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FOREWORD

The work described in this report was conducted in the
Electronict3 Division of the Research Department, Navral Ord-
nan,:e Laboratory, Corona, as a part of the NOLC very-lowv-
ftequency 11VLF) research program, which is jointly sponsored
by this Laboratory's Founidational Research Program, WepTasx~
R36O-YR-104/211-/RO1i-O1-O1, and the Office of Naval
Research, Code 418, under P. 0. 3-0012.

C. J. HUMPH-REYS
Head, Research Department

4IBSTRACT

If improperly' de~igned, the loops, preamnplifzt.rs, mixers,
and transmission lines tend to deteriorate the directivity o!
VLF superdirective arrays in which they are used. This report
describes the characteristics i-eqahed of these components
when used experimentalIly in superdirective arrays. Reception
patterns of these arrays and illustrations of the respective capa-
bil~ties of the comnponents are given.
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INTRODUCI ION

Very-loxv.-frequency (VLF) upe rdirective arr, y h ;v- lbt-n stutdi,,d
at the Naval Ordnance Laboritory, Corona, California, for the past -

eral years (Refs. 1-5). It has becom , increasinwIy clear that, if it i-
desdired to operite effectively over the wide bandx idth of which t!hc tc
arrays are theoretically capable, special attention must bh viv4_n to t-c
components of the arrays. For that reason, this report ex.imin.e- the
characteristics of the components of practical arrays.

Experimental work on these components was performed at NOLC
and at the NOLC field site in Johnson Valley, California.

LOOPS, PREANMPLIFIERS, AND TRANSFORMERS

The components of VLF superdirective arrays must he broadbaiu
to utilize the broad bandwidth of the arrays. If loop antennas are used,
they must be designed to avoid self-resonance or resonance with the
matching input transformer of the preamplifier usedwith them. Ti,'ese
design requirements are specific for operating in the 10 to 30 kc fre-
quency band within which sferirs are normally received. Broadb nd
loops with matching transformers and preamplifiers, and delay-line
mixers have been designed for sferic reception.

For this exper'mental work, a loop 10 ft square was selected to
obtain a signal-to-noise ratio that was adequate and still allowed opera-
tion well below resonance for broad bandwidth. In a loop, the inductive
reactance increases in direct proportion to the square of the number of
turns, and the effective height (or sihnal-receiving ability) increases
linearly with the number of turns. Therefore, the loop wis designed
to contain the minimum number of turns that was compatible with the
signal needed to exceed preamplifier noise, and to maintain tolerable
physical size. Because of their importance in superdirective arrays,
the null depths wt re increased by electrostatically shielding the loops.

A broadband transformer was designed by the Thunderbird Elec-
tronics Company, Pomona, California, to match the loop to the tran-
sistorized preamplifier