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ABSTRACT

Expressicns were derived for the mean ard mean square
value of the output of a phase detector to which is applied a
sinusoidal signal corrupted by narrow-band Gaussian noise,
together with an oscillator reference of the same frequency as
the signal bu:t displaced in ghese. The analysis was hased oxn
the model of a balanced phase detector composed of peek-detecting
dicdes producing 8 difference output from the two halves. Based
on the above output parsmeters, a measure of phase detector
performince was defined in terms of a "noise-to-noise ratio,”
the square root of the output variance without signal divided by
the same quantity with the signal present. The case where signal
and reference are in guadrature was treated in detail, yilelding
curves of this ratio under varying input and reference coaditions.
In addition, the voltage output "signal-to-noise ratio" was
calculated as a function of thue phase angle between signal and
reference, and the resulting graphs show the effects of reference
level and input signal-to-noise power ratio.
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1. IRTRCDUCTIOR

With the increasing use of phase-comparison techniques in
the design of guidance and commniceticn equirment, it is important
to know how devices providing such operation behave under varying
conditions of tbe signal and corrupting noise environment. Ideally,
a phase "comparator" or "detector" combines a received signal and
a locally generated reference waveform in some manner tc produce
an output voltege which is proportiox'wi to the phase difference
between these inputs. However, in practice this desired linear
operation does not continue inderinitely as the phase difference
increases in magnitude, instead resulting in the familiar leveling
1,2 In
cases vhere the received and reference waveforms are relatively
unperturbed by noise and differ little in their time behavior,
the non-linear portion of the phase-d:-actor characteristic can
be ignored and a linear analysis of its performance carried on.rl:.3
But with the advent of systems working in a high noise environment,
large fluctuations are superimposed on the received signal vhich
cause corresponding phase deviations from the normally steedy
reference vaveform, resulting in excursions beyond linear detector
cperation.

off and svbsequent decrease in detector output voltage.

It was for the purpose of considering the performance of
phase detectors under such high level noise conditions that the
present study was undertaken. In analysis previously carried out,
the simplifying assumption was made thut the rererence amplitude
was much larger than the received signal magnitude, resulting in
the phase detector output voltage being independent of this
reference a:ntp].itu.de.5 While this is a valid approximation in
practice for relatively unperturbed signals, it no longer holds
vhen the added noise fluctuations are sufficient to mske the
over-all received amplitude comparable to the reference magnitude.
The present investigation proceeded under general signal, noise,
and reference parameter conditions.
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2. MODEL OF PHASE DETECTOR OPERATION

The noise performance of the phase detector is atndied
here on the basis of a model of its operation which has been
used in previous applications to automatic frequency and phase-
control lyste:u.s It is assumed to be a balanced phase detector
consisting of two peak-detecting diodes and associated filter
circuits, as shown below in PFPigure 1, together with the usual
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FIGURE 1 - SCEEMATIC DIAGRAM COF PHASE DETRECTOR

transformer windings to introduce the received and reference
voltqgea.l’ 2 The expression for the output voltage e, of the
phase detector ¢an resdily be ottained from a vector disgram of
the circuit voltages,; once the latter are written in terms of
amplitude and phase.’
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For the present noise enalysis, the received voltage e 1
eppearing within the diode circuits is taker to consist of a
cosinusoidael signal of angular frequency w, upon vwhich is super-
imposed narrow-tand Gaussian noise centered at w. By the well-
known Rice-Bennett representation, e 4 can be expressed in the

desired polar form by:7’8

e, = pcos @ (1)

vhere p is the amplitude of signal plus noise:

o = [<A + x<t>)2 . yz(w]l/a , (2)
A = the amplitude of the received sfignal,
x(t), y(t) = the slowly time-varying in-phase and

quadrature amplitudes, respectively, of the
noise centered at w, which are independent
Gaussian random variables with mean value
zero and standard deviation @, and

6° = the sotal noise pover (for unit resistance);

P, being the phase of signal plus noise:

-1 t
q):I.= tan <A+xt> * (4)

The reference voltage e, within the diode circuits is a
sine wave, assumed to have the same angular frequency as the signal

portion of e, and an arbitrary phase:

1
cr = B Bin ¢2 2 (S)
where B = the amplitude of the reference voltege,
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¢2 = “’t"@o i) (6)

q’o being the arbitrary phase angle. Thus, when (po = 0, e. is
in quadrature with the signal portion of ey, & condition typical
of many phase detector applications.

The filter circuits associated with the diodes (See Figure 1)
are made with sufficient bandwidth to pass the narrov-band noise
components, and at the same time reproduce the crests of the
half-wvave rectified voltege. Thus, the peak-detected contributions
of both halves of the balanced circuit are seen from the vector
diagram of the circuit voltsges in Figure 2, where their positions
take into account the gquaarature rela.tion.6 To one of the dlode

FIGURE 2 - VECTOR DIAGRAM OF CIRCUIT VOLTAGES

circuits is applied the vector sum of e i and half of the reference
voltege e r/z during its conduction interval, while the other receilves
the vector differznce. Upon peak detection, each half produces &
rectified filtered output voltage equal to the magnitude of the total
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applicd voltage vector. Noting the magnitudes of the individual vectors
on Figure 2 (obtained from Equations (1) and (5)), and defining the
phase difference @ between e 1 ard e . in addition to that of guadrature:

® = @l - ¢2 )] (7)

and e, of the two haives arz cbtalined

then the output voltages ey 2

from the triangle law:

11/2
2 B
°l = |p +E-+Bpsin¢ ’ (8)
z 11/2
e, = {pa'r%--Bp sin @ ) (9)

vhere the positive square root is always understood, and from
Equations (3), (6), and (7):

? =9 +9 - (10)

Since the iadividual peak voltages appear across the

output terminals in opposite directions, the phase devector
ocutput voltage e, consists of their difference:

(11)

Equations (8) through (11) give the analytical representation of
phase detector behavior. to be used in subsequent calculations.
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‘s STATISTICAL FRUPBRTIES OF THE OUTPUT

Tie expressions darived for the phase detector show that
the output voltsge depends on the statistical nature of the nolse
superizposed upon the received signal. As a result, the performance
of the phase detector cean only be described in terms of probability
distributions and their associsted moments. Two cf the most
useful factors related to these ares the "mean" and "mean square”
values cf the output, which are treated in this analysis in that
crder.

¥oting from Equations (8) through (11) that the outpus
voltaga e, is expressed in terms of the amplitude p and phase
Qi of the signal plus noise, it is necessary to kmnow the joint
probability distridbution of these random variables in order to
formulate the desired output properties. Such a density function
is obtaired from the corresponding description of the in-phase and
quadrature amplitude variablas of the corrupting narrow-band noise,
x and y, respectively. It was assumed that they were indepeff®®ht
Gaussian random variables with mean value zero and standard
devistion G, where 6° 1s the sum of the equal individual noise
powers g /2 of the two components, called the "total noise power.”
Thus, the jJoint distribution Wz(x ,7) takes the simplified i’om:8

W(xy) = 25 exp [- M] . (12)
2x 26°

By means of Bquations (2) and (4) treated as transformation
relations, the desired joint distribution Wz(p,q>1) of amplitude and
phage of the signal plus noise is obtainedd:

(p2+A2 - 2Ap co8 @,
¥, (p,9,) =-2—°xx>[- = i] . (13)
2™ ax 262
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The application of Equstion (13) and the expression for e, in
terms of p &and cp1 to tne well-known statistical a.veraging
formilas yields the mean value (e \ and mean square value <
of the phase detector output:

0 2%

ey = [ etom) wompme v

a2xn
/eoz\ J' [eo(p,(vi)]z WZ(O’Qi)widp ) (15)
(o}

where the integrations are carried out over the appropriate ranges
of the amplitude and phase random variablies.

While the desired calculations can be carried out directly
with Equations (14) and (15), it is more convenient to convert
these expressiocns back into the original in-phase and quadrature
noise varisbles. As a result, the following equivalent pair of
formulas is obtalned:

<eo>. =f[ e (x,¥y) W(x,y)axdy (16)

=j f {eo(x,y)]z Wo(x,y)axdy (17)

vhere x and y have infinite ranges, and the phase detector output
voltage is expressed in terms of them with the aid of Equations
(2), (4), ana (8) through (11):
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r B ¢ B
eo(x,y) = lx+A+§sin¢°) + |y + 5 cos @

2 21
5x*A-§8m¢4+ky-§cos%)j . (18)

Together with Equation {12), Equations (16) throughk (18) form the
basis for the calculation of <e°> and <eoz> in this study.

