , e. are themselves vectors (applying to the i     sub-block) and are not 

to be confused with the scalars v. , £,   appearing in (57) (these should now be rede- 

fined as v-   / €      to refer, respectively, to the i    residual and *    discrepancy term 

" *'* 
arising from the   »     sub-block). 

From the foregoing example it should be clear that equations (62) may be 

interpreted with sufficient generality to accommodate any available auxiliary data 

pertaining, however remotely, to any of the elements of orientation or to any coor- 

dinates of control. . 
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1.08       OBSERVATIONAL EQUATIONS GENERATED BY APRIORl 

KNOWLEDGE OF PARAMETERS OF ERROR MODELS 

Our final Mt of observational equations is intended to exploit any 

information that may be available concerning the admissible variation of the 

coefficients of error models of external sensors.   We assume that the parameter 
••• 
u   is itself subject to observation and write 

(70)        ufc    =    u°  +  vfc   ,     k = l,2,...,q. 

Upon eliminating   u   from aquations (58) and (70) we get 

•»• ••• *>    r* (71)        v    -  6u       =     uw   -   u'      =      € \     , Yk k uk "k % 

which may be expressed in matrix form as 

••« *•• 
(72)        v    -    6        =       c    . 

(q,D     (q,D (q,D 

eee eee eee     m 

We shall let    A   and    W    =    A      denote the covariance and weight matrices 
(q,q)        (q,q)     (q,q) 

of ine a priori values of the error coefficients.   In the event no a priori constraints 

were to be placed on the error coefficients,   W would become zero,   By the same 

token, if no constraints were to be placed on a particular error coefficient, the 

rows and columns of W corresprnding to that coefficient would consist of zero 

elements. 
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1.09       THE MERGED OBSERVATIONAL EQUATIONS 

Bringing together  the various sets of observational equations which 

may apply to the adjustment of a general photogrammetric net, we have 

v   +   B  6  +   B  6 
*•• ••• 

Av   +B6+B6+B6 
e e     e        e        e 

6    = 

e (See Section (1.03)) 

€ (See Section (1.07)) 
6 

€ (See Section (1.05)) 

€ (See Section (1.04)) 

€ (See Section (1.08)) 

These may be written 

(74) 

10      0      0      0 

0      A0   0      0      0 

0     0     10     0 

0     0     0      10 

0     0     0     0     1 
• •• 
V 

B 
99 

B 0 
• • • • •• • 

B
9 

Be Be 6 
• • 

-1 0 0 6 

0 -1 0 
• •• 
6 

0 0 -1 

e 
*• 
€ 

••• 
€ 

which may be represented more compactly as 

(75)        Ä v      +    I  6      =     ? 
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The covoriance and weight matrices corresponding to the combined observational 

vectors is 

(76)       Ä = 

A    0 0 0 0 

0     A 0 0 0 
9 

0     0 A 0 0 

0     0 0 Ä 0 

0    0 o o Ä 

w = A"1 = 

W    0 

0     W_     0     0     0 

0 0 w 0 
• • 

0 

0 0 0 w 0 

0 0 0 0 w 

All of the information pertinent to the adjustment is contained in equations 

(75) and (76). 

1.10       THE GENERAL NORMAL EQUATIONS 

The normal equations for the minimum variance adjustment are obtained 

from the particular pair of vectors v,  6   which simultaneously satisfy the specified 

observational equations while minimizing the quadratic form 

(77) s    =    vT Wv   . 

The writer has shown (Brown» 1955)  that the solution to this problem leads to a set of 

normal equations of the form 

(78) N 6   =    c , 
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in which 

(79) 

(80) 

N =  BT(**AVB 

c   =   B^Ä'Ä1)"1^. 

If we set 

(81) G   -    (\VJf1   ' 

we can express the matrix (SääV1 « 

(82) (Ä^äV^ 

W    0 0 0 0 

0     G 0 0 0 

o   o w o o 
o    o o w o 

o o o w 

Fr0m this and from the implicit partitioning 

coefficient matrix N as 

fy    ?    -I     0      0 I 

of I in (75) we may express ths 

(83)      N = 

9 

BT   V   0     -I 
0 

0    *BT    0     0 
0 
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which reduce» to 

(84) N = 

B'WB^B   GB/W 
9       0 

• Y            **          • T            •* 

B   W B+ B   G B 
0       0 

BGB 
0       0 

B   W6+ B   G B 
0       0 

• »y               • •           • *Y               * •                • • 

B   W B+ B   G B + W 
0        0 

BGB 
0       0 

**T 
BGB 
0       0 

B    G B„ 
0        0 

• •••*•           •■•         • • 

B   G B + W 
0          0 

Similarly we may show that c is of the form 

(85) c = 

*T *T 
B   W e + B   G e - W e 

0 0 

B   We- ß   G efl- We 
0 Ö 

B   Gf.-vVf 
0       0 

From (84) and (85) we see that the general normal equations (78) can be 

expressed as the sum of the following two sets of normal equations: 

(86) 

N +W N 

N N + W       0 

— 
• 

0 6 
• • 

0 6 

0 6 
•1 

• • 
c- w€ 

c-Wt 

0 

(87) 

N N N 
0 0 0 

-T 
N N N 

0 0 0 
~T * T   
N N N +W 

0 0 0 

6 

re 

6 

6 c - We 
0 
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in which 

N  =  B   W B  , N   =8   G8    . N    =  B   G B    , 
e     e     e 6     9     6 

N  =  B   W B  , N   =  B   G B  , N   =  B   G B    , 
6        6       6 6        6       6 

(88)        N =  B   W B , N   =  B   G B   , N   =  B   G B    . 
0        0       0 «00 

*T '        *T 
c   =  B   We  , c=BG€, 

0       0       0 

c   =  B   W€   , c   =  B   G*    , 
0        0        0 

c„ =  B1 G C    , 
0        0       0 

We recognize equations (86) as being those derived in 1,06 and in our earlier papers 

(Brown 1958a, 1959); they arise from the projective relations and from con- 

straints placed directly on the elements of orientation and coordinates of 

control.   Equations (87) reflect the combined contribution of those external 
• •• 

sensors not involved in the generation of the constraining matrices W and W. 

In the case of the Air Force USQ-28 system, for example, such sensors would 

include: a precise inertial system (Hypernas il) providing accurate measurements 

(0= 10 arc sec.) of the direction of the camera axis relative to the local vertical, 

together with measurements of heading (u"= 40 arc sec.) and of relative position 

(0,X);  a precise ranging system (SHIRAN) providing simultaneous measurements 

(0=3 ft.) of the distances of the aircraft from up to four ground stations; a 

Terrain Profile Recorder providing a continuous measure (o- 10 ft.) of the 

distance to the nadir of the aircraft;  a precise pressure altimeter monitoring the 

altitude of the aircraft relative to an isobaric profile.   Equations (87) are suffi- 

ciently general to encompass all of the sensors of the present USQ-28 system 

plus anv other sensors which might later be added to the system. 
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1.11        DETAILED STRUCTURE OF THE NORMAL EOUATIONS 

To proceed further we shall confine our consideration to normal equations 

of the form (86).   From the partitioning of (27), (28), (35), (36), and(41) we can 

show that the normal equations(86) (with the third rows and columns dropped) are of 

the form 

(89) 

n 
(ZN,>+w *1 N2 • • • Nn 

J*1 

N,T 
1  • • 

|N + W, • • • 0 

R,T 
• • • • 

N2 + W2 • • • 0 

• 
• 
• • • 

• ■ • • 
• • • • 

K 0 0 • • • Nn+V 

(S^-wc 

c,  -W,e, 
•• ••      •• 
c2  - W2 e2 

cn"Wn*n 

in which 

N,   =    B^W^,    . 
',  ■»>!«,   ' 

(90)        R,  = "T 
• • •• 

«i-'iw.fi • 
•• t«T •• 

N.  - ljw.1,    , 

From the further partitioning of (24),(25),   and(42) we can expand (89) to the form 
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(9\) 

N„ + W,        0 

0      N22 + W2    ... 

0 

0 

N,T, 

N,T. 

N™,+ Wn 

N,T, 

r.T 
N 2" 

NJ, 

NT 

Ni 

N 2) 

N. ml 

N 12 

N 22 

N», 

• • «• 
N, + W, 0 

0        N2 + W2    ... 

N,. 

* 

N 

0 

0 

N +W 

6| 

6| 

6, 

c,, - Wj €\ 

* •       • 
c22 " W?fJ 

• a        • 

C      - W € 
fan m m 

•• ••     •• 
c, - W, €, 

c2 - W2e2 

• • ••    •« 

C   - W € a ■   a 

in which 

N 
11 

(92)        N 
a 

N. 

2>.Ti w.i ».i ' 
1=1 

*T 
B,i    w.| B.i  ' 

=    V B      W     B 

1=1 

.. "T 

The upper left hand portion of the normal equations consists of m 

diagonally arranged 9x9 blocks of elements, each such block corresponding 

to the elements of orientation for a particular exposure station.   When the 

elements of interior orientation are rigidly enforced to precalibrated values 

(as would normally be the case in aerial photogrammetry), the 9x9 blocks 

reduce to 6xA blocks.   In general, any parameter of the normal equations 
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may be enforced at the value employed in the linearization of the projective 

relations by simply deleting the rows and columns of the normal equations 

corresponding to the parameters.   This is equivalent to the operation of letting 

the a priori weight (in the W or W matrix) of the parameter approach infinity. 

By so doing one forces the solution for the given parameter to assume the value 

of zero, which, when substituted in the remaining equations, eliminates the 

parameter from the overall system. 

The lower right hand portion of the normal equations consists of n 

diagonally arranged 3x3 blocks of elements, each such block corresponding 

to the coordinates of a particular control point.   B, making the appropriate 
•e 

diagonal element of the W matrix for a given point sufficiently large, one 

can force the adjustment to reproduce a pre-established value of any coor- 

dinate of the point to within any desired tolerance.   One could, of course, 

rigidly enforce a given control point by striking out the rows and columns of 

the normal equations corresponding to the point.   Again, this would be tanta- 

mount to giving the point infinite weight. 

1.12       THE REDUCED NORMAL EQUATIONS 

When the number of unknown dements of orientation is not exces- 

sively large, it becomes practical to reduce the general normal equations 

(91) to a system of lower order by a process of inversion of a partitioned system. 

The practicability of this approach depends on the fact that, by virtue of diag- 

onality, the inversion of the lower right hand matrix of the normal equations 
•• •• *•     •• 

(N+W) consists merely of the inversion of n individual 3x3 matrices (the N +W ) 

and, hence, can be accomplished no matter how great the number of control 

points.   As shown in our earlier paper (Brown, 1958a), inversion by partitioning 

leads to the following expressions for 6 and 6: 
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• •   • •• •• 
(93)        6    =    M(c - We)  +  M(c -WO 

• *•     •• •• »• #• *   • • 

(94)        6   =    M (c - We) +  M(c - We) 

in which 

(95) M    =    | N+ W - N(N + W)" ' N1 )" 

• • ••     «•       « •*     ••       «        T    * **     **       1 

(96)        M    =    (N+W)     +(N+W)     N   MN(NKW) 

(97)        M    =    - M N (N + W)     . 

If we »et 

• • •• 
(98)        Q   =    (N + W)"1 NT 

and note that M in (97) then can be written 

(99)        M   =    - M QT   , 

the expression (93) for 6  may be put into the form 

•      • —    • • • • i 

(100)       6    =    M I c - We-Q (e - We)]     . 

We shall refer to(10Q)as the reduced system of normal equations. A more 

convenient alternative expression for 8 can be derived from (94) by first 

using (98) to express M in (96) as 

• • • • 
(101)       M   =     (N+W)"1 + Q M QT 
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and then substituting this together with (99) into (94), getting, upon collecting 

terns 

• • • •«•••••• • • • «•••••• • • • y •*    •• •• 

(102)      6    =    (N+W)    (c-W€)-QM[ c-We-Q (c-We)] 

in which, by virtue of (100),the postmuitiplier of Q in the second term may be 
• «a 

replaced by   6, thus reducing the expression for 6 to simply 

> * •• •   ••     •••• • 
(103)      6   =      (N + W)   (c-We)-QS    . 

This expression for 6 differs from that in our earlier paper (Brown, 1958a) in that 

the approximations for control are not required necessarily to be precomputed in 
• • •• • • 

a manner forcing c - We to zero. 

The partitioning employed in the formation of the normal equations can 

be exploited to derive a convenient cumulative process for forming the reduced 

normal equations(IOO).  From the data generated by the J     control point, one 

would compute the intermediate matrices 

• • • • 
(104)       Qj     =    (Nj+W^'1 N[ 

(105)      R,     =    NJQJ 

(106)       Sj     =    Nt   -R, 

• • «• 
(107)       C)     =    Cj   - Oj (Cj   - Wj €j ) 

As S    and c    are formed they are cumulatively added to their predecessors 

yielding, after the final control point has thus been processed, 
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(108) S   =   S, + Sj+ ... +Sn 

(109) c   =   c, + c2+ ... + cn 

In terms of these the solution for   6 becomes 

(110)      6   =   (S + W)    (S- W€)     . 

Once 6 has thus been determined, the solution for each control point con be 

computed in turn from 

*.       *. 
(ID      6,     =     (Nj+ Wj)"1 -Q,6   , 

which is a direct consequence of the partitioning of (103). 

The reduction based on equations(104)through(111)has a number of 

attractive properties: 

(o)  the order of the largest matrix to be formed, inverted or otherwise 

operated on, is equal to the total number of unknown elements of 

orientation and is completely unaffected by the number of control 

points involved in the reduction; 

(b)   the computations are so arranged that data arising from a given 

control point are processed independently of the data from any 

other control point up to the stage of the cumulative formation 

of the reduced normal equations (this means that the internal 

storage required of the computer depends almost exclusively on 

m and is   ssentiol'y independent of n); 
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(c)   for n » m  the total number of computations is essentially propor- 

tional to   m2n rather than to n3 as would have been the case had 

the coefficient matrix of the normal equations been completely 

filled with nonzero elements. 

1.13       THE PROCESS OF ITERATION 

Before the final residuals are computed, it may be necessary to iterate 

the adjustment a number of times in order to reduce the effects of higher order 

terms to insignificance.   For this reason we rewrite equations(110)and(l 1 i)to 
th 

reflect the solutions resulting from the   l      iteration of the adjustment: 

(na i«,»-(s(,u;r,(«i,>.;?■»!. 

0.3) ?/> - (N<'> ♦ w, fVc-«" -w, •;,">, 

The initial solution corresponds to the case l = 0, and each subsequent solution 

results from the relinearization of the original observational equations about the 

values resulting from the preceding solution. The process of iteration should be 

continued until a sufficiently stable solution is obtained. 

Inasmuch as initial approximations are essentially arbitrary, nothing would 

have prevented us from letting the a priori observations of elements of orientation 

and coordinates of control serve as initial approximations for the linearization of 

the observational equations.   By thus setting 
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" t 

(IM) 

1 1 *? = X'J 

<■? ■ A yOO 
1 

= yO 

• 
• 
• Z» = z« 

/7C\00 _ (7C\0 

.(0) .JO) 
we would have reduced the initial discrepancy vectors c    o°d *<T   to zero vectors. 

As a result, the discrepancy vector« to be used for the first iteration of the adjustment 

would have become 

(115) 
;•(!) = -;(o)+--(o)  = ••«,) t 

and in general 

(116) 

?•> . 7-D +v-'» . ,y>+s1"»+...*,J(,-,) • 

• •• 
We see then that, although initial discrepancy vectors for   € and € can be made 

equal to zero by the natural and perfectly valid equating of initial approximations 

and a priori observations, this does not mean that subsequent discrepancy vectors 

€ and € arising from the process of iteration are   equal to zero.   Indeed as (115) 

shows, discrepancy vectors for € and e subsequent to zero initial vectors ore no 

longer arbitrary, but are equal to the sum of all preceding adjustments of the 

parameters.   It i» because this fact could have been so easily overlooked that we 

chose to give prominence to the vectors € and c   by avoiding the natural choice 

for initial approximations which would have rendered € and € equal to zero. 
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1.14       ERROR PROPAGATION 

After the final iteration of the solution, equations (26), (34), and (40) 

can be solved for the final vectors of residuals, giving 

• »«»e 

v   =   e - B6 - B6 

(117) v    =    €-6   , 

v    =     € - 6   . 

