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ABSTRACT

kY
Seismic arrays are multichannel sensor patterns
immersed in a multi-dimensional signal-noise field and the

analytic problem 1s hence analogous to that of radar antennas.
The subject 1is thus opened first by a review of antenna theory,
considering questions of aperture width, antenna resolution,

and of optimum design criteria, and fecondly by a review of
spectral theory, including special examination of the Ross

"time gates", The genersl optimization problem for multichannel
data leads to lJarge syatems of normal equations ol Toeplitz

forn {as presented in previous reports) which rejuire recursion
solution technigues to be computationally feasible. Such
technlques are elahorated here in terms of peliyromials orthogonal
on the unit circle. The specific selsmic arrzy prcblem 1s then
considered in terms of plane-wave-frount signal and noise
contributions plus incoherent noise, and details of the

"velocity filtering" method are presented. -All practical array
filtering rests ultimately on emplrical measurerments of signal
and noise properties, espacially of spectral behavior. Spectral
estimation from finite array measurements 1s the final question
conslidered, including relations tetween continuous and discrets
aperture functions, and the tabulation of aperture functions

with thelr windows,

T
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SEVAMIC ARRAYS FOR THE DETECTION OF NUCLEAR EXPLOSIONS
Enders A, Robinsnn
May 1304

i, Any Lis OF ANTENNA THEORY

\zvors of deteclors have velocity discrimination
mroyerticn sra hence directional sensitivity, In the first
parl 0 iz trzatment we would llke to review the general
tnegyy o ihes directional properties of antennas 1n order to
priow oul some of the design problems for arrays of specified

Tirecbivity.

in antenna may bhe viewed as a spatial filter, and =80
n=% a bandwidth that is determinded by the aperture extent;
thorefore, 1t wili reproduce only a finite number of the space
harmonics representing a desired spatial pattern. From tnis
standpoint, the antenna resolution is 1imited by the highest
space narmonic within the bandwidth of the spatial filter; this
bandwidth in turn is determined by the averture size, Never-
theless, this well-known limitation on antenna resolution may
be overcome by the use of correlation type processing of the
anterna signals, The spatial-frequency bandwidth, and hence
the angular resoclution, of an antenna system thus depends not
only on the aperture extent but also on the time-frequency
bandwidth of the received signal. This i1s tc be expected,
since the aperture extent 1s only uniquely defined in terms
of wavelengths and hence the signal bandwlidth should play a
part in determining the spatial filter characteristics,

For example, let us look at a rader antenna. Suppose
that a linear antenna 18 constructed sc that the radiated




electric field across its face is sinuscldal in time with an

amplitude and phase depending on position according to the
complex-valued function of position A(X). The superposition
of the contributions along the antenna give the antenna pat-
tern. By examining the figure, we see that the dlstance
traveled by the incremental wave from the position (X, Xx+dx)
varies with the position X .
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Figure }. Radar antenna geometry

We have:
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If _A,il}*ﬂ{‘lﬁg * s then the sine wave reccived from the

position €X,X-+dx} 15

M Cutwe(t-£)+9Jdx
= M Cos[ @t 4§ =200 jdx

where
2uc
Al =
w { C = velocity of light).
R . 2T 5 _
Let us use a refererce phase of TS when at a distarce Y, .

Then the received signal can be written as

2W - _ivTdy
M sttt &1 Cn-r)jdx,

We will now maKe the approximation

- 3
Por s R{0 0] gl BIn8=X)

~2
x XY tanb 2R

which 18 good for small ® and large R . By "far field" we

1
mean that R 1s so large that IR can be neglected; the
important criterion is for

d 2
L_il_ LN

2R
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where d 18 the aperture width. Also we shall let fon® & , sc
F~T ¥ X3enb> X8,

Heiice the received signal may be written
M twslet+d+4Tx 8] dx,

Adding sine waves of the same frequency, the amplitude and

phase of the total signal ~ecelved at an angle ® 1is glien by
d

3
. v 2
&(B)'-:L M(x) eAdt0 @A SIX8 dy

Letting
- 20X ned ,
) i and KAQ(T‘%— = A(Q\
we have
xd
>
{ A
WO == Acx) e4®8 4o,
.nd
A

Thus we see that the antennz pattern Q(B) 1s the inverse
Fourler transform of the illumination funmction A(w) -
Because of the finite aperture width, that is,

g
Acy=0 for |of> >,
the antenna pattern is the Fourier transform of a band-
limited function. T™wus a narrow beam width would require
a wide aperture width d of the antenna.




There are various ways to measure tho beam width of
an antenna pattern, Q&Y . 3Suppose that B is real. he
= 2
] (8-8) a(e)d&
1* - B -
g = a0
WBYde
T3
= oK
(where €= f_ﬁe a(63d§/fiwﬂ(63 16 ) might be small not

because Q(8) 13 concentrated around B on the U -axis but
because the contributions to the numerator for >0 mijnt be
cancelled by the contributions for &«C . Thus We see that it
18 |d®| that 1s involved in our intuitive notion of the
spread of &e) on the B -axis, Also |&M®)| allows us to
consider complex &®)Y as well as real Q(8) . Now for
analytic reasons, it 1s much =asler to wor¥ with {ate)\z instead
of |oue} ; as far ar spread on the § -axis is concerned,
[atpy}?r  is as satisfactory as || , although obviously
there ars quantitative differences depending upon which wWe

use.,

Thus the Leam width of an antenna pattern Q(§) may
be measured by the guantity

j (8-8) | o] ds
7y S0

d oQ
j Bla@|*de
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B =
f e 2de
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It is always worthwhile to consider other measures
for spread along the ©-axis,., Another measure may be referred
to the equivalent rectangle; specifically, the measure j’ is
the width of a rectangle having the same area as {ma)i‘l and

having the same peak value as gmen‘ . If we let imaﬁ))l
denote the peak value of |Q®)|® , then

j_“men’ae

= NG

This measure is not good for antenna pattems for whichlmel'{z
is not reasonabiy block-shaped.

Let us now derive expressions for O and f‘ in terms
of the illumination function A(W). Because we can choose
our origin of coordinates as we llke, we may assume that §
and Y. are equal to zero. This involves replacing Q.8) by
a(e~-8) or ((®-8,) as the case may be; in turn, the illumina-
tion function 1s modified by a linear phase term @ +®¥% op
Q““WQ" respectively.

Parseval's thecrem states that

= l
f lae)i*d e o A’ dw




ot
oo

o8]
oo
o
i
[
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]
¥
4]
5
A
3]

G(Es)-w—-j pid® A dw = 1,,( A\iw)dw

Hence the measure of spread, ,Y , 1s

“j lA“‘s) l-n' { lA(u)‘ dw

{m} A |t ;j_wmmm}’“

the width of the equivalent rectangle. To obtain a formula
for A in terms of Awd) , we must use two appiications of
Parseval's theorem, one for Q®) and the other for Bo(e) .

Because
50
Acer = j ae) €90 dg
-l
We have
w -
A‘cm=-ij Qalp) e @O dg
-
That is

LA e g ae)




is 3 Fourier transform pair. Thus, using Parseval’s theores
for this palr, wWe have
P . ¥ i -
j & ac)] dG:'{'j [ A dw=ﬁ} [N dw,
F o oy -y oy

2
Thus the measure of spread, o~ , is

/'( 8 lae] do /{ !A’cw\lldo&

d}' = b=
j Lo |2d g f {A(mfdg
w -y

- rd _
These formulas for f’ and &% allow us to study the dependence
of beam width upon features of the illumination functlon A,

The illumination function may be written
TP WIrs
Aw) = M) g9

where ﬁ(&ﬂ is the magnitude and d)(m') is the phase, We now
want to show that, for any fixed magnitude function Mww),
the phase function ﬁb(&') that minimizes the beam width

1s a constant (or linear function of & ). Since, under
the assumed conditions,

anwtmld@ 2T j{ M e
f=— = ==

| [ Adal® ;!‘,}i:MeiNm]l

—)
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where M is fixed, we to maximiZe the
denominator. Begcause
o
ff&é S {
: Al dew Md
] Meitda] € | IMet]do=)] M
- - ag
s ——

we sSee that we get equality only if '113 is a constant, wWhich
proves our assertion. Let us now 1ookK at the beam width ot .

Because

A}(*@) = M’{{,}) Q;‘%’(Q’) + M) ‘bi’{b) Q"‘é’{“}} ,

%
®
L
5
®

[ e de
w2

jfkﬁdm

because the factor €% has rno effect on 3/3}2 .

./ ¥ . . =
recause M and ﬂ*# are real, the only way to minimize
M+ ME 12 = (MO (MP)E for fixed M 15 to make &
which means that ¢ would be a constant. 1}

Nevertheless, since
B ? . .

we only need t0O make M¢ =0 , the points at which Mwi=0 need

not be poilnts for which ®WwW=0 . Thus, suppose Muw) exists

"
O

except possibly at isolated points where Muw)z=0 and at
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such zoints let M(w) be at least continuous. Then any ¢im‘}
that is constant between adjacent zeros of H minimizes ot
As usual, any linear phase iw®  c¢an be subtracted from the
minimizing $)  without changing the beam width o because
the effect 1s only to translate Q(®) along the ©& -axis.

Suppose that the artenna pattern Q) 1is real,

Because
= .
Acm)zj e AT T
we have
O 20 .
Awd) = j 0¢e) emsde=j ae) 1w 4
PR <) - O
= Al-w) ,
or

M) e P = MG-w) etdew)

Thus the phase condition for minimum beam width, namely ‘(ﬁ):
constant, requires that dun=0 , and M) =MW} so that
At)=M(w) 1is a real even functlion. In turn, the antenna
pattern QX(®) 1is an even function.