3.1  THE OUTPUT MEAR VALUE

To aid in the application of RBquation (16), it was found
advantsgeous to express the phase detector output voltage eo(x,y)
in integral form. The desired axpressiop results from a table of

Laplace transforms :9

1
A

eo(x,y) = :\-}'_: J; -:‘33-7-5 sinh {Bt [(x+A)sin P+ ¥ cos tpo](

. exp { t[(xen)? + 3% + {;]} , (19)

vhich is valid over the infinite ranges of integration for x and
y. Based on the above representation, the detailed evaluation
of (’eo) is carried out in Appendix A, which yields the following
expression for the output mean value:

03 = o oo { SR oo o8l o, ]

- exp { @2\ | apy (28)+ @i, (izﬁ)} ,  (20)

i L
vhere Io(x) and Il(x) are modified Bessel functions of the first
kind, and &,p are the normalized parameters:

2
1(2 B) AB
a = —— [A° ¢+ ; B = =—s8ing . (21)
26° b 2 e
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Examination of Equation (20) with the sid of Equati s (21)
shows that <eo> has the expected behsvior for extreme values of
the above parameters, based on the model uesed. Thus, when
either the signal or reference emplitude vanishes, or these two
sinusoidal components are in quadrature ((po = 0), the output
mean value ie zero. On the other hand, in the absence of noise
(6 = 0), the phese detector yields a mean value:

2 2 1/2

x/2
A%+ 1B sin @ + %—) - (Az- 1B sin 9_+ °p , (22)

<eO> 6=0

vhich for the case when signsl and reference are in phase
(cpo = x/2), reduces 4o just the reference amplitude B.

2.2 THE OUTPUT MEAN SQUARE VALUE

As in the case of the mean value, the square of the phase
detector output voltage was expressed in integral form to
facilitate the evaluation of < ) from Equation (17). This is
obtained from the following equivalent expression for e (x )Y)s
derived from Equations (8) through (11):

2 _ °1 - eZl
eo(xxy) = 2Bp sin (q)i + Qo) ey + e2( . (23)

From the table of Lapiasce transforms, the resulting integral 18:9

eg(x,y) = 2B [(x + A) sin ¢, + ¥ cos cpo] .

2
- exp {- t[(x+A)2 + yz + %]\ s (24)

which is sgain valid over the infinite ranges of integration for
x and y. 4s derived in Appendix B, the resulting expression for

Al
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<e°2> is a complicated power series in Bz [aee Equation (21)} , whose
coefficients contain integrals involving confluent hypergeometric
functions, for vhich no exact closed form evaluation can be

found. Consideration of this general formula will not be
undertaken here, since of prime interest are calculations of

phase detector performance which are treated in the fc?llowing

sections.
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4, CALCULATION OF OUTPUT NOISE-TO-NOISE RATIO

While the mean and mean square values previously determined
give a partial statistical description of the phase detector output,
these factors in themselves do not provide s criterion for the
performence of such a device in the presence of roise. In general,
a detection system has two states of interest, one when a signal
is not present and one when & signal is present. From this it
i8 natural to seek some parameter with which to compare the effect
of the ever-present noise on both states. Since in each case
there are output fluctuations about some mean value (wvhich may be
zero), a suitable choice would be the "variance of the output,"”
denoted by 602. In terms of the moments previously discussed, this
qusntity is defined by:

602 = <e°2>_ [éo}] - (25)

For the case where the signal is present, the expressions
derived in Appendices A and B are substituted directly into
Equation (25), and the resulting variance 1s denoted by 6 °.

When the signal is not present, an evaluation of these formulas
at A = O must first be made, with the variance thus cobtsined
being denoted by an , since only noise is received here. Fronm
these two definitions, the criterior of performance for the phase
detector is 4akea to be the noise-to-signal plus noise output
variance ratio, to the one-half power. This quantity, tSn/tSs ’

is called more briefly the "noise-to-noise ra.ﬂl;:l.o."l{)’rL Since
the output mean value was seen to be zero for A = 0, this ratio
can be vritten in terms of the moments from Equation (25) in the
following form:

\
uQ

o )

(26)
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vhere the evaluation at zero signal amplitude is indicated above.
Equation (26) is now applied to an operating case of interest
for the phase detector, namely when the signal and reference

are in quadrature, i.e. (po = 0. This is additionally desirable
because the output signal-to-roise ratio is not meaningful vhere
po measure of signal exists.

In this case of null operation in the absence of noise,
the output mean value <eo> = 0, even with signal present. From
Equation (21), B = 0, so that from Equation (B4l) of Appendix B
the expression for <eoz> reduces to the single integral:

1

2 ( 2
<eoz> = §~ Jo ax € F (% 2; - 1"—‘-} ax (27)

vhere ll'l stands for the confluent hypergeometric funciion, @ is
defined in Equation (21), and v is the dimensionless ratioc:

y = 2. . (28)

Setting A = O in Bquation (27) and substituting it and the original
form into Equation (26) with <eo\) = 0 ylelds an exact expression
for the output noise-to-noise ratio.

To relate the calculations made with Bquation (26) for
this quasdrature case to laboratory measurements on actual devices,
the above parameters are expressed instead in terms of the total
recelved power Pi )
power ratio "a,” ané the reference-to-total received power ratio
"b". These are given by the relations (for unit resistance):

the reference powver Pr, the input signal-to-noise

2 2
- A . - B

Pi - 2 +62 3 Pr - 2 3 (29)
2 P

s = 25 ;b= (30)
26° 1
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As a result, the parameters & amd y appearing in Equation (27)
take the form:

a+%(1+a) , (31)

ro- Mire) : (32)

The evaluation of the output noise-to-noise ratio using
the exact integral formula of Equation (27) led 4o ingolved time-
consuming numerical procedures, sc instead various approximation
methods were considered, the details of which sppear in Appendix C.
A simplified functional form which fitted the confluent hypergeometric
function over a rarnge of the parameter y led to an appro.imate
result in terms of the modif.ed exponential integ,ra.l.lz But since
the latter's numerical evaluation became quite immlv/edu further
simplifications were scught. As a result, it wes possible to
optain reasonsble closed-form expressicns for two ssymptotic cases.
These are:

Smal]l Reference Amplitude Limit (b-—0):

1/2
o]
n 8
68 1.¢®
Large Reference Amplitude:
- 11/2
2
S ~ ’ L-%
3'— = ' 2 ) (3}")
& 1. 1+2a 15 - 9(3+a) + 2(6+6a+a”)
2r 27,2 |

where v 1s expressed in terms of "a" and "b" by Equation (32).
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The preceding formulas are presented graprically in
Figure 3 in the form of curves of O /6_ for the quadrature case
(<P° = 0) as a function of "a" for t.e lower limit and large
levels of "b". Intermediate reference values would result in plots
falling in between the sbove extremes, and these would be apprecpriate
for subsequent comparison with experimental data. But the curves
calculated here do reveal the principal effect of the 5132131 on
the phase detector in decreasing the output noise uver that in
its absence, as seen in Figure 3 by the dn/d , velies steying abiwsre
unity.. This is quosite to the~behavior of emplitude detectors,
so judging from the output noise-to-noise ratic it can be concluded
that the phase detector does not operate in the manner normally
ascribed to detection processes.

The spread between the curves of Figure 3 illustrates i
relative merits of the two extreme modes of operation. For large
_reference levels, the dn/cs ratio becomes insensitive to input
signal-to-noise ratio changes, but never rises zmich ebove unity.
On the other hand, the use ¢of a low-referernce level results in
significant output noise decreases with the signal present. whica
could serve as the basis for scae type of detection scheme, but
here the dn/d , ratio is affected more by varying input conditions.
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5. CALCULATIOK OF CUTPUT SIGNAL-TO-NOISE RATIO

For characterizing the respomse of & physical device to
a combinstion of signal and noise waveforms, the most commonly
used criterion of performance is the "output signal-to-noise power
ratic,"” denoted by "a.o". For the type of input to the phase
detector and with the’output specified in terms of voltage, the

square root of the above quantity is thus defined as:lh’ 15

javerage output for signal} - [average output for]
_ . l__plus noise input ‘  noise input only (35)
\/_‘—o [ata.naard deviation of the output a.cout], ’
the mean for signal plus nvise input

Since from Equation (20) it is seen tkat for no input signal present,
i.e. A=0, <eo‘7 = 0, then in terms of the moments previously
discussed, this ratio is given by: '

- . Co) . (36)
o TR "

As indicated previously, the exact evaluation of <e°2> does
not have a form suitable for application to Equation (36), but more
tractable approximate expressions were obtained for limiting cases
of the reference parameter "b." Specifically, the derivations of
Appendix D ylelded for the voltage output signal-to-noise ratio
in the general case of an arbitrary phase angle tpo separsting the
signal-reference quadrature condition:

Large Reference Amplitude Limit (b—w):

Va, = f2asing ’ (31)
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Small Reference Amplitude Limit (b—0):
%8 -8/2 a a
[ = 2 € [Io('é') * Il(i):[ sin (po (
'\ a.o = = 172 ’ .38)

bogoe [1f3) e8] e,

1 -8
+23(1'€ )cosZQ)o

-

where "a" is the input signal-to-noise power ratio defined in
Equation (30), and I, and I, are modified Bessel functions of the
first kind.