• * • 
If the process of iteration were carried to the point where the final vectors 6, 6 

were reduced to insignificance, equations (117) would reduce to 

v    =    €   , 

(118) v    =    €   , 

v    =    €   , 

in which the discrepancy vectors are those resulting from the substitution of the 

final parameters into the original observational equations. 

The quadratic form of the residuals arising from the adjustment is 

T T * T      *       * **T   **     ** 

(119) s    =    vWv     =      vWv+vWv+vWv. 

The degree; of freedom associated with the quadratic form is equal to   the 

number of cbservations in excess of the minimum required for a unique solution. 

In the case vhere all control points were to appear on all plates and where 

a priori values were available for all elements of orientation, the total number 

of observations no would be equal to 2mrH-9m+3n and the degrees of freedom 

s 
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would become  f = no - (9m+3n) = 2mn.   In most coses of interest, however, only 

a relatively few of the total number of control points will appear on a given plate. 

This situation is reodily handled by assigning dummy observations having zero 

weights to those control points not appearing on a given plate.   In this manner 

the theory can be made to held for any observational situation and total number 

of observations DQ becomes equal to the number of nonzero diagoncl elements in 

the composite weight matrix  W.   With no thus reckoned, the degrees of freedom 

for the adjustment becomes, in general, 

(120)      f   =    no - (9m + 3n). 

A 

If a total of m of the 9m elements of orientation were rigidly enforced (thereby 

reducing the order of the normal equations), the term 9m in (120) should be re- 
A A 

placed by 9m-m. Similarly, if n of the 3n coordinates of control actually were 

to consist of relative control for which the assigned variances of the approximations 
A 

were grossly relaxed, the term 3n in (120) should be replaced by 3n-n.   On the 

other hand, if the assigned variances of the approximations employed for relative 

control were considered to be fairly realistic, the term 3n would be better left 

unaltered. 

If the observational vector hai the multivariate normal distribution, the 

statistic 

(121) X0
2  =    * 

will have the chi square distribution with f degrees of freedom.   This may be 

exploited in statistical testing of the adequacy of the adjustment.   The estimate 

of unit variance arising from the adjustment is given by 

(122)      <tf   =    */f . 
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Ideally/ o-2   should be equal to unity.   From the chi square test one can derermine 

whether or not the departure of  Of  from unity is statistically «igoificanh 

Tr.e covariance matrix of the adjusted parameters is provided by the 

inverse cf the coefficient matrix of the normal equations. In particular, the 

covariance matrix of the adjusted elements of orientation is 

(123) 2   =    (S+Wf1     =     M 

and that of the adjusted vector of coordinates of control is 

•• •• •• •• | • — 
(124) £     =     M     =     (N+W)     +QMQ     . 

The submatrix of   £  corresponding to the i     control point can be shown to be 

(125) £,      =     (N,+ vy"'   +  Q)  MQJ   . 

The first term of this equation (N  + W  )     represents the covariance matrix of the 

adjusted coordinates of control under the assumption that hie elements of orientatior 
T 

are error free.   The second term  Q    M   Q      represents the contribution to the 

error in triangulation of errors remaining in the adjusted elements of orientation. 

With a sufficiently strong photogrammetric net, one eouid hope to suppress the 

contribution of the second term to insignificance relative to the first.   This is 

generally the case with a ballistic camera net where abundant stellar control 

can be exploited to reduce the errors in the calibrated elements of orientation to 

insignificance.   On the other hand, with aerial photography the effects of residual 

error in adjusted elements of orientation are difficult to suppress sufficiently when 

absolute control is minimal. 
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:.15    COMPARISON WITH OTHER THEORIES 

An alternative treatment of the problem of adjusting the observed coor- 

dinates of control points merits consideration. Let us first rewrite the observa- 

tional equations arising from the projective equations and from the coordinates 

of control.   These are 

..... v +   BS +  B6 
(126) 

v  - 

=       €   , 

=      € . 

As discussed earlier, we ere at perfect liberty to choose the approximations 

for the coordinates of control to be equal to their observed values, thereby 
•• •• 

rendering e = 0.   Assuming this to be done, we may write v * 6 and then ellm- 
• e 

inate the parametric vector 6 from the first of the above pair of equations, thus 

getting 

(127) v +   B v +  B6 =      €   . 

We may rewrite this as 

(128) Av +  B6    =     € 

where A and v are now defined as 

(129) A    - (      I B    ),       v   • 
(2mn,b)    (2mn,2mn)(2mn,3n)     (b,l) 

v 
(2mn,l) 

• « 
V 

(3n,1) 

where b = 2mn + 3n.   By virtue of the elimination of the parametric vector 6 from 

the linearized projective equations, we have reduced the number of unknown param- 
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eters and, hence, the order of the general normal equation» from 9m + 3n to 

simply 9m.   The normal equations for the present approach are 

(130)        [BT<AÄ A1)"1 B] 6    =     BT(AAAT)"1€ 

where Ä is now defined as 

(131)   Ä    = 
(b,b) 

A 0 
(2mn,2mn) 

0 A     j 
(3n,3n) 

The formation of the normal equations is rhusseen to entail the formation and 

inversion of the intermediate matrix 

(132) G      =        A       A       A1 

(2mn,2mn)     (2mn,b)(b,b)(b,2mn) 

By virtue of (129) and (131) this may be written 

(133) G    =    jj    B A     0 
* • 

0     A 

A +   BAB 

From the partitioning of B and A indicated in (27) and (36) we may write 

(134)     8AB 

B,    0 

0      Bj    • • 

0 

0 

• • 
• • 

0     0 

A.   0 

0     A 

0     0     ...    A, 

"T 
B,    0 

o    BJ 

a e 

* e 

0     0 

0 

0 
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which reduces to 

(135)       SAB 

&, As B,        0        ».. 0 
••      ••   ee 

0        B2A2B2   ... 0 

• •    ••    • • 
0        ...BAB 

n   n n 

This is a diagonal matrix of r. matrices of dimension 2m by 2m.   Inasmuch as A 

is a diagonal matrix of mn rr.atricss of dimension 2x2, it follows that the required 

inversion of G breaks down to the inversion of n individual matrices of dimension 

2m x 2m,   On the other hand, in the approach we developed in Subsection 1.12 

the reduction of the normal equations to an equivalent 9mx 9m system was accom- 

plished through the inversion of n intermediate matrices of order 3x3 (the N   ), 

It follows that the approach of the present section, though mathematically equiva- 

lent to that developed earlier, entails grossly more computation for large m; in 

fact, only in the case of the single photo (m=1) does the present approach entail 

less computation (for this case it provides a practical solution to the problem of 

photogrammetric reaction of >i single camera when the given control is subject 

to significant error). 

Schmid (1959) published a solution similar in many respects to that of Brown 

(1958a).   One major difference is in Schmid's treatment of errors in control points. 

For the general case in which all si poi its appear on all m photos, Schmid employs 

an approach wherein the coordinates of each ground control point are adjusted inde- 

pendently for each photograph.   Within the framework of the present subsection, we 

can reconstruct the essentials of Schmid" s solution as follows.   The typical 2mx 2m 
ee     • -        *•  T 

submatrix   B   A    B     appearing in (135) may, by the partitioning of (24), be ex- 

panded to 
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(136)    BJAJB/ « 

(137)    B/JB; 

hi 
Aj ( B,j B2J ... Bmf 

• • ••    »• y 9* ••      •• 

B)j AjBu    Btj Aj B2)    ... 

** ••    •• y ••        ee    ••  Y 

BJJAJB,,    B2J Aj B2j    ... 

••      ••   •• Y       e»       ••    •• Y 

• •        ••   • 
B2J A, B 

• • ••     <**Y 

Bm) Al Bm, 

This it a filled nixm matrix of matrices of dimensions 2x2.   In Schmid' s treatment 

only the diagonal elements of above matrix ere actually formed.   This is equivalent 

to setting 

(138) 
ee ee       ee— 

=     0    for all * t   t 

In this manner, the matrices  B A  B     in (137) are all reduced to diagonal 
J    *   J «... .»■> 

matrices of m 2x 2 matrices and this in turn reduces  BAB   (and, hence, also 
T -IT 

A A" A   which, in Schmid' s solution, is termed A P     A ) to a diagonal matrix 

of mn 2x 2 matrices.   Thus the invenion of A A A   becomes the equivalent of 

the simple inversion of mn 2x 2 matrices in plac« of the far more formidable inver- 

sion of n 2mx 2m matrices as in the rigorous development. 
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The effecf of unlocking »h* R   A   B    matrices by the Gftitrö-^ imposition 

of (138) can be theoretically justified only if the coordinate* of the coitrol points 

were somehow to shift randomly about their true positions from one exposure to the 

next.   Inasmuch as the world is not made of jelly, such an approach is unsound in 

our opinion.   Moreover, because the coordinates of a given absolute control point 

are free toshift independently for each plate, they will tend to compensate unduly 

for errors in the measured plate coordinates and will, thus, lead to attractively small, 

but spurious, plate residuals.   This consequence may also be viewed as stemming from 

the fact that the degrees of freedom for the adjustment are, in effect, grossly increased 
A 

from the correct value of f = 2mn + m - 9m (for the case where all control is considered 

to be subject to adjustment and appears on all photos) to f = 2mn + 3mn + m - 9m - 3n. 

Schmid (1959, p. 38) discusses the possibility of modifying the adjustment 

so that control points subject to error are adjusted only once within a given photo- 

grammerric net, but, instead of developing the approach fully, he advocates (be- 

cause of computational difficulties) an alternative two step approach in which 

(1) the adjustment is performed first with all absolute 

control treated as purely relative control except 

for the minimum control needed for a unique solution 

(this leads to a photogrammetric model that is approx- 

imately correctly translated, rotated and scaled); 

(2) jordinates of the resulting model are subsequently 

further refined by means of a seven parameter transforma- 

tion (three translations, three rotations, and change of 

scale) determined in a second adjustment by the minimi- 

zation of the sum of the square» of «he residual distances 

between the model coordinates and the known coordinates 

of the withheld absolute control. 
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Schmid suggests that the above meoni of circumvenving the computational diffi- 

culties inherent in the strictly correct adjustment of control subject to error is 

"from the theoretical standpoint sufficiently rigorous."  Our results and experi- 

ence would seem to contradict this.   If/ for example, one were to withhold all 

but minimal control from the adjustment of a long strip that is affected only by 

random errors of measurement/ the typical result would be a sinuous deformation 

of the model because of unfavorable propagation of random error (systematic error 

would contribute a secular component to such deformation).   When only minimal 

absolute control is exercised in the simultaneous adjustment of all photos in the 

strip, the build-up of quasi-systematic deformation is not prevented, although 

the degree of such deformation is not as severe as in the case of a photo-by- 

photo cantilever extension.   With a sufficiently long strip, the overall defor- 

mation is characterized by several slowly changing cycles of positive and neg- 

ative departure.   It follows that when the model is subjected to a rigid trans- 

formation (three translations and three rotations) coupled with a uniform stretch, 

only a small part of the totol deformation will be removed, for such a transfor- 

mation can accommodate, at best, only one-haif cycle of quasi-systematic 

error over the length of the strip.   The end results of such an approach will 

ordinarily bear little resemblance to the results one would obtain from exer- 

cising all available control in the original adjustment of the strip.   The effect 

of utilizing control in this manner is to 'pinch' the build-up of quasi-systematic 

error to zero (very nearly) in the vicinity of each absolute control point.   For 

the limiting case of absolute control of unrestricted abundance, one can suppress 

the build-up of quasi-systematic error to complete insignificance, provided the 

control is actually exercised in the photogrammetric adjustment.   On the other 

hand, if it is for the most part withheld, as suggested by Schmid, such control 

can do nothing to squelch the inevitable build-up of significant, sequentially 

correlated deformation of low spatiol frequency. 
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A'ide from ultimüts con:: der st ion* of accuracy, there is another cogent 

reason why available absolute control should be exercised in the adjustment 

rather than being withheld for subsequent determination of a ' coirective1 trans- 

formation of one kind or another (e.g./ the rigid transformation advocated by 

Schmid or more complex polynomial transformations advocated by Schut (1964), 

Harris, Tewinkel, Whitten (1962), and others).   As will presently be demon- 

strated, we have found that the rate of convergence of the recommended iter- 

ative solution of the normal equations is accelerated by the introduction of 

absolute control.   Once a certain critical level of control is attained, conver- 

gence can be speeded by as much as an order of magnitude.   For a long strip, 

the critical level appears, on the average, *o be a pair of fresh absolute control 

points per four to five photos. 

As we demonstrated in Subsections 1.06 and 1.11, the rigorous adjustment 

of absolute control subject to significant error is computationally very simple within 

the framework of the concept of the ellipsoidal control point, for such control can 

oe treated precisely in the same manner as relative control, the only distinction 

being in the lower magnitudes of the elements of the covariance matrices (the A ) 

of the absolute control.   In view of this and in view of the foregoing discussion, 

we most strongly advocate that the entire store of available observational material 

be utilized in the simultaneous adjustment of a photogrammetric net.   The general 

theory developed in this paper is sufficiently comprehensive to accommodate vir- 

tually any conceivable type of information that might be applicable to the photo- 

grammetric problem. 

Before we leave this subsection to take up the problem of the solution of the 

normal equations for large photogrammetric nets, it is appropriate to review the few 

remaining differences of consequence between the writeV s earlier solut'on (Brown, 

1958a, 1958b, 1959) and that of Schmid (1959).   For the introduction of partial 

absolute control expressed in terms of latitude 0,  longitude X, and Iteiglt h, Schmid 
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employs on approach similar to that of Dodge (1959).   A partial control point given 

by h, for instance, is considered to define u »phefwida! surface en which the ray« 

are forced to intersect through the introduction of the appropriate observational 

equation.   By the same token, appropriate observational equations defining specific 

cones and planes are imposed for part oI control given in terms of 0 and X.   In the 

approach of Brown (1959), partial control expressed in terms of 0, X and/or h is 

treated as in Subsection 1.06 of the present report (in the earlier report, the termin- 

ology 'relaxation of quasi-observational variances' was employed in place of the 

'ellipsoidal control point' of the present report).   Here, instead of forcing rays to 

intersect on various mathematical surfaces (or intersection thereof), one constrains 

the rays to intersect as closely as possible to the center of an appropriately defined 

ellipsoid of probability.  By virtue of this concept, all essential distinction between 

various types of control points is erased; all possibilities are embraced by the ellip- 

soidal control point. 

The extended solution outlined in Brown (1959) provided the first ( and, to 

this point, the only ) treatment of the problem of adjusting any of the elements of 

orientation considered to be observed quantities subject to random errors.   This 

opened up the possibility of the rigorous incorporation of auxiliary data gathered 

by those external sensors which could be considered to be sensibly unbiased (infor- 
* • 

motion from unbiased sensors can be fully absorbed by the matrices W and €).   The 

primary theoretical innovation of the present report is the extension of the solution 

to apply to auxiliary sensors whose observations may be biased to a significant degree. 

The primary practical innovation is the demonstration of the feasibility of certain of 

the iterative procedures for the solution of the enormous systems of normal equations 

generated by large photogrammetric nets. 

Aside from the differences outlined above between the solutions of Schmid 

(1959) and of Brown (1958a, 1959), there are virtually no further differences of 

consequence between the two insofar as the fundamental photogrammetric adjustment 
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is concerned.   In our comparative analysis we have concentrated r.iainly on Schmid s 

theory because, in our view, it is, in spite of a few lapses in rigor, the only compet- 

ing theory which aspires to the simultaneous adjustment c* a general pi.otogrammetric 

net with comparable theoretical and statistical soundness.   Also, the precise relation- 

ship between the two theories has not, we feel, generally been appreciated by the 

photogrammetric community, 

1.16    THE PROBLEM OF ADJUSTING LARGE BLOCKS OF AERIAL PHOTOGRAPHY 

The reduction of the normal equations developed in Subsection 1.12 has proven 

effective in geodetic applications and in applications to small to medium blocks of aer- 

ial photography (on the order of 20 to 30 photos),   However, problems of rounding error 

and computing time ultimately render this approach impractical for relatively large blocks 

(on the order of 40 photos or more).   This means that, if large blocks of photography are 

to be successfully adjusted as organic units, an effective alternative to the reduction of 

the normal equations must be developed.   The development of such an alternative is  ac- 

tually the primary objective of this investigation.   Toward this end, we have concentrated 

mainly on the problem of adjusting sorge blocks of aerial photography having fairly con- 

sists t patterns of forward and side overlap.   Our original approach was based on the fol- 

lowing considerations: 

(1) the coefficient matrix of the general normal equations for an aerial block 
is both highly patterned and highly sparse (i.e., consists predominantly 
of zero elements); 

(2) by means of an appropriate indexing algorithm, it is possible to coilopse 
the full coefficient matrix of the normal equation» to a far more compact 
matrix containing few zero elements; 

(3) this ' collapsed system* of normal equations can be computed directly, 
thus by-passing the unnecessary computation of zero elements; 
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(4) a computing algorithm can be formulated to exploit the collapsed 
system of normal equations to effect, if practical, the solution by 
means of recently developed iterative procedures which are vast 
improvements on the classical Gauu-Seidel method; 

(5) the computing algorithm can be designed to operate on natural blocks 
of elements of the normal equations, rather than on a single row at 
a time; 

(6) through a process called "intertwining," it is possible to rearrange 
the coefficient matrix of the general normal equations in such a man- 
ner as to achieve a highly diagonal form which could conceivably be 
conducive to the more rapid convergence of t.'^e iterative process. 

