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THE RESPONSE OF MECHANICAL SYSTEMS TO RANDOM EXCITATION 

Ir. i oduction 

Mechanical systems are not always excited by a harmonic force of 

fixed frequency and amplitude.    Often the excitation input is of random 

nature,  and the response of the system displays no orderly trends.  Instan- 

taneous values and phase are meaningless in such cases, and the problem 

must be treated from a statistical approach     It is the purpose of this 

paper to outline such an approach as related to the dynamic response of 

structures. 

The mathematical basis of the statistical technique has been exhaus- 

tively treated by Rice.     Engineering applications of statistical concepts 

have been followed with notable advances in fields such as communisaüon 

Applications to the structural field have only recently received attention, 
2 with treatment of problems of naturally statistical nature such as buffeting" 

■\ 

and fatigue/    With greater utilization of rocket and jet engines,   the statis- 

tical approach to structural dynamics assumes a role of increasing impor- 

tance. 

Two problems of interest to missile design have been treated here. 

The f.rst problem deals with the longitudinal vibration of a slender rod 

excited by a random force at one end.    The second problem is that of 

flexural vibration of a free-free beam excited by a random transverse 

force at one end.    Briefly,  the problem require« statistical description 

of the random excitation and determination of the frequency response of 

the structure including structural damping.    With this information,   it 

is possible to determine for any point in the structure the probability of 

exceeding any specified response such as stress,  deflection,  moment, 

or other quantities of interest. 

/ 



Fundamental Concepts 

To establish certain fundamental concepts,   we will consider a linear 

system of single degree of freedom excited first by a harmonic force 

P cos ut.    The differential equation for such a system may be written as 

y +  1<C u   y +  w 7 n 7 n 
JP 
m 

fcjt 
(1) 

where only the real part of this equation is considered.    Its steady-state 

solution is the real part of the equation, 

y   =   Y e 
i(ut - 0) 

(2) 

which upon substitution into equation (1) leads to the well-known results 

y   = 
P    COBM-0) o 

1 - - hi 

P COS   {(J. - 0) 

jZM 
+ 4C t) 

(3) 

u> 

=   tan 
^["n} 

■w 
(4) 

The quantity Z(u>) of equation (3) is the impedance function defined as the 

ratio of the input to the output.    Impedance in a mechanical system is 

usually defined as the input force divided by the output velocity;   however, 

for this discussion,   we will apply the concept in a more general sense of 

input divilfd by the output without designating the quantities involved. 

Of interest here is the mean square-response defined by the equation 

1 
T 

,T 
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y   dt   = 

1 P2 

ZM! |ZM 
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If now the frequencies w.,  u>2, . . .  differ only by a small amount,   we 

approach a continuous spectrum,  and the mean square-response in the 

frequency interval Aw becomes 

Ay I AF^ f(b>) Au> (12) 

Hence,  by comparison with equation (9),   we arrive at the result 

g(u>  .  -JüsL (13) 

y2    =   f    7^ *+ (i4) 

Equation (14) is the general equation for the mean-square response of 

the structure in terms of the power spectral density of the input and 

the impedance function of the system. 

Evaluation of y   for Systems with Small Damping 

If the damping, £ ,   is small,   Z(w) will undergo a large change near 

the resonant frequency,   w ;  and,   if the variation in f (w) is of lesser 

extent in this neighborhood,   equation (14) can be approximated with 

good accuracy by the expression 

(u)    + Aw 

i^tf- "5) 

To gain some useful concepts regarding this expression,   we will consider 

the single-degree-of-freedom system of the previous section where, 

omitting the factor k%   the impedance equation is 

T  = 7 TV T <16) 
ZM 
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If now the frequencies u».,  u>>, . . .  differ only by a small amount,  we 

approach a continuous spectrum,  and the mean square-response in the 

frequency interval Aw becomes 

Ay2     = £EJ =       M   *»    . (12) 
|z(«j| |Z(w)| 

Hence,  by comparison with equation (9),   we arrive at the result 

gM   .   ^H. (13) 
z(u*r 

y2   s f   r3^ dw- {14) 
J0    |zMlZ 

Equation (14) is the general equation for the mean-square response of 

the structure in terms of the power spectral density of the input and 

the impedance function of the system. 

