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ABSTRACT

In this paper we obtain an asymptotic lower bound for the entropy of
a multinomial population with an unknown and perhaps countably infinite
number of classes. This bound 1s a function of the first k + 1 occupancy

numbers of a random sample, and is a useful estimator when most of the

sample information is contained in the low order occupancy numbers.




AN ASYMPTOTIC LOWIRH BOUND FOR THE
ENTROPY OF DISCRETE POPULATIONS WITH APPLICATION TO

THL LsTIMATION OF ENTROPY FOR UNIFORM POPULATIONS

R

£ B, Cobb and Bornard Harris

1. Introguctron and Summary. Assume that a random sample of size

N has been droaws from g multinomial population with an unknown and

sorhaps countably mmtunto number of classes. That 1y, if X 18 the jth
)
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Ghooervation, and MOothe 1th ¢idss, thon

P{X « M} p G =2, .0y 2, 2,000 N

aned L i P. The classes are 200 assumoed 1o have a natural ordering.
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' pl, pz, .+« 18 concentrated in the low order occupancy numbers. This occurs,f
rexmplo, M u N"ﬂ, pl 0, =1,2,..., msuchawaythat 0<Np <\,

' m k uwaoly k+l.

e | #5l6 F

*
In addition, in Harris (1}, it is shown that the moments of F (x),

nl y p.z, ..., are approximately given by

{r41)'E{n )
(4) po~ r+l
r E(nl)

If we then replace the expected values in (4) by the observed values,

defining

B e e e e o

]
estimates of the moments of F (x) are obtained. Then, let

ot san e Y e

,[a,b]

{m m )be the set of cumulative distribution functions with
aas ’ k

F(a-0) =0, F(b) =1, and
%

J ¥dF(x) = m

-00

o i=1,2,...,k . ;
*
Since pl, pz, .+. are all assumed to be unknown, F (x) is unknown, ;

and an asymptotic lower bound to (3) may be found by minimizing

o0

J o*109 £ dF(x) !

- 30

over the set I‘O , NJ This process uses only the information

z‘ LT LY mk).
contained in the first k + 1 occupancy numbers Ry By ey LRP and is

particularly useful, when the sample information concerning the par~- .. .,

|




The mimimum is explicitly computed for « = 2. The process employed
here is compared with the maximum likelihcod estimates of entropy for

uniform populations with pj = ! , J=4L¢..,M and M =®* x a5 N = ®©

M
sothat N/M =+ A\ > 0.

2. The computation of the lower bound for entropy. In Harris [1], it

was shown that for r2 =0(N) as N = o,

o1 0 r -Np.
(5) E(n )™~ Za(Np) e T,
where the approximation is valid, in the sense that, either both sides are
negligible, or the ratio of the two sides approaches unity.
In particular,

00 —ij
(6) E(n)}~ Z _ Npe ;

hence

[+ o}
1 - X N *
FE(nl):lwe log (-) dF (x)

-Np

w NP j

~L j 1
N}:}:le log(pj)ije
= H(pl,pz,---) .

Let h(x) = e log ’_!;I_ . Then we wish to determine Fo(x) e N [n'?’ N} such

(m,, m,)
that
o @x
{7) min I h{x) dF(x) =f hix) dfF {x) .
Flx) e 30 N] - = °
m), m,)
#5l6 -3
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gince h(0) does not exist, we conslder instead ¥ fe.N) , where ¢ > 0, is

mi. mg)

arbitrary. Then h(x) is boundedon [¢,N] forevery ¢ >0 and it is well-

known |1 ] that F‘(x) defined by

b o
(8) min [ ngxidr(x) = [ hix}aF (x} ,
€
F(x);!l}r:‘,N“! )~ -
| S

is obtajnable as a discrete cumulative distribution function with at most three

jumps, say at x , € £x, <x,<x €N, Hence, there exists

1 2 3
1, with

rXr*;
3

ll,\Z,K >0, zi:l X‘ =

3

A X +12x + A X =m

11 2 13 1
(9)
2 2 2
llxl + xzxz+ l3x3 = mZ ’
such that
0 sy XX xl
' A,y X €X<X
; (10) }'"(x) = < : | B 1 2
, <x<
_ A l+ A 2! xz <x x3
}
- I, x> X,
whenever m, > mf , @ condition which we will assume throughout the remainder
- of this ciscussion. With no loss in generality, we may assume that m, > mf ,

since otherwize P‘ {x) is a cumulative distribution function with exactly one

jump, and (8) has a trivial solution.

'R con be shown that A, >0, 1 =1,2,3, if and only




f+5-1 )
- - > 0 €{<Ccj<cy,
(11) {-1) (xlx’ ml(xi"xj}ﬂnz, >0, l1<t<cj<

In addition, from Harris {1], there exist real numbers Yot Y such

that x,x., and x, are roots ot

) M
12 (x) =2° ox'-hix) =0
( ) g x - i:O i - 3
and
4 i
(13) 2 0% - hix) 20, « <x<N.

From {11) and (12), we also have that for ¢ < X <N, i=123;

(14) g'(x)) =0 + 2a,x, - h'(x,) = 0.