1

Graphs of the calculations with Equations (37) and (38) are
given in Figure 4k in the form of curves of-\/a_.o as & function of
the sine of the phase angle ? for two values of "a" and the limiting
reference levels. In spite of the radically different functional
forms exhibited by the preceding two expressions, their resulting plcis
are seen to approach each other very closely over the initial angle
range for each value of input signal-to-noise power ratio. Thus,
such a relatively narrow spread shown in Figure 4 would appear to
include the curves at intermediate reference levels, which should be
the subject of computationsl verification in the future.

For the first &° off the signal-réference quadrature condition,
the voltage output signal-to-noise ratio varies linearly with sin @o s
with the constant of proportionality being -\/2a or slightly below
over a wide range of reference levels. With larger phase offsets,
the limiting curves will diverge more markedly due to the subsequent
departyrve from linearity of Equation (38). But with the phase detector
typleaily operating in quadrature, a small phase shift occurring
betwesn signal and reference will produce an increasing output signal-to-
noise yatio which provides the means for cor.-:cting such waveform
displacements.
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6. CONCLUSION

The analysis of phase detector performarce for s sigunal
plus noise input was carried out for & balsnced zircuit with two
peak-detecting diodes. The model of narrow-band Zaussian noise
used was considered appropriate for most of the applications
encountered. The criteria of "noise-to-noige ratio"” aud
"signsl-to-noise ratio" at the outpus were selected to evaluate
the utility of this detection process. Although computational
difficult}es precluded obtaining a complete range of analytical
resulis, the approximate formulas which were fourd served 4o
illustrate the salient features of phase detector behavior.

For the signal and reference in qusdrature, a relatively
smali decrease in output noise resulta whern ithe signel is present
for a wide range of input signal-to-noise power ratios a® large
reference levels, but a larger spread of outpui noise-ito-noise
ratios is exhibited at low reference levels under varying input
conditions. When the signal and reference depart: sowswhat from
the quadrature condition, the voltage oufpul eigaal-to-noise ratio
is roughly proportiomal to both the sine of this phase displacement
and the corresponding input ratio (for value: beiweer unity and ten)

over a wide range of reference levels.

It is the aim of this somci._.t resiricted anslysis %o
encourage further efforts in investigating more general phase
detector performance both from a thsoretical and experimertal
viewpoint. One such study has considered the sams type af clircwdt
with noise present in both the signel and refercrce :bannels,l6 but
the results are too complicated to yleld prastical irnfosmation and
in addition stress the square-lsw behavior of the diocdes which iu
practice is a less realistic model. Since equipment applications
are tending increasingly toward the use of more sophisticated phure
detectors to improve performance from the uoise and other standpoints,
it becomes essential to extend the presenily kmown smalybical teshnigues
in order to understand the hbehavior of such devices,
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AFPENDIX A

- EVALUATION OF THE OUTPUT MEAN-VALUE

The integral representation for the phase detector output
voltage e o(x,y) , BEquation (19), and Equation (12) for the joint
distridbution W (x,y) are substituted into Equation (16) and the
orders of integration reversed. By the addition formula for the
hyperbolic sine:

sinh(u + v) = sinh u cosh v + cosh u ginh v, (A1)

the expression for <eo\ contains only products of intexrals in
/4
x and y:

2
& - f;‘sT“" = (12)

Jf exp t(x+A)2 + -——]} sinh <Bt(x+A) sin ¢ ) dx -

26

J < 5 $ cosh (Bty cos cpo) dy

J

>
|

{ % +-}-§‘ yal, sinh (Bty cos 9_) dy(

(
f exp < t(x+A)2 +-—~} cosh <Bt(x+A) sin cpc} ax

26 J

The second double integral in the bracket vanishes
because of the integration with respect tc y of an odd function

over symnetrical limits. If, in the remaining part, th: variable x

Page 1A
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is translated by an amount - A (the infinite limits remaining unchanged)
and the square is completed in the resulting exponent:

o] o) w

+;z-[x-;§-z-(t+;z—z-)‘lr}:

Tt exp (- éi. [1 - -——-lt + — ]] X(£)y(t) , (aAW)
2 | 26| 262

then there results for Qs-> :

< > 262:(37 ;37- exp |-

where

X(t) =fexp<—t+—l— [x--—é'-t +-—l—)-l]2 sinh(Btx sin @ ) dx , (A5)
o 26” 2621 26° ©

Y(t) :L exp <- (t + ;;—é-)ya> cosh (Bty cos q;o) dy . {46)

The above integrals are evaluated by Reference 17, 353, p. 164,
os. (3) and (4), ylelding:

“ 12 L \‘-1/2 thzsinzw \"lf
X(t) = 27t + =5 t o+ = .
202 v = (
Bt L)L (&7)
ginh (—5 (t + — sin @ s

26° 26° °}
Y(t) = = t + = exp t +-—= ) .

26° ¥ 262 |




Multiplying Equations (A7) and (A8) together, combining and
simpiifying the exponents, the following expression is obtained:
Xt + =

-1
= “;?i'z‘)lf

ot <__ 2" %}

Noting from Equations (A4) and (A9) that in the exponents

-1
1
e
2

x(¢)x(s) =

) -1 [BZtZ
exp

(a9)

= ¢

l--—-

26°

the substitution of X(t)Y(t) into <e°> and canceling terms yields
the more compact form:

ot

<> ) exp +_l._)-l\sinh {Btt +L’-l},(m)
262xl/ 2 A t3/ - 26 } 26°
vhere:
32$A2+%_2. ; B =:—B—sinq> . (A1)

The evaluation of Equation (AlQ) proceeds from Equation (A9)
by making the substitution:

+-2-;—2-)-1 = 26° [1 -t +;§2-)-l] , (a12)

vhich results in <ec> as the difference of two imtegrals:




0)
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<e0> - :375[ f—;‘;‘% exp{ (t + ;g?-) x} sinh <£3t“c s ;?—)-l} (A13)

t+— sinh<

26°

=N

In the first integral an integration by parts is performed, le*ting:
H

4 S R ot

/ sinh<6t(t + 262 } ; dv = t—37-2-

Taking the indicated differential and integral yields:

u = exp/-at(t+--5

26"

t -1 -1 -1
i L1 \
du = -— exp -at(t+——) >5goshett+-—,: - asinh (Bt |t + } :
26° { < 26“ { 260
-2
. t+..l_\ ;
26"
v = - 2
tl72

Substituting into the parts formula, the evaluated part vanishes at

¢ =@ due to the t /% factor and &t t = O due to the hyperbolic

sine factor being of order t. Putting the remaining integral part

into Equation (Al3) and arranging, the result is (eo\) expressed
exp Y at (t +

in three terms:
- 1 -l‘
cosh(ft ‘t + —-»)
26°
* |

r o
1 g | e 1
<e°> ) :17—2-!_52f0 tﬂz(t+2c$2
| sinh Btlt + 1|
{ inh@t(t zoz) } )

-2

L
267
\

-fOt—%‘—z-t +j2l,'lexp<- mit +;§—2-)-1} sinh 4&1; +-—)L>

]
e
8
d{lp‘
ot
N
T
+
3
1> Las
N -
1
3"
8
'
ct
+
Sl
(o W Lol
n
-
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Next, the following change of vaiieble is made:

“ -2
u = tt + ._.,-) s 28dm = atlt + -—) ;
) 262 P
1 Vo .L«uazl/ 2 1) 1

b = B - Yeo( ; (“ - ;
22(1) Y2 o 268l 26%(1-u)
att = O, u = 0; att = », u = 1.