The rationale of our approach is perhaps best presented in terms of concrete 

examples.   Let us begin with consideration of the form of the general normal equations 

arising from what we shall term a ' uniform block.'   A uniform photogrammetric block 

is one which has a consistent, self-reproduong pattern of control and overlap.   A 

specific illustration of a uniform block four photos wide and five photos long is presented 

in Figure 1.1.   Each photo in the block has a consistent nine point pattern of control 

(we use the term ' control* here in the broad sense to denote anything from a relative 

control point (pass point) to an absolute control point; all are ellipsoidal control points). 

The forwarj overlap is sixty per cent and side overlap is twenty per cent.   Except where 

boundary conditions prevail, each triple overlap area and each sexhple overlap area 

contains one and only one control point.   In practice, of course, it is most unlikely 

that one will obtain blocks of photography displaying such uniform characteristics of 

overlap.   On the contrary, it is not unusual for there to be gaps in the side overlap 

and for there to be different numbers of photos in cortiguous strips, thus rendering the 

strips ' out of phase' insofar as the uniform block is concerned.   In some instances, 

such difficulties could be rectified by the twofold expedients of (a) inserting dummy 

observations having zero weight matrices, (b) inserting both dummy observations having 

zero weight matrices and appropriate dummy photos having nonzero weight matrices. 

Thus, for example, if a control point for a certain position were to be missing on one 
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or more photos (as might easily happen if sidelap were to fall outside of tolerance), 

one could assign dummy plate coordinates, say (0,0), to the mining image and assign 

zero weights to these plate coordinates.   By virtue of such weighting, the dummy 

coordinates will in no way affect the final results.   In a similar manner, complete 

gaps in the photography or phasing discrepancies of strips can often be rectified 

through the insertion of dummy photos having dummy images.   To avoid indeterminacy, 

the assigned elements of orientation of dummy photos must be given finite weights. 

When introduced in this manner, dummy photos have no effect    on the end results, 

but yet do contribute to the complete predictability of the data flow.   This is of great 

value in the exploratory formulation of simple indexing algorithms for the collapsing 

and subsequent implicit reconstruction of the coefficient matrix of the normal equations. 

For this reason, at the outset of our investigation we confined our consideration to 

uniform blocks.   Once the effectiveness of our proposed approach had been demon- 

strated, we abandoned the stipulation that a uniform block be employed  for, even 

with the aid of dummy observations and dummy photos, the transformation of an actual 

block into a uniform block can prove to be cumbersome, except for the case of the 

isolated strip. 

With the understanding, then, that our consideration of the uniform block 

is strictly for exploratory purposes, we may proceed to investigate the character of 

the normal equations of the form (91) as generated by the adjustment of the sample 

block of Figure 1.1.   The form of this coefficient   matrix is indicated in Figure 1.2a. 

The solid and shaded areas of the figure correspond to nonzero elements;   all other 

areas are filled by zero elements.   The most striking characteristics of the coefficient 

matrix are 

(a) the regularity of the pattern, 

(b) the predominance of zero elements. 
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The submatrices N     of the N portion of tk» normal equations are nonzero matrices 

only when the 1     point appears on the «     photograph, in which case the N     inter- 

locks the corresponding N     and N    portions of the normal equation«.  The portion 

of the matrix corresponding to N may be described as consisting of four ' landings' 

of 'staircase1 matrices with three parallel staircases to a landing.   Each individual 

staircase is generated by a particular row of control points;   the longer the row the 

longer the staircase.   Each landing is generated by a particular strip; the number of 

landings is equal to the number of strips.   The number of staircases per landing is 

equal to the number of rows of control points per strip.   The last staircase in each 

landing lies directly over the first staircase in the next landing.   This is a consequence 

of the control in the side overlap (were there no contro' in the side overlap/ the nor- 

mal equations for the block would degenerate into separable sets of independent nor- 

mal equations for strips).   From the foregoing considerations/ it becomes a simple 

matter to generalize the pattern of the normal equations in Figure 1.2a to apply to 

a uniform block of any dimens'ons, as long as the basic nine point pattern of control 

is maintained and the numbering of photos and control points corresponds to that of 

Figure 1.1.   For instance, if the block were  4x50 instead of 4x5, the staircases 
• e 

would merely become lengthened to 50steps instead of 5 steps.   The N+W portion 

of the matrix would consist of 200 diagonally arranged/ nonoveriapping 6x6 matrices 

instead of 20, and the N + W portion would be increased from 63 diagonally arranged/ 

nonoveriapping 3x3 matrices to 378.   In general, the number of control points in a 

uniform b! -ck of the type of Figure 1.1 is (2s+l )x(p+2) where s denotes the number of 

strips and p is the number of photos per strip.   If the 4x50 block were now increased, 

to/ iay, a 10x50, the effect on the R portion of the matrix would be merely to In- 

crease the number cf staircase landings from 4 to 10 with each landing consisting of 

3 parallel staircases 50 steps high, the first staircase in each landing being directly 
e v ee *• 

below the last staircase in the landing above.   The N + W and N + W matrices would 

increase to 500 diagonally arranged 6x6 matrices and to 1092 diagonally arranged 

3x3 matrices, respectively.   The order of the general normal equations would thus 

become 6x500+3x1092 =  6276. 
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A» a uniform block becomes larger and larger, the ratio of the number of 

nonzero element« to the total number of elements in N (the coefficient matrix) 

decreases drastically   For the type of block of Figure 1.1 this ratio is 

rw ber of nonzero elements in N 9 (42sp + 4$ + p + 2) 

total number of elements in N 9 (4sp ■+  4s + p + 2)2 

—:'—  for large s and p. 
sp 

Thus, in a 4x5 block about 1 element in 12 is nonzero, in a 4x50 block the ratio 

is about 1 in 76, and in a 10x50 block it ;s about 1 in 194.   The fact that the nor- 

nv' equations are so highly patterned with such a small portion of the elements 

utg nonzero suggests 

(a) that the normal equations be formed in such a manner that only the 
nonzero elements are actually generated, 

(b) that an alternative representation of the normal equations be developed 
to exploit to the fullest the patterned characteristics of the equations 
and to render the system as compact as possible, 

(c) that the solution of the normal equations be effected by a suitable 
iterative process designed to operate only on the blocks of nonzero 
elements. 

With regard to (a) there is no particular problem.   The logic of generating only the 

nonzero constituents of the normal equations is fairly simple and straightforward.   With 

regard to (b) there is again no particular problem, for the coefficient matrix of the gen- 

eral normal equations can be 'collapsed' to the compact scheme indicated in Figure 1.2b. 

Here all zero blocks of elements have been 'squeezed' out of the original normal equa- 

tions by sliding each nonzero sub-block to the left as far as possible.   The solid blocks 

in Figure 1.2b correspond to the diagonal blocks of the original normal equations.   We 
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see that the collapsed normal equations are also highly patterned.   It is clearly possible 

to establish a set of rules or algorithms by means of which the elements of the collapsed 

matrix can be related to their counterparts in the original matrix.   Inasmuch as the col- 

lapsed system in conjunction with a small set cf algorithms is sufficient to reconstruct 

the original system, there is really no need to generate the original system in the first 

place.   It is sufficient to generate the collapsed system directly.     Not only can thi? 

be done, but it can be done on a relatively small digital computer such as the IBM 1620 

(not that we necessarily recommend this).   This is true no matter what the dimensions of 

the block, for the maximum number of columns in the collapsed system can never exceed 

39 (this again assumes the 9 point pattern of control of Figure 1.1),   The only effect of 

increasing the length or width of the block is to lengthen the collapsed matrix of nor- 

mal aquations; it can never be widened.   Thus the computer can be programmed in such 

a manner as to generate the collapsed normal equation« row by row or, more naturally, 

horizontal block by horizontal block.   The total computational time in setting up the 

collapsed system will thus increase only linearly with the dumber of photos in the block. 

It is this fact that makes the use of a small computer feasible for this stage of the reduc- 

tion. 

With regard to point (c) above, it is a relatively simple matter to set up an iter- 

ative solution tfiat will operate only on the nonzero blocks of elements.   The pivotal 

question is whether or not a prohibitive number of iterations will be required for adequate 

convergence.   Unfortunately, this question cannot be answered in advance on the basis 

of purely theoretical considerations.   The answer is to be obtained only by actual trial 

through numerical simulation of various typical operational situations of particular inter- 

est.   The great bulk of our effort in the present investigation has been directed toward 

this end.   Details of the numerical processes employed and of the results obtained are 

given in Section 2.   We shall confine our attention in the remainder of this section to 

further development of the general approach and to a brief discussion of the high pcSnts 

of our numerical results. 
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1.17     ALTERNATIVE ARRANGEMENTS OF THE NORMAL EQUATIONS 

Let u» take the block of Figure 1.1/ but, instead of numbering the photos 

and control points according to rows, let us number them according to columns as 

in Figure 1.3.   The general normal equations then assume the alternative form indi- 

cated in Figure 1.4a, the collapsed form of which is indicated in figure 1.4b.   The 

N portion of this system is somewhat simpler than in our earlier system of Figure 1.2a. 

This raises the question of whether one arrangement offers any practical advantage 

over the other with regard to rapidity of convergence of the iterative process.   It also 

raises the broader question of the role played by the arrangement of t'^e normal equa- 

tions in general.   Is there some optimal arrangement offering significant advantages? 

In our further investigation of arrangements of the normal equations, we were 

able to devise orderings of the unknowns which would confine all nonzero blocks of 

elements to lie with a limited band about the diagonal.   The normal equations for one 

such arrangement are indicated in Figure 1.5a and, in collapsed form, in Figure 1.5b. 

Here, the numbering of photos and points is according to columns as in Figure 1.3. 

However, the vector of unknowns has been rearranged according to the following 

scheme in which successive sub-vectors of the solution vector are listed horizontally: 

*      •*      "      *      "      " "       '*      "       '      **      ** 1 st col umn of photos 
6,,   6,,   62/  by,    h2,  64,   65,     bj,    66,   oj,   64,   og,   b9       an(j points 

V      r      c      c      c      V      e c      c      V      c      c      c 2nd column of photos 
&10' 65, 6,,, 6,2,64,   6,3/6,4,    67,6,5,^,63,   6,7, 6,8      arid points 

'c       *C      'c       c       L      R       R R.      R       R       R.      R       L 3rd column of Photos 
6,9, 69,   620/62,, 6„y   622/623,    6,,, >>u, 025,6,2/ 026/Ö27       arKj points 

etc. 

The control point vectors 645 through 643 generated by the last two columns of control 

terminate the sequence of unknowns.   This system of normal equations may be said to 

be dominated by elements on and near the diagonal.   All nonzero elements are confined 

to a diagonal band 225 elements in width; moreover, within this band one can define 

five narrower bands (each 21 elements in width) which contain all nonzero elements ex- 

cept those generated by the last two columns of control.   An attractive feature of this 
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arrangement of the normal equations is that the width of the diagonal band confining 

all nonzero elements is independent of either the length or the width of the block of 

photos.   In this sense, then, as the dimensions of the block increase, so does the rel- 

ative diagonality of the normal equations,   in the case of a 10x50 block, for instance, 

the diagonal band containing all nonzero elements will comprise only about three per 

cent of the matrix. 

We have employed the term ' intertwining* to describe the process of reordering 

the unknowns for the purpose of achieving relatively strong diagonality.   The guiding 

principle of the process of intertwining is the devising of an arrangement of the normal 

equations such that the coefficients of the unknowns corresponding to a given control 

point are as close in the matrix as possible to those photos on which the points appear. 

At the outset of I'he investigation the writer's collaborators devised two other 

schemes of intertwining of greater compactness and efficiency than that of Figure 1.5a. 

These are illustrated in Figures 2.21 and 2.22 of Section 2.   During the course of the 

investigation we learned that our initial enthusiasm for the prospective effectiveness of 

intertwining as a means for accelerating the convergence of the iterative solution of the 

normal equations was unwarranted, for the simpler and more prosaic   orderings of Figures 

1.2 and 1.4 actually turned out to be more effective in this regard.   As we shall see in 

Section 2, the failure of intertwining to live up to expectations, though T blow to our 

intuition, is hardly to be regarded a» an untoward result, particularly in view of the 

relative complexity of the collapsing algorithms associated with the process.   Moreover, 

since future investigators may profit from our negative finding by avoiding the duplica- 

tion of this particular approach, we feel our discussions of the concept of intertwining 

are justified. 
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1.18     OUTLINE OF KEY RESULTS 

The results of our initial four months of effort are summarized in en interim 

report (Brown, Davis, Johnson, 1963) which is now superceded by this, the final 

report.   By a process of numerical simulation we were able to establish in the interim 

report that of the three iterative techniques investigated 

1 •    Gauss-Seidel, 

2. Gauss-Seidel with Luisternik acceleration (Faadeva, 1959), 

3. Method of Successive Over Relaxation (Varga, 1962), 

the first was far too slow in converging to be considered practical, and the second 

blew up numerically.   On the other hand, the third provided excellent results, 

converging to a satisfactory solution for a simulated 25-photo strip in less than 10 

minutes on an IBM 7094. 

One of our most significant findings concerns the effect of absolute control on the rate 

of convergence of the iterative process.   A strip having only the minimal absolute con- 

trol required for determinacy was found to converge appreciably more slowly than one 

having a moderate sprinkling of control throughout the strip.   With a 41-photo strip 

generating a system of normal equations of order 633, for instance, adequate convergence 

was obtained within 150 iterations (6 minutes on an IBM 7094) when a pair of fresh 

absolute control points was introduced on about every fifth phcto.   On the other hand, 

on the order of 600 iterations were required when the same strip was adjusted with 

absolute control limited to the beginning of the strip (full details are given in Section 

2).   Our simulations to date indicate that the number of iterations required for satis- 

factory convergence is roughly equal to the order of the normal equations for the case 

of strips with minimal absolute control; for strips having a moderate level of well- 

distributed absolute control, the number of iterations may be as few as one fifth to 

one tenth of the order of the normal equations.   There is even some indication that 

once a certain level of absolute control is attained, the number of iterations for 

satisfactory convergence may be only very weakly dependent of the order of the normal 

equations.   If further investigation should prove this to be the case, the distinct 
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possibility emerges that the simultaneous adjustment of a long strip of aerial 

photography may entail no more than the general order of computational effort as 

is required for the reconstruction of the strip by means of analytic cantilever extension 

operating on pairs of photos. 

Toward the end of our study we were successful in devising an efficient 

collapsing algorithm for the normal equations generated by a general, non-uniform 

block of photography.   Our limited numerical simulations with blocks lead us to 

believe that, in full scale practical application, the rigorous adjustment of large 

blocks of aerial photography will involve appreciably less computational effort than 

the adjustment of long strips having comparable numbers of photos and levels of 

control.   To appreciate this, one should view the conventional aerial block as a 

continuous, folded strip.   In such a folded strip, control in the side-overlap is 

common te subintervals of the strip and serves, therefore, to reduce appreciably 

the number of unknown control points.   The resulting reduction of the order of the 

normal equations and the bi-directionalify of computational transference made 

possible by side-overlap constraints combine to accelerate the convergence of the 

iterative solution of the normal equations of the block.   It is this that ultimately 

renders the block computationally more attractive than the strip, even though the 

logic of the data handling for the block is more complicated. 