Let us now look at the effects of the magnitude
MCw)  of the illumination function on the beam width of the
antenna pattern Q(w) . Because the beam width can be made
arbitrarily small if the bandwidth of M(w) 1s made large
enough, the appropriate problem 1s tc minimize beam widtih
when the aperture bandwidth 1s limited, Thus we need a
measure of the spread of the illumination function A(w) on




Yoed
\'" T

Ml

the ©J =axis to provide a numerical measure of bandwidth., Ome

such notion of bandwidth 18 the radius of gyration

jA P A e
Bl=—"

fwt A dw

T g
where We assume that

S = J w A dew = 0.

T oy

This last restriction orly amountz to a translation of _A(\L)E
by an amount & , corresponding to multiplying Q®) by eil® |
which has no effect on @& (or § ). Another notion of band-
width 1s the natural one for antennas with finite aperture
width; here 1t is assumed that Hw=0 outside of an
interval (corresponding to the aperture) on the &-axis. We
define +® as half the length of the interval; in terms of our
previous notation

Awy=0o  dor lo}i)&zﬁ%

where d = aperture width and zégyi. (where ( =
velocity of light),

We now wish to show that broad i1llumination band-
width gives a narrow beam width (that is, a gocd antenna
resolution),




3 . ;
From the definitions of & andg 51 s We have

RTULIPN E@*m‘d{g
d}.?z Lot _ — ‘
f A dew f AW

-

By use of the Schwarz inequality, 1t follows that

We

80

l_fwmAA‘dcsfl S ]Twm dco_) !A’} A

omasl®
=<
(/ iM"doa)

assume that the phase ¢(Q}=0 in

that

real.

A = M) et

AlW) = M(w)

Honce we see that

AN =3 SN

thereby giving

HZAA‘&@{I--T;—]M Nca[
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- [ — ~E 3 [ Fynyagaan 1 e T8 s i rrrs ¥ o
for the numerator of the ‘Dbove expression. II we Integrate

4

- L . — 3 PR 2 3 - _i
oy parts, we thereliore opiain

" ,2";_,{'}- ol 3 2
Han]2- | waof

. 2 j . .
for the numerator, and since A ~-»(Q as {(wj-*=0 , this
expression reduces to

== = 3
¥ LA e
Hence
Vo, it
g ¢ 4P
or ‘
Ng=3

which is the fundamental expression relating the measure nil
of the beam width (or antenna resolution) and the measure gl
of the illumination bandwidth (or aperture width). Thus _
if we wish to narrow the beam width of the antenna pattern
it is necesgsary to broaden the band width of the antenna
1llumination.

The lower bound of % for &8 1s actually obtalned
for the Gaussian-cshaped illumination function

A(w) = CE’.‘—‘;E‘ (where C = a positive
constant)




which yields the antenna pattern (which is also Gaussian-shaped)

i

Q) = Cep (wnere C = a positive
nonstant).

Nevertheless, there 1S no upper bound for déﬁ .

A similar result to QBE% can be obtained by
using the width of the equivalent rectangular :f to measure
beam width of the antenna pattern Q{R) and using finite
aperture width to measure the bandwidth 'k, of the illuminaticn
Aft . We suppose that

A)=0 ror Jw|>%k.

Hence the width of the eguivalent rectangle is

The integrand of the denominator is A , which we may write
as 1A in order to apply the Schwarz inequality. Thus
we have

® 2 * , j‘& ('ﬁ R
{f‘_k(A'L)dwi sL LAl das‘.g*dwzzﬁ/i*mg 1N
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Therefore the following incgquality is satisfied:
*§ >

The equality 1is satisfied if and only if the illumination

1s a constant for Jwi< & , in which case the arterna pattern

.
D'!

1 kG
ag)y=C 8 (where = a constant)

In view that

Ry =T
for a constant illumiration function over the finite aperture,
that 1s, for

Hw) =

constant for |W
0 for 'w

it follows thar this illumination i=s optimum in the sense of
giving the smallest possible equivalent-rectangle width for a
given aperture slze. HNevertheless, if we measure the beam
width (l.e., antenna resolutlon) In terms of radius of gyration
instead of 1in terms of eguivalent rectangle, we obtaln a dif-
ferent result for the cptimum tllumination function ©

finite aperture,.




B T g E O . = o + - = Ei § = I
The I'inite aperture resiriction ‘s tha
Ty [ 24 + - ¥ 21 & 4+ et E &g =
wenosunction satisfiss the ndition
Pl i ¥
tor  jwi>tk

e result that we seek is
Ay ror  |wls®k
such that the product
o &
will have a constant

1s a minimum. To minimize o , A
phase that we can take to be zero, 30

AlY= M(ew)

=

N fA‘m

i3 real. ¥We recall that
{55 12 i fl
J A (A'Y dw
—=0 S oo

A s
[~ 1812 dw

= o0

Thus we wish to ninimize

= * 2
j (A} aoo=]i (A dw
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to have a narrow beam antenna pattern
L 18 necessary bul not sulfficient to
have a broad illuminaticn,

phase P@) of the i1llumination function,
other than & constant or a linear phase
(which shifts the antenna pattern with-
out changing 1ts shape) increases the
beam width of the antenna pattern, and
there 1s no upper bound for this inecrease.
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we now want o review Lime-f{regquency aspects of
= e - 4 =11 Ay = oy % Sy oond & 5
sigrals., Many significant achievements in enginsering
= w = = n

ot

heory may be traced to Fourler analysis which has been
found to t

O
- -~ 4 = - 4 e~ 3 & g 1y 2 - £ oy 14
cal statement of many natural phenomena, An import

ant char-
acteristic of the Fourler method is that it gives completely
equivalient statements in elther the time domain or the fre-
quency domain.

There are three main mo.zls for the Fourler approach
vhat can be set up, namely

{1} the Fourier series approach, with the
attendant assumption that the time
function is a periodic function of
continuous time, with the result that
the spectrum is made up of lines a.
discrete freguencies that are integer
multiples of the fundamental frequency
(equal to the reciprocal of the period).

(2) the Fourler integral approach, with the
attendant assumption that the time func-
tior 1s an aperiodic integrable function
of continuous time, with the result that
the spectrum is also an aperiodic inte-
gravle function of continuous frequency.

(3} the z-transform approach, with the atten-
dant assumption that the time function
is a functicn of equally-spaced dis~
crete time, with the result that the
Spectrum 1is g periocdic function of fre-
quency. Hence the specfrum is a Fourlier
Series with the time function as its
Fourier coefficients.

For the purposes of this section, we shall use

model {(2): the Fourier lintegral approach. The classical
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definlition of the Fourier itransform 1s as follows: Given s
¥ ~ = S 3 = oy 4 =
Lime-lunction {gi} » then its Fouriler transform t&) is the
I'reguency-function given by
ol
- {({) e 1oL ({t
)=

where

t = time (say, in secconds)
) = radian frequency (say, in radians per second).

It is necessary to state various further remarks about {)
and F(@} , but we will assume that the reader is already
familiar with them. Making use of the Euler identity

e 4t = Cos it - LS it

Wwe see that the Fourier transform FGY is

Fun= J {t) Cosmtdt - 4 l jtt) St dt

= (cosine transform) - 4 (sine transform),

Much of our discussion will be concerrned with the cosine
transform for a parailel discussion would apply to the sine
transform.
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It is often ths

0
L
L V¥

the time function is avallsab
result in the computation of the cosine transform because of
the use of a finite instead of an infinite interval of inte-
gration. This error, called the truncation error, can be of
ma jor consequence, and 80 we Will discuss various approaches
to this problem in this section. The effect of the truncation
error on transforms 1s to superimpose a relatively large am-
plitude ripple upon the correct transform; this ripple is
often called the Gibbs phenomenon. Hence we will lsok for
various suitable modified computaticnal technigues that lessen
this spurious ripple. More specifically we will look for some
suitable function W) that we shall call the time gate
assoclated with the approximating method.

Denoting the Fouriler transform operator by E and
the approximation operator by F, , We have

Flwa fwl = F{{w] =R

for the approximate transform Fﬁﬁb\ .

The Fourier transform of the time gate wi(t) is called the
frequency window W) ; that 1is,

wWw =F vy,

Because

Faay = F 4]




e

5

]

we can {ind the approximetion F&,['{‘st?} in terms of W)
and F) | We use the familiar rule trit the transform of a
product is egqual t¢ the convolution of the transforms of

each factor in the product, Thus

E(fw] = Flwviw] = Wwx Fw
Where % denotes convolution, that is

20
W)* F(Q)EE‘;IJ W -0d,) Fo) dw,

Thus we see that the approximation FA(-&U&} is obtained
from the correct transform ¥F(w) by convolution of the
correct transform with the frequency window. Let us now
look at thne process of convolution in orde. to see how the
approximation differs from the correct transform. We see
that W-u,) 18 the same as W) veversed in frequency
direction and shifted by the amount @) . Taking the
product

Wie-,) Fia)

and integrating over ¢), gives the value of the approximate
transform at the frequency ¢) . Hence it may be suaid that
we "look through” the frequency window (reversed and centered
at 8 ) at the correct transform in order to obtain the
approximate transform,

The frequency window is independent of the time
function being transformed; Instead, it is characteristic
of the approximation method used and gives a complete measure
of the difference between the correct transform and the
approximate transform for any time function. Ideally we would
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like the frequency window to be the Dirac deltz function for

r

then the approximate transform would be identical with the
correct transform, Practically we will seek a frequency window
Wi(w) that approximates the delta function; then the convolution
process for a gilven freguency averages the correct transform

over a narrow band of frequencies arcund this frequency, with
almost no contribution from freguencles far away from this

given freguency.