Evaluation of y   for Systems with Small Damping 

If the damping,' ,   is small,   Z(w) will undergo a large change near 

the resonant frequency,   w ;   and,   if the variation in f (w) is of lesser 

extent in this neighborhood,   equation (14) can be approximated with 

good accuracy by the expression 

I to    + A« 

itr (15) 
n 

To gain some useful concepts regarding this expression,   we will consider 

the single-degree-of-freedom system of the previous section where, 

omitting the factor k^,   the impedance equation is 

r = T ~TT- 7 <I6) 
Z(w) 

1 -I 
2 

ill) 
\   XL. 

+ *r u> 

CO n 



■ A plot of equation (16),   shown in Figure 1,   indicates its peak value to 

>el/4£atWu>    =    1-    It can be shown by solving the equation 

i   /   t    \ 
 r = i ^rz" 

i - hr ♦ 41T -£- 
\4t T 

CO 

(17) 

for small £,  that the frequencies at the half-power level are 

■2- - »♦ fc n 

which determines the width of the l/|Z(w)j     curve at this point to beZ?. 

2 
The area under the 1/ jZ(w)i    curve for small? can be evaluated 

by letting w/u^=    1 +  «.   where c <<   1.    The integral of equation (15) 

for small K then becomes 

(18) 

U) 

I = dc 

<   + ? 
"»   ♦„  -1  « 
W tan      -. (19) 

Since C  is assumed small,   c can be several times C  and still remain 

small compared to unity,  and hence this integral is given with sufficient 

accuracy by 

I  * TT V (20) 

The mean-square response then becomes 

-Ä, 
AtW 

f(«n). (21 

It should be noted here that the integrated area is equal to i/2 times the 

peak value times the width at the half-power point, a relationship which 

will be of use later. 



Continuous and Multidegree Freedom Systems 

Although equation (21) was derived from Z(u>) associated with a 

system of single degree of freedom,   it can be shown to be applicable 

to continuous ani multidegree freedom systems with slight modification. 

In such cases,   l/jZ(u»)j    has many peaks;  however,   the integral 

db>/|z(u)j at each peak has the same form as equation (19) except 

for a term which is a function of position x in the system and which is 

not involved in the evaluation of the integral. 

The impedance function in the neighborhood of resonance can here 

be expressed in the form 

1 ~    K(x, «n) 

Z(u) c  + r 
{ZZ) 

2 
where K(x, w )/r    is the peak value and r is the term associated with 

Cm 7 
damping.    Again the integral   \      dw/jZ(w)|   can be evaluated by the rule 

of the previous section,  and the mean-square response for such systems 

take the form 

n 

Illustrative examples in the following sections will clarify this equation. 

Longitudinal Motion of Slender Rods under Random Excitation 

We will consider here a slender rod excited axially at the end, 

x   =   0,  by a random force,  F(t),  and free at the other end,  x   =  £. 

Structural damping will be included by a complex stiffness,   E( i  * ig). 

The differential equation of motion for an element of the bar is 

2 
3   u    _ 1 

2 
d u 

»J c    (1 + ig) 3,2 

where 

(^4) 



AE    =   velocity of the compressional wave 

g =   percentage of structural damping (in decimals) 

Taking the Laplace transformation and making the subsitution 

(1 + ig)"1   =  (t -ig). 

the  subsidiary equation becomes , 

-^4r^ = (£)2 (i - ig) ü <*..). 
dx »   ' 

(25) 

The general solution for the above equation is 

— /       t        r-      "/c \ß~- ig x, r   -s/c n-Tg x u (x, 8)   =   C.  e »       *     +C2 (26) 

Fitting this solution to the boundary conditions, 

— .       . F (o, s) 
dx (27) 

F(l.i)   =   0E 

we arrive at an expression for the subsidiary stress, T (x, s),   which is 

sinh %l 

a (x, s)   =   a (o, s) 
g^j (T - J 

«inh  Ü^L   ^1 -ig 

(28) 

(29) 

To determine 1/ |Z(w]j ,   we evaluate this equation for a harmonic 

excitation,   F(o, t)   =   F    e     ,   which results in the expression 

v (x, t)   =   1 
■ ,    iuc     n r~"   x - -1 

,iah isi /rr^      j 
o-   e o 

iu#. (30) 
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If we define the impedance,   iz(w) ,   for thiB problem to be the 

ratio of the input stress to the output stress at any position x,  then 

l/jZ{u)| is given by the absolute value of the quantity in the braces 

in equation (30).    Makirg the substitution   yi—ig   =   1 — i(g/2) where 

g is small,  we obtain the desired result to be 

2 c sin 

|ZM| sin 2   uJ. Mi 
•i      x 
c- IT - 

=£-]    cos    ££- 
c c 

(31) 