2

To solve {(9), (12), (13) and (14), observe that there exist numbers

< <
61,62,63, 0<§ <6z 63<N, such that

1
<0, 0<x<6x,
h'{x) >0, 61<>4:<453 .
<0, 63<x_<_N s
and
>0, 0<x<é
2
hn‘x’
<0, 62<x§N
with
bl*'ﬂ N N =~ ®
1
- - -— - o

5 = (N-D+O(3),  N-w




and h"({x) is strictly decreasing on (90, 61) and (&, N). We now ustablish

the following

Lemmma. If ¢ < xl <x, <N (0<e< 613, the following conditicns cannot

be satisfied simultaneocusly

(15) Efﬂ)alxlsh(x), « <x<N
2 i

16 = = .

(16) ZiooX =hlx), g1

Proof. Assume (15) and (16) hold. Let p(x) = = a x‘ . Then
(17) h'(xj) -'P'(xj). i=1,2.

Let 11=(¢,61], IZ=(61’621’ 13=(6Z,N). Assume uz>0. Then if X, ¢ 13,

since p(x) is strictly convex and h(x) is strictly concave in 13 , by (16)

and (17}, we have p{ xo) > h(xo) for some X ¢ 13, contradicting (15). If

X, € 17, then p‘(xz) > 0, hence p(N) > p(xz) > 0 = h{N), contradicting (15).

lf x 1, then e < xl < X, < < 61. and by {16) and Rolle's Theorem, there

exist gl,gz, xI < &1 <§z < x

2 such that g"(«ij) =0, j=12. This,

however, implies that h''(§ j) = 202, i =1, 2, contradicting the monotonicity
of h"(x).

I aa< 0, the argument is similar. The case a, = 0 is trivial.

We riow obtain Fo(x) .

Thmm 1. The"e exists a unique cumulative distribution function

o, N ' o
,P(x)tzm J) luchtha_t i ,

g — — ' g
- S hix drom L f h(x) dF(x) ;
=6~ ' w IR F(x) ‘w{m;,uL) - N #5816




given by

’-’ N
his 1
\v - m
2 i
(N-mlb Nowoooom "
{i%) f‘Oi;«} -4~ 3 5 , \'_‘ = ~ <% <N
(N-m,) +(m,‘ml} T
a i
1 + X 2N
-

Proof. By the above lemma, we have ><l e, € <x <N, x, - N

From (1l), we have

Nm -m m.-m €

1 4 2 l
(19) N-m! -(-xdf-

Thus, by (9), we have

Nx_ - m,lN+x)) +m,

2
ll(xd’i) ) (x - )N -¢)
(e N-m (Nve)+m )
Aoix ,e) = ! < ’
22 (xz-e)(N~x2)
and
Nxz~m1(N+x2) +m£)
lim (xz,e} ~ N '
€0 2
TP i
’ "‘ - L
«~0 X AN -x,)
This gives a paramctric {amil y of cumuiative distribution functions FG x (x).
T2
Since lim h(x) = » , we must have \ (x v €) -Olh ~ 0, since
X0+ (e ’
otherwise P‘(x) would not satisfy {8). Hence lim kl(x €} = 0 and
«*0

#516




X, —._—N-ml as ¢ = 0. Since xl(xz,c)h(c) > 0 for every ¢ > 0, it
fOIiows that kl(XZ") ® O(ﬁ) as ¢ = O) eStabliShing the theorem.

Finally we have:

Theorem 2. The reguired lower bound for the entropy is

n
5 J ) o (x) =

N - Nm, -m
2 1 2
n {N-m) N-m N(N-m,)
1 1 o 1 log ]
N (N-ml)2+(m2-m12) le'mz

Remark. Krein [ 2] has studied minimjzation problems similar to (8).
However, Krein's methods require that |, x, x[', h(x) form a Tschebycheffian

system of functions on [¢, N]. A necessary condition for the above (see

PSlya and Szego [ 3]) is that the Wronskians

1 X x h(x)
0 1 2X h'{ x})
W(x) = y €<X<N,
0 0 2 h''{x)

0 o 0 h*™{x)

be non-negative (non-positive) on [¢, N]. This cendition is clearly not

satisfied in this case and Krein's methods are therefore inapplicable. I

3. The Estimation of the Entropy of Uniform Populations . Let

=L 2., M

-
M
0

p =
! otherwise
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E(fl) = E(n)Nloc (-)

and for M =1000, N =100, we have E(nl) = 90, 48, .‘J(nz) = 4.52, E(n3)= .15

obtaining
E(H) = 4.271
and log M = 6. 908.

Exumple. Three random samples were chosen with N = 1000, M = 1060.

The data are summarized below.

Sample #1 Sample #2 Sample #3

n, 373 34] 377
nz 199 179 169
n, 62 70 60
Ny 8 17 25
L 1 2 1
Mg 1 1 0
n, 0 1 0
ml 1. 067 1. 050 . 897
m?. . 997 1. 232 » 955
n

-ﬁlfh(x)drotx) 6. 683 6. 486
H( p‘, aesy pu) 6. 908 6.908 6. 908
| 6. 364 6. 294 6. 329

In sample #1, m, < mlz . then suppostng F( ) to be degenerate with a

jumpof 1 at m wegot, using m -mlz, th(x)dro(x) = 7. 4)9.

1!
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