Tet us now turn our attention to some gates and

thelr windows. 4¥e have the following tabie:

TIME GATE FREQUENCY WINDOY
Box car of length 27 : Dirichlet window:
| r [t1&T o LT
wt) 2{ i - W =2T =0
0 Jor [>T _
= W
= 3.0 Q)
Triangle of length 27T : Fejer windew;
-8 o e T 8T 2
w(t§={ wear=T ()
) dor 1t|>T 2
Delta function at toz
-iwt
é(t-tg" e )
— 1 —




TIME GATE FREQUENCY W INDOW |
Cosine wave:
Cos axit L {50+ +8t0-ao) ]
Von Hann gate: Von Hann-w;géég?ih‘q : N
i(\*tﬁﬂ\*"m‘:}- w,-a_‘ wo, | i
7 - it)< : (m-;Qg(m@ﬁ&m}*@w&)
wit)=
(Y 0 f"‘ iti>T wharg
Q. =27 Sion T
W=2T—

—

Richard Hamming gate:

e ————

— S

Richard Hamming window:

0.54 +0460s T for (11T o

wt)y= { T *“ et W)= {}§13Q.(&3+¥)+05W@
oy |t

0 3 40.23Qow-I)

Wity = et ) W) = 5@~ # Q) = QoK)
) = Lot O W= 3 {Quatant Qee-@0]
Ross gate:
£ (R
(1—5) for 11T
a(t) = Wilw)
0 for I>T
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The folliowing result is nown from the theory

(]
-y
[ae
oy
]

Pz d S st A
Fourier transform;

If a time function has W-! continucus
derivatives and at most a step discon-
tinuity in its n% derivative, then
its Fouriler transform will have an
envelope ¢f order U/ s

Let us use this result tc compare the above time gates. The
box car has step discontinuities in its f;‘r-tl-}E derivative; hence
its window has an envelope of the order of 1%- ; 28 Seen by
the actual expression for the window. The triangle has step
discontinuities in its l§3 derivative; hence its window has an
envelope of the order 1%; ; as 8een by the actual expression.
The Von Hann gate has £ ep discontinuities in its second der-
ivative; hence its window has an —5 envelope, The Ross
gate wWy¥) has step discontinuities in its ®-| derivative;

hence its window has an -ng envelope.

It 1s interesting to conslider the characteristics of
the family of Ross gates, The first few members are plottec
in the folliowing diagram:

CNG;
1,0 A=

T

/

o

o

g Rt
™)

Figure 2, The family of time gates W= (1~




We see that higher values of . means less and less contribution
from valuss whose abeiss

s
‘. J
L]
]
-
O
[#ie]
(3]
P
o
-
H
-

lLet us now find an interpretation for this family.
Let us consider the rase where the function toc be transformed

e

{-(t‘) = s wt

for some arbitrzry freguency ) . This cholce has the
advaniage that we know that the normalized correct tranaform
of this function is unity for « and zero for all other
frequencies. The problem is to find out what is the effect of
calculating the approximate transform given by

2 l '
“T-j {‘Lt} Cadt dt

<@

instead of the correct transform given by

T

Lim. _2_ R
Tooo T / {(t} Cwwt dt |

and how the result varies for 1 and ¢, . The frequency
Gy may be called the scanning frequency,

For the case when Q=W » the approximate transform

is
2[7 ztd““leT
':}:of.c-cw t=1 20T




Ll

and for the case when &, #Q , the approximate transform is
~ L LeT A 1} P ——— = - = ome= = e —
Cnwl tnwidi= N i L

‘ (=W T (W+QY i

S
.

The result |+2229T  ror the case (,=w 1s plotted in the

W

figure,. i

2
VALUE of } ; oin LwT
APPROXIMATE = 1+ .
TRANS FORM i

/ 7 \coRReCT vAWE) _ l
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g >

wi=1r wT=29 w137

Figure 3., Dependence of the approximate transform on
truncation length T,

From the figure we see that the approximation oscillates about
the correct znswer, 1, and gets closer and closer to this
correct answer as 1 1is increased. The problem now is to
find a way to utilize this oscillating approximation so as8 to
find a more refined approximation. It appears that a linear
welghting of the oscillatling estimate shown in the figure
would be a good cholice, and in fact corresponds to F/ jJer
summation of the original integral.
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We thus have

This function is ploited in the figure:

A smtaT
~APPROXIMATE VALVE = [ 4+ —
,f’L/ ﬁWTJZ
/ N\"}—

CORRECT YRLVE = 4

wT=T §T=2% wl=21

Figure 4, Dependence of the second approximate tranaform
on truncation length T.

For most 1 values, this funcc¢ion is closer to the correct
value, 1, than the previous approximation, and thus the
weighting has helped matters Lo aome eXxtent. The envelope of
this aporcximation ig 7§%§ . Nevertheless, this cholce

of welghting has introduced the problem that the approximation
no longer csclillateu about the correct value
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1 .2
This function not only has the j;%) envelcpe, but also
the approximation still cscillates about the correct value,
which means that the process can be continued.,

For the scanning frequency w,#u) , this approximation is

&iﬁl}s g}rr"(n:ﬁJ-CLYT)

[(w WO\ (W-Q)T

Sn(@HOIT (L ayT )]

AT +¢..) JE (= (O+)T

which has the same order envelope arcund the correct value O,

We are noa in a position to derive the Ross class of
time gates. The first stage gives the (unnormalized)
approximation

ti i
J {etycuat dt
°
The second stage gives

t2 ’tt 7 ]
tdt, ) fotesatdt
G
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Interchangzing the order of integration, this sxpression

.t}_ t tl ’t:
f {tt}x.es@td’t } fdt, = f 2 )‘}mtesastdt
G

80 the second siage corresponds to the weighting function
or time gite

!1_{&
2

Similarly the time gates for higher stages can be found.

It 1s Iinstructive to 120k upon the Ross time gates
wi () as a means of countering the effects of truncation
b7 smocothing the approximation at the price of losing a
certain amount of frequency information. Wheu ftf) is multi-
Plied by Wa(t) , the effect 18 to make the values of (b
for large (t| not as important in the approximation as those
for small € ., This leads to smoothing since each tucCessive
value contributes less and less to the accumulated integral,
Nevertheless, if we take a time gate Wg(t) for a too large
value of & , then we essentlally reject a very large portion
of the given finite record of 4(t} ; and the resulting
approximation achieved by using a more moderate valuye of +* .
Thus, 1f we try to achieve to0o much smoothing, we may sacrifice
significant frequency information; it 18 necessary to strike
a balance between these two conflicting goals Excellent
empirical and theoretical treatment of this problem 1is gilven
in the original work of Ross (1G54),
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. MULTICHANNEL SPIKING AHD SHAPING FIL TERS

First we wish to consider properties of polyromials

("1"

orthogonal on the unit circle (Geronimus, 196G), The poly-
nomials cb,{{z-} are defined to be orthonormal with respect to
the spectral density §(§‘) on the unit circle [2|=1] ; that

is,

.5 . : r % n#Em
L $.(e7 ) &, F=q e
. oon n-i .
where ¢,‘a13 =dal +?n2 Feoot W, with dn>0
Alsc let us define
"2)=2"$(3) *
43,‘(2)-2 CP,‘ z 50 c%‘“(O)=d|-\
Let us put
¢ z)-d,2" i
. g n-t -5 +rn én-z'i't'“”"'{"wn_z}:-;
() L.

- WT I 1
IR TEARY N TE R T Y

and then multipiy each side by 45(2) for -kzo,t,z""ﬂ'! R
Bet 7= e‘l“;f‘ » and integrate,




We obtain

0.5 ¢ : "2‘!45}
m} cb(e-llh ) i~2?uu\ ~if i('})cﬁ‘
“0.5
-l [ ik g e 3o
ANy

, ity /=2 am-n4 , o
Since *;,(E “’**3/9 18 a polynomial in etimsf
where g«w 1t follows that the first in

tegral is zero, and by
introducing the notaticn

4

: [ 2 )
N ( d ; = “2“‘§ -%:Djijljx:i
)\ihjézﬁu)%hf wh z=e {or

e obtain 2(‘-"4 - dn Ak

and hence
n-i -~
&Qu 2“-2"’“ Z Ak %‘-E)
du =0
L2 n T,
¢”’“ ) AR 15 )\nq’*(.f)
s P =0
80




By setting 21=0 we find \,1 ; that is,
‘#’rm B -
=T )\ncsbn(g) =T )\"‘dn
s
S0
Fari(0)
)\h - 7.
dndni-'}
Thus

i t 5%
(_#rmiz? _ ICP“{\Z} _ ¢n“({3) #n (2)
Lnes n S e An

B T 1
3 *
¢I‘|‘§Lz} - 2%&23 éh'ﬂi{}} #“ (Z)
A ntt On Fnti O ;
. ) 1
In this relation, let us-replace 2 bﬂ'}g s thereby obiaining

#mi(:;?’ - (;Z)%n{‘i) + {#nﬂ{g) "bn*(‘;j
ol wat Fn S An

and multiplying by Z™'  and taking complex conjugites we
obtain

. . H o™ _* .
zhh a.)an(%}_ —_ 2" #’n}‘%) + 5!\?&(0) 22" Cb“ (%)

3
dhﬂ 'n dn«i—l Ay
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which is the Tecursion reiation

u(? _ ‘*’ @) | $u0) 202
~ Obnag oln dnvi A

Let us introduce the polynomials

$,2)
odn !

\)fn(z) e

~ =
Yokz) = 2" z)

and define the parameters (l, by the formula

—_— q: (0)
Qn=- \)'un(g)“'-"ﬁ‘_" '§°"' n=0,1,2,---
W §

Then the recursion relations become

‘me(l”) =2 \}",,(2} [ 5; \}1,?(2)

\)/:52} = \)-':(2) ~QnZ 9’,,(2)

J

Let us now find the
(&w and the autocorrelation
1

Ny = ,/{2 AR Fhdf = Ty,

’

comnectiion between the Parameter

The Toeplitz determinant is defined to be

Fe Toi ses t‘i A
" ' - -
A*_:{f;_j‘g Ry B Taul , ®=0,1,2,

L,=1 .
}

8 Oy oo re
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and it 18 seen that the polynomials can be written

Y; r-‘ T-;
ri rg r“
il I
Yiz)=—r
W=
!;_,4 r‘vl r’i“}
2z 2t

Let us introduce the notation

Ton

Tonat

o

s
(P }m) B j -p(e‘m*i)%(e‘mf) Fh df
“3

where -(2) and %(2) are arbitrary polynomials in 7 .

