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PREFACFE

Part of the research program of The RAND Corporation
consists of basic supporting studies in mathematics. This
Memorandum presents a method for handling a problem that
frequently arises in mathematical physics in connection
with equations of heat, radiative transfer, etc., namely,
that of replacing a system of nonlinear functional

equations with one that is linear.




SUMMARY

One of the basic problems of mathematical physics ig
that of replacing a nonlinear functional equation by a
more tractable (analytically and computationally linear
equation. More generally, one wants to replace a system
of nonlinear equations, often uerived from a single
equation by means of an expansion in a parameter, an
orthogonal expansion?jwith a system of linear functional
eswations. To treat this sgLOngg problem, the authors
presenéJS method basea upon the concept cf relative
invariants and the use of tbhe multidimensional Lagrange

expansion theorem.
N
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RELATIVE INVARIANTS AND CLNSURE

1. INTRODUCTION

One of the basic problems of mathematical physics is
that of replacing a nonlinear functional equation by an
analytically and computationally more tractable linear
equation. More generally, the problem is that of
replacing a system of nonlinear functional equations by a
system of linear functional equations. Often this system
of nonlinear equations is derived from a single equation
by means of an expansion in a parameter, or of an ortho-
gonal expansion.

Consider, for example, the nonlinear heat equation

3
(1.1) U = u + u”,

with the boundary and initial conditions
(1.2) u(x,0) =g(x), 0<x<1,

u(0,t) = u(l,t) =0, t > 0.

If we set
00

(1.3) u= z un(t) sin nmx,
n=1

substitution in (1.1) yields the infinite system of
nonlinear equations
2 @

u + I uus +oeee, u (0) =g,

1. (t) = -
(1.4) u’ (t) n . 23 10195

n=1,2,...,




where

@
gx) ~ ¢ 8, sin nmx,
n=]

We now face the problem of closure (see [1], [2]),
which is to say of replacing (l1.4) by a finite system of
equations, preferably linear. We shall present a method
based upon the concept of relative invariants and the use
of the multidimensional Lagrange expansion theorem ([2],
{3]. In some cases, as in the case above, a preliminary

use of approximation methods may be required.

2. FINITE-DIMENSIONAL CASE

In order to illustrate the idea of relative
invariants, let us first consider a finite system of

nonlinear differential equitions, say

dx,
(2.1) ?f't_l =—xg +g(x), x(0) =cy, 1=1,2,...,N,

where we suppose that
(2.2)(a) Re(r) > 0,
(b) Icil is sufficiently small,

(c) gi(x) is a power series in the components of

x beginning with quadratic terms.

We shall impose another condition upon the Ay in a

moment.




Our aim is to find N functions of the x

{@i(x)}, with the properties that
do,
i
(2.3) g =~ Mo
and

(2.4) @i(x) =Xy + hi(x):

wnere the hi(x) are power series in the components of
x beginning with quadratic terms.
If such functions exist, we have, from (2.3),
—A. L
(2.5) p;(x) = e Pogle), 1=1,2,...,N
Hence, the x; are cbtained as solutions of these N

simultaneous equations. Since from (2.4) these equations

have the form

-A. t

(2.6) X; = e i @i(c) — hi(x), i=1,2,...,N,

we are in an ideal position to employ the multidimensional
Lagrange expansion to obtain a power sefies expansion for
the x, in terms of the quantities e—ﬂit¢i(c). Cutting
this off at any desired stage, we have the required
closure.

Furthermore, if we so wish, we can employ the
Lagrange expansion theorem to calculate N additional

functions wi(x), i=1,2,...,N, in place of the N

functions X1sXgseeo s Xye




e

3. WHAT IS REQUIRED FOR THIS FORMALISM?

We mentioaed above that a further condition upon the
A; was required, In order to see how this arises, let
us cxamine the problem of determining the functions @i(x)

of (2.3). HWrite

2 i 2
Y o= 00 Q

(3.1) @i(x, X, +a59;% + 2815, % 1%y + 80X~ + R

and let us restrict ourselves to the case i = 1. We
have

(3.2) d x) = dxl + 2a,,4% dxl + 2 dxl X
. Je 11X =g T A11*L IE T %11 IE %2
dx, dx,

+t2a 5% qg 28X e T

¢ 2 s o
= - Mxp +8111% t 819,%1%p

'2 Y
+ 2apy% (= Mxy + g% F 81X Xg 0]

+ A

2
2ay 1%y [= Mxy + 8y 1%] + 819X Xy + 00 ]

2
+ 2ay,)%) [ X%y + gyyoxy + o0l

+ An¥Xn + coe].