Substituting into Equation {Alk4) results in simpler integral forms:

1
<e°> = 6 \E— 2B f l’::éz e ™ cosh Bu dn
o

1
1/2
- f l’“l > €™ ginh Bu du
u

1
1 .
[ YTV €@ stmpuan) . (45)

Two basic integrals are to be evaluated in Equation {Al5),
one being defined by R(p):

1
R = 1 e Pl gy . n6
(p) fo RTCTRRST (416)

This is found directly in Reference 9, table 4.3, p. 138, no.(1k),
for ¢ = u, b = 1/2, ¥V = 0. Noting that [ (1/2) =+/%, there results
the evaluation:

R(p) = xeP21lB) (A7)




w———

vhere I o(p/Z) is the modified Bessel function of the first kind and
order zero. Next, the second basic integral to be evaluated is
S(p), defined by:

: (1 - u)l/2 -pu (A18)
o uI’ ?
First, differentiating under the integral sign with respect to p yields:
1l
I R
o

Applying Reference 9, teble 4.3. p. 138, No. (14), for t = u,
b = 1/2, ¥ = 1, noting thet | -3/2) = </%/2, there results the eva.uation:

4S8 - X ~P/2 | ‘
‘a‘;‘;ﬂ = -5 © / (%) . (420)

where Il(p/z) is the modified Bessel function of first kind and order.
Equation (A20) can be /integrried dirsctly by using Reference 18, p. 57,
no. 3.105, for ¥ = -1,.u = p/2, noting that 1_1(p/2) = 11(P/2):

s(p) = -’zie'p/z {Io(g‘l + Il(g)} +C . (a21)

The arbitrary constant is evajuated at p = 0, yielding:

c =s(0-% , (A22)
where:
.1
i _ 1/2
s0) = - a (423)

o u
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Psge TA
From Reference 19, p. 196, no. 855.1, for x = u, m = 1/2, n = 3/2,
substituting in for the required garma functions:
4
1 vx
Mg -v=, M3 -2, e =1,
S(0) is found to have the value:

8(0) = -’2# . (a2k)
Substituting Equations {AZ2) and (A24) into (A21) thus gives the
complete evaluation of S(p):

s(p) = %P2 l (2] + 1 {R)J (n25)

By expressing the hyperbolic sine and cosine in terms of
exponentials and combining them with the other exponent, Equation (Al5)
san be written in terms of the basic integrals just evaluated in the
following rearranged form:

<eo> = 6\[% [(a +B)s(a +B) - (a - B) s(a - B)

+ 2 R(a +B) -%R(a-ﬁ)} . (A26)

Substituting Equetions (Al7) and (A25) into Equation {(A26) with the
proper arguments and col’=cting terms, the eva.luat{bn of the mean
value <e\) cf the phase detector output is complete:

ey =65 ¢ <exp } (), (22)+ (asp)1, 9—;-,9)J

@.ﬁz’ f ap aprl 7
- exp {‘ 2 f [(1"““6)10( 2 ) * (~°'a)11{ 2 )J .

This result appears as Equation {20) of the main texs.
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APPENDIX B

EVALUATION OF THE OUTPUT MEAN SQUARE VALIUE

The integral representation for the square of the phase
detector output voltage eoz(x,y), Equation {2U4), and Equation (12)
for the joint distribution wz(x,y) are substituted into Equation (17)
and the order of integration reversed. Iu this case, hovever,
products of integrals in x and y &re not immediately obtained
because the modified Bessel function does not have the simple
addition formula previously seen for the hyperbolic sine in Appendix
A. Nevertheless, a separation of inftegrands cen be effected if
an integral representation for Il(z) is applied from Reference 20,
p. 202, no. 179, for n = 1 and z = the given argument:

(I ) [y
= - .i: ! 46 cos 6 exp (= Bt cos 9[(x+A) osin @_+ y cos ¢0]> .

Putting Equation (Bl) into @02> and sgain reversing the order of
integration, the following product integral form is obtained:

(% 2 g
2\ _ B at B . ,
éo>— --x—a-;z—} T exp (-rt)f d6 cos 8 (B2)
() o
© / r 2
. |sic P (z+4) expi t(x+A) + -—-—-} - Bt cos 8(x+A)sin ? dx °
- 0
N
[ &xp -t;+-J-'—-y -Btcose(y)costpkdy
26° °
J e :
[~
i 2 xa [
+ cos Q exp -[t(x+A) + —-—?-J -~ Bt cos &(x+A) sin P, ) ax
- 26" ]
o8

1 .
L vy exp (}-—{t-&-—i—é«‘yc-.‘ﬁtcos y) cos ?) dy .
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If in the integraticns with respect o x, this variable
is trapslated by an smonunt - A (the infinite limite remaining unchanged)
ard terms in powers of X are collected in the integra.nd, then there
results for 2>

” -~ x
AUEE: at 32 U
e “h 2 e exp |- =t 46 cos 8 - (B3)
0 2 Ik &
&) E j o
| a2/ .
. exp !‘- ;-;2—) (\Xz(e,t)xl(ﬁ,t)am P, + xl(e,t)lz(ﬂ,t)cos ®,)
vhere
(.3
A I l 2 A !l ’
X.(6,t] = exp-t+--)x 4|== - Bt cos Fs8in @ jx) dx {B4)
* | i !62 o] ’
® 1 | A L
X (6,8) = X exp {-(t ¢ === X" +/== ~ Bt cosf gin @ x) dx (B3)
g ’ T 2 g ,/
S 29 ’ I
[+
Y.(8,t) -] exp J-[t +-‘)-'-} 2 . (8t cos 6 cos @ ) & (B5)
l 2 QO y y b4
J = \ | 262
o
£ 1 \ g
Yz(e,t) = y exp -it ——~2—} - (Bt cos Ocos @ _)y)dy . (87)
Y 267! ° ;

The above integrels are cvaluated by Reference 17, 314, p. 65, nos.(5a) and
(6c), suppressing the exp (-c) factor on both sides:

| . . xl/z b2
l exp lf - be] dx = 172 s (B8)
[
f . 1/2 N
J,. X exp [- - be] dx = - ;372— exp {37 » (B9)
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both integrsls beirng valid for a>> O, tich is satisifed in this
derivatior for
a = 1+ --*-2- . (B30)
26
Making the asppropriate subsiitutionsz for the constant b from
Equations (B4) throughk (B7). there resuli the evaluetions:
/ "?"/I2 I 23 .
Xl(S,t) = xl/gt +—-17-;;‘ exp J“ + ;g! {’1--181: 208 951:11}3} y s {B11)
26! ; ¢ [
'\“3’12 < 1 i
xz(e,*;) = 1:1/2 lﬁ + --}-“-} -%— {Bt cos 6 sin ®, - %} .
i gt ‘ 5
) -1 2!
+ 2xp }% t + —-}-“-2- l% - 3%t cos ’1’ sin q:‘ } {B12)
( 26 s —
p {
/2 i~1/2 , 11 o
Yl(ﬁ,t) = w2y 4 _1_4 exp /%i(t + --l-2-] {-Bt cos 8 cos Qo)zlg R {B13)
L 267 \HU 26 |
Ia 1=3/2 (Bt cos O cos §_)
Y, (8,t) = xl’zgt + -—-3‘-'--; 5 2
1 254‘
! |-
<-§;~( - {-Bt cos® cos @ }2“ . (Bik)
} 26° " °
laltiplying Squations {B12) and (B13), and {Bil) and (Bl4) together
in pairs and simplilyirg the exponents, the ;ol:.l.owing expressions
are obtained:
% p 12 Al
Xz(ﬁ,t)’;’l(e,t) = 3|t~z Bt coe fsin @ - =z
26" ° 4
o 1=l ,2 i
/ 14 2 2, /
exy \% it. + --*-—1! {% - ABZ cos 9 sin q>0 + B“tdcoszﬂ) , {B15)
i R A ¥ 5 :
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B e x ] |8 \
Xl(G,t)Yz(Q,i;} = 3 (t +—=g5| (Bt cos O cos O
R S o
-1,,2
1 1 A 2ABt 2,2 2 -
. e }ltva»-—-:-} ( - cos 6 sin 9+ B“t“cos“6l) . (B16)
B R L P °
Next, in the exponents the following cowbinstion is seen:
» 1 2 "l
LA { ) . [- Aok +-l—) . (B17)
( 2 "2 N i

Thus, upon substituting Bquations {B15) and (B16) into Equation (B3),
and making use of Equation (B17) , there results for (e > upon
resrrangement and roting that sin Q) + ¢cos q:

&) mzrdtf ..i.z.‘ exp{.irf% g_% 2;21 l}j;(mcose-éé)'

(318)
zt 1-1 -1 L
- cos & exp, (t.«t- 2) cos’ 9-6tt+——- cos 6)aé |,
I s
vhere sgain the parameter P is:
g sin @_ . {(B19)
262
The integration with respect to 8 is carried out in terms
of the following basic integral, denoted by S(p,q):
/fx
s{p,q} = j exp {p cos® @ - q cos 8) a6 . (B20)