Using this notation we see that

Y = (%@, 2" gzl_..
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From the relations
: i; _h "*
‘};H-i =Z \}h O Y

. X % i
y’:n = \};“ ~0nZ \}"

it is possible to find a recursion involving only \}* as

43

follows. Solving for Y. we find

SRS

n Q b3
»n
and hence
3 »* R %
\,}:‘ﬂ —‘Pm-: - Y “'9”;«“ _ ah \},-!
Q.MZ ah "

which gives
. * 2. %
Qh\};:z = (Qn"'o\nhz)\}}m‘ ~QuaZ (-] Q| ™) \}Jn .
Similarly, we find that

B (54 =B 210,

From this last expression we obtain
- . = P nti = - o3 h+t
63(9';1,2““) = Bn(z‘}'m_‘zw) +QK?§(\}h*i,z )- ahﬂ“ [Q“‘ )(Z\H”Z )

which 1is

-‘—;-U‘Wx‘l)—"?"o

nél

since

L b W = h4
2 ( \}nﬂ,\};ﬁ;) (”9;"“;2 ) .
dﬂ‘“




dn 2

B h; - l“aﬂgé

dh{t
Thus

! A R

= = 3 - L,
e L A
<]

and

2 T gz o - ""“"3‘{&“4"
Ol'y;' dﬁ di‘.‘ C'lxz d&q—g

This last step follows by induction since

_L_( i el ol
et dz dad  Jdf I

:( } - ‘Qdi_ ‘Q;fz — g H}a-tl ) ’ald

dz d;- dil d;’:i
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(4)

(5)

(6)

(7)
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i} BUMMAPY We hava

= dnZ+ - 4w,
( ‘R}ém ) = éym = Kronecker delta function

?z%—i 59 (% %) = 51 Srm
n 4]

e

s P = {0)

n4i

ab\}h&z :{{-152'%6»!)'}’1\“' 6)1442 (i ‘ia“‘z)y)‘!

(Zn,2e) = Tmene

_ . ] An
A :( 2"‘ | ol S - ——
cgh} Jn) 9?&) ) d: f.“_’

2::;(;- =o'y = fau )




and the baciward polynomial
fs —_ f.‘,\n‘+ ~ b i b
b“lz}_ bhy\\z) b ‘+ ,“(:2_)+ no
wnere

. - wal
.. = [d.‘,v,“‘,i‘lid;
H
N
. ;" - . .
with An “"an‘m‘i‘“-‘&@mﬂ
and

with ﬁ;‘z b".‘—x +--- + bno r-h—i .

[Note, this 18 a new use of *he symbol &

» corresponding to
the usage in the above monograph),
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ighﬁgﬁﬁi’?%ﬂ A igi%ﬁpiji 1S ”*‘Y'n*;?
kr'h*i T r'
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= Edh'ﬁ"&m?n,e, "',O;dh*'%&i\(‘?hj
and

-

) A o

[ &, Gag, bant Ry Qo =7, b ] { n '?m]
o J

« (Fhty 0, -0, B huct

where '&,,-, and '?cg,; are chosen 80 that
d;+'&-¢i\@h=0 3 ?h-“.&bh l\=g

“he new filters are

:Qﬁi,ﬁ;&hﬂ,i;h,qnﬂ,}\ﬂ} = [Qu,b,' T an,ﬁ] + Ran L0, b‘nn.j" hy c:]

ihm,nﬂ;“.;bﬂﬂﬁ)b’\“‘ol e t%'b"“xi“.*b"a.’r&h“to"m“‘ %)D]

where
}oa=)

-\
-&M 4;-0{“?“ ::Qw‘n-s-\ , '&b&:-‘si\dh =bn§-y‘r\ﬁ,

Thus the polyncm’als satisfly the recursion formulae:

e (2) = Dn(Z) + RenZ™ bnl )
() = by Fhn () QD)

Duat
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ft,;‘" %ﬁnbmgn@g;”} %raei %&gbx&i}g)ﬁ&hbmg {'] Y r{} : 2 rhﬂ\{

L r"ﬂﬂ "“ & “{z }

= Y_%a}"‘,?n,mﬂ*'&ﬁnﬁw\l .

Thus the new general filter 18 obtained by setting

YM"" ‘&‘}n (b)vm = %hﬂ

80

{%R“;O)“’:{-'m“»“lg'“hmﬂ]
= [ gn;{;;- Ty f“x‘t:o-l + ‘&i"( b"'ﬂr“ﬂ);‘ ‘) bnﬂ)g y bn‘H,O]

Thus the general filter polynomial satisfies the recursion

1@ = @+ R Z™ b(3)

In particular: {,‘(2)= %0(2)_{_{502 b.(’;L.)
o X v} ,_%_\
%ﬁe) o= %‘QZ} +'&.§az b;'s‘,-:L}
\ 3
%3(23-.: el(zﬁ»ﬁﬁz by(z)

80

+%;,Z2b(Z L \
€(2)tgo(z) bo b'(éwﬁﬁzz L‘(Z)'\"Qﬂi‘&h(—z_)
$ j

and hence:
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0. (2)= Q24 tﬁzbi‘)*im biz)+ - + %
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N - -
A= —} Fy | IR Y A :X.L c
ba(Z3 = b3 )+ R, (3 021+ Ry (F) Q24+
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b(2)=b (z)= ‘
, Q) =0Qe | b(3)= b

are constant matrices
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of the disturbance recorded at differsnt spatial locations.
This time difference can be expressed ir units of time per uni
of distance, and thus is the reciprocal of the piase velocity,

Let us consider the following model., The signals
from distant events arrive at the array with horizontal velo-
ities ranging from infinity (that is, the case of vertical

incidence; to some finite minimum value. The noise, on the
other hand, 1s assumed to have horizon*21 velocities smaller
than the minimum set for the signals, and such lower velocli-
ties are indeed to be expected of surface wave nolse. Thus

in this model seismic signals and seismic nolse have different
velocity distributions, and therefore improvement in signal-
to-noise ratic can be expected through the use c¢f a device that
discriminates against nolse velocities., Such a device is
called a velocity filter, and for the model that we have
assumed it should be a high-pass velocity filter, that is, one
that passes high velocities and stops low velocities,

£t us consider a plane wave froni. Hecause a two-
dimensional group of detectors is equivalent to a one-
dimensional group 1in a plane perpendicular to the wave front,
Wwe shall limit the present discussion to one dimensional Arrays.
A plane wave of a fixed temporal frequency {t and spatial
frequency {x may be written

ﬁm(lﬂﬁt+iﬂ4xx+5)
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We may suppose that the above gquantities are

mp——p ) SR B -
vnils 28 follows:

‘St = temporal frequency, in cvcles ber second (¢ s)
1/{¢ = periocd, in seconds per cycle (s/c)

.&x = Spatial frequency, 1in ¢ycles per kilometer
(¢ /kem)

l/}x = Wavelength, in kilometers per cycle (km/c)

<
!

veloclty, in kilometers per second (im/s)

= {tf./%x = i/fk)/('/{t) = (wavelength) / (period)

The output of a 8o-called uniformly distributed array

}

of N+l elements over a distance A is equal to the sum of the

f

outputs from cach detector, 3See figured,

éft‘ y ; ok ‘45: —a- /X~ AXIS
0 d 2 3 ¢+ 5 g

7 = LETECROR DESIENATION

DISTAME Ncaos meAY =a______q_,_i
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Flgure 5, Uniformly distributed array ¢ nw7)




Hence the output to the above sinusoidal input would

e
{normalized by the factor i p4: )

+a
4 (27T 1427 --—=-=
R:H EQ w( 4\ 2 %1 +R)

flowet
ok
(%)
T

which 18 equal to

m,(ﬂ‘ﬂ 'S'XA)
. : hig ;A
ﬂ+i)$n(—£——n )

$sinl 2 '\T-f{t +TT{>).A+§%)

Thus the transfer function, namely the ratio of output to input,
18 at the center of the array

LNk '
S (Bt T 1x8)
(hel) $in (ll%ﬁq

A, =-

If we let N\ —»ed |, then AK becomes the transfer ratio of a
continuous detector whose length is A ; we have

A - 51&\“51“1
00 Tffo
Let us introduce the dimensionless spatial frequency variable

g/ ={xé . Then We have

Su'\(w‘hl ) A 9 $Lv\TTL/
tn-&-nsm(x,{/*) * Ty

The figure shows graphs of AICV) 5 r*,W) , and AQ,W) .
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Figure 6. Graphs of spatial frequency transfer functions
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vided the noise corresponding to values of ¥ >6  1s neglig-

Pro
ible, it is seen that increasing the number,n-+t , of selsmo-
meters in the array beyond 10U can yileld no zappreciable improve-
ment in veloclity discrimination under the scheme of uniform

spacing and uniform welghting of the selsmometers Iin the array.

For example, let us suppose that the ambient nolse is
spatially organized and is propagating with an apparent horizontal
velocity of 4 km/s. Suppose that one component of the ncise has
a temporal frequency {} = 1 ¢/8; and that the other component
of the noise has a temporal frequency ft = 0,5 c/%. Suppose
that one component of the signal 1is made up of mantle P-waves
travelling at a velocity of 8 km/s and with a temporal frequency

{¢ = 1 ¢/3; that the other component of the signal has the same
velocity (8 km/s) and a temporal frequency 3¢ = 2 ¢/s. Thus we
have the table (where wavelength A = the reciprocal of
the spatial frequency).