We note in this expression that if the dampmg g   =   0.  then l/[Z(w)|' 

becomes infinite when 

U. -   ir,   Zv,   3ir,  .   .   .,  ntt 

thus identifying the natural frequencies of the bar to be 

t 
u>     =   n» 

n T- 
(32) 

Retaining g,   the impedance function in the neighborhood of resonance 

becomes 

2 
sin   nw 

ZMF ' l%t\Z 
Iz. 1 

2 
sin    nv I-Ä X 

l ^nwtj2 («)2 
<2 * !-§-] 

(33) 

which is in the form of equation (22),   where r   =   g/2 and 

K(x,W)   =    ™    nylT "  " 
2 

i£il 
(nir) 

Thus by substitution into equation (23),   or by using the previous area 

rule,  the mean-square response becomes 



!■>*)■ 
«-„) 

2* \- c            2 
=   — >       T-   sin   n» 

g Z_. Tilt JL 0      n (f *  !     fK>' (34) 

which can be evaluated when the power spectral density,  f(u).  of the 

input stress is known. 
I 

Power Spectral Density of Excitation 

The curve for the power spectral density,   f(uj),   may have various 

shapes depending on the nature of the source of excitation.    However, 

from energy considerations,  f(u) for all forms of excitation must 

approach zero as u> approaches infinity.    In all cases i(u) may be 

defined by its mean-square value and some characteristic frequency,   w . 

One variation of f (u) frequently considered is the monotonically 

decreasing curve of Figure 2,   defined by the equation 

i{<4   = 
FT 

ii e-(»/wc)2 

w
c 

(35) 

It should be noted that the above equation satis fie    the original  ' 

definition 

CO 

f(w) du». 

The choice of the characteristic frequency,   w ,   is arbitrary; 

however,   it is convenient to relate it to the frequency corresponding 

to the half-power point of the input spectral density.    If Wj /, repre- 

sents this half-power point,   then w     ■   2. 1 w. ,,,   anci 84^ oi tiic inKut 

energy is contained in the frequency range 0 to u ■ 

Another variation of f(w) which is of interest is the rectangular 

ribution of Figure 3 with a cut-off freque: 

density,  f(u>),   is then defined by the equation 

distribution of Figure 3 with a cut-off frequency,   w .    The spectral 



r 
0, 

u   >    U) 

W    >     U) 

(36) 

This distribution,   which is often referred to as "white noise," can some- 

times he used as an equivalent spectrum for the more general types of 

distribution. 

r 

To establish certain concepts regarding the excitation spectrum, it 

is well to discuss how f(w) is determined by experiment.    The essential 

components  jf the measurement apparatus,   shown in Figure 4,  consists 

of a band-pass filter and a meter or indicator which will read the mean- 

square values.    Equipment is commercially available where the central 

frequency of the band-pass filter is continually sw*pt and the spectrum 

for f(u>) is displayed on an oscilloscope.    With a continuous spectrum,   the 

band of frequencies passed by the filter represents a sum of the harmonic 

oscillations of frequencies differing by increments,   6u>     Noting th&t 

A cos (w - 6u* t + A cos (w + 6w) t + 0 
1 1 

=    2A cos (6wt ♦  j0) cosM ♦ T0k     (37) 

it is evident that the result is a large number of amplitude-modulated 

oscillations approaching a random amplitude fluctuation at frequencies 

of order 6u. 

In interpreting equations (35) or (36),   one must not assume that the 

height of the f(«) curve diminishes with large values of the cut-off fre- 
 2 

quency,   w .    The spectral analyzer in indicating f(w)   =   AF  /Aw is 

unaware of the excitation outside the instantaneous pass band Ac*  and 

hence ix&) is unaffected by the extent of the frequency range of the 

spectrum.    Thus the proper interpretation of these equations is that 

F   /w   remains essentially constant or that the mean-square value of 

the excitation increases with u> . 

10 
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Numerical Evaluation of tr 

To examine how the mean-square response,   v  ,  for the longitudinal 

motion of the rod is related to the mean-square value of the excitation stress, 

<r   ,   we will consider the two types of power spectral densities discussed 

in the previous section. 