1.19     CONCLUSIONS 

Our central goal of developing a computationally feasible procedure for 

solving the normal equations for large photogrammetric nets has been successfully 

attained.   In particular, we have removed the primary impediment to the implementation 

of the rigorous adjustment of large blocks of aerial photography.   By virtue of the 

successful implementation of the concept of the direct formation of the collapsed 

normal equations   the computing time required for the formation of the normal 

equations for an aerial block becomes strictly proportional to the number of photos 

in the block rather than increasing as the square of the number of photos as in previous 
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reductions.   With sufficiently large blocks having a sufficient level of absolute 

control, there is some evidence to suggest that the number of iterative cycles 

required for adequate convergence of the normal equations may level off to an 

almost stationary value, little affected by the inclusion of additional photos.   If 

this should bear up under further investigation, it will mean that not only the 

formation of the normal equations but also their solution will be essentially 

proportional to the number of photos in jdequately controlled aerial blocks of 

sufficient size.   We believe that the simultaneous adjustment of blocks of several 

thousand photos will prove to be altogether feasible through the implementation of 

optimal buffering procedures wherein external storage (tape, magnetic disks, etc.) 

and core storage are both used to maximum advantage.   In this regard, we would 

point out that Varga (1962, p. 1) tells of a computer program designed to accomplish 

the iterative solution of a system of simultaneous equations of order 108,000 generated 

by the numerical solution of a three dimensional system of partial differential 

equations,   in view of mis coupled with our success in applying iterative procedures 

to the photogrammetric problem, we feel that the time is at hand when the photo- 

grammetrist need no longer be intimidated by the enormous systems of equations arising 

from the uncompromisingly rigorous adjustment of large blocks of photography. 

Our numerical investigations so far have been limited to the realm of classical 

photogrammetry where auxiliary sensors play no role.   Yet, with the development of 

such integrated mapping configurations as the Air Force USQ-28 system, it is clear that 

we are at the threshold   of a new era in photogrammetry in which auxiliary sensors will 

become of increasing importance.   Anticipating this, we extended the theory of the 

general photogrammetric adjustment in a nonrestrictive fashion to accommodate informa- 

tion from any conceivable combination of auxiliary sensors with due allowance being 

made for the likelihood that the output of many sudh sensors may be subject to significant 

bias and hence may have to be calibrated within the framework of the over-oil adjustment. 

We are of the opinion that the role of analytical techniques will be increased, rather than 

diminished, by the implementation of integrated mapping systems exploiting various 
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arrays of auxiliary sensors,   just as the introduction of a certain level of 

absolute control serves to accelerate greatly the convergence of the iterative 

solution of the normal equations, so too, we suspect, would the introduction of 

constraints imposed by auxiliary sensors.   In our future work we expect to determine 

to what extent this is the case and to concentrate on the potential contribution 

to the photogrammerric adjustment of various combinations of existing and proposed 

auxiliary sensors. 
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SECTION 2 

NUMERICAL ANALYSIS AND NUMERICAL RESULTS 

By 

Duane C. Brown 
Ronald G. Davis 

Frederick C. Johnson 

2.01     INTRODUCTION 

The development of the theory of the general photogrammetric adjustment 

and of a spec!He approach to the solution of the normal equations has been accomplished 

in Section 1 •   Our objectives in this section are to provide a detailed account of the 

steps taken '.} test and implement this approach and to present and interpret results ob- 

tained. 

The f-sr part of this section is devoted to an expository treatment of iterative 

procedures for the solution of simultaneous linear equations with particular emphasis 

on the Method of Successive Over Relaxation.   Following this, we describe the 

successive stages of our numerical investigation beginning with the simulation of 

the basic two photo problem and proceeding to simulated six photo strips, twenty- 

five photo strips and forty-one photo »trips (the maximum that can bs handled in 

core of a 32K IBM 70?4).   Each stage of these strip simulations was designed to answer 

certain specific questions and each provided unexpected insight into various facets of 

the general problem.   From the simulation of strips, we proceeded to the simulation of 

small blocks (3x5 photos) and finally to the reduction of a 23 photo strip of actual 

photography.   As we shall see, the results of our numerical studies confirm the validity 

of the approach developed in Section 1 • 
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2.02       GENERAL BACKGROUND ON ITERATIVE METHODS OF SOLVING 

LINEAR EQUATIONS 

Because of the excessive dimensions of the system of normal equations 

generated by a sizeable photogramm*tric block, direct methods of solving the 

system (e.g., Gaussian elimination or one of its many variants) are not practical 

Unfortunately, such methods tend to collapse due to the excessive amount of 

round-off error introduced into the solution of large systems by the required machine 

calculations. 

To alleviate the undesirable consequences arising from the round-off 

error introduced by direct methods of solution, recourse may be made to itera- 

tive methods.   The advantage of such methods is that the original system of equa- 

tions or some simple transformation thereof remains unaltered in memory through- 

out all stages of the calculation of the solution thus adding a great stabilizing 

factor to the computational process. 

The first of the iterative procedures was developed by C .Jacob! (1845). 

This method was improved in 1874 to give the Gauss-Seidel method.   Unfortunately, 

both of these methods suffer from the fact that the rate of convergence for large 

systems of equations is often very slow; that is to say, many thousands of iterations 

are often needed for the iterative procedure to converge to a good approximation 

to the solution of a sizeable system of equations.   Since the required computations 

were necessarily done by hand when these methods were developed, they were 

considered impractical and fell into a state of temporary disuse except for occasional 

applications to geodetic reductions and minor roles in other applied fields. 

With the advent of the modern electronic computer,, iterative methods were 

again investigated as a method of solving large systems of linear equations.   Although 

the actual computations involved in the iterative process were no longer formidable, 
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the prohibitively slow rate of convergence of the Jacobi and Gauss-Seidel methods 

caused these procedures to be used only on moderately large systems of equations 

and methods of accelerating the rate of convergence were sought.      D. Young (1954) 

developed the method of Successive Overrelaxation (SOR) which may be viewed as 

a powerful algorithm for accelerating the rate of convergence of the Gauss-Seidel 

method.   With the development of this method and its extension to the block itera- 

tive technique (to be discussed shortly) the solution of large systems of linear equa- 

tions has become feasible for a large class of important problems including (as we 

shall see) the adjustment of large photogrammetric nets. 

2.03     THEORETICAL DEVELOPMENT OF ITERATIVE METHODS 

Let us consider a system of n linear equations in n unknowns: 

a„ x,   +   a,2x2   +   ...   +   a1nxn       =      b, 

(1) 
a2, x,   +   a22x2   + +   a2nxn 

°nlxl   +  an2x2   +   •••   +  annxn      = 

If we set 

(2) A = 
a21 

°ln 

a2n 
x ■ 

x1 

x2 

»nl 'nn 
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then the system (1) con be written in matrix notation as 

(3) Ax    =    b   . 

If we express the coefficient matrix A as the sum 

(4)        A    =    D - E - F 

w here 

(5) E = 

F = 

a,, 0 ...     0 

0 a22 •••     0 

• • • 
• • • 
• • * 

0 0 ...     a, 

0 0 0 

-a2, 0 0 

-o,,   -032    0 

nn 

3n!  'an2 >n3    •••    "°n,n-l    0 

0 -°!2 -°I3      •• -«»in 

0 0 "a23       • ••      _a2n 

0 0 0       . -°3n 

ooo... -an.1/n 

0       0 0        ...       0 
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then equation (2) becomes 

(6)        (D-E-F)x   =   b 

which may ^e rewritten as 

(7)        Dx   =    (E+F)x   +    b. 

From this we may immediately write 

(8)        x   =    D"1 (E+F)x +  D'1 b 

provided none of the a     are zero.   If any of the a     were zero, we could 

rearrange the equations to remove this difficulty. 

If we let *' be the initial approximation to the solution x of (1), then 

equation (8) can be used to define the iterative procedure 

(9)        x 
(k*i) 

D"1 (E+F)x(k  + D"1 b    . 

This is the Jacobi iterative method. 

Since D is a diagonal matrix/ we have 

«11 

(10)     D 
-1 1 

a2 2 
0   ... 0 

0        0 
1 

Qnn 
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Accordingly/ if we let 

(0 
x1 

(11)       x (*)_ x(k) x2 

» 

we can rewrite (9) in its computational form 

(12)      x 
(k*i) 

^7   A °«< x<      T7 b'; 
1 S i £n 

If equation (6) is rewritten as 

(13)      (D-E)x    =    Fx + b, 

the immediate result 

(14)      x   «   (D-E)"1 Fx +  (D- E)"1 b 

can be used to define the iterative procedure 

(15)      x(k+,)   =   (D-E)"1   Fx(k) +  (D-E)"1   b  . 

This \% the Gauss Seidel iterative method. 

We can also rewrite (1 5) in the more simple computational form 
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uu 1 = 1 1=1*1 

It should be noticed that the Gauss-Seidel method offers two advantages over 

the Jacobi method.   The first is that the Jacob! method uses only the components of 

the *     approximate vector in computing the components of the (**l)st approximate 

vector, while the Gauss-Seidel method uses each component of the (**1)st approximate 

vector immediately in the calculation of the remaining components of the (k*l)st vec- 

tor,   in other words, the Gauss-Seidel method always uses the meet recent approxima- 

tion of the individual components of an iterative vector to calculate the remaining 

component while the Jacobi method does not. 

The second advantage of the Gauss-Seidel method is that, since only the most 

recent approximations are used, the components of the (k+1)st approximate vector may 

be stored in the same vector as those of the k     approximate (as soon as a component of 

the (k+i)st vector is calculated, it replaces a component of the k     vector).   The Jacobi 

method, on the other hand, requires that the *   and (k*l)st approximate vectors be stored 

as separate vectors. 

Young determined an effective way to accelerate the Gauss-Seidel method by 

the use o* *he following device.   If  x represents the (*-«-l)»t approximate vector 

as calculated by the Gauss-Seidel method, then the (k+l)st approximation vector for 

the method of Successive Overtaxation is given by 

07)    ,<"'>  -   x<k>+ «,cf>->.„M, 

where u> is some suitably chosen fixed acceleration parameter. 

Expanding (17) by the replacement of x by     expression (15), we have 
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08)      x<k")   ,   x<k> +  w( (D-Ef1 Fx(k) ♦   (D-Ef'b-  x<k)) 

-     X « *   »(O-'E «M) ♦   0-' F,('>  *  D-'b  -  ,(,) 

which gives 

(19) ( I - u>D_1E) x(k+,)    =    (l-a>)x(k) +   wD_1Fx(k)  +   wD^b   . 

If we I©»    L = D" E  ond  U =  D" F, we hove 

(20) x(k+,)   =   (i-ü/L)"1 [(l-w)l  +  0JU]x(k) +  w(l-wL)'] b. 

This is the formula for the SOR method. 

Returning to (17), we can easily obtain the computational form of the SOR 

method 

««) «r ■ »r ♦-?-<-z... «r - i °n ■?'♦ b. --..«!"> 

The SOR method possesses all of the advantages of the Gauss-Seidel method while, as 

will soon be seen, offering a significant increase in the rate of convergence. 

2.04     THE BLOCK ITERATIVE METHOD 

In the development of the SOR method up to this point each component of 

the approximate vector has been calculated individually.   Such a process is known 

as a point iterative method.   If related groups of components ore solved for simul- 

taneously, then the iterative process is known as a block iterative method.   Since 

the elements of orientation of the photographs are naturally related in blocks of 

order 6 and the coordinates of the ground control points are naturally related in 
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blocks of order 3, the system of normal equations is highly amenable to block 

iterative techniques. 

Consider again the system of equations 

Ax    =    b, 

only now let A be partitioned into submatrices (blocks) in the following manner 

An     A12        ...     Alr 

(21)      A  = 21        22       ""        2r 

Arl rl • a- •       f\ rr 

where the A ' s are square submatrices of A and the A ' s (i^J) assume the appropriate 

dimensions as generated by the diagonal blocks. If A has order p and A has order q 

then A      will have dimensions pxq   and A    will have dimensions qxp. 

In a similar manner let both the x and b vectors be partitioned into subvectors 

(22)      x = b = 

<<r 
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If Af t has order p, then both X   and B   will have dimensions px 1. Then, 

in a manner completely analogous to the development of the point SOR method the 

computational form of the block SOR method can be obtained. 

(23)      X<     }    =   X< } ♦    «A,,1     -E  A,, Xj     > - Z+i Au Xj     +   B, - AUXJ } 

If all the submatrices of A are single points (have dimensions 1x1), then the block SOR 

method degenerates 'nto the point SOR method. The theoretical form of the block and 

point SOR methods are identical (see (20)). 

2.05    CONVERGENCE 

If we define 

(24)      Lw  =   (1-wL)'1 «l-w)l +wU) 

then the SOR method becomes 

(25)      .<""    -    L    x<"*   «(|.BL)-,D,b 

and the solution vector x satisifies the identity 

(26)      x   =    L   x +   uO-wLf1 D"1 b   . 

th (k) 
If we define the error at the k     iteration, e   ', to be the difference between x and 

(k)     L x     , then we have 
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(27)      .<">    -    x-x<k+,> 

L   x +   w(l-wL)"V1 b -  (L   x(k) +  UJ(I-UJL)"1 D"1 b) 

- L   x   -   L   x 
CO                U) 

- L   (x-»(M) 

= 

and, therefore, 

.">   = 
(J) 

._      .,2)      -      I   .0>   -    L   ft   «
<0,>   -    l'  .W 

(28) u> or u> w 

w 

Hence, if the initial error vector e      is not equal to the null vector, then it is obvious 

that the sequence of error vectors 

JO)     (1)     (2) 

will tend to the null vector if and only if the sequence of matrices 

L       L2     L3 

a)     co     co 

tends fo the null matrix.   Any matrix M for which the sequence M, M2, M* , ... 

converges to the null matrix is said to be a convergent matrix.   It can be shown 

(Varga, 1962) that an nxn matrix M is convergent if and only if p (M) < 1   wherep(M) 

is called the spectral radius of M and is defined by 
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p(M)    =      MAX     jX ' 

where the X* s are the eigenvalues of M. 

Therefor*,- «j have that the sequence of iterative vectors x     , x     , x     , ... 

will conyerge to the true solution x only if p(L   ) < 1.   Varga proves that if the matrix 

A in the equation 

Ax   =    b 

is symmetric and positive definite (as ;s the case for the coefficient matrix of the 

normal equations)   then p(L   ) < 1 if and only if  0 < u) < 2 . 

Thus, the convergence of the SOR method when applied to the system of normal 

equations ha: tow been guaranteed provided that  u> is chosen such that  0 < u) < 2. 

The question which now arises is the determination of a value for u> which will yield 

the fastest rate of convergence.   In order to be able to develop an explicit formula 

for an optimal w, we must be assured that the coefficient matrix A possesses certain 

additional properties conjointly with symmetry and positive definiteness.   Specifically, 

the coefficient matrix A must be what Varga defines as a consistently ordered 2-cyclic 

matrix.   This is equivalent to Young's definition of a consistently ordered matrix 

possessing block Property A.   Through the use of the ordering vectors (as defined by 

Varga) associated with the arrangements of the coefficient matrices of the normal 

equations indicated in Figures 1.2 and 1.4, it can easily be shown that both of these 

matrices satisfy the additional hypotheses. 

If the coefficient matrix is a consistently ordered 2-cyclic matrix, Varga 

proves that the optimum acceleration parameter ui  (optimum in the sense that 
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p(L     )   = p(L   )   for  0 < 0) < 2) con be explicitly calculated by the formula 

(29)      4,    "   2 

where 

(30)      G   =    (! - L)"1 U 

Varga also shows that 

p(L^)    «    a^-l. 

Under the above conditions on A, it is also true (Varga) that, if X is a non- 

zero eigenvalue of L    and if \i satisfies 

(31)      (X + u> - I)2   =   X <J ß2, 

then JI is an eigenvalue of B = L ♦ U.   Conversely, if ß is an eigenvalue of B and X 

satisfies (31),  then X is an eigenvalue of L 

If a) is set equal to 1 in (20)   then we have 

(32)      L     =   (l-L)     U   =    G 
Ct) 

and the SOR method reduces to the Gauss-Seidel method. 

With cu = 1 and an application of (31), w<s see that, if ß is an eigenvalue of 

B/ then ß2 is an eigenvclue of G.   Hence, p(G) = p2(B) and p(G) < p(B) since 

P(G)<1. 
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The rale of convergence R(M) of a matrix M is defined by (Young) 

(33) R(M)   -   - log (p(M))  . 