TEMPOMAL | SIGNAL NOISE
edivy g it 1y AMIOL
SHEJUENCY Velocity _ Veloeltly
v o= 8 Kkm/s i o= 4 }cm,z’%
T —— =
{
f¢ =05 % A=84%m, V=g
{ =
{¢=1.0 % A=B tm, V== =4 km, V=1
‘§1=2-0% 7\';4'1"‘-‘"‘1 V=

TABLE: Wavelength N and dimensionless spatial fraquency 1/
ve. velocity V- and temporal frequency §t ., where
A:-‘;’-—- , and 1/;{,[5:% with A= 4 .
t L
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Flgure 7. Transfer function of A (/).

We 8ee that the maximum wavelength that can be completely
iltered out is equal to the array of length A , so the
minimum length of the array is dictated by the maximum wave
length which 18 desirable to have filtered out. Thus we have
the filtering action of the array given by the table:

SIGNAL NOISE
U'== 8 V= &
} t E ] G 5 C/B
L { PASSED)
o= lc/s {y = 1 c/s
{PASSED) (STOPPED)
t¢=2c/s
t
(STOPPED)
—d

TABLE: PASS and STGP bands of array, with
spread A = 4 km,
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Thus for 8 km/s P-waves this array with uniform summation pro-
vides maximum effectiveness only over a small fraction of an
octave around the temporal frequency 'ft = 1 ¢/s.

Now le. us consider an array with equally spaced de-
tectors but where each detector is weizhted by an arbitrary
factor before summation. We suppose that we have 2n+! detec-
tors of arbitrary sensitivity at locations I=0,i%,i‘ %,"',i‘A
with sensitivities |, Q,, Oy, ,03, . If the input
is

Cos uﬂftt +2T X +8)

then the output 1is

Cos 2Tt +Q) | t+21\§‘03 cu (2l ]

80 the transfer ratio is

A, =t +9 2 o tes(lﬂjx'b“'\
=

We see that Ah is a periodic Junction of *z « When {-x=C
we have

n X
An-‘-'-?-!'ﬂiz:'c‘a (fx"o) 2
when ‘fx"& we have

A l+22 Q} (‘SX:'A—

Thus the period of A.\ corresponds to -}x‘%— s which is a
wavelength )\s—a— » namely the detector spacing of the array.
In other words, the array cannot distinguish between the
following two situations:
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Figure 8. Illustration of aliasing.

This phenomenon 1s well-known, and is called aliasing. Thus it
{s desirable to chcose the detector spacing such that the 100%
response peaks that occur after {x=0 do not correspond to
wavelengths that are associated with substantial energy.

Suppose the following values of Qi are chosen (Savit,
Brustad, and Sider, 1958):

Q = 1.000

0y = 0.987 @ = 0.592
Oy = 0.947 Gy = 0.473
QG = 0,888 = 0.3‘48
Oy = 0.809 Qy = 0.224

05 = O.704 O = 0.105



T .
AnV) =142 52_‘03 Cos (2T ),
Graphs of Qa‘

and A«1/) are shown in the figure

aa + + * + + + 4 —t— = > o
~i0 € <6 4 -2 O 2 4 & 9 y
'/‘/,‘!,,(v) for the a; shown above
o 3 i /-37\‘.___5.(—\__ -
= | 8 s 5 ¢ "V
Figure 9, Weighting functio \
functiongﬂm(i/). N 0.3 and corresponding transfer




57

5. VELOCITY FILTERING

The concept of filtering seismic signals based on
their apparent velocitles 1s treated by Texas Instruments
Staff (1961), Embree et al (1963) and Fail and Graw (1963).
Such velocity filtering for the nuclear surveillance problem
is implemented by :..e use of large arrays of seismometers.
Velocity filtering, then, is a multichannel filtering process.
The process uses a number of input channels from the seismo-
meters to produce each output, but differs from conventional
mixing and filtering techniques in that each input at a
different delay is filtered through a different appropriately
designed filter response before being summed to form the
output.

In order to design such -~ multichannel filter, a
working mocd=:1 of signal and noise must be formulated in the
temporal and spatial frequency domain. In addition, criteria
for Jjudging the performance of the arrays must be established.
The theoretical requirements for optimum processing have to be
developed with the quantitative evaluation of the performance.

The primary objective of large array systems is to
provide a better picture of the selsmic signals when they are
masked by ambient noise. A large array should make it possible
to detect and identify seismic events that are obscured by am-
bient noise when only a single sensor is used.

The complexity of the seismic waves that crrive at
a detection station is well-known. For either an earthquake
or an explosion source, the following scequence of seismic




wave. 1s produced:

(1) P-waves, or longitudinal body waves,
They have a propagation velocity of
about 6 to 8 um/s, depending on the
medium.

(2) s-waves, or transverse body waves,
They travel at 0.6 times the velocity
of P-waves.

(3) Love waves, or horizontal transverse
surface waves, They travel along
the earth's surface at a velocity of
b to 4.5 inss,

(4) Rayleigh waves, or vertical surface
waves that perform a retregrade
elliptical motion wlth itz plane
lying along the axis of propagation.

The P and S waves are Subject to reflections and refractions,
and the surface waves undergo dispersion. The result is a
complex sequence of oscillations whose nature is governed by
the characteristics of the transmissior. pPaths and very 1ittle
by the source itself. Since the only part of the wave train
that arrives undisturbed by later modes 1s the P wave (the
first arrival), 1t is the most important signal currently

used for loca%ion and identification of the Source. Secondary
obJectives are the extraction of S-waves and surface wa.es in
the presence of noise,

The nolse obscuring the desired signals may be
categorized as follows:

(a) Ambient coherent microseismic noise,
propagating primarily as Rayleigh
waves, with an apparent hortzontal
velocity of 2,5 to 3.5 km/s. The
1sotropic assumption means that the
noise 1s equally likely to come from
any azlmuth.
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(b) Local coherent noise from sources
such as factories, lakes, railroads,
highways, propagating primarily as
Rayleigh waves, but with a particular
azimuth of propagation,

(¢) Incoherent noilse from sources or
scatterers within the array area,
including locally generated wind
noise,

(d) Incoherent instrument noise,

The P-wave signal may be characterized as follows:

a) Coherent
bﬁ Equally likely to come from any azimuth

¢) Apparent horizontal propagation velocity

of 8 to 15 km/s.

The s8ignal and noise can be shown in the three
dimensional temporal and spatial frequency domain, whose axis
are {t\'ﬁx, %y . For example, a propagating sinusoidal plane
wave 1s a point in the 4t, 4x, §y domain, even as a sine
wave sinluftt  is a point in the {t domain, The signal
and coherent noise 1n the working model are continued in the
conical boundaries shown in the figure:

Noise Regton
(/V' - 25 o 3.5 A”‘/é“')

Sicnpl. RE&toN
(r=% 15'.ém~4“6>

—>

+n

Figure 10, Signal and noise in three dimensional frequericy domain,
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Assuming that the signal propagates with a speed of from 8 to
15 km/8, and 18 equally-1likely to arrive from any azimuth, the
signal power lies within the conical boundaries shown in the
figure. The total power at any frequency 4t may be obtained
by integrating over all 4x, 44 for that §¢ , and it is
assumed to be the curve shown in the figure:

ﬁ‘
1
»
$9 §
~ 2
i -4
=

s

(= + + =g
/ 2 3 4
* ‘Ft wm C/a

Figure 11. Signal power density spectrum

The noise povwer lies between the two ccnes corresponding to
velocities of 2.5 to 3.5 km/s, and by integrating over 4x
and §y we assume the power density has the form in the f¢
domain as shown in the figure:

« F
ix3
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3%3
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Figure 12, Coherent noise power density spectrum
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Incoherent noise at a particular frequency *t is uniformly
distributed over the entire {x, {y plane.

For the 1isotropic model, a vertical cut in the

*t) Sz» &7

the figure:

fi
(c/a)
o

space 18 lndependent of azimuth, as shown in

Figure 13. A vertical slice of Figure 10

For a directional signal model, the three dimensional space
must be retained.

This working model of seismic signal and noise has
the following important features:

(a)

The signal and coherent noise are com-
pPletely separable in f«. §x, §y Space.

This separability J1s unique to the
Selsmic case; in radar, sonar, and radio
astronouy the signal and nolse propa-
gation velocities are identical and so
separation can be achieved only on a
directional basis. The maximum, improve-
ment in such cases is VN (in amplitude)
in signal-to-igotropic noise ratio by an
N element array; because the signal

nd coherent nolse are completely sepa-
rable in the seismic case, greater

gains are possible; and the achievable
gain is dependent on the temporal and
spatial distribution of the noise.




(b) The signal and incoherent noise are not
completely Separable, and hence this
noise cannot be asg effectively reduced
by an array. Achievable array gains
are thus critically dependent on the
Power ratio of incoherent noise {o
¢Oherent noise.

Let us now consider the actual implementation of the
velocity filter., We want the filter to pass waves in the vel-
ocity range from -V to +V , so the desired response in tem-
poral and spatial frequency is

[
0 {or fx\’"{?j

Afud=g 1 gor Mg o I
0 ‘for th—(&x

FPigure 14, Desired spectral response function of velocity filter




At a given frequency ft the spatial impulse response is

, - 4in2TX
If Hd‘-"-v then O.\‘ft,):)" mwX » Which looks like:

SPATINL INPGLE RESPONSE. FoR [f,[= v

Filgure 15. sSpatial impulse response of desired filter for |fj=V
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in BT X
whereas 1f |§t|=2V then Q{fe,x)=Sn0X

Tx s which looks
like:
4
A
JIsE SNSE )= AV
\Kq/’,smrm IMPYISE REGIENSE FoR ]Q]
w— 2 _af
045 1.0 ¥
Figure 16,

Spatial impulse response of desired filter for

H‘tt-“ AV,

Therefore, in terms of arrays, such a process appears at low

frequencies as a very long array, which passes long wavelengths
and stops short wavelengths, or in other words it acts as a

narrow band low pass filter in spatial frequencies. Such a
pro- :88 appears at high frequencies as a very short array,
which passes shorter wavelengths, or in other words, it acte
as a wider band low pass filter in spatial frequencies.