It is seen from Equation (B18) that the desired integrals will be obtained
from Equation (B2D) by differentiation with respect to p and g. The .
evaluation of Equation (B2C), which does not appear obtainsble in closed

' form, proceede by expanding eacn exponent in a power series:
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. ©® n
explp cosaG) = 3 g—;- cos’® @ s (B21)
n=0 ~°
» ()%™ m
exp(-q cos 8) = X ':Tn"g_ zos 6 . (B22)
w0 )

Putting into Equation (B20) and interchanging the cxder of operations,
there results:

n
® o R nm
s(p,g) = &£ 2 LW rpa cos®*® 9 40 . (~23)
& =! n!
n=0 m=0 o

Now, breaxing up the integral into two parts, ome with a
range O - x/2 and the other x/2 - x, translating & ir the latter by
- /2, it can be eveluated by Reference 19, p. 196, no.85k.1, for
m—y2n#m, x = 6, ylelding upon collecting terms:

L /2 ( n
o8P 36 - ! cos®*® 6 a6 + g cos?2*® g 46
0 /o Jx/2
/2 'rx/z
- ‘i cos™™ 936 +| cos™™(0 + %) a6
40 ,-; o]
rX/z x/2
- 5 c052n+m6 ae + (_l)zn"'mj Sinan‘*‘mG ao ,
/;o 0
" /2 F(n + 22 l)
cosa™g a6 = 1+ (-1 )"‘] — g — (B2k)
o ¢ .P(n + 1+ é')

But it is seen that

o {0; form = 1,3,5, «+... 044 ;
1+ (-1)" =« (B25)
12; form =0,2,4, ..... even .

Lt}

Thus setting m = 2k, fork =0, 1, 2, ... , there resulis insifead of
Equation {Bzh4):
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1
2(n+k)g 49 . /2 [la+x + 5) : (B26)

<08 f"(n+k+l)

o
Upon substituting Equations (B24) through (B26) into Equation (B23),
it is seen that only the even terms in the summation over m countribute.

Thus, setting m = 2k here as well, the following form for S(p,q) is
cbtained:

1

w o n2k [{n+k+35)
2 ’

s(psa) = “l/z z 2z EZKSZn! n+k+1) ° (B27)

n=0 k=0

Rext, the summation over n is performed first, yielding:

i 3./22 2k r(n+k+l)

?.k 2 n.r'(n+k +j p® . (B28)

8(r,q)

k=0

The latter series is recrgnized in terms of the expansion for the
confluent hypergeometric function from Reference 21, II, p. 6,
no. (32), fora =kx +1/2, c=k +1, z =p:

» lnn*k«f»l) n Rk+1) 1
E r‘(n+k+ﬂp =rm (k+ ; k+1; p) . (B29)

Putting Equation (B29) into Equation (B28) gives the expansion
formula:

S( ) = = / z %* (k + s K+1 ) (B 0)
] ‘)" ﬁ_‘——)‘] 3 . ;

The desired integral evaluations in Equation (B18) are obtained
from Equation (B30) by suitable differentiation. These are:

n

i}

{ exp (p coe®8 - q cos 8) cos 8 a8 - 25 S(p,q) , (B31)
/o

!

I exp (p cos%8 - q cos 6) cos? 6 a0
Jo

2p S(P:Q) . (B32)
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The required derivatives of Equation (B30) are obtained with the
aid of Reference 22, 6.4, p. 254, no. (8), for a = k + 1/2,

c=k+1, x=p, ®stands for .F., and making use of gamma function

11’
relations:
©  2k-1 Tk +3)
. o 1/2 : 2 1 .
Zs(p,a) = « Z ey Ak g L)
l/2 o 2k+l Rk + 3) -3
M 1 1
© 2k (x + —) (x + =)
_ /2 2 3.
Sstea) - 7 I S D Ml ez )
© 2k [lk + 3)
_ o 1fe 3. )
= % kfo%é-f)— k+2 ll(k+2’k+2’p) . (B34)

Finally, making the substitutions

ls )'l Bt [¢ )4
= 4 — 3 = o omm—— ’
P CTE T o : L2

in Equations (B3l) througr (B3%) and substituting appropriately into

Equation (B18) and arranging, there results the following expansion
formula for <e02>:

3

L 2k \=-2k Hk +—§

(8t) 1] 2" ) . B t ) )
ki:o TSy A o6 ﬁk T 2) 1F1(k + 'g’ k+2; = 262

[(Zk +1) B + ﬁl\t + ——1—) -l} . (335)
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Applying the gamma function relation in Reference 22, 1.2, p. 5, no. (15)
for z =k + 1, it is found:

2( +1)-1

(2x41)! = F[Z(k + l)] ——175-——— [+ 1) (x +1 + -)

2k+1

%175 k! e+ 2) . (B36)

Putting into Equation (B35), cancelling, and collecting terms, noting
that [ (x +2) = (k +1)!, <e°2§ takes the form:

)2 Ba 2t )-l
alt + = - S .
<> * +262 TE e o
-2k 2.2 -1
3. B¢

.xwm(&-) t+z‘§-) lFl(k+-2-,k+2, t+-2-;§)
o 2 _..)'l ,

(2x + 1) B + (t+202 (B37)

While the above form has been considered for approximate
evaluations, it is more convenient for exact numerical integration to
make the change of variable:

-1
tlt + L ; ax

26°

L _x__) . N
- >

26° |1 - % 26

At the same time the Kummer transformation is applied to the confluent

hypergeometric function from Referemce 22, 6.3, p. 253, no. (7), for

a=k+32,c=k+2,x= (thz/h) (t +1/262 -1 , and ® standing

for lrl

)
]

26" \ 262)
(B38)
= 262(1 -x) .

ot
L}
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B242

3.
kv b+ =g

822 I 1)

e —Tlt+zdzl-}lrl

2,2 -1
(%;k+z;-3ﬁ(t+2;2) ) . (B39)

Combining the exponents containing 8% o yield:

l\ N e

exp (—ﬁft\, exp{thz(t +;‘§\ l} = exPi g

and then applying Equation (B38) to Equations (B39) and (B40) when
substituted into Equation (B37), the new expression for <e02> contains
integrals over the range O to 1:

A1
o 2
<e02> =-§-Joue'°“ kEO {(2k+l)3+%2-(1-x)J .
1 Z 1 BZ 2 ) ;
) m‘%} 1F1 (-é-; k +2; -Q- é_—x)' ’ (BY41)

vhere the parameter ¢ is defined as in Appendix A:

1 42 Bz)
—_— + . Bl
- (A T (B42)

Equation (BlUl) is used as the starting point for the evaluation of
e02> in the quedrature case discussed in the main text and treated
in Appendix C.
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APPENDIX C

APPROXIMATE EVALUATIOAS FOR THE OUTPUT NOISE-TO-NOISE
RATIO FOR THE QUADRATURE CASE

The celculation of Gn/d , from Equation (27) ty numerical
integration for & range of reference, signal, and noise parameters
becowes quite time consuming, so it is desirahle to sesk accurate
approximste evaluations where possible. The derivations presented
here cover the caaes of small and large reference amplitudes.

Small Reference Amplituds

Examination of Equation (27) for <e02\ would indicate at
first look that for B ¢ { 23/ 2¢, it is merely enough to take the
first few terms in the series expansion for the confluent hypergeometric
function, found in Reference 22, 6.1, p. 248, No. (1) for a = 1/2,
c = 2, x replaced by - (32/862)(12/1-«):

2
1 [82 xz} 1[32 ZJ

" 1o oE U] Bleg T

2 2

F !'-o 20 _L ‘
e’ ™ 862 (1-x)

2

A
'3&556'2' I+ (c1)

But an integration between the limits O and 1 must subseguently be

carried out, and the above series obviously diverges as x— 1.

However, closer examination of Equation (Cl) reveals that
the square of the second term gives the third term. With the above
series alternating in sign, and denoting by y the quantity:

2
vy = oo ) (c2)

where 7y is the normalized ratio:
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2
- B
g p (c3)

then it is seen that the first three terms of Equation (Cl) are
identicel with corresponding ones of the alternating series found
in Reference 19, ». 3, no. 9.0k, for y = x:

2 o
l-y"'y "'y3+000.0 -l"‘y . (Ch}
Further, the fourth term of Equation (Ch4), which in terms of x
from Equations (C3) and (C4) becomes

LR 2P
6L 862 (T=x) !
differs from the corresponding term of Equation (Cl) by about
13%, which for small y would be negligible over a considerable
range of y. Ignoring for the momext that the series in Equation

(DY) does mot converge for y 2 1, it would appear that a possible
approximationto .F, for small y is: ’

11

F. [ 2, ) ~ 1 (c5)

1|28 & - 1% * % . >
l+£(l—=’x§

It still remains to see how the approximstion behaves in

the range 1 € y £ o corresponding to values of x approaching
unity. At x = 1, the denominator of the right side of Equation {C5)
becones infinite, so the over-all expression is zero. From
Reference 22, 6.13.1, p. 278, n&.(3), it is seen that as the
argument of lFl approaches - ® as x—1, the asymptotic behavior

of the confluent hypergeometric function for the parameters 1/ 2,

2 is:
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2
1 (l-le/ )
lFl( 3 25 - 1_}(; L _\/_; —0as x-—1 .