Hence, we have R(G) - 2R(B) and, under the previously mentioned conditions , 

we have that the Gauss-Seide! method (G) converges twice as fast as the Jacobi 

method ( 8 = L+U = D~ (E+F) ) .   It can aiso be shown (Varga) that 

(34) lim     R(L    )   =    2[R(G)1* , 
p(B)-1"      % 

which give» us that 

(35) R(L    )   3     2(R(G)]* >   2R(G). 

Hence, the SOR method with the optimum acceleration parameter converges approx- 

imately twice as fast asymptotically as does the Gauss-Seidel method.   It must be 

emphasized that, in actual practice, the SOR method can and often does offer a 

much larger increase in the rate of convergence.   This is due to the fact that the 

result in (35) is developed only for the limiting case p(B) —1. 

The effect of using the block SOR method is to again increase the rate of 

convergence although no general relationship is known.   (For a result restricted 

to partial differential equations see Arms, Gates and Zondek, 1956). Intuitively, we 

may view   the use of the block SOR method as having the effect of reducing the 

order of the system of equations   thus making the iterative process converge more 

rapidly. 
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Rather than attempt to compute p(G) explicitly, one can approximate it 

in the following manner (Young, 1962): Set U> = 1 in formula (21) and perform 

several iterations while calculating 

(36)     p(G) * 
II«™ - x«|i 

x<k)-x<k"> 

where 

(37) !x II   • max 
is» in 

IX. 

2.06    OTHER ITERATIVE METHODS 

In the early stages of our study another iterative method, that of Luisternik 

as described by Faadeva (1959), was investigated.   The formula for this method is 

where x is the (k*i)    approximation obtained by the Gauss-Seidel proceu and u 

equalsp(G) with G defined as in (3C). 

We would emphasize that our studies, have by no means covered all iterative 

methods worthy of consideration.   The fact that other methods were not applied to the 

photogrammetric problem is in large measure attributable to the very satisfactory results 

which were obtained with the Method of Successive Over Relaxation.   Also some of the 

iterative methods are highly specialized to apply to matrices generated for the numerical 

solution of certain systems of partial differential equations and are inherently unsuited 
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to our problem.   The entire field of semi-iterative procedures (Varga) has /et 

to be applied to the photogrammetric problem.   A particularly promising solution 

referred to as Block Symmetric Successive Over Relaxation (Ehrlich, 1963) came 

to our attention as we were completing our studies for tf- is report.   This is a two 

step method in which the solution vector proceeds first from the top of the matrix 

to the bottom in the usual manner but, then, instead recycling to the top again as 

in normal Successive Over Relaxation, it reverses and proceeds from bottom of the 

matrix backwards to the top.    In some applications the method has been found to 

yield a substantial  improvement in convergence over Block Successive Over Relax- 

ation with no increase in computation.   Accordingly, we would strongly recommend 

that Block Symmetric Successive Over Relaxation receive serious consideration in 

any future investigations of the photogrammetric application. 

Within the past decade or so, the field of iterative techniques for the solution 

of simultaneous linear equations has become a very fen le area of investigation with 

new and significant results appearing at frequent intervals.   It is our intention to keep 

abreast of latest developments and to investigate those which would appear to have 

particular merit in the photogrammetric application.   Although we are immensely 

satisfied with the results obtained so far, we are certain that they can be and will 

be appreciably improved upon before very long. 

2.07     GENERAL APPROACH TO NUMERICAL SIMULATION 

Inasmuch as several possible combinations of iterative techniques and arrange- 

ments presented themselves at the outset, we decided to confine the initial phase of 

the study to the application of various approaches to the solution of simulated strips 

of photography.   Both economics and logic dictated such a course of action, for it 

was clear that if an acceptable solution could not be found for a strip of photography 

the possibility of developing an acceptable solution for large blocks would be even 

more remote.   On the other hand, success with strips of photos would warrant extension 

of the approach to embrace blocks. 
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A process of elimination was carried out in order to determine which 

specific combination of iterative method and arrangement of normal equations 

would yield the highest rate of convergence.   In order to obtain results which 

would be as meaningful as possible, it was necessary to generate systems of normal 

equations similar in general character to those to be expected from actual data. 

For convenience, we adopted a perfect 9-point pattern of ground control.   This 

assumption in no way compromises the essential validity of the simulation and 

serves to simplify the data handling.   In our initial simulations involving 2-photo, 

6-photo and ?5-photo strips, the ground points were assumed to lie in the horizontal 

X-Y plane and to be spaced at 18,000 ft. intervals in both X and Y.   Flying height 

was taken as 40,000 ft. from all photos.   This combination of flying height and 

spacing of control points is appropriate to two thirds forward overlap with a 150mm 

(6 inch) lens and a 19cm (7.5 inch) plate format.   In our later simulations in/olv- 

ing 41 photo strips and 3x5 blocks, the basic nine point pattern was maintained, 

but the flying height was raised (in accord with RADC requests) to 50,000 ft, and the 

spacing of ground control was increased to 30,000 feet (a combination appropriate to 

60% forward overlap with a 6 inch lens and a 9x9 inch format).   The X axis was 

considered to be defined by the flight line, along which the middle row of ground 

control points was also assumed to lie.   The x,y plate coordinate axes were taken 

to be parallel to the X,Y axes, thus rendering the 0, u, K for each photo equal to 

0*, 0° and 90° respectively.   The general geometry of the simulated photography is 

illustrated in Fig. 2.1. 

The true coordinates of the control points and the true elements of orientation 

were employed to generate the true plate coordinates of the images of the ground 

control.   Random normal deviates having the standard deviations indicated in Table 

2.1 were added to the true elements of orientation and the true coordinates of con- 

trol. 

-91 



-36- 

c 

3 

s, 
o 
S 
Q_ 

"O 
T 
O 

% 
y 

f O 
a. 

3 
c 
3 

o 

3 

N 

K 

»fO.OOO' 
OR 

• 50,000' 



Quantify 

STANDARD DEVIATION 

2-Photo Strip                           41-Photo Strip 
6-Photo Strip                            3x5 Photo Block 

25-Photo Strip 

V'V'V 
0,0,0 
a     u     K 

V V °z 

10 ft.                                          25 ft. 

.0003 radian (T)                   .00075 radian (2l5) 

10 ft.                                          25 ft. 

Table 2.1.   Standard deviations of random normal deviates added to true 
values of elements of orientation and coordinates of control 
in order to create simulated approximations. 

No random normal deviates were applied to those control points which were 

considered to be absolute in a given simulation.   Except for such absolute control 

points, no constraints were piaced on the control points.   Neither were constraints 

placed on the elements of exterior orientation (the elements of interior orientation 

were, of course, enforced).   Accordingly, all pass points and all elements of 

exterior orientation were allowed unlimited freedom to adjust. 

The random deviates having standard deviations as indicated in Table 

2.1 lead to fairly close initial approximations by usual standards.   Such close 

approximations were invoked in order to avoid contamination of the essential 

results by second order effects of the process of linearization by means of Taylor's 

series.   As indicated in Table 2.1, in our later simulations (41-Photo strip and 3x5 

block) the errors in the initial approximations were relaxed by a factor of 2.5. 

No random errors were applied to the true plate coordinates in any of the 

simulations, for had this been done the exact solution of the normal equations 

would not have been known.   As it is, the solution of the normal equations should 
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precisely reproduce the known random deviates which had been added to the true 

elements of orientation and coordinates of control.   This, then, provides the 

standard needed to gauge the relative effectiveness of various approaches to the 

solution of the normal equations.   One should not lose sight of the fact that the 

central objective of our entire program of numerical simulation is to determine 

the feasibility of solving the normal equations by means of certain iterative pro- 

cedures.   Inasmuch as the introduction of random errors in the plate measurements 

would induce only a second order change in the coefficient matrix of the normal 

equations and hence would not alter its essential properties pertaining to conver- 

gence, it is clear that the assumption of perfect plate measurements in no way 

compromises the validity of our investigation of iterative solutions. 

Four different arrangements of the normal equations were investigated in 

our simulations of strips.   The basic forms of the normal equations are illustrated 

in Figures 2.2, 2.3, 2.4, 2.5 for the case of a sample 1x5 strip.   In the arrange- 

ments A and B (Figs 2.2, 2.3) the elements of orientation and the coordinates of 

control are totally separated.   The numbering of control points leading to the form 

A is indicated in Fig. 2.6 and that leading to the form B is indicated in Fig. 2.7. 

The arrangements C and D (Figs. 2.4, 2.5) are intertwined forms.   Both intertwined 

forms correspond to the numbering of control points of Fig. 2.7.   The C form may be 

viewed as a special case of the block intertwining of Fig. 1.5.   In the D form, an 

even tighter, and more strongly diagonal arrangement is achieved through a different 

ordering process.   The unknowns for the C and D forms are ordered as follows: 

C FORM DFORM 

Points 1,2,3,4,5 
Photo 1 
Points 6,7,8 
Photo 2 
Points 9,10,11 
Photo 3 
Points 12,13,14 
Photo 4 
Points 15,16,17 
Photo 5 
Points 18,19,20,21. 

Point 1 
Photo 1 
Points 2,3,4 
Photo 2 
Points 5,6,7 
Photo 3 
Points 8,9,10 
Photo 4 
Points 11, 12, 13 
Photo 5 
Points 14 throi igh 21 
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In the ntxt several subsectiom we shall describe the results of our simu- 

lations and shall show how each series of simulations answered certain specific 

questions while raising still others which were in turn answered by subsequent 

simulations. 

2.08    SIMULATIONS OF 2-PHOTO STRIPS USING POINT ITERATIVE METHODS 

The basic 2-photo combination it, of course, the fundamental unit for 

photogrommetric triangulation and is the combination which has traditionally been 

exploited as the 'building block* for cantilever extension.   We concentrated 

initially on the 2-photo unit mainly in order to become familiar with the 'mechanics' 

of the various approaches to be applied later to more extensive photogrammetric 

nets.   The four corner points of the first photo were taken as absolute control 

points.   The middle control point of the first column and all three control points 

of the last column were considered to be known perfectly in Z in order to preserve 

the basic nine point pattern (since these particular points do not lie in overlap 

areas, they must be constrained in at least one coordinate in order to be carried 

in the adjustment; being constrained only in Z, the can have no influence on the 

results of the adjustment and accordingly may be viewed as dummy control introduced 

merely for convenience).   With a total of 12 control points being carried, the 

general normal equations for the 2-photo strip become of order 48x48.   All four 

arrangements of the normal equations (A,B,C,D) were generated on an IBM 1620 

computer and solutions were attempted by means of the following 'point-iterative' 

processes 

1. Gpuss-Seidel, 

2. Gauss-Seidel with Luisternik Acceleration, 

3. Successive Over Relaxation. 

The results for Gauss-Seidel iteration for all four arrangements of the normal 

equations are summarized in Table 2.2.   Those for Successive Over Relaxation 

are summarized in Table 2.3.   The Gauss-Seidel process with Luisternik acceleration 

was found to diverge for reasons to be discussed later. 
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Number of 
Iterations 

r 
ARRANGEMENT OF NORMAL EQUATIONS 

A B C D 

m S 
m f>JG) 

m 
S 

m P   (G) m 
S 

m PJG) 
m S m PjG) 

m 

5 9.320 .8184 9.320 .3184 8.527 .8062 13.630 .6462 

10 4.339 .8523 4.339 .8523 4.485 .9058 5.370 .9063 

15 2.210 .8468 2.210 .8468 2.366 .9117 3.016 .9392 

20 1.302 .9086 1.302 .9086 1.667 .9267 2.210 .9448 

25 .982 .9861 .981? .9861 1.397 .9440 1.808 ,9534 

30 .839 .9881 .839 .9881 1.231 .9583 1.532 .9593 

35 .773 .9890 .773 .9890 1.130 .9932 

40 .699 .9897 .699 .9897 

Table 2.2  Values of convergence parameter S    and estimated spectral radiusp   (G) for every 
m "m 

5 iterations of point-iterative Gauss-Seidel process applied to normal equations for 

basic 2-photo strip. 

Number of 
Iterations 

ARRANGEMENT OF NORMAL EQUATIONS 
A B C D 

m S 
m PjG) 

m S           p  (G) m            m S           p  (G) m              m S m PJG) 

5 9.321 .8184 9.321      .8184 10.180      .8083 13.630 .6462 

10 6.871 .8531 6.158      .6974 6.657      .8187 8.685 .7293 

15 3.164 .9036 3.071      .9050 3.291      .9009 6.367 .8185 

20 2.289 .9730 2.478    1.0020 2.836     .9878 4.171 .9147 

25 1.855 
  

.9683 2.049      .9718 2.439      .9625 2.714 .9501 

Table 2.3.   Values of convergence parameter S    and estimated spectral radius p   (G) for every 
m m ' 

5 iterations of point-iterative method of Successive Over Relaxation applied to 

normal equations for basic 2-photo strip. 
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In Tablet 2.2 and 2.3 the quantity S   , defined by 
m 

S    -      I    (xim)-xim"1)) 
m        .=1      ' 

i .        .        r nj (m) J     (m~1) j- serves at the criterion tor convergence.   Here x       and x ore corresponding 

components of two successive approximations to the solution vector of the normal 

equations,   "me quantity p   (G) denotes the approximation to the spectral radius 
th        m 

resulting from the m     iteration.   The time required per iteration on the IBM 1620 

was 2i minute« in all cases.   It should be pointed out that all operations were per- 

formed on the full 48x48 coefficient matrix,  for the collapsed form was nor employed 

at this stage of the investigation. 

From Table 2.2 we see that the results for the A and B arrangements are 

identical and are superior in convergnec to those for the C and D arrangements. 

In comparing Tables 2.2 and 2.3 we see that the point-iterative Gauss-Seidel 

process actually converges more rapidly than the point-iterative Method of Successive 

Over Relaxation.   This indicates that the Method of Successive Over Relaxation did 

not realize a good approximation to its optimum acceleration parameter within the 

span of iterations considered. 

The most important finding of the simple 2-photo simulations was the demon- 

stration that the Luisternik acceleration actually leads to divergence.   Upon 

reviewing this result from the theoretical standpoint the reason became obvious. 

The Luitternik process may actually be viewed as a special case of the Method of 

Successive Over Relaxation in which the acceleration parameter u is computed from 

(39)    u =  TTpTGT     ' 

As was indicated in Subsection 2.05, the SOR process will converge only for 

0 < u < 2.   Thus when u is computed according to the above formula,  convergence 

will result only if p(G) < 0.5.   In the general photogrammetric problem, on the 

other hand, p(G) is generally close to unity.   This makes Luisternik's acceleration 
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coefficient greater than 2 which in turn causes divergence.   vVhenp(G) < 0.5, 

Luisternik's choice for the acceleration parameter is related to the optimum 

parameter by the following approximation 

(40)      u.   .        .,   *    (1 * p(G)) u_  t. Luisternik K Optimum 

Hence even when it leads to convergence the Luisternik acceleration parameter 

tends to overshoot the optimum acceleration parameter by a factor equal to the 

spectral radius. 

2.09     SIMULATIONS OF 2-PHOTO STRIPS USING BLOCK-ITERATIVE METHODS 

Having dismissed the Luisternik method in our initial point-iterative simu- 

lations, we proceeded to apply block-iterative methods to the basic 2-photo case. 

Here, as in all subsequent simulations, we employed an IBM 1620 computer to 

generate the normal equations and an IBM 7094 to solve them.   At this point we 

decided to concentrate on one non-intertwined form of the normal equations and 

one intertwined form.   The B arrangement was selected for the non-intertwined 

form because its implementation was considered to be somewhat easier than that 

of the A form.   The D arrangement was selected for the intertwined form because 

it is more strongly diagonal than the C arrangement. 

The method of Block Successive Over Relaxation was applied to both the 

B and D forms.   To serve as a control, the Block Gauss-Seidel process was applied 

to the B form.   The convergence criterion S    and estimated spectral radius p   (G) 
m m 

were read out at the end of «very tenth iteration and are listed in Table 2.4 for 

the three cases considered. 