The impulse response in time t and space X is
given by Vel
el

= ami ¢fet = §xX)
2t =) J ¢ o dit

_ j.c er¥iftt Qu(fe,x) die

“o
M1
x

~ & 2w
- j ez“iftt --i‘—’.“iﬁ..' d«it .

~0
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In the usual case, the array will be made up of equally spaced
sensors with spacing AX , as d«picted by:

M

Xm

Yl MIL A2 Mt oo mel
tm --VIA!HA-— m=5 Mm
CENTER OF RRARY

Mi-‘ e ;o -té ﬁt% .n;ui Ac-‘

Figure 17. Sensor spacing

We suppose that there is an even number of sensors, and we
let Xm denote¢ the distance of the mth sensor from the
ceiiter of the array. Thus X.=+3‘jﬁ, X-F'%AX, X2=+31-Ax, etc,
The process may be implemented by passing the output of each
sensor through a temporal frequency filter with transfer
function specified by

Hel
Sin 2= Xm
Qe Xwm) = . )Zn

and then summing the outputs of all the temporal frequency
filters. The frequency spectrum OL(ft,Xm) looks lile

a (’fé) x":‘)

Figure 18. Frequency spectrum of Q{{t,Xm)




At any given temporal frequency, no array with equally spaced
sensors can distinguish between ze'o cycles per 24X , or
any other integral number of cycles per 2aX , as shown in
the flgure:

N :xfi""/M

A otis /0%
/ fhf}ér 0 cHIB/As

Figure 19. Spatial aliasing

Here 1/aax =‘§: is the Nyquist spatial frequency (or the
folding spatial frequency), and the equally spaced sensors
result in a periodic response in spatial frequency, the response
being repeated at the interval

A“x:é

and the desired response can be achieved only over the spatial
frequency band




At temporal frequencles above

H’t"& V_TEZ’

the specifled pass band of the velocity filter extends beyond
the Nyquist spatial frequency fz , SO the temporal frequency
range over which a useful response may be obtained 1is limited
to temporal frequencies below ftN . Thus a sampling interval
At-—i‘}_ﬂ may be chosen, and no information 1is lost provided
the data 15 limited to frequencies below '&t and {,N . If we
let Tn =NAt  be the time of the nth sample point in the 1is-
crete impulse response of the time-domain {ilter, then we :ee

that \J satisfies

T -
=

The required coefficient of the Wth time point of the time-
domain filter for the Mth sensor is o
A -
..EE x v

Q(Tn,xm) = d‘st i d-}x ezvi(StTu-‘ngm)

‘.‘t:'"—" /‘fx""&t_!

24t

{
,+‘i-;i ‘

o il
d 'S‘ e?.vif‘Tn 55‘1{-1“ Vv Xu)
T s Xm

2at
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2 E X
S Py
[ +]
pn
2at

-ﬂi J dfe Cos 2T natfy) v\(lTT——-At {0
4]

Now the following integration formula occurs in standard
tables:

Cos(a=b)x , Cos(atb)x
[ S cosb e = (LA B | Gt

provided B # b . Hence

|

W ——

24

Xm
N - 2 Y Cgslﬂ'bt(?x‘-”)ft Cos J.TTAT \AX 'H‘)'}t
Q(Ta . Xm) "nx,.( 2 ) [ ko (%%-h) ITTAt(X_-m)

*L____._____‘:pm

\ Cos'ﬂ(x'l‘" +x) |
T Xu

!
Xu) a1 st (e 2wat(§§-i-n) 2MatXe ay 2mat(2e on)

Xm _.{ M‘% :* md>o

Mt~ ‘lf m<o where W 18 an integer
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and since YU 18 an integer, it follows that
X
ax En

is equal to an integer divided by 2 ; 80 the first two terms
in the expression for Q(T,,Xm) above vanish. Hence

BRI |
& (Th, Xm) = [ ” + I
TXm | 2TIAL _)_fé-n -):-%’H\. |
| ( = +n) +(-——“)

- 'Y =
21 Xmat (*~"—‘--n)(—x—’)‘c‘-+n)

t |
Tfibxgt ( Xm )

-1t

where

Ta=nat , n=o,%t 12 -

{m-—i)ax , m=1,2,3,""
(e yax y mM=-l273,me

It is seen that the linear operator QU{Ta,Xw) 1s symmetric
about the origin in both space and time.

The theoretical frequency response can be recovered

Adeto = Z T QLT X) € 2T T k)

=-00 M=~
m¥EQ
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In practice only a finite number of M and M. values can be
used, 80 the theoretical frequency response 1s only approximated.
In case n=0,%1,+2,£3,--- 20 and MmM=t1),1+2,--- 6 then the
actual response 18 as depicted in the figure:

f

AN wad B

L

1

¥
- h ¥
3
O sptial frequomy 1, .':n:f o

T wyget Cwyquit

Theoretical fraguescy response Actusl frequency response

Figure 20, Theorstical va, actual frequency response
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The linear operators Q{Ty, Xm) are depicted in the
following dlagram:

pr 507, OF PeAR
VALWE OF mm

oo

LiNeAR OPERATCR Fok SENSOR | mwo =1

{\/\ FOR Sknsok A Amp -2

M FoR SENSOR 3 app -3

1 \ FOR SENSeR 4 nwp ~#

—'—-ﬁs :é\ FOR SEN%R & AnND -5
\/______’—-——

——-:\Jr\-r -—\ L FOR SENSOR 6 anp -é

{ :
0 L %4 ¢ % w1 W I U M

Figure 21, Linear operators for first six sensor positions
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Let us now illustrate the actual process of

velocity

filtering, Suppose that we have the 12 traces shown in the
figure:
Atz ) 0 @
y L e
% T
el B ‘] s - o
| ,[r y= Fw =20 Frfae
c,—»~‘AA- e A'
sl B i\
Vaio dmg | |
Q"‘"X A\ — - V=&é:n/a¢

SEEA AN

|

i ; .Ak=0d4u
4 /9\’_
‘j}ohm i0hn/a, 10bnlac © Amlssc

BoY  vRour VEoutY v
Dewi 20DB Doww D6 Passes r;ﬁgg

Figure 22, Effects of velocity filtering in the time-

I
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Let us choose the cut-off velocity V equal to say 10 km/sec
and let us suppose the spacing of the sensors is AX = 1 km,
Then the Nyquist spatial frequency 1is

-" g/Vn

and the Nyquilst temporal frequency 1is

N .
§>‘ 2 AY

f --& "—-——-—-—( Yo)= 5 5 %

28x AT

Herce the discrete time spacing is chosen t0 be
! | !

At =¥ =35 "o < M
The foregoing figure portrays four events with velocities of
5 xm/s, 10 km/s = the cut-off velocity, 20 km/sec, and infinite,
from left to right. The waveform 1s a sharp transient that is
identical for all events. Bulow the input record is the output
of the velocity filter designed to pass events with a velocity
greater than the cut-off velocitZy of 10 km/sec. The output
trace corresponds to the center point ¢f the array. Interpre-
ting the cutput trace, we observe the following:

(a) Events within the pass region, that is,
with velocity greater than the cut-off
velocity V = 10 km/sec are passed by
the process with virtually no waveform
distortion.

(b) Events having a velocity equal to the
cut-off velocity V = 10 km/sec are
attenuated by 6 db. as shown by the
ac*tual frequency re3ponse contour
above, but still with v.rtually no
waveform distortion.

(c) Events having a velocity less than the
cut-off velocity are generally attenuated
in amplitude by 20 db or more.
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Velonity filtering offers the capavility to enhance
signal-to-noise ratio s.gnificantly and without danger of
deteriorating signal waveform as no signal bandwidth is
sacrificed. In other words, it makes it possible to process
seismic array data in such 2 way that all seismic events with
velocitlies in a given range arc preserved with no alternation
over a wide frequency band, while all seismic events with
velocities outside the specified range are uniformiy and
severely attenuated. Velocity filtering may be looked upon
as a proccss whereby it is possible to combine the elements of
a line array in a manner resulting in a directed beam with low
side lobes, where the beam width and side lobes are essentially
independent of frequency. By applying the velocity filtering
process to a nolsy array, an output may be obtained that has
all events within & specifie. velocity range perfectly pre-
served and events without this range essentially eliminated,

a resuit which 1s impossible by conventicnal array usage.

In order to effectively utilize veloclty filtering
in practice, a noise and signal analysls procedure must be
followed that will furnish the needed information for effective
array design and emplacement. Of course, 1t is feasible to
emplace 2 standard array layout at each site without prior
measurement and analysis of the noise. The signal and noise
parameters for the emplaced sensors would then be estimated
from the actual array output, and then these parameters can be
used in setting the filter responses for the processor. Thus
if a standara array layout were required for political reasons,
and no measurements were allowed prior to site selection, it
still would be feaslible to utilize the array effectively.
Nevertheless, a more effective network can be established by
cbtaining local noise and signal characteristics and utilizing
them for local optimization of the array emplacements. Tiius
an effective noise analysis and array design procedure can be
worked out in which detailed noise measurements are made, and

B
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a data analysis 1is performed to establish the temporal and
spatial frequency characteristics. The necessary array length
and number of sensors "o provide good signal-to-noise ratios can
then be determined from the noise characteristics. The per-
formance of the array is then checked out, and it is put into
production. Nevertheless, there are many complications to such
a relatively straight-forward procedure.

The problem of nolse measurement can be divided int».
three phases:

(a) Measurement of signal and noise for the
purpose of selecting the site.