23951 Xy l= Ay%y

L2t us concentrate solely upon first and second order
terms, and, in particuvlar, upon the determination of ajire

a197s and 4901 We have, from (3.2),

d
(3.3) S 0y (x) = = Ayxq 4 811151 + 8121%1%g * g221x% toees

2
— 2M3a791X] = 2M3191X Ky = 2ha8) 97X Xy

- 2
21-28221)(2 + o o °
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There are no other terms involving x%, X1X, oOr x%.
If (3.3) is to hold, for i =1 we must hase, upon

equating coefficients,

(3.4) g111 ~ M1 T~ M1
8191 — (A + 209)ajoy = = Mgy,
8pp1 ~ ZMd991 = — Magore

These relatio..s determine the quantities 41117 3917 3991

uniquely, provided that

(3.5) 2 0, Xl + 2X2 £ 0, 2X2 - Xl £ 0.

As far as the determination of all of the coefficients is

concerned, we see that we have the condition

(3.96)

mlxl + mzlz + ... + mklk # 0,

for any nontrivial set of positive or negative integral
or zero values of the m; . This is a frequently met
condition.

This condition is not merely a reflection of the

weakness of the method. 1If, for example,

(3.7) xi = — Xy, xl(O) =cy,
XM = — 2x, + xz Xx,(0) = ¢
2 2 -1’ 2 2’
we sce that a term of the teﬂZt enters. The functions

. q -t —
Xq and X, are not power series in e and e 2E
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Observe that we face this situvation in treating (1.4),

since here x_ = nzk .
n 1

4. PRELIMINARY CLOSURE

To avoid a violation of the condition in (3.€), we
can use some preliminary clesure techniques. Suppose,
for example, tnat ZXZ - Xl = 0, which means that the
third equation in (3.4) is troublesome unless g991 and
d55 are both zero. If 8991 = 0, we may very simply
set a5, =0. If g,o # 0, we use an approximation
technique to replace the g221x§ by a linear combination
of other terms appearing in the expansion of gi(x);
see [1].

Thus, we can set

2
+ oy %y t e,

2 2

(4.1) 8221%7 = €111

where the €53 are to be determined by a least—squares

fit. Various self-consistent methods can now be used,.

5. INFINITE-DIMENSIONAL CASE

Consider now the infinite system of ordinary

differential equations

X
(5.1) I T — kixi + 8i(x): Xi(\l) = Cy» L S Py sog
obtained from a nonlinear operator equation

(5.2) u, = Au + g(u),




]

where we have used an expansion for u which diagonalizes
the operator A.

It is easy to see that if the condition of (3.6) is
met, we can determine the coefficients of the functions
@i(x) recurrently, solving a single equation for a single
unknown at each step. The determination of @i(x) can be
carried as far as desired. The stopping ~ule is now a
closure technique. Having determined the N functions
@i(x), i=1,2,...,N, to some degree of accuracy, the
N equations

—A.t
(5.3) @i(x) =e 1T gi(c), i=1,2,...,N,
may te solved as indicated above, or in some other way, to
yield the Xy i=1,2,...,N. We suppose in (5.3) that
on the left—hand side, all terms involving x,,
i >N+ 1, have been omitted.

There are many variants of this procedure, each

equivalent to a different closure method.

6. APPLICATION TO THE NONLINEAR HEAT EQUATION

In applying this method to (l.4), we see that the
first violation of (3.6) occurs in connection with the
determination of fourth—order terms in the functiomnus
@i(x) (since X4 = All). Hence, if the deviation from
linearity is small, or equivalently if max |[g(x)] is
small, the method sketched above will yie?d the second—

and third—order correctior terms for the solution of




<2 —nlt

(6.1) ul(x,t) = L g e

n=1

sin nmx

in a convenient fashion.
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