The results in Table 2.4 demonstrate that the rate of convergence of 

Block Successive Over Relaxation far exceeds that of the Block Gauss Seidel 

Process, being on the order of 40 to 50 times faster at 100 iterations.   In com- 

paring Tables 2.2 and 2.4 we see that the block-iterative Gauss Seidel process 
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Number of 
Iterations 

TYPE OF ITERATIVE SOLUTION 

P,CCK GAU5S-SEIDEL BLOCK SUCCESSIVE OVER RELAXATION 

BFORM BFORM D FORM 

Sm              PJG) m                   m S                 p  (G) Sm               Pm
(G) m                  m 

10 S.693             .9239 18.34             .9590 8.013          .8978 

20 3.098             .9197 1.798           .9268 3.644          .7709 

30 1.819             .9254 .5516         .9316 .4887         .7909 

40 1.125             .9449 .2690         .9320 .1297         .9523 

50 .7198           .9498 .1320         ,9311 .0635         .9454 

60 .4769           .9522 .0648         .9253 .0357        .9485 

70 .3302           .9836 .0318         .9323 .0202         .9373 

80 .2413           .9847 .0158         .9042 .0151         .9317 

90 .1818           .9826 .0076         .9163 .0065         .9509 

100 .1411            .9829 .0039       1.0370 .0037         .9556 

no .1138           .9824 .0019          .9612 .0022       1.049 

Table 2.4.   Values of convergence parameter S    and estimated spectral radiusp   (G) for 

10 iterations of block-iterotion Gauss-Seidel Process and block-iterative Method 

of Successive Over Relaxation applied to normal equations of basic 2-photo strip. 

Number of 
ARRANGEMENT OF NORMAL EQUATIONS 

B FORM DFORM 

m                          m S 
m P(G) m 

10 10.68                    .8273 25.58 .7706 

3C 6.186                  .9847 5.067 .9716 

50 3.049                   .9614 3.634 9930 

70 1.511                   .9770 2.746 .9827 

90 .7854                 .9760 2.159 .9953 

110 .4976                 .9651 1.777 .9947 

130 .4020                 .9793 1.537 .9955 

150 .3490                 .9910 1.389 .9954 

170 .3077                  .9948 1.2S1 .9961 

190 .2723                  ,9975 1.199 .9974 

210 .2404                i.002 1.134 .9971 

Table 2.5.   Values of convergence parameter S^ and estimated »pectral radiusp   (G) for every 

20 iteration, of block-iterative Method of Successive Over Relaxati™ applied to 
simulated 1x6 strip, 
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actually tends to converge less rapidly than the point-iterative Gauss-Seidel 

process.   On the other hand in comparing Tables 2.3 and 2.4 we see that pre- 

cisely the opposite is true with Successive Over Relaxation; here the block- 

iterative procedures afford a very considerable improveme? i over point iterative 

procedures. 

The general rate of convergence with Block Successive Over Relaxation 

is seen from Table 2.4 to be ooout the same for the B and D arrangements.   Cer- 

tainly, ths D arrangement in this case does not provide the hoped for improvement 

motivating the concept of intertwining. 

2JO    SIMULATION OF 6-PHOTO STRIPS 

At this point it was thought that the failure of intertwining to offer a 

significant improvement in convergence might wel! be attributable to the fact 

that with such a short strip only a weak measure of relative diagonality is pro- 

vided by intertwining.   For this reason, we decided to continue our investiga- 

tions of intertwining in further parollel simulations of the B and D arrangements 

of the normal equations.   Accordingly, the original 2-photo strip was extended 

to a 6-phoro strip.   This produced a system of normal equations of order 108x108, 

thus providing the D intertwined form a chance to achieve a fair measure of 

diagonality. 

The results of 210 iterations of the process of Block Successive Over 

Relaxation are indicated in Table 2.5 for every 20th iteration starting with the 

10th.   We see that instead of leading to an improvement in convergence, the 

intertwined form D actuclly retards convergence to an appreciable degree and 

at 210 iterations is about five times slower in converying than the B form.   Thus 

the actual effect of intertwining would appear to be just the opposite of what 

was desired. 
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in on   ttempt to account for this result, we investigated fro*1* the 

theoretical standpoint the structural properties characteristic of intertwined 

forms.   As stated in Subsection 2.05, through the use of ordering vectors it 

can be established that the simple arrangements A and B of the normal equa- 

tions are consistently ordered 2-cyclic matrices.   In a similar manner we have 

been able to establish that the more complex intertwined arrangements C arid 

D are not ?-cyclic.   It follows that formula (29) for estimating the optimum 

acceleration parameter is not theoretically valid for the intertwined forms, 

Varga (1962) states that the rate of convergence of Successive Over Relaxation 

can be extremely sensitive to changes in the acceleration parameter.   It is 

evident from our numerical results that equation (29) does not yield the optimum 

acceleration parameter for the intertwined arrangements and hence the naximum 

rate of convergence of Successive Over Relaxation is not achieved with inter- 

twining.   Inasmuch as no formula is known for computing the optimum acceleration 

parameter for matrices which ore not consistently ordered 2 cyclic, w«; decided 

to abandon further consideration of intertwining in subsequent numerical simula- 

tions. 

2.11     SIMULATION OF 25-PHOTO STRIPS 

The investigations to this point were largely exploratory, serving to 

suggest avenues meriting more intensive investigation.   While the iterative 

reduction for the 6-photo strip did lead to a satisfactory solution o( the normal 

equations, the over-all computing time was almost tenfold greater >han that which 

would have been required by the direct reduction of Subsection 1.12.   Nonethe- 

less, the fact that a satisfactory solution had been obtained at alt was considered 

to be encouraging because the iterative approach was not expected to be computa- 

tionally superior for such small photogrammetric nets. 
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Having settled on a tingle arrangement of the normal equations (the 

B form) and a single iterative method of solution (Block Successive Over Relax- 

ation) we proceeded to revise the solution to incorporate a collapsing algorithm 

in order to bypass unnecessary operations on blocks of zero elements.   With this 

successfully accomplished, we tested the resulting version of the reduction on 

the- 6-photo strip and found that the collapsing algorithm speeded the reduction 

by more than one third.   By implementing the collapsing algorithm, we not only 

speeded the reduction but were also able to handle much larger matrices in core, 

for storage of blocks of zero elements was no longer required.   This set the stage 

for our next series of simulations which were concerned with 25-phoro strips. 

The 25-photo strip was selected because this was judged to be close to the cross- 

over point where the iterative approach would possibly emerge os computationally 

superior.   The order of the general normal equations for the 25-photo strip is 

393x393. 

In the 25-photo simulations the basic nine poinjr pattern was maintained 

and two levels of control were considered: 

(1) four absolute control points at the beginning of the strip and none 

elsewhere (minimal control case); 

(2) four absolute control points at the beginning and another four at 

the end of the strip and none elsewhere (augmented control case). 

Three non-collinear control points (or more precisely 2-1/3 points) actually consti- 

tute a minimal control situation; by including a fourth control po'nt in the s»et, we 

obtain a practical check thirugh redundancy.   Since such a check should, we feel, 

be com'dered to be virtually indispensible in practice, we regard a set of four 

absolute control points as constituting the 'minimal control case' . 

Inasmuch as the plate coordinates were completely uncontaminated by 

random error, the root mean square (rms) error of the residuals of the plate 

coordinates was adopted as an alternative criterion of convergence.   This was 
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felt to be more meaningful for the problem at hand than our earlier criterion. 

For a perfect solution, the rms errcv would, of course, be precisely zero.   With 

real data, on the other hand, the rrrs error would stabilize at a higher level and 

a more appropriate criterion would be one based on the change in the rms error 

per, say, twenty iterations. 

The new convergence criterion was computed and read out every 20 

iterations until an arbitrary cut-off level of 303 iterations was reached.   The 

results for both cases are listed in Table 2.6.   On the surface, the level of 

0.38 and 0.35 microns attained by 300 iterations is quite impressive, particularly 

when considered in the light of normal plate measuring accuracies.   However, 

gauging the convergence criterion in this manner is deceptive for reasons to be 

brought out in Figs. 2.8a through 2.12b.   Here we have presented curves de- 

picting the actual errors in the solutions for the various unknowns of the normal 

equations.   For convenience in making comparisons we have placed in juxtaposition 

ccresponding figures for the 'minimal control case1 and the 'augmented control 

case' .   Corresponding figures are given the seme number with the suffix ' a1 

referring to the 'minimal control case' and the suffix ' b' corresponding to the 

1 augmented control case'. 

In comparing Figs. 2.8a end 2.8b we have the first indication of what we 

shall call the 'pinch' effect of absolute control.   The truncation errors in <t>, u, K 

in Fig. 2.8b, unlike those in 2.8a, are reduced almost to zero at the 25th photo. 

This reflects the effects of the absolute control present at the end of the strip for 

the 'augmented control case' .   Not only does this extra control pinch the truncation 

error almost to zero at the ind of the strip, but it also reduces somewhat the ampli- 

tude of the intermediate excursions.   The tip (O), tilt (u), and swing (K) errors are 

suppressed for the most part to less than 5 seconds of arc by 300 iterations. 

Li« pinch effect is also evident in the comparison of Figs. 2.9a and 2.9b. 
c      X       c 

By the end of 300 iterations, the errors in the values of the coordinates X  , Y  , Z 
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Number of iterations 
RMS ERROR (MICRONS) 

Minimal Control Caie Augmented Control Case 

0 183.8 179.4 
20 1.87 1.85 
40 1.30 1.25 

1                     60 1.01 .94 
80 .84 .73 

100 .73 .68 
120 .66 .61 
140 .61 .56 
160 .57 .51 
180 .53 .48 
200 .50 .45 
220 .47 .43 
240 .45 .40 
260 .42 .38 
280 .40 .37 
300 .38 .35 

Table 2.6.   RMS errors of residuals of piate coordinates after each 20 iterations 
of solution of normal equations generated by simulated 25-photo strips, 

are generally suppressed to less than 3, 5 and 2 ft. respectively, for the ' minimal 

control case1 and to less than 2, 4 and 1 ft. for the 'augmented control case . 

To place these in proper perspective one should recall that the assumed flying 

height for these simulations is 40,000 ft. and that the strip is on the order of 60 

miles in length.   Relative to the measuring errors normally to be expected for such 

an operation, the errors in the truncation of the iterative process at 300 iterations 

are acceptably small. 

In Figs. 2.10a through 2.12b we have plotted the errors of truncation of 

the X,Y,Z coordinates along each of the three rows of control points.   Not sur- 
c      c      c 

prisingly, these curves are rather well correlated with the X  , Y , Z   curves of 

the exposure stations (Figs. 2.9a and b).   Their amplitudes are generally under 3 

feet at 300 iterations, although the error in the Y coordinate does become as large 
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Figure 2.8a.   Errors remaining ir <t, u, K fy /5-photo strip after truncation of iterative 
solution at 100, 200 and 30C l.trations; minimal control case. 
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Figure 2.8b,   Errors remaining in $, u, K for 25-photo strip after truncation of iterative 
solution at 100, 200 and 300 iterations; augmented control case. 

■115- 



— —    —     After 100 Iterations 

      Affer 200 iterations 

After 300 Iteration» 

2 
at 

u 
X 

+10-- 

o 

-10-- 

:H—t    -t    ♦    ♦■■»■«—l—I—►—I—I—I—I—t—I—I—I—I—I—l—i   g»     { 

S 
0£. 
OC 

N 

PHOTOGRAPH NUMBER 

Figure 2.9a.   Errors remaining in X  , Y , Z   for 25-photo strip after truncation of 
iterative solution at 100, 200 and 300 iterations; minimal control case. 
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Figure 2.10a.   Error» remaining in X,Y,Z of 1st row of control of 25-photo strip after 
truncation of iterative solution at 100, 200 and 300 iterations; minimal 
control case. 
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Figure 2.10b.   Errors remaining in X,Y,Z of 1st row of control of 25-photo strip after 
truncation of itsrative solution at 100, 200 and 300 iterations; augmented 
control case. 
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Figure 2.11a. Errors remaining in X,Y,Z of 2nd row of control of 25-photo strip after 
truncation of iterative solution at 100, 200 and 300 iterations; minimal 
control case. 
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Figure 2.11b.   Error» remaining in X,Y,Z of 2nd row of control of 25-photo strip after 
truncation of iterat; » solution at 100f 200 and 300 iterations; augmented 
control case. 
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Figure 2.12a.   Errors remaining in X,Y,Z of 3rd row of control of 25-photo strip after 
truncation of iterative solution at 100, 200 and 300 iterations;  minimal 
control case. 
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Figure 2.12b.   Error» remaining in X,Y,Z of 3rd row of control of 25-photo strip after 
truncation of iterotive solution at 100, 200 and 300 iterations; augmented 
control case. 
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os 5 feet at one point (to a great extent,   this ii a reflection of the truncation 

error in Y ).   By normal standards, the truncation errors at 300 iteration» are 

acceptably small for the most part.   However, further iteration to suppress the 

maximum error in the Y coordinates to a lower level might be considered advisable. 

A remarkable property of the error curves of truncation is thot their general 

characteristics closely resemble .vhose of error curves of measurement.   If, for 

example, one were to add random errors to the plate coordinates and iterate the 

solution to perfect convergence, the resulting error curves would bear a marked 

similarity in the domains of spatial frequency and autocorrelation to those curves 

characteristic of truncation of the iterative process.   We believe that a full scale 

investigation of the autocorrelation and crosscorrelation spectra of error curves of 

truncation and error curves of measuring would prove most enlightening and would 

recommend this to future studies. 

From the error curves of Figs. 2.8a through 2.12b it is evident why the 

error remaining in the ground control points (typically 1 to 3 feet and as much as 

5 feet) is seemingly inconsistent with the very low mean error of the plate residuals 

(less than 0.4 microns) attaineä at 300 iterations.   Truncation errors in the 

elements of orientation of successive photos are seen to be highly correlated. 

This leads to a gradual and subtle deformation of the model wherein the property 

of intersection of free rays is preserved ro a remarkably high degree.   Because 

of this pronounced serial correlation of errors in orientation, systematic ex- 

cursions of the model are very poorly reflected by residuals in the plate 

coordinates.   For this reason, adequate convergence is not actually attained 

with simulatad data free of random plate measuring errors until the rms error 

of the plate coordinates has been suppressed to appreciably less than one micron. 

Simulations of the 25-photo strips provided the first really convincing 

evidence of the feasibility of the iterative approach.   The computing time re- 

quired for 300 iterations on the IBM 7094 was approximately 7 minutes, a value 

competitive with the direct reduction of a 25-photo strip. 
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2.12       SIMULATION OF 41 -PHOTO STRIPS 

Having definitely established the promise of the iterative approach through 

25-photo simulations/ we proceeded to implement the final stage of our program 

of simulation on strips, namely, the adjustment of the longest strip which could be 

handled totally in the memory of a 32K IBM 7094. Thiswasoriginally computed to be a 

48-photo strip for the particular computer we were using.   However, we were forced 

to cut this back to 41 photcs after an expansion of the monitor of the computer con- 

sumed almost 3000 previously available cells. 

In order to gain a more definitive evaluation of th» 'pinch' effect of 

absolute control, we considered five different levels of control throughout the 

41-photo strip.   These are pictured in Fig. 2.13.   In Case 1 (Fig. 2.13a.) five 

absolute points were established at the beginning of the strip.   The four points 

controlled only in Z do not lie in overlap areas and hence are actually dummy 

control points introduced solely to preserve the convenient nine point pattern. 

In Ccs*! 2 (Fig. 2.13b.) five additional control points were established at er.d of 

the strip.   Cases 3, 4 and 5 (Figs. 2.13c., d., e.) correspond to the introduction 

of additional control at approximately the half, quarter and one-eighth divisions 

of the strip. 

For each of the five cases the rms errors of the residuals of the plate 

coordinates are listed in Table 2.7 for every 10 iterations to 50 iterations and 

for every 50 iterations thereafter to 600 iterations.   The computing time required 

for 600 iterations averaged about 24 minutes.   In general, the computing time for 

p iterations of an n pho*o strip having the basic nine point pattern of control is 

given very nearly by 

T (min.)    «    lenp 

where 

k = a constant depending on speed of the computer, 

& 0.0010 for an IBM 7094. 
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Number of RMS ERROR (MICRONS) 
Iterations 

Case 1 Case 2 Case 3 Case 4 Case 5 

0 336.0 336.0 336.0 336.0 336.0 
10 8.2 7.9 8.0 8.3 8.6 
20 5.1 4,9 5.0 5.1 5.2 
30 4.0 3.9 3.9 3.9 3.8 
40 3.4 3.3 3.3 3.2 2.9 
50 3.0 2.9 2.8 2.7 2.3 

100 2.0 1.8 1.9 1.7 1.01 
150 1.5 1.4 1.5 1.4 .63 
200 1.3 1.2 1.3 1.13 .49 
250 1.15 1.1 1.2 1.01 .44 
300 1.00 1.05 1.10 .92 .43 
350 .96 .97 1.00 .81 .42 
400 .91 .90 .96 .72 .4!3 
450 .85 .36 .90 .67 .410 
500 .81 .83 ,84 .62 .407 
550 .79 .85 .80 .59 .405 
600 .75 .82 .75 .56 ,403 

Table 2.7.   RMS errors of residuals of plate coordinates after various numbers of 
iterations of solution of normal equations generated by simulated 
41-photo strips. 