(b) Measurement of signal and noise at the
selected site for the purpose of establish-~
ing the permanent array layout,

(c) Measurement of signal and noise on the
emplaced array for the purpose of deter-
mining the necessary filter settings.
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6. SPECTRAL ANALYSIS

In order to provide the desired information about
the noise and signal, data analyses must be performed. It is
anticipated that a real-time analysis of the data will not be
possibie; thus s~lected samples of nolse and signal data are
the inputs to a digital compuler analysis program,

The parameters of the most importance in the design
of an array are the distribution of nolise and signal versus
apparent horizontal propagation veloclty, azimuth, spatial
frequency spectrum, temporal frequency spectrum, time stability
of the nolse characteristics, coherence versus frequency and
sensor separation., The desired information can be derived
from the data by operating on the cross-correlation function
and its spectral density. Also the cross-power spectra of
signal and noise constitute necessary information for the
design of the ideal piocessor, Thus the accuracy in the
determination of the necessary parameters 1is dependent upon
the nccuracy with which the density spectra can be estimated,
and 80 this problem will now be discussed in some detail.

The development ¢f a theory of spectral analysis of
empirically observed signals begins with the introduction of the
notion of the sample autccorrelation function. Suppose we
let

I‘ing.“,x"-

denotie the sampled values of the signal of interest. Then the
sample autocorrelatlion is

%"(Ynnﬂ: Xy Xapr 4 "'+xn-txh) for T=0,),- 1
dt)=1{ 0 t2n
$¢¥)  T<o,

e



The periodogram, or Fourd

ier transform of the sample auto-
correlation, is

é"(*) - z e-l‘(ift’ #h{"b) )
IH<n

eﬁnt't"} § ({-)Qj‘
b (t)= ]1

The Periodogram may also be written as

n-1
§.}f‘t = ch‘w)-&- 2 g_ ltos anfe - C}:hm

and also
1

2 R _
¢§>“m = 2[ Cos2mef - (rdy.

The periodogram,

like the sample autocorrelafion,
function qof its a

rgument.
Processes, we have

is an even
For a large class of stationary

where ‘bft) 1s the autocorrelation function of the process,
Then for every continucus function (}(f) We have

4
2 g .
- J O e T T
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where

= f e 2"t &z

T==ag

is the spectral density of the process, The expected value of
the sample autocorrelation ig

E{$®)= (1-LL) dcay

80 1ts expected value isg bias

ed by a factor of (!—"!%‘) from
the true autocorrelation .
Suppose that We form g linear combination of the true
autocorrelations given by

T
f’ tht;% =j [Z O Cos 11?"’&] §(‘f)d§'
Tz-po ~i Ta-do

Now the expression
assume Q= Q-
is called

in brackets is the Fourier transform (as we
of the weights @z ; this Fou
the spectral window A ), that 1s

A = > Oa Cos 2mf 2

T=-e0

rler transform

et us now agssume that th

€ stationary Process 1is
normal with zero mean.

nl
# % { é(tftd‘t'tz)¢(t,-m+¢°(ta+trt;)¢(ts“4’m}

=Ly M{é(ﬂt;m#d){-#a(ﬂt,)ﬁ#(bta)}
&R
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Utny

wWhere — | a8 N —»& ., Thus as N —s D2
Cov { bty ] > —-Z {detst-tydt) + bt +tydut- -4}
i
=L [ & ooty o oamifttty d
= n_ji e +e 144
2
But
eIttt | p2mifitirty) o oM it (et g 2mita)
- ezm{-g. QCGSQ“ﬁQ}
Hence

Cor [ Rty bt ] — -—j § 4y e “*Tt’ 2 Cos@n ity df

-2 124 comnfiocorsoy
3
"2

as N —co .,

Thus the deviations of the sample autocorrelation from the true
autocorrelation

§.1) = R -d2) T=0,t1,47 ..
is approximately normal with means

E{St} = E{et)} - = (1-Lydbay-dury

il ‘#i"t)—*o 08 N —>o00




and covariances

Cov { Saty), s,xt,)} = Cov {ctbhd‘),%(t\}

e

j &'y cosamit, cos2ft, d §
s >0

The spectral band power estimate is an estimate of
the spectral mass in the interval (f,-ﬁ,{ +'31) which is

£ 4R

$48 ~{oth
5;\@%%%(; Shdt+ j gbj(.g)df]’

The spectral window is
-gm- ‘fn‘ﬁé{é’§°+f‘
for 4t sis &“”‘

o Fhar Wase

A =

O N N

which 18 an even functicm of 5»

The corresponding weights
are

Qe = j Adye™™itdf =2 ] Ay cos 2{t df
f=o+h
= f ﬁﬁceﬂ a4t df = f":?t ] |
§ot SRR Rt A

& S At - Sin (g, —f\)t |
amt

= Cos 20t Sim2mRy
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Thus, in order to estimate
4 frh
W 2
F ko | AbEpH =) Ehd
{x-00 A} {h

we could use the estimate (the spectral band power estimate)

T achvr = Jj A $ . df

Iti<n

and since #.(t3=0 for Rizn this estimate can be
written 1 ‘§,+ﬁ

¥ m«»—-} A & df = /,( .y,

{=-00 -3 -;.4&

In other words, the spectral band power estimate 1is equal to

the energy in the periodogram 1n the spectral band of interest.
The expected value of thils estimate is

E tf Qt‘h@b = f Qe E{‘h\(ﬂ}
=00 t=—s0

i
= 7 a (-G
iti<n

=¥ Qewidity

t=-e0

Now the function defined by

s—-’%— for Itl<n

i S for MtIzn




serves as a welghting function to improve the convergence of

2 Qg Cos 24T

Kikn

to A§) as MN—>»® . 1In other words
2. Qg Wi Cos 2mit
fi<n

18 & better approximation to A() . The weilghting function
W¢ Just given is the well-known FeJer weighting function;
of course, any number of other choices are possible.

For example, suppose we estimate the autocorrelation

by
| .}i(MXW"‘szH}*""‘\‘mem*P) 'sﬂ‘ T=0,1,
$bB=1 0 for BT
Q‘L-'E) Jor T <0,
Then

$ () -for IH=0,1,--~1
# P-)} for (2>W,

80 the expected value of the spectral band estimate is

{s cxtc?&} S udity= Y Oewihit)

1:-&9 itisn, i1=-00
vwhere | -‘w lﬂ <n,
“‘:{ 0 dor Iti>n,.

This 1is the well-known Dirichlet weighting function.

s m‘
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The statistic tt% Qt¢n(t) under the stated
n
conditions 1s normal with mean

T Qe dit) = j (3 0euiecos2nft] B 4§
tin
itikn
and variance

S 5 0 Sor [ $ultd, Bt

ttl<n fuden

i
2 -
=y 2 O th%J §1(§) Cos 271, Cos lﬂft,_ d‘-
L
2

fjen jEj<n

4
A

(2 O, Ces20fts) T Q, ts2mits) §c§x &f

_»_ [t)en Itd<n
b3

- -%1- j: [ Ady sﬁ\&ﬂzd} Q¢ N> 00

Thus the above statistic suffers from two kinds of errors. One,
the bias comes up because the mean of the statistic 1s not egual
to

5 A, = j A $§y df

1=->
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but 1is equal to

'
Lowidtr= | [ 3 Ocwi C2nft] ehrdf
H<n

i
{Hen -3

The other error,

due to statistical fluctuations,
by the variance

is indicated
+ 2

) (8T @4,
<}
1

Further discussion of these points 1is given in the work of

Farzen (1961, 1964) and Blackman and Tukey (1958).
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7. DISCUSSION OF "PECTRAL WINDOWS

As we have 82een, narrow time signals have spectra
that are wide, and conversely. In order to give a quantitative
meas.re to this observation, we need to define the durations
of a signal and its Fouriler transform in a simple and useful
way, but no single definition can be sulitable for all possible
signals.

For a measure of the duration cf a time signal %it) the second
moment of !3?#“2 about its mean or some other suitably chosen
peint can be used, which we can take to be the origin t=0 .
From Q) <> G({) we obtain the Fourier transform pair

-2“-;{%&) «> dGU ( ) 4.#

where G({') = AH)QL*‘“ . By Parseval's formula we have
e 2

|15

Joo | 9%

JRCECaL

(:m)zj t? lgmfat

We therefore conclude that high ripple in the amplitude A or
phase (ﬁ results in signals of long time duravion. Among all
functions with the same amplitude A(@) the minimum phase one
has the shortest time duration.




To simplify notation, let us assume that

the energy
of the signals under consideration equals one:

J norat = | Ay,

The Schwarz inequality is

! [:&&zdt lz < j:za.s’dt f ngi’at

- Q0

where the two sides are equal only if 8; is proportiocnal

to 32 « Let us insert into this inequality the functions

, dsd
=ty | Gub= at

Hence
[ty dba) < [irae [ 48

Integrating the left hand slde integral by parts we have

_Ecg%} dt = t-%z—]: = —;—-jjg‘at ==

where we have assumed % is real and 13 >0 as t-—é:tOO .
From %.%_4._, 2464 1t follows that

J ﬁ(%fl)’dt - [ Gamhereg,
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Hence s
/ et , _
Tl_éj 2 dtj Y A df
If we let P2 =i: t? 32 dt - and dz'j.ou“ﬂz‘\i‘h d& then
we have gyl -“*—_ . )

The equality sign holds if %—%—‘-: '&t %(ﬂ where
‘k is a constant. Solving, we obtain

Choosing 'k=‘2ﬁg="2dz we obtain
. ol
Jt)=C e g

The transform of 3({) is

1 X _(21__}_)_1
G({‘): C Epﬁﬁ 9-32132(2“‘)’:&[%'% e yai

Thus a narrow pulse 3(“‘.) has a wide spectrum Gt§) , and
conversely. This pulse %d) is the well-known Gaussian
pulse.