Substituting equation (35) into equation (34),  the ratio of the mean- 

square values for the monotoaic spectral density is expressed by the 

equation 

2 A     i       \ o0    «       "(nir r) ■>      I 
Y.   -   e "c*     six»'INT  5- 1   . (38) —   =        —-—.    >     —    e «• sin    ni  7 2 g^Vwc£/nTln U V 8 

In a similar manner,   the substitution of equation (36) for the rec» 

tangular spectrum,   with an upoer limit on the summation corresponding 

to the cut-off frequency,  u, orn     =    l/t(c/ut),  leads to the result c c c 

a2 2 /  c    \^     1 2        (x        t\ IM1 

J 
o 

2       2 
It is evident from these equations that <r  /s      can be plotted as a function 

of the nondimensional quantity,   (c/w#),   with x/l and g as parameters. 

Results of calculations carried out for x/i  =   1/2 and g   =   0.01 are 

plotted in Figure 5.    These curves indicate that for small values of 

(c/w x.},  the rectangular and the monotonic spectral densities result in 

nearly the same values of the mean-square ratios,   which is not sur- 

prising when one compares the above two equations.    Since g appears 

as a linear factor in these equations,   results for other values of damping 

are obtainable from these curves by simple division. 

Probability of Exceeding a Specified Response 

For a random function such as a.   the normal probability distribution 

is a reasonable assumption.    Letting X be any random variable in question, 

11 
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the normal distribution curve shown in Figure 6 establishes the pro- 

bability that X will be found in the region X. to X. + dX. to be 

2 -\2 

—      e   K      d\. (40) 

Of interest here is the question of the probability of v exceeding 

some specified value,   «r.,   which is n times the root-mean-square 
r—■> * 

response,   [v  .    To arrive at an answer to this question,   we let 
f~~Z 

\   =   vl\Zxr ,  in which case the probability that a lies between v and 

<r + d«r is 

2 

7P~~ 
dir (41) 

T2 
,   «Tj   =   n y«r Thus the probability of xs exceeding a certain value,   «r4    =   n y o- 

is determined by integration to be 

. 1   <r 

2     r    e" 2  ^ 
P (a- > cr.)   =   -—   1        —r^T—   ^a   =   er*c 

=   erfc   U n) (42) 

As an example,   if c/u> J? =   0. 08,   the mean-square ratio for the white- 
c ~l ,~~2 

noise distribution is found from Figure 5 to be a  Iv        -   23.    Thus the 

root-mean-square ratio is  y <r     = 4.80   j cr0 .    The probability of the 

stress exceeding some number,   such as 3 times the root-mean-square 

stress at x/JL -    1/2 and g   =   0  01,   or 3 times 4. 80 V <r        =    14. 4 times 

the root-mean-square value of the input stress,   is 

!«r > 3 \}a 

-■' / f  —\ 

|=   Pjcr > 14.4 \fa  2 j=   erfc (1,50)   =   0.034. 

12 



Lateral Motion of Beam» Under Random Excitation 

We consider next the lateral response of a beam excited at the end, 

x = 0, by a random force, F(t), with the end, x = 1 , free. Again we 

include structural damping by a complex stiffness, E(l + ig), and write 

the differential equation for the beam element for harmonic excitation. 

tf- 

2 
u) m 

ITTlgTET =  o. (43) 

Letting 

ß 
mw 

El 

(1 + ig) 1 - ig (44) 

.4 
=   (i-ig)ß" 

the above equation becomes 

^-ß4y   =   0. 
dx 

(45) 

We thus obtain the same solution as that of the undamped beam,   except 

that ß is now replaced by its complex counterpart,  ß.    We will,   however, 

carry out the solution in terms of ß and account for ß at the very end. 

Using the Laplace transformation with x as the original variable, 

it is possible to arrive at a general solution in terms of quantities at 

x   =   0;  and,  by successive differentiation,   equations for deflection, 

slope,   moment and shear can be obtained and expressed in matrix form. 

¥ 

yU> 

y(x) 

ß 

ß 
'(X) 

13 

y(0) 

J* 
y'(0) 

(46) 

ß2 

-W ym(0) 



f where 

a   =   y  (cosh ßx +  cos ßx) 

b   -    j  (sinh ßx +   sin ßx) 

C    =    y   (cosh ßx   —   C08  ßx) 

d   =   j  (sinh ßx — sin ßx). 

When x   =   il,   we have the boundary conditions y"{l)   =   Ym(i)   -   0. 