Thus, the original function and the proposed epproximaticn agree
in this importent respect.

To conclusively check the accuracy of Equatiom (C5), it
is plotted against the actual fumction for twe values of y, O.1 amd 1,
on Figure Cl, over the range O € x £ 1. Thecasey = 1 is
considered the upper limdt for the approximation, for which
Equation (C5) reduces to the specisl fora:

1, ,. x°| ~ b(1x
F ( s 2;- = . (cé)
112 l-x (z_x)z
The exact values of lFl were obtalped with the aid of tables in

Reference 23, pp. 698-713, since it can alternatively be expressed
in terms of exponentials and modified Bessel functious by:

G AT B C

vhich can be derived from relations given in Reference 22, Chapter 6.
The very clcse f£it for the ¥y = 0.1 case plus the good sgreement for
the limiting case gives confidence that the approximation will be quite
accura‘c.e _over the range .1 < y < 1, and even betier for smaaller yv.

1 .. _
1’1(5' 2; -t

Eqmtion ("5) is applied to the evaluation of < 2> by
Equation (27) by rewriting the right-hand side in normal ratio form:

— = 2“(1:") - (c8)
x rx“ - 4x +
1+ ﬁ(i'-‘i)

The roots for the denominator quadratic in x are:

B, = %[11(1'T)l/2} ’ (c9)
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vhich are real and distinct for vy £ 1, with equality considered as a
special case by Bgvation (C6). The above restriction for real roots
thus coincides with the previously considered upper iimit for the
spproximatior. Now, the right side of Equation (C8) can be written
+ith the factored denominatcr, using Equation (C9):

. 3{1-x)
gzc=nic=y B (€19)

1
.2
l+£-(%_-x-)-

This expression can be expanded further by partial fractions, which
after some computstion and combiring with Equetion (C5) yields the
des.red form of approximation:

2 | [ u @ u 2
i 2. ~ ' - _ % )
2 & Zl-ﬂ) y(pep) e ) (xep) ] - en)

Upon substitution of Equation (Cll) into Equation (27) with
Equation (C3) for the pursmeter y, there results for <e 02/) upon
arrangement:

lrl

. 2 I (b s o
§2>‘é. B (n?] € ax_uz['e"dx
0 8(1-p) /2 o [CZR A I G . (c12)
Since for 0 { ¥ {1 the inequality u , > 1 bolds, the denominstors of
the integrands in Equation (C12) do not vanish over the range >f
integration, and thus the integrals exis*. They can he evslusted in
terms of the modified expeneniial integral Eilx), defined in Reference 12,
9.7, p. 143, 1no.(3), as s Cauchy prinsipal value:

- ) et i
Bi(a) = - ¢ 5 & (c13)
{ =& o x
s

ice., lix f + ] a8 €—0 .
(\J-x: € }
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By making the translational chenges of variable

t = a(x-p.+)

in the appropriste integrals of Equation {ClZ), breaking them
up into two components with infinite upper limits and applying
Equation (C13), there results upon arrangement the evaluation:

1

-ax -t -

(€ ax _ € €

J.O -GC"—U:). = exp (-a;.li)f I dt -[ = it
= Oy

- exp (-am,) [‘ﬁ(aug -H {a(»;z)}] . {aw)

Substitution of Equwr: "‘on (C1k) into Equation (c12) yields the
\ .
expression for <e 02)' foo 0Ly <1,

Fo, the lamiting case ¥y =~ 1, the approximation to ¥y o
given by Rquation (C6), vhich takes the expanded form:

1 e\ . 1 1
:LF:L(E; 2 5’%2} W [(x‘z)a - (x-z)] ' (c15)

Putting into Equation (27) gives for <e02>in this speclal cese:

1 1

AN 2 € x | € dx P
e ©° = 2B A ... ‘015)
Yo /1 U  (x2)? Jo x-2) [’

frl-ax -- {'l-ax

~

where al. = G}Pl and the integraly again exist. Iztegrating dy

c.vts in the first term, with

'“lx ax

u = € s dv = >
(x-2)

yields upon combining terms the form:
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l-d. L - x

The latter integral is evaluated again in terms of modified
exponential integrals as before by the change of variable ¢ = al(x-z)
to give: '

1 . .. » .
X -
e.“l x _ ¢ nl E:E it - S.:E at
(x«zs t t
- 4‘1

}

° 2y
-2 _ )
= -8 < [‘ﬁ{aal) - Ei(al)} . (c18}
Substituting Bquation (C18) into Bquation {C17) gives for <302>1 :

<.-°2>l ¥ 2p? {(1 +ra) ¢ ! [B_f(all) - ﬁ(al)} pe L %} . (c19)

vhere from the definition of @ bv Equation (21) and y by Equation
(c33:

n1=l+—- . (cz0)

To complete the calculetion of the noise-to-noise rati,
it 18 necessary to evaluate the expression for the mean square
value for zero signal aamplitude, A = 0. Under this condition, he
following parameter reductiocns cccur, denoted by zero subscript:

a =71 ; (&) =1 . (c21)
Putting sporcpriately into Equatioms (C12) and (Clk), the formuia

for (e o0) st A =0 is obtained. Finally, the substitutions imto
Equations (26) are made with éo) = 0 to yield the sypproximate
expression for 6, /6, .
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Small Reference Amplitude Limit

Here, the apprcpriate formuila for <e°2> can be found from
the limiting form found in Appendix D, Equation (D30), for the
general case, using Equation (30) and noting from Equation (21)
that as B—0 :

A2
a—d_ - a. (cez)

2

Making the appropriate substitution in the above-mentioned expression
and setting cp = 0, there results the expression appearing in
Equation ! 33) of the main text for dv/cs , since as A— 0, the
indeterminate evaluaticn y elds the tactor B /z

< >—a (1-€% . (c23)

Large Reference Ampiitude

The use of Equation (27) as a starting point for attempting
an approximate evaluation of @ 2> for large B led to difficulty
in assessing the validity of tie assumptions made. Further, a
reduction of the correspeonding limiting formila "in Appendix D
for (po = 0 gave an oversimplified resuit of no value. Thue, te
obtain useful expressions, &n asymptotic expansion of the original
phase detector cutput voltage was taxen as the basis .r the following
derivation.

Noting from Equations (8) and (G) that the voltages e, and

2 from the circuit halves differ only by a sign in one tera, they

can be rewritten in combined form as e 5 after factoring out B/2:
I

e

1/2
= g 2+ L] £ (£ + 810 49)} . {cak)

1,2
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It 13 nov assumed that the reference amplitude B is sufficiently
larger than the input signal plus noise amplitude p for all
values of ¢ to make the infinite scries expansion of (1 + z)l’/2
valid, wvhere:

z = %2 {% + 8in (p) . (c25)

From Reference 19, p.2, no. 5.3, for x = z, the condition is

and the expansior is:

(l+z)l’/2 = l+% ll 2% «—E—%l.l: 3‘1 AN (c26)

Reference 24, p.117, no. 6.33, for z = x gives the general term in
this expansion for k 2 2:

(k1 Lele3eSeeeecee(2xe3) x|

ket 28

But since

1:3:5¢¢0. (2k=3) = _._i__i)_ 75

25 .12)'

2

Equation (C26) can be rewritten in summation form as:

«

K
L+2)¥2 o 14,1, 5 L1 (k-3
*2) 2T i (x2)

. (c27)

Raising Equation (C25) to the k-th power and applying the
binominal expansion of Reference 19, p. 1, nos. 1 and 4, for
a=p/B, x=sinQandn=_L:
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2k k k
2 - E52 (B4 stn o)
B
2k k()" ( )k-n o
= — 3 - - P sin™ @ or
Bk n=0 n.(k-mi. B .
2k X (+1)®
k = ?__ ' - Zk-m m
25 = - k! me'mBmp sin” @ . (c28)

Substituving Equations (C25) and (C28) into Equation (C27) and

arranging, there results for e according to Equation (C24):

1,2

= B 4,2 |
e 2 5l + 3 ‘gisin P!