Another set of well-known pulses are:

n 7 T
{ Cos _'r%j_ for "-Z‘StS—

Yty = 2
3 i 0 Otharaise

for various values of YL . These are called the nth power
cosine pulses., The transform of %(t) is

2 .
- nt -).TH'}t
G(%)-J N dt,

T

-———

2
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Let us choose our units so =2

, 8G
Qosn%}- for  Jt]e |
g(t)z { i ¢
0 for K>,
Then
G({)r..-,j Cosn—‘g— e'm‘;ft dt
}
=2 J Coﬁn%t— Cos 2m{t dt
L]
W Cos 2N
:%— = - L—%— When N=1{,3,57,---
3 ’ 2 2
[ k) -4 ]
%=0
- 2 . Y‘.! - 53!\2“‘}

% whan n=24¢, -
| (k- 1457
*=|

W4
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For example, if N=! then
3(t)= Qoﬁ%_g ‘s"" HNES
and
4- t051“§‘ ( =
= Case T =2
=7 Toe2 )
If on tle other hand we had let T=1| (and n=1 ) then
Cos Wt eSS
Yty = >
0 1t >3
and
4
G_(‘g,) = Cos TTE QoSQn&t dt
“3
Letting t'=7t we have

i ! . ;
Gh ey Cos% toslﬂ}é- dt

Qci%'t: Cod Zm-?i_t dt

=
14 Qes2WE
i1 T \-\b(:;)?'

from the foregoing resuit,




Hence

G =7 ?is:fz (for Cose T=1)

Now suppose YL = 2 . Then
int ™
QQSI-T% = %"":‘[ QOS-:C— -}Q\" 'ﬂS-;)-

g(t}={ 0 -s'n\“ lﬂ>§-,

This 18 the well-known pulse named after the Austrian meteor-
ologist Julius von Hann, and called "hanning" by Blackman and
Tukey (1958).

If we let %:T » then the von Hann pulse becomes
%Lt')t-;-(!-'i‘tos%_t) for 121<T

Now %&‘E) may be written

PR S 1
gm-_—%(wge T4z T ) redtcd)

where Tett(t) | read "rectangle of 1 " is defined as

- : for 1YsT
Qoct) = rect(t) = { o for T,
The transform of tecl(t) 1g
T S W4T
GR(.h:QECT({)z J Cusmft dt =27 - T




Hence the transform of %i{} 18
G =[S (st IR 588 -3)] % 2T ;:;g S 20T ]

_) sm2mfT 4L 4in 2T §¥;T)T+x Gn 2§ -2 T
2 T ¥ T+ 4 'ﬂ'(f-—)

i ( \
2w il -y

___5;nm‘r[ N M~ T +2mf4 ]
2 (v g (I

. SN
_ Sin2miy l\(lvﬂk ('-'T,r-*) - nf)? }

2 T awgy- (%)‘]
Trl
= $in 2T T

a4 (anh?- ()]

{in2nd T 1 |
me— . T}
2T ( ™) m-aniT)?
Ir we let ol=2T{§ | then
indl |
G"&)--‘TIT 5“ ‘n’l_dl s
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The spectrum Giﬂ is8 thus the 'é% function, corresponding

to a uniform aperture distribution, multiplied by W2T times

the factor —lr | When d=*T | this factor is

infinite, but QW) remains finite 8ince $ind3 also vaniches
at d=%T . The first zeros of %d‘— are thus suppressed.
For increasing values of [l , greater than T, the factor
--TFL_-F- decreases rapidly, thus reducing the intensity

of the side lobes, This 1is of course why a cosine-squared
pulse is used in Preference to the rectangular pulse in 8pectral
estimation. The following figure shows Ga(f-) for the rectangu-

lar pulse QJritd)=| ropr RI€T and =0  rfor |t|>T ana
the cosine-squared pulse:

.

N~

S
.

Do wv

} DECIBELS

(WOTE- BaskEN CukvES
INOXATE NEfATVE
AMPLITYO8s

2 v @

&

)
S

necrwenag s Ga/2r
oML SMUMD G /T

Figure 23. Spectra of rectangular and cosine-squared pulses
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8. RELATIUNSHIP BETWEEN CONTINUOUS AND DISCRETE APERTURE
FUNCTIONS

Suppose that we have an array of equidistant elements
{ AXg=d) connected in phase with weighting T(I;) fT()C,Z):T& ,
See figure 24,

Ta,
LE!

l ‘ |
wd W, 4{ d{

fe—— ala-dd —*‘

Figure 24, A six-element array

We shalil only discuss the symmetrical array consisiing of 2n
elements; a similar theory can be developed for an odd number
of elements.

The pattern of this type of array as a function of
direction @& 1s given by

n 2T X4 4B
| Ap®)] = 2] & Tt =—

Let us indroduce the new variavles

z Xy _ (k-3 _ by =121
X *Tnd = and '({-I)Ti for k=2,




g4

and

Then we have

| At =2 ,*X:T* Cos 2171*5!

2 _\T5
=2 ' *ZﬂT* Cos (2k=1)o 2>

The function !AM(B)} 1s periodic¢ with period 2n

Let u3 now consider a contin s aperture function
TetX) of width L =2nd passing through the points (X, Ty)

of the array. The pattern due to this continuous function 1is
¥

2
A5y = Te (x) Cos 2UX5 dX
=i
2

in comparison to the pattern of the array, which we recall was
h
A, 5)=25 TyCes 23,
n- _&u‘

In order to show the relation between A, (§) and Actk)
we represent the array I4 as the product of Te(X) with a
uniform array of infinite extent and reduced interval I/zn

= comb_t_ - T(X)
Ty i




Here we use the notation

CDMbF U(‘g) 2*2“}}(’&{) é(x “&F)

See Flgure 25:

Figure 25, Tﬁ as the product of 1.&) with a comb function

As a result, the spectrum of Tk 1s the convolution of the
spectra of CO‘Rb;% and Te(X) . Because the spectrum of
COmbiﬁ: 18 another uniform array of infinite extent with
period 2n(= L/d) we have

Azn@) = comby, * AC&.S)
or

A5 =5 AcCsHnk) = repan ActS)

i:-‘ﬂO




-

where Tep 15 defined by

o0

Pepputty = 3 UCt4RT),

fn~o0

This 1is the well-known result of aliasing (Blackman and Tukey,
1958; Jacquinot and Rolzen-Dossier, 1964),
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9. LISTING OF VARIOUS APERTURE FUNCTIONS AND THEIR WINDOWS

The form of an aperture function i1s indeterminate to
the extent of a proportionality factor. In order to compare
different functions some conventlion must be chosen to {ix
this factor. We suppose that the real aperture function 9¢x)
vanishes outside the intervai =-11€X <Y . We want the
function to have the maximum possible trarsmission. Because the
intensity at the center of the pattern produced by the uniform
aperture function 301):):[ for -‘é&)ﬁé ‘/z is

2

[j%dx] =

Ioy= [G.““ﬁ]z‘-’

Wi

we shall consider in the case of a non-unifurm aperture function
the ratio

Jw G}um2 : d 2
I,(O)z[G.tO)J :[L 4 x].
2

We wish to decrease side-lobes as much as possible without
decreasing 10V T.(0) too much.

The total energy transmitted by the aperture is
propertional to

T -_-J ’ [30:)]201:(
~3

which for a uniform aperture function is

ltg‘ ‘-

Therefore we are concerned by the ratio

L
,’2 2
%«*:J_L [Joo] dx,

2
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Qur obJject must be to decre~se the side-lobe level without
decreasing T/, too much.

The width of the main lobe of the pattern Gi#) is
also of interest, Let us as a convention put the width Af,
of the main lobe of the pattern from the uniform aperture
function equal ©9 unity; this unit width turns out to be
the distance between the two po.nts with ordinate 0.4n5. We
then extend this definition to other patterns; their widths Al
will be taken always to be the distance between points of the
nor aiized ordinate 0,405,

To confirm our notation in this section, we have:

real {unction of X dor (x| ¢i
Apertuce %LI) = { 0 -ior » );

y .
Pattern  : 2 SIMax8 gy
= x) €
{or window) Go) L_ 3" )
3

2
Intensity : 18 = | G(Bﬂ
Zero subsaripts refer tc the uniform aperture function Ju(X)=|

for \Ilé“i . It turns out also that all the aperture functions
we consider are even functions of X so Glb) is real.




O
O

Triangular aperture: %(}:): I=f2x]
1(8) _ Sin* 3T
T T
ooy Wigns . AL,
'%:-—0-33 ) IOLD)- ’ 5 ) AQQ- ‘l‘-g
£n ATTX

Sinus cardinal aperture: 8(1) =

4

-

2TX

1) 27

2
1(8) ,t 5m<9+n-5m’\84)__}
)

INY

T diam I(?A: L 2._. LR
7 =045, Lo ( T ) 0.35, oL .42
Cosine aperiure: %(_}__) = CgsMX

1) _ Cos’ WO

TC0)  (i=#§*)*
T _ ko4 Al
= =0 S, IOW) - 4‘ ) AL, ‘34’
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ST !
Gaussian aperture: ?‘-‘Ji) = e 16X
£ Lt

J{LY))

(Note: This 1(6)/110) does not represent the intensity
exactly, as it neglects the cut-off of g(x_) at y=+14 .)

E‘:J_i: = 0.31, 1('0)
T 32 Igu)) =0, Qo =112

5, (= "*’x".‘}ﬁ aperture: 3(!) =(\- "‘"Xz)%

1) _ [8 1,(8) }2

T1w) gt —)
R - o4s o) r3m &)
T 110 (xe) ~Chhsy e

6.

(1 - 4xH? aperture: 30:) = (- 4x2)?

1 v 2
1®) -{ \s®| =5 [E ]X‘“E”}
T Az I [‘SJ; (Ne)¥

i:ﬁ.‘-“ I‘.D) 2 —--—..
’t. ’ 149 =928, 24, K

Xy (re)
Note: Here AwLm“lvr(V"’) (Te)Y wnere }y 13 3essel

function of order /.
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7. (o) sperture:  §,00 =C-4x)Y for 20

T /4y
1 Fa/+i)

G40 = Ay+1(6;
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