From Table 2.7 we see that the improvement in convergence with in- 

creasing control is not very pronounced until Case 5 is reached.   Here, the inclusion 

of but four additional points (one new point per 10 photos) leads to a marked and 

sudden improvement in convergence.   This is perhaps most strikingly illustrated in 

Figures 2.14 through 2.18 in which the individual errors in the elements of orienta- 

tion and coordinates of control are plotted after 600 iterations for Cases 1 - 4 and 

after 200 iterations for Case 5.   The errors in the X,Y coordinates of control are for 

the most part suppressed to less than one foot in Case 5 and those for the Z coordi- 

nate are generally suppressed to less than 3 feet.   The results for Case 5 after 2C0 

iterations are actually superior to the results for Case 4 after 600 iterations.   It 

should be pointed out that because of a quirk in the program not discovered until 

very recently, the full value of the acceleration parameter for Block Successive 
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Figure 2.13a.   CCM I 
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Figur« 2.13b.  Cos« 2 
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Figure 2.13c.  COM 3 
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Figur« 2.13d.  COM4 
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Figure 2.13 e.   COM 5 

Figure 2.13.   Illustrating different levels of control considered in simulations of 41-photo strip. 
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Over-Relaxation was not actually realized in the simulations of the 41-photo strip 

(the results for the 25-photo strip, on the other hand, were not affected by this 

difficulty which has now been corrected).   For this reason, the results in Table 2.7 

and Figs. 2.14 through 2.18 may be regarded as a conservative indication of the 

power of the iterative method. 

Figs. 2.14 through 2.18 fully confirm the existence of the pinch effect of 

absolute control first suggested by the results of the 25-photo simulations.   They 

also provide some insigh* into the possible reason for the sudden improvement in 

convergence which is realized once a certain level of control is established.   All 

simulations performed so far suggest that error in truncation of the iterative process 

for the minimally controlled strip has a natural fundamental spatial frequency of 

about one cycle per 12 photos.   Therefore, the pinch effect exerted by control 

introduced at any multiple of the half cycle (6 photos) hes a tendency to be in phase 

with this fundamental spatial frequency and hence does not exert nearly as strong 

an influence on convergence as control deliberately distributed to be out of phase 

with the fundamental frequency.   By this reasoning, control introduced at the quarter 

cycle mark (i.e., centered on every third photo) should be especially effective in 

accelerating convergence.   Fresh control introduced at the center of every fourth to 

fifth photo would 'ikewise significantly disturb the natural frequency of the system 

and should therefore also exert a marked influence on rate of convergence.   Clearly 

the topic of optimal distribution of limited absolute control is one warranting further 

investigation in future studies.   Here, a power spectrum and autocorrelation analysis 

of the truncation error of the iterative process as applied to extremely long strips 

(at least 150 photos) would be of particular value. 

Perhaps the most important single finding of the 41-photo simulation 

is that once a certain minimal level of well-distributed control is attained the 

convergence of the iterative process is greatly improved.   This minimal level would 

appear to entail the introduction of fresh control on at least every fifth photo. 
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2.13    SIMULATION OF 3x5 BLOCKS 

Because of the success of the iterative approach in applications to photo- 

granwnetric strips, we proceeded to implement the approach for photogrammetric 

blocks.   This necessitated the development of a more complex collapsing algorithm 

and development of a more comprehensive computer program.   The resulting IBM 

7094 program was tested on the pair of simulated 3x5 blocks pictured in Figs. 2.19a 

and 2.19b.   The block with the greater level of absolute control (Fig. 2.19a) 

was reduced first.   The cutoff level for iterations was set at 200 iterations or an 

rms error of 0.5 microns, whichever came first.   The rms error was set to be com- 

peted every 50 iterations.   As it turned out the solution converged to 0.16 

microns by the end of the first 50 iterations.   Hence no intermediate readout was 

obtained for this case.   The errors in the X and Y coordinates of the cont'd points 

were suppressed to less than 0.2 ft. at 50 iterations.   The errors in the Z coordinates, 

on the other hand, were, in some instances, appreciably larger, growing to as 

much as one foot.   The time required for the solution (50 iterations) was under one 

minute. 

Because the extraordinarily rc.oid rare of convergence experienced with 

the initial 3x5 block had not been anticipated, details on the nature of the con- 

vergence were not obtained.   To remedy this, the second block (Fig. 2.19b) 

was generated with a lesser number (four) absolute control points and results were 

rood out every 10 iterations for a total of 120 iterations.   The rms errors of the 

residuals of the plate coordinates listed in Table 2.8 would seem to indicate that 

extremely rapid convergence was obtained.   On the other hand, the errors in the 

elements of orientation (Table 2.9) and the coordinates of control (Table 2.10), 

while generally acceptably small by normal standards, are quite large in some 
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 , , 
Number of RMS Error 
Iterations (Microns) 

0 155.0 
10 2.7 
20 1.1 
30 .70 
40 .49 

!              50 .37 
60 .29 
70 .24 
80 .20 
90 .17 

i            100 .14 
no .13 
120 .11 

Table 2.8.   Convergence of iterative solution 
of 3x5 block with four absolute 
control points. 

Photo 
Number 

A<t> 
(sec) 

Au 
(sec) 

AK 

(sec) 
AXC 

(ft) 
AYC 

(ft) 
AZ' 

1 - I'M U'4 6'.'4 .35 - .26 - .06 
2 -11.0 1.6 4.9 ,39 -2.40 -1.81 
3 23.3 1.6 6.0 .36 5.65 - .02 
4 -    .9 .9 6.0 .20 -0.12 - .19 
5 -11.3 1.1 5.4 .28 -2.55 2.01 
6 23.5 1.1 5.8 .29 5.74 - .20 
7 - 1.0 1 •  * 5.6 .05 - .11 - .23 
8 -11.4 .1 5.6 .04 -2.55 -2.05 
9 23.5 .2 5.6 .07 5.76 - .29 

10 -    .« - .7 5.2 -.14 - .13 - .21 
11 -11.3 - .7 5.8 -.15 -2.57 -2.03 
12 23.5 - .8 5.4 -.16 5.76 - .24 
13 - 1.0 -1.3 4.8 -.30 - .24 1 A 

«IV 

14 -11.3 -1.2 6.3 -.27 -2.43 -1.89 
15 23.2 -1.1 5.0 -.23 5.63 - .12 

Table 2.9. Errors in elements of orientation after 120 iterations of solution of 
normal equations of simulated 3x5 block having four absolute con- 
trol points. 
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"1 
POINT NO. 

..   ,  _ 

AX (ft.) AY(ft.) A2(ft.) 

1 -.31 .10 .00 
2 -.11 -.12 .00 

Column 1 3 .35 2 .43 
4 .96 .37 .00 
5 -.29 .15 -3.50 
6 -.16 -.06 .00 
7 -2.13 -2.24 .00 

8 .12 .06 .02 
9 .00 .10 .00 

Column 2 10 .13 .12 .00 
11 .00 .02 -1  82 
12 -.10 .14 -3. .SO 
13 .00 .00 .00 
14 .05 .02 3.39 

15 -.06 .19 -.20 
16 .00 .11 -.26 

Column 3 17 .05 .14 -.30 
18 .02 .18 -2.03 
19 -.02 .13 -3.75 
20 .00 .06 -.30 
21 .03 .06 3.18 

22 .01 .23 -.30 
23 .00 .01 -.04 

Column 4 24 .01 .16 -.38 
25 .00 .02 -2.12 
26 .03 .13 -3.84 
27 .00 .00 -.38 
28 .03 .08 3.09 

29 .08 .17 -.20 
30 .03 .11 -.26 

Column 5 31 -.03 . 10 -.30 
32 .02 .20 -2.05 
33 .06 .14 -3.79 
34 .03 .07 -.32 
35 .00 .08 3.15 

36 .13 .06 -.03 
37 .00 .00 .00 

Column 6 38 -.11 .14 -.02 
39 .00 .28 -1.92 
40 .14 .16 -3.74 
41 .00 .00 .00 
42 -.05 .09 3.40 

43 .28 .03 .00 
44 .07 -.12 .00 

Column 7 45 -.05 .14 .37 
46 -1.01 .40 .00 
47 .36 .16 -3.75 
48 .06 -.08 .00 
49 2.01 -2.14 .00 

Table 2.10,    Errors in coordinates of control points after 120 iterations of solution of 
normal equations generated by simulated 3x5 block. 
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instances (e.g., a value of almost minus four feet for AZ of point 26).   Such 

errors are seemingly inconsistent with the extremely low rms error of 0. lip 

attained at 120 iterations.   The explanation, we believe, lies in an inherent 

instability of the system of no. nal equations.   To appreciate this, one should 

contemplate Fig. 2.19b.   Taken by themselves the three horizontal strips form- 

ing the block are individually indeterminate.   The first and third strips are in- 

determinate in tip (<t>), for the entire model can rotate about the line joining 

the two absolute control points in each of these strips.   The middle strip is, 

of course, completely indeterminate because it contains no absolute control. 

By virtue of relative control in the side overlaps, determinacy is achieved when 

the three strips are treated as an integral block.   However, there is a basic weakness 

of the linkage between {he first and third strips, for closures of rays to the points 

in t' e side overlaps are not strongly affected by small biases in the tip angles of 

strips 1 and 3.   Indeed, if the control points in the side overlaps were measured 

only on those pairs of photos having the same Y coordinates as the control points 

themselves, the block would degenerate to indeterminacy, for intersection of rays 

in th<s side overlap would then be perfectly preserved under any <t> rotation what- 

ever of strips 1 and 3.   The general tendency towards instability of the particular 

block under discussion would be strongly damped, we believe, if a single point 

in each of the side overlaps was an absolute control point,   A particularly good 

choice would be points 24 and 26 of Fig. 2.19b. 

The ofder of the normal equations generated by the 3x5 block is 237x237. 

The form of the normal equations employed in the simulation is indicated in Fig. 

2.20.   For whatever academic interest they may hold, we have presented in Figs. 

2.21 and 2.22 two intertwined forms of the normal equations for the 3x5 block. 

These were developed before the theoretical shortcomings of the concept of inter- 

twining had been appreciated. 
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Our limited simulations of photogrammetric blocks indicate that the rate 

of convergence of the iterative solution is several times faster for a compact 

block than for a strip of comparable number of photos and level of control. 

Thus the iterative approach is even more attractive for large blocks than for long 

strips. 

Unfortunately, time did not permit a more extensive investigation of the 

block within the framework of the present study.   This will be remedied in future 

work.   Our IBM 7094 routine for block adjustment is designed to handle in core 

any block of dimensions of n photos by p photos where nxp = 45 for n,p > 2. 

When buffering teci-niques are implemented as outlined in Subsection 2.15/ it 

will be possible to adjust blocks of virtually unlimited dimensions. 

2.14     ADJUSTMENT OF 23-PHOTO STRIP OF ACTUAL PHOTOGRAPHY 

The various routines developed during the course of the investigation were 

designed expressly for simulated data and were intended primarily as tools for 

analysis and studies of feasibility of iterative solutions of the normal equations 

arising from the adjustment of large photogrammetric nets.   In order to process 

real data a number of auxiliary routines had to be written/ most notable of which 

was a routine for cantilever extension designed to obtain sharp initial approximations 

for elements of orientation and coordinates of control and also to pre-edit the 

observational material.   With such auxiliary routines and with appropriate modi- 

fications of the routines for simulation we were able to process real data in a rather 

awkward fashion.   As in our simulations/ an IBM 1620 computer was employed for 

all preliminary reductions of real data including the preliminary cantilever extension 

and the formation of fhe collapsed system of normal equations.   The solution of the 

normal equations was accomplished on an IBM 7094 computer. 
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The photography employed in our study was taken over the Annex to 

the Phoenix test range and was supplied to us by Army Map Service through 

RADC.    The photography was supplied a$ diapositive plates and was generally 

of very good quality.   Flying height was nominally 10,000 feet above the 

average terrain.   The aerial camera employed a calibrated 6 inch Planigon 

lent; the photo format was 9x9 inches.   A layout of the strip and Its absolute 

control is provided in Fig. 2.23.   A total of 24 absolute control points in 6 

groups of 3 were included in the strip.   Unfortunately, practically all of this 

control fell outside of triple overlap areas and thus could not be accommodated 

by our adaptation of the simulation routines.   Because of this shortcoming of the 

routine, we elected to adjust the strip with a minimal array of four absolute control 

points.   These consisted of three point» across the center of Photo 1 (XY-3, 

XY-4, XY-5 of Fig. 2.23) and a single point near the centei   f rinjfu A (2B-4 

of Fig. 2.23).   The images of these points were of excellent quality.   (The 

first three were signalized by special ground targets.)   A nine point pattern of 

relative control was selected such that each point lay in a triple overlap area 

(except a\ the ends of the strip).   The plates were measured on our Mann 422 G 

comparator which had been calibrated to one micron.   The plate readings were 

referred to the calibrated principal point end were corrected for distortion.   The 

calibrated principal distance was altered by a precalculated amount in order to 

compensate for atmospheric refraction (compensation for refraction in this manner 

is admissible for nearly vertical photography over all but very rugged terrain). 

The output of a special, analytical least squares cantilever extension 

operating on single pairs of photos a^ a time served as initial approximations for 

the linearization of the observational equations for the rigorous, simultaneous 

adjmtment of the strip.   The iterative solution was set to compute the mean 

error of the plate residuals every fifth iteration and fo stop when the difference 

between successive mean errors was less than 0.01 microns or when a maximum of 

250 iterations was reached.   As can be seen from Table 2,11, fhe criterion 
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Number of Mean Error Difference 
Iterations (Microns) (Microns) 

0 21.57 11.96 
1 9.61 .70 
2 8.91 .41                 | 
3 8.50 .30 
4 8.20 .21 
5 7.99 .88 

10 7.11 .12 
15 6.99 .027 
20 6.963 .009              1 
25 6.954 

Table 2.11.   Successive mean errors of plate coordinate residuals 

from iterative solution of normal equations arising 

from adjustment of 23-photo strip of actual photography. 

for convergence was satisfied by only 25 iterations, a total computing time of 

less than 40 seconds for the effective solution of a system of equations of order 

363x363.   We attribute this remarkably rapid convergence to the excellent 

approximations obtained from the preliminary cantilever extension. 

The final mean error of 6«96u is a substantial improvement over the 

21,57u. resulting from the preliminary cantilever extension.   The individual 

residuals *or each point on each photo are provided in Table 2.12.   These are 

seen to be highly random throughout the strip.   From the standpoint of internal 

consistency the results of the adjustment are most satisfactory. 

Despite the substantial improvement in the mean error, the adjusted values 

of the relative control points generally differed from the cantilever approximations 

by less than 3 foot with only a few differing by as much as 2.5 feet.   The largest 

adjustment to the angular elements of orientation was 40 seconds of arc and most 

were well under 20 seconds of v.'c;  the largest displacement in the positions of the 
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exposure stotions wos nearly 3 feet.   In view of this, the cantilever extension 

in its own right provides o quite satisfactory result.   We would not expect such 

good agreement to exist, however, if a liberal sprinkling of absolute control were 

carried in the simultaneous adjustment of the strip. 

Needless to soy, much more extensive experience with real data is 

required before the full potential of the photogrommetric solution developed in 

this report can be definitively evaluated.   In order to handle real data in volume, 

it will be necessary to develop programs expressly designed for large scale pro- 

duction.   This is an entirely straightforward task and is one fully justified by the 

results obtained in the present study. 