~

© k ko (+)"

cop Ay fEed): by o gmlkem ) (ceg)
k=2 (k-2)! Bak m=0 B (k-m):

Thus, upon putting Equation (C29) into Equation (11) and noting the

sign correspondence, the following expression for the phase detector

output voltage is obtained after suiteble canceling and combining

of initial terms:
eo = 2p sin ¢
o0 k , @ | \m~
-3 2 -%k-am'i- ' Z%TL B e . (c30)
k=2 * B m=0 7 :
But it is readily seen that

i 0 ; for m even,

1- (-1 =
’\ 2 ; for m odd.
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Setting m = 2n + 1, so that for
R = 1,3,5,*«,k ; B =0,L2,¢00, [;k"-a:}’] )
vhere the latter notation means that if k is odd, it is the
upper limit of-the sum, dbut if k is even, then the sum terminates
at the next lower integer index, (k-2)/2. Thus, in place of
Equation (C30), there results with the index n: '
e, = 2p sin @
% )4 ['1%14 2n+1
b {-1)7(2k-3)! B 2(k-n)-1_, 2n+l
-2 5T x2)r 2 {(2n+l)(k-2n-1)7 P sln™" "9
k=2 B ‘ ' n=0 * ¢
Writing cut the first few terms of the expansion yields:
] b o1[B 3
& = 2 "1‘”‘"3303 117 P 51‘”’}
L 3! ( B 5 B3 3 .3
+ — =T p " 8in ¢ + p” sin” @
35 1! 11!3! 310!
y 5| B 7 B 5 . 3
-~ & |37y 0o 8in @ + p” s8in” @
B’( 2: 11:3¢ 31!
[ 3 p
4 7¢{B 9 B> 7 .3,, B 5.5 }
+ P 8in @ + 57 p 8in” @ + — = p78in’QP
B9 3! 1G] 3122 510! )
y 9t B 11 33 B’
';ﬁ_'%" (-——-—1:5: y 8in @ + 3137 p9sin3q: + SIT3 prsinscp
b 11! 13 B> 1.3 B 9 3 7

RSEREE (1:?: e

sinq;+§-mp sinq;+-§-§—.,—psin5q¢+mps

(c31)

(c32)

|
in7cp ,’
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Multiplying out the numerical factors and collecting terms in
inverse powers of B up t. B'6, the following expression for
e, is obtained after arrangement:
e = 2p sintp-i-(p3 sin¢-p3 sin3<P)
o B2
+ 25 (707 s10” @ - 10p° 8103 @ + 3p° sin ¢) (c33)
B
+ 81 (33p’sin7 P - 63p7sin5 P+ 3597511:3 ® - 5p'sin @) + ..o
B

In order to compute the output noise-to-noise ratio for the
) quadrature case, only the ensemble average of the square of the
owtput, Qe°2>, is required. So, upon squaring Equation (C33)
and coilecting teras up to 1/131+ only for the asymptotic evaluation
considered here, the approximate exprescion for eo2 becomes:

s

e 2 ¥ h[pa sinz Q- &5 (ﬁ',+ sin® P - ph’ sinh ?)
B

6

+iﬁ (296 gin” @ - 396 sin® P+ 96 sin’ cP)} ;

which furthe. tri~onometric simplification reduces to a form more
convenient 1. averaging. Noting also from Equation (10) that for

S

the quidrature ~ase, @ = q;i, it is found:

eoz 2 4 |of sin® ? - g—z- (o sin® Q>i)(p2 cos” )
+ ig p6 sin® cpi(z sinb' ® -3 sin’ ®, + 1):' . (c34)

The ensemble averaging of Equation (C34) is simplified
considercbly by the fact that some of the factors can be expressed
directly in terms of the in-phase and quadrsture nois;z components
and the signal ampiitude by referring to Equatizns {2) and (k).
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From them the following relations are iound:
pzsinzwi = ; (p’sin ¢i)(pzcoszwi) - YP(am)®
pssin6¢i - . (c35)

Making the appropriate substitutions in Equation (C34) and taking
the average on both sides, there results for %oz>

<e02> ¥ u[(yz} - 5-3- <yz(A+x)2> (c36)
, 1€ < <p6sin qab (p sin q»D\]

The terms expressed in rectangular components are treated
first. Since x and y are independent Gaussian random variables
with mean value zero and standard deviation 6, thei 'tk the
aid of Reference 25, p. 83, no. 10.5, the following . -:rages are
found:

® = & - &) =05 &) = o
(c37)
G =& (P - &G - s
Purther, since A is a constant, it is clear that:
<A"> - A& (c38)
Computing the average indicated in Equation (C36) with the aid of
Equations (C37) and (C38) ylelds:
<y2(A+x)2> = <y2Az> +2 GZ + Qy x>
= A2 <y2> +2A <y2> <x} + <y2/\ <22> or
FamD = B ot = FW ) . (c39)
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The remaining two averages to be found in Equation (C36)
must be determined in a probability semse from Wz(p,Cpi), the
Joint density function of amplitude and phase of the signal plus
noise given by Equation (13). The resulting double integrals

are therefore:
o 2%

<p681n QDi = fd@'ﬂs ;f Sinh‘#i wz(p’q)i) @i 3 (cl‘o)
-0 Jo
. 00
/6sin (pi> = [ dc'p6;( rsinztpl W.(0,9,) do, . (ch1)
-0 -0
Putting in Equation (13) and arrarging yields:

-

2,2, | 2
exp (-A"/2¢") dp.p7exp(&—-) .

<p £in q> =
i 2x62 62

o

-0

X 4 Apccs@i
.« 2 sin quexp ——6—2——)&%

<0 .

.

- 2
oo “’1> exp {-A 1262) R (.;2_ :

21!62 e

.

! 2 Ap cos tpi
2., 8in Q)i exp —-———-—-—-—-) d'?i
o 62 !

.

-

Applying Reference 20, p. 202, no. 175, for vV = 1,2, 2z = 1&4.':/(52 ’

there results upon cancelling teras:
[- <

/6s:l.nhq)i\? _ 36283@(- 2/262) i/ p5 exp (_ g_z._z.) I, (?:fzﬂ) i , (ch2)

2
A Jo

)

2,2, (7 2
<p6sinzq>i\/ - =l A/zc,) Coe e (" (&) W (43
Jo 262

where Il and I2 are the modified Bessel functions of first kind of

first and second order, respectively.
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Next, a change of verisble t = p° preserving he limits
results in:

<p6sinh1)1) = iﬁﬁé—'—'&m f tzlz ( -32- tl/ 2) exp (- 2—22) a |, (chk)

(7
: 2
éssmatp} . e(CAd) [ s/ I A o2 e - Elas . (cus)
. Z 12 o
o !
Integrals of the above type can be evaluated generally in terms
of confluent hypergeometri:z functions by Reference 9, table k.16,
P 197; no. 20, and then reducing the results for special parameter
cases. But a more direct deterwination is seen by suitable

differsutiation of no. 18 of the same table Hr V = 1, 2. This
gives the following formulas:

f tzzz(aal/ztl/z)e‘l’tat = - %5 f £ Iz(aal/ 2,1/ z)e‘Ptdt}

o J
rag (e (3]

i

P
Q a
- S e () (cl6)
2 ® .
f 5/ 2:[.‘L(aml/ztl/ 2ye Pty - 3-7-5 { [ /2 Il(ml/ 2,1/ 2}e‘1’tdt}
0 dp )
cr 2
)
2
= “—ié-— (6x°+ 6ap + o) exp {%) . (cu)

P

Setting the parameter values
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in Equations (C46) and (C47), simplifying, and then substituting
eppropriately into Equations (Chk4) and {C45), there results upon
cancelling terms the ensemble aversages:

o
(oo

) (ck8)

242
—'—:;) ] . (Ch9)
26~

2
A

4 ——
26

2
h66 {6 +6

26°

Finally, applying Equations (C37), (C29), (ck8), and {(Ck9)
to Equstion (C36) and arranging, it is found for the mean squsre
value:

5 2
<eoz> Y 46t {1-5—;‘—2[1+2 f-—” (Ceo)
i L Y
4 2 L 2
26° [, -0( ALY Lk 6(* \ A° 4 JL
+};T‘—ils P T 26%1 [66? i

Making use of Equations (28) and (30) wher: the dimensicniess
ratio y and the input Bignal-to~noise power ratic “a" sre defined
respectively, the formule for (e > for large reference umplitudes
takes the simplified form:

- ‘]
, 2 -
<e 2> ¥ ug? . k2 15 0L3+a)+2g I (c51)
9 l er 5 1
R T

From this, the formula for<Fo?> st A = O 1s obtained by setting

a = 0, which when substituted together with the original expression
into Equation (26) along with (e = 0 yields the approximate
expressiou for 3, /6 appearing as Equation (34) of the main text.
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ADDIMINTY N

Sni & LMV BV MW

LIMITING FORMULAS FOR THE OUTPUT SIGNAL-TO-NOISE
RATIO FOR THE GENERAL CASE

The approximate evaluations cf Equation (B37) considered

for (e 02 resulted from a number of computational steps which

_tended to obscure the nature of the approximations made and

thus cast doubt on the range of their validity. Therefore,

it appearcd desirable to find some alternative derivation to
obtain useful formulas, A very direct method presented itself
in wvhich the starting point, instead of involving the integrated

‘resuits, is the original phase detector output voltage expression.