At the end,   x   =   0,   the boundary conditions are y"(0)   =   0,  and 

i/ß3[y«»(0)j  =   P /ß3 El,   where the excitation is P    cos a*.    With these 

conditions,   the remaining constants become 

(47) 

i 

yto) ~T~  
ß    EID 

-P 
i Y'W -   -, 

ß    EID 

b      d 

*      Cix = i 

c      b 

b      a = i 
(48) 

D c      d 

b      c 
=    - 2  (cosh pi cos 6« - 1) 

x - 

It is now possible to write the equation for any quantity y( x) to 

ym(x).    For instance,  the equation for yn(x) becomes 

_       r > 

y"(x)     = ßET < b(x) - 
b      d 
a      c 

x =JL 

c(x> 

TT 
c      b 
b      a 

x=X 

d(x) 

It is evident here that the natural frequencies are determined from 

the equation D   =   0,   in which case y"(x) —•» oo. 

When damping is included, we replace ß in the above solution by ß. 

However, since small damping is assumed and we are interested in the 

impedance function only in the neighborhood of resonance,   we need to 

(49) 

14 



replace ß by ß only in terms which tend to zero,   or in the expression 

for D. 

Letting ß   3*  ß  (i -ig) «   ß (1 - i J),   the expression for D 

becomes 

D   =   (cosh ßi cos ß£ - 1) ♦ i j. ßA (cosh ßi sin ßi - sinh ßi cos ßi) 

where terms containing g have been omitted as negligible. We next 

replace ßi by ß £ (1 + c) in the neighborhood of resonance; and again 

throwing oat 

(50) 

cosh ß I cos & l— I   =   0, rn *n 

we arrive at the result 

D   =   (sinh ßj cos ßJL - cosh ßjL sin ßJL) (ßfti) (« - i $ ) 

1 =   I 
b      d 
a      c (ßBD(t-if). (51) 

Substituting in this value of D and noting that in the neighborhood of 

resonance b(x) is negligible compared to the other two terms,  the 

final equation for the moment becomes 

M(x)   =   EIy"(x)   = 
2P I 

o 
T 

(ßn£)   <•- if) 
c(x)  + 

c      b 

b     a 

b     d 

a      c 

d(x) (52) 

If we now define the impedance as the ratio of the input moment, 

M     =   P I,  to the output moment,   M(x),   the quantity of interest becomes 

4 sc(x) + 

c      b 

b      a 
s—X 
a      c 

d(x) i. 

Pi.  ßn* 

ZM (P. ZT^^T (53) 
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By the previous rule for integrated area,  the mean-square moment 

contribution lor mode k is given as 

r 
M. 

k 7   ! 2 (f I "k     2 ~~    f(wk) (54) 

( 

Thus,   summing over all modes,   we have 

M   - *»Z  \A\\    C(X) + 
c b 

b a 
b d 
a c 

Since 

_ ..2   [ET 

and 

:3n£=   (2n +  1)  J. 

this equation can also be written as 

£1 

64\ <(«J n' V m£ 
M    =   — /    r 

**   n     (2n +  i)Z 
c(x) + 

d(x)V 

= P i rn 

c b 2 

b a 
-    d(x) 

b d 
• 

a c N = Pni. 

The squared quantity within the braces can be identified as being equal 

to half the tabulated results,   1/2 0 (x),   of Young and Felgar,    and for 

this problem corresponds to the case of the free-free beam. 

Numerical Evaluation of M 

As in the longitudinal case,   we evaluate equation (56) for the two 

types of spectral densities defined by equations (35) and (36).    For the 

monotonic variation of f(w),  the result reduces to 

(55) 

(56) 

ib 



M 

II 2        g * 
o * 

-(Waif JS 
i 28        1 El     y   « \ c   Y m* 

A 2 

TTT  w mi       n=l (2n 4- i)' 
- c(x) + 

c  b 

b * 
b  d 
a   c 

2 

d(x)i.   (57) 

For the white-noise spectral density, f(u)   =   M    /w ,  we obtain 

the ratio of the mean squares to be 

n 

M 64    1     /El h &£•=?: r "5 c(x) + 

c b 

b a 
b d 
a c 

<*xn 
MQ2 **   **c Vml4   n=f   (Zn + !) 

The summation in this case is terminated at the 

corresponding to the cut-off frequency,   <•> ,  this relationship being 
•    c* 

«t>     =   (2n c c * "2 (I)' [JE; 

<53) 

(59) 

Equations (57) and (58) were numerically evaluated for x/i   ■   1/2 

and g   =   0.01 and plotted in Figure 7.    These curves are to be inter- 

preted in a manner similar to that of the longitudinal case, and the 

probability equation (42) is again applicable with n interpreted aa the 

number of times the specified moment exceeds the root-mean-square 

moment. 
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