2.15    COMPUTER TECHNIQUES 

The maximum coefficient matrix generated during the course of our 

simulations is the 633-order matrix associated with the normal equations for the 

41-photo strip.   This constitutes the largest coefficient matrix which, together 

with the iterative program, can be stored in the main memory of the IBM 7094 

computer.   However, th:s by no means represents the limit for the theoretical capa- 

bility of the SOR technique, nor is it a limit for the order of the normal equa- 

tions which can be solved using somewnat more advanced programming techniques 

that ore currently available.   In fact, on a computer with a 32K main memory 

it would be possible to generate and solve systems of normal equations of order 

approximately 10,000 with very fittle loss of efficiency.   Since further research 

in this field anticipates the use of the CDC 1604 computer at RADC, we will 

limit our discuision of advanced techniques to software which is currently avail- 

able for this machine. 

The almost unlimited copobility of tne iterative program con be realized 

through the use of the most advanced version of FORTRAN, FORTRAN-63, 

available for the 1604 computer in conjunction with auxiliary storoge devices 
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such as high-speed, high-density magnetic tapes or a magnetic disk or drum, 

and with the buffering facility that the 1604 possesses for the transfer of data 

from an auxiliary storage unit to the main memory of the computer. 

Instead of storing the entire coefficient matrix of the normal equations in 

the main memory of the computer, the data would be stored in binary form on an 

auxiliary storage unit (storage of the data in binary form permits a higher rote of 

data transfer than if the information were stored in the standard BCD form).   The 

only information which at all times remains available to the iterative program in the 

main memory of the 1604 is the constant vector b and the iterative vector X 

(as in (9)).   To initiate the iterative process, the first row of blocks of the co- 

efficient matrix, consisting of the 6x6 N submatrix for the first photograph and 

the nine 6x3 N submatrices associated with it, are transferred into the main memory 

of the computer from the auxiliary storage unit, and then the first block of the new 

iterative vector is computed in standard fashion.   While this calculation is being 

performed the second row of blocks of the coefficient matrix •$ buffered into memory 

by means of the BUFFER IN statement available ip rORTRAN-63.   The advantage 

of the BUFFER IN statement as the instrument of data transfer from auxiliary storage 

to main memory is that as soo<  as the transfer has been initiated, control is returned 

to the iterative program.   This then permits the computation of the first block of the 

iterative vector ond the transfer of the second block row of <^ata from auxiliary 

storage to main memory to occur simultaneously.   The second block row of data 

is then used to compute the second block of the iterative vector while the third 

block row of the coefficient matrix is being buffered into the main memory.   Thus, 

through successive applications of the above procedure it is possible to compute the 

entire iterative v»ctor even though at any one time only two block rows of the co- 

efficient matrix are in the main memory of the computer. 

The only possibly significant loss of time through the implementation of 

this procedure would occur if magnetic tape were used as the means of auxiliary 

storage.   In this case, a delay would occur at the end of each iteration to permit 
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the tape containing the coefficient matrix to be rewound.   Of course, this oroblem 

would not present itself if a random access device were available far use as auxiliary 

storage of the coefficient matrix. 

The delay caused by the re.vind of the data tope could be eliminated if 

sufficient tape drives were available to permit the coefficient matrix to be stared 

on two or more mognetic tapes.   In this case, at the completion of one iteration an 

alternate tape would be used for the computation of the succeeding iteration while 

the original tape were being rewound,   A more sophisticated procedure could be 

put into use should the Block Successive Symmetric Over Relaxation iterative technique 

prove feasible.   As previously stated in Subsection 2.06, this method alternates a 

forward and a backward iteration which thus eliminates the tope rewind completely 

since at the end of each forward iteration the coefficient matrix must be entered 

into memory in a reverse oroW to perform the backward iteration.   In fact, should 

the computer be equipped with the CDC 607 tape drive, which has a backward read 

capability., all superfluous motion of the tape would be eliminated, for tape motion 

would occur only during the actual process of data transfer. 

From the foregoing it is clear that through the use of optimal buffering 

techniques, essentially no time need be wasted because of limitations of core 

memory.   We believe that a comprehensive reduction of a general photogrammetric 

block leading to normal equations involving as many as 10,000 unknowns could 

reodily be accommodated by a computer having an internal memory equivalent to 

32K words, preferably of 36 binary bits or greater (total word length for the CDC 

1604 is 48 bits). 

•155- 



REFERENCES 

Arms, R.J., Gate«, L.D., Hondek, B., "A Method of Block Iteration", 

J. Soc. indust. Appl. Math. 4, 220-229 (1956). 

Brown, D.C., "A Matrix Treatment of the General Problem of Least Squares 

Considering Correlated Observations", Ballistic Research Laboratories Report 

No. 937 (May 1955), 

Brown, D.C., "A Solution to the General Problem of Multiple Station 

Analytical Stereotriangulation", RCA Data Reduction Technical Report 

No. 43 (February 1958). 

Brown, D.C.,  "Photogrammetric Flare Triangulation - A New Geodetic 

Tool", RCA Data Reduction Technical Report No. 46 (December 1958). 

Brown, D.C., "Results of Geodetic Photogrammetry I", RCA Data Reduction 

Technical Report No. 54 (October 1959 . 

Brown, D.C., "Results in Geodetic Photogrammetry II", RCA Data Reduction 

Technical Report No. 65 (September I960). 

Brown, D.C., "Introduction to Orbital Constraints Into Adjustment of 

Satellite Photogrammetric Net", Unpublished Report (I960). 

Brown, D.C., Davis, R.G., Johnson, F.C.,  "Photogrammetric Mathe- 

matical Targeting Research (Interim Report) Rome Air Development Center 

Report No. RADC-TR-63-476 (August 1963). 

Case, James B., "The Utilization of Constraints in Analytical Photogrammetry", 

Photogrammetric Engineering, Vol. XXVII, No. 5 (December 1961). 

Dodge, H.F., "."nalytica! Aerotrianqulation by the Direct Geodetic 

Restraint Method", Photogrammetric Engineering, Vol. XXV, No. 4 

(September 1959). 

Dowdy, J.M., McClure, K. //., Advanced Analytical Triangulation 

Techniques", Rome Air Development Center TR 62-253 (July 1962). 

Doyle, Frederick J,, "The Historical Development of Analytical Photogrammetry", 

Photogrammetric Engineering, Vol. XXX, No   2, 259-265 (March 1964). 

Ehrlich, L.W., "The Block Symmetric Successive Overtaxation Method", 

unpublished Ph.D. dissertation, The University of Texas, Austin, Texas 

(1963). 

Elassal, Atef A.,  "Analytical Aerial Triongulation through Simultaneous 

Relative Orientation of Multiple Cameras' , University of Illinois Ph.D, 

Dissertation (1963). 

-156- 



Foddeeva, V.N., "Computational Methods of Linear Algebra", Dover 

Publications, Inc., New York 14, New York (1959). 

Harris, W.D., Tewinkel, G.C., Whitten, C.A., "Analytic Aerotriongulation", 

Technical Bulletin No. 21, U.S. Cocst and Geodetic Survey (July 1962). 

Jacobi, C.G.J., "Über eine Neue Auflosungsart der bei der Methode der 
kleinsten Quadrate vorkommender, linearen Gleichungen", Asts. Nachr. 22, 

No. 523, 297-306(1845). 

Liusternik, L.A., "Remarks on the Numerical Solution of Boundary Value 

Problems for Laplace's Equation and the Calculation of Characteristic 

Values by the Method of Nets", (Russian) Trudy Mortem. Inst. Im., V.A. 

Steklova, 20: 49-64(1947). 

Matos, Robert A., "Analytical Triangulation with Small or Large Computers" 

Photogrammetric Engineering, Vol. XXIX, No. 2 (March 1963). 

Mikhail, Edvord M., "Use of Triplets for Analytical Aerotriongulation", 

Photogrammetric Engineering, Vol. XXVIII, No. 4, 625-632 (September 

1962). 

Mikhail, Edward M.f "Use of Two-Directional Triplets in a Sub-Block 

Approach for Analytical Aerotriongulation"    Photogrammetric Engineering, 

Vol. XXIX    No. 6, 1014-1024 (November 1963). 

Schmid, H.,  "A General Analytical Solution to Problem of Photogrammetry", 

Ballistic Research Laboratories Report No. 1065 (July 1959). 

Schut, G.H., "Development of Programs for Strip and Block Adjustment at 

The National Research Council of Canada", Photogrammetric Engineering, 

Vol. XXX, No. 2, 283-291 (March 1964). 

Seidel, L., "Über ein Verfahren die Gleichungen, auf Welche die Methode 

der kleinsten Quadrate fuhrt, sowie lineare Gleichungen überhaupt, durch 

successive Annäherung dufzulosen", Abhandl. bayer, Akad. Wiss., Math- 

physik. Kl.,  11:81-108(1874). 

Todd, J., "Survey of Numerical Analysis", McGraw-Hill, New York, New 

York (1962). 

Varga, R.S., "Matrix Iterative Analysis", Prentice-Hall, Inc., Englewood 

Cliffs, New Jersey (1962). 

Young, D.M.,  "Iterative Methods for Solving Partial Differential Equations 

for Elliptic Type", Trans. Amer. Moth. Sac., 76, 92-111 (1954). 

Young, D.M.,  "On the Numerical Solution of Partial Differential Equations 

by Finite Difference Methods", Notes of 20 lectures at the National Science 

of Advanced Topics in the Computer Sciences, University of North Carolina 

(1962). 

•157- 



UNCLASSIFIED 
Seggity Claesificatioa 

DOCUMENT COMTtCf. DATA • M.D 
(laaartty «la—«Wcarta» •! tilt*, fcwftr ai aawtmci an« ««!•*»<« anxuM awl aa «Awn AMI —mil tmp—t u »tfmtHm4) 

I   ORIGINATING ACTIVITY (Cumamt> aufhat) 

G«o Space Corporation 
Milbourne, Fla 

t«   «C»ONT MCMNITY   C LAaBIPICATlOal 

 miAssam  
2»  ««ou», 

M/A 
S   REDOUT TITLE 

The Practical and Rigorous Adjustment of Large Photogrametric Net« 

4   DESCRIPTIVE NOTES fTyaa »I NfHf 

None 
W  WCWif™  QBv&wJ 

S  AUTNOnr*; AMI MM«. ■"«• 

Duane C. Brown 
Ronald G. Davis 
Frederick C. Johnson 

kUttml) 

•   REPORT OAT« 

October 196* 
Ta-   TOTAL NO. OP   ■>*•■• 

157 
7».   HO. OP REP« 

28 
• •.   CONTRACT OX «KANT NO. 

AF30(602)-3OO7 
0. »HOJICT NO 

5569 
e. 

*  556902 (Task No) 

• a.   ORIR4NATOR'« «(»OUT NUAt»«aCI,l 

RADC TDR-6U-353 

• a. gTMtw M»o«f NOf» fNwyaaWm—aaa» «MM 

n/A 
1 auqp <N> aaaf0M* 

10   A VAIL ANILITY/LIMITATION NOTICES 

Qualified requestors may obtain copies of this report from DDC. 
Release to OTS is authorized. 

11   SUPPLEMENTANY NOTES 

None 

II   SP0NSORIN0 MILITANT ACTIVITY 

RADC 

13   ABSTRACT 

The problem of the rigorous simultaneous adjustment of large photograBmetric 
blocks is reviewed and extensions to an earlier theory are developed. Various 
matrix iterative appraehes to the solution of the very large systems of normal 
equations characteristic of sizeable phtogramnetric nets are investigated. The 
Method of Block Successive Over Relaxation is found to yield a practical and most 
satisfactory solution to this problem. Results of an extensive series of numerical 
simulations are reported. The Tuccessful application of the approach to a 23-phot< 
strip of actual photography provides final confirmation of the validity and effect- 
iveness of the solution. 

DD ■OHM 
I  JAM «4 1473 WJ&MM 

Security Classification 



UNCALSSIFIED 
Security Classification 

KEY «OBDS 

a. Contid Extension 

b. Adjustment of Control Extension 

c. Mathematical Adjustment of Photogrammetrlc 
Control 

d. Photogramroetric Analytical Triangulation 

flOLC «T 

LINK C 

INSTRU ;TIONS 
t.   ORIGINATING ACTIVITY:   Enter the name and address 
of the contractor, subcontractor, grantee. Department of De- 
fense activity or other organization f corporate author) issuing 
the report. 
2«.   REPORT SECUWTY CLASSIFICATION:   Enter the over- 
all security classification of the report.   Indicate whether 
"Restricted Data" is included,   Marking ia to be in accord- 
ance with appropriate security regulations. 
2b.   GROUP:   Automatic downgrading is specified in DoD Di- 
rective 5200,10 and Armed Forces Industrial Manual.   Enter 
the group number.    Also, «hen applicable, show that optional 
markings have beei. used for Group 3 and Group 4 as author- 
ized. 
3. REPORT TITLE:   Enter the complete report titl   in all 
capital letters.   Titles in all cases should be unclassified. 
If a meaningful title cannot be selected without classifica- 
tion, show title classification in all capitals in parenthesis 
immediately following the title. 
4. DESCRIPTIVE NOTES   If appropriate, enter the type of 
report, e.g., interim, progress, summary, annual, or final. 
Give the inclusive dates when a specific repotting period is 
covered. 
5. AUTHOR(S).    Enter the named) of author**) as shown on 
or in the report.   Entei last name, first name, middle initial. 
If xtlitery, show rank and branch of service.   The name of 
the principal • <thor is an absolute minimum requirement. 
6. REPORT DATÜ   Enter the date of the report as day, 
month, year, or month, year.   If more than one date appears 
on the report, use date of publication. 
7«.   TOTAL NUMBER OF PAGES:   The total page count 
should follow normal pagination procedures, i.e., enter the 
number of pages containing information. 
7b.    NUMBER OF REFERENCES:    Enter the total number of 
references cited in the report. 
8a.   CONTRACT OR GRANT NUMBER:   If appropriate, enter 
the applicable number of the contract or grant under which 
the report was written, 
8b, 8c, b *d. PROJECT NUMBER. Enter the appropriate 
military department identification, such an project number, 
subproject number, system numbers, task number, etc. 
9a.   ORIGINATOR'S REPORT NUMBER(S):   Enter the offi- 
cial report number by which the document will be identified 
and controlled by the originating activity.   This number must 
be unique to this report. 
9b. OTHER REPORT NUMBER(S): If the report has been 
assigned any other repcrt numbers (tither by the originator 
or by the sponsor), also enter this number(s). 
10.   AVAILABILITY/LIMITATION NOTICES:   Enter any lim- 
itations on further dissemination of the report, other than those 

imposed by security classification, using standard statement» 
such as: 

(1) "Qualified requesters may obtain copies of this 
report from DUC" 

(2) "Foreign announcement and dissemination of this 
report by DDC is not authorized." 

(3) "U. S. Government agencies may obtain copies of 
this report directly from DDC.   Other qualified DDC 
users shall request through 

(4)    "U. S. military agencies :nay o-Jtain copies of this 
report diree'ly from DDC   Other qualified users 
shall request through 

(5)    "All distribution of this report is controlled.  Qual- 
ified DDC users shall request through 

If the report has been furnished to the Office of Technical 
Services, Department of Commerce, for sale to the public, indi- 
cate this fact and enter the price, if known, 
11. SUPPLEMENTARY NOTES: Use for additional explana- 
tory notes. 
12. SPONSORING MILITARY ACTIVITY: Enter the name of 
the departmental project office or laboratory sponsoring 'pay- 
ing for) the research and development   Include address. 
13 ABSTRACT:   Enter sn abstract giving a brief and factual 
summary of the document indicative of the report, even though 
it may also appear elsewhere in the body of the technical re- 
port.   If additional spsce is -squired, a continuation sheet shall 
be attached. 

It is highly desirsble that the abstrsct of classified reports 
be unclassified-   Each paragraph of the abstrsct shall end with 
an indication of the military security classification of the in- 
formation in the paragraph, represented ss (TS)   (S). fC). or (V) 

There is no limitation on the length of the abstrsct.   How- 
ever, the suggested length is from ISO to 225 words 

14 KEY WORDS:   Key word« are technically meaningful terms 
or short phrsses that characterize a report and may be uaed as 
index entries for cataloging the report    Key wo id» must be 
selected so that no security classification is required.   Identi- 
fiers, such as equipment model designation, trade name, military 
project code name, geographic location, may be used ss key 
words but will be followed by sn indication of technical con- 
text.   The assignment of links, rules, and weights is optional. 

UNCLASSIFIED 
Security Classification 

■.mms^^mmmtftmm«^ 