Taking Fguations (8) end (9) as the voltages from the circuit
halves, squardng, ~uttracting, factoring, and using Equations (10)
and (11), there resuits the following form for e :

2B
eo = I;'l—-:&e-z-)' gin (¢i + @o) . (Dl)

f’m Wie relation, two limiting cases in terms of the reference
explitude are derived for the ocutput sigaal-to-noise ratio 'V?‘c;'

Large Reference Amplitude Limit

If the reference axplitude B is much larger than the
amplituie p of signal plus noise, then with the aid of FPigure 2
it is secn that:

s

e, +e, = B . (p2)

2

Thus, for the limiting case, Equetion (D1) reduces to:

e, = 2 sin (9, +9)) , (D3}

independent of B. Expending and grouping terms yields:
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e = Zl(p sin @, jcos @ + (p cos cpi) sin (poj . (D4)
But the quantities in parentheses can be expressed directly in
terms of the in-rhase and quadrature noise components and the
signal amplitude by referring to Equations (2) and (4), which
results in the following simplified form for e,
e, = 2 [y cos @ + (A+x) sin (po] . (p5)

Upon taking thé ensemble average of Equation (D5) and its
square, noting that factors depending only on (po are independent of
this operation, it is found:

2 [6') cos @ + ((Q + <x>> ain cpo] , (D6)
!&Kyz) coszq>0+ 2 <®> + é(y>> sin @ _cos ?

+ <<A2> + 24@3:7 + é‘;‘?} sin® (po] . (D7)

From the facts that x and y are independent Zaussian random variables
with mean value zero smd etandard deviation §, and that A is &
constant, the following relaticns hold:

@

&o)

&7

il

N\

0; (¥ = 0; &y =0

A = 0 () = A = 05 (p8)
A 6D - R 6D E (D - R
Substituting intc Equations (D6) and (D7) ylelds:

(o)

QY.

u

N
CSER3
S ~

n n

ife

2A sin A (p9)

Ke

Me? + A% sy ) . (D10)




4p
£

8TL/TM-61-0000-19008

Page 3D
Applying the:. -esults to Equation (36), simplifying and
making use of Equation (30) vhere the input signal-to-noise pover
ratio "a" is defined, -‘-/ao is found to have the limiting formula
in the large reference amplitude case:
—_ .
-\/ao = 4/2a sin ® . {p11)

This is found as Equation (37) of the main text.

Small Reference Axplitude Limit

If the i'eference amplitude B is much smaller than the axplitude
P of signal plus noise, then with the aid of Figure 2 it 1s seen that:

1t = 20 . (p12)
Thus for this limiting case, Equation (D1) reduces to:

e, * Bsin(p, +9) , (D13)
irdependent of p. Upon expanding Equation (D13):

e, * B(sin @, cos @+ cos ®, sin wo) N (D14)
it is seen that the factors involvead in the statistical sveraging
cannot be reduced into simple rectangular forms as before. So,

carrying out the averaging on Equation (D1} and its square,
it 4s found:

B[(sin ¢1\> cos @ + éos Q1> sin onl , (p15)

B2 ksinzvi\) cosZQO +2 <zin 9, cos cp1> sin'Q cos §

e\
)

&)

[ D

+ <c:os2 ¢’) sin® Qo] . (p16)
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The desired averages are found from formmlias analogous to

Equstions (14) and (15), where for a general function of 5 f(tpi).

(f(wi)> f nr (e,) W,(0,9,) ap, , (p17)

vhere Wa(p,wi}, the-xjoint probability distridution of awmplitude
and phase of the signal plus noise is given by Eguation (13).

Its application to Equation (D17) for the trigonometric functions
indicated in Equations (D15) and (D16) follows in order of their
appearance.

i ay) - %‘m—dl[ "’exp( )

Ap cos q;i
. sin (pi exp ( d.::pi or
o]

fimay = 0, (p18)
since the integrand in q:i is an odd function over the 0 - 2x interval.

@08@,_*2&1.@_) dp - p exp .e_.

2x6° 26°
Ap cos q’i

. cos §, exp —-——-—) ap, .
- ' i
j; 62

Applying Reference 20, p. 202, no. 180, forr =1, z = Ap/62 :

2 ©
4:08 in = exP(;g 1262‘)‘//' P Il
(o}

where Il 18 the modified Bessel function <7 first kind and order.

Making the change of variable x = p° in Equation (D19) results

in the form with the seame limits:

exp( )ap, (p19)




i
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ey [ I 1_/2 ol e
<°°° "i\, > J I { @ | ;?) dx (n20)

This integral ic evaluateé in Reference 18, p. 63, no. 3.431, for
p = 2/26%, A = 46%/A%, v = 1, a = 3/2, waich upon ubstitntion into
Equation (D20) and simplificetion ylelds for (¢os ®,):

F

2 Z
éoa(pj) = ;%%—exp( 202) 1Fy (%;2;2—5‘-2-) , (pe1)

vhere lFJ is again the co.-fluent hypergeometric function. For
the particular parameter va...~: “ound above,; this furction can
also be expressed in terms of .xpmentials and modified Bessel
functions from relations given in Reference 22, Chapter 6, as
vas the case in Appendix C, Equation (C7). The result is:

lFl(%; 2; t) = et/?. {10{-2-) + 11( %]} . (p22)

Bubstituting into Equation (D2l) with t = A%/26° thus gives:

o) = e ) LSS o

vhich is a more converient form for caicuvlation.

anle,) - explcilfed) [ 0% )
sin"g dp + pexp |- .
\ 1> 256° L 2s?i
[ " Ay cos @
2 sinzw expl———-u-—?} &, .
\ & 3
<0

Applying Reference 20, p. 202, no. 175, for Vv = 1, 2 = Ap/dz, there
results upon canceling terms:

Y L IR P

‘e
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The change of variable ¢ = _oa preaerving the limits yields:

;_ggg-A /26°) /2 b | at
sin (P> exp 262 WE . (p25)
This integresl is evaluated in Reference 9, tsable 4.16, p. 197, no. 16
for p = 1/26%, a = A%/us", which when put imto Equation (D25) gives:
+ 8 e
ém2¢i7 - exp\gﬁ '/26%) 262 [ 262) ] or
2
2 \ _ 6° A
<Bin CPJ = -A-é- [l - exp (- ‘2?” ’ (p26)
a form convenient for later parameter change.
-}
2 2
oy - 21 ]
2ns o 262
f 2x (Ap cos cpii
. sin @i cos (pi exp ——?_* dmi or
0
éin @,cos cp1> = 0 s (p27)

aince the integrand in ?; is an odd function over the 0 - 2x interval.

Finally, the renmaining ensemble average, <:os ¢1\>, can be
found directly from the result for \/sin '*"1> by trigonometric identity
and the application of Equation (D26):

éosaq)j) é - einzwj) = 1 - (sin ‘pi) or
<c032¢j> 1 - i;— [1 - exp (- -g-gz—)J . (p28)

i}
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Substituting Equations (Di8), (D23), and (D26) to (D28) appropristely
into Eanationa ( 1 ) amad In

5) aad {D16), arreanging and simplifying, there
results the desired ensemble averages:

éo> YE % exp (- %:2—5) <I° (;‘%) + I, ({-’2-»)} sin @, (D29)

o G

Applying these results to Equation (36) and making use of
Equation (30) where the input signsl-to-noise power ratio "a" is

derined, the limiting formula for -\/_ in the omall reference amplitude
case is obtained:

Ne

- 5-2- co8 2 + 8in® ¢ (p30)
262 % ) )

B e,
- X -8 2 1 Py |
{1, Tee€ [ L[3) + 1(2)}(’1”%

1 -8
+-2-;(l-€ ) cos 29,

- <

Thie is Zound as Equation (38) of the main text.

-\/‘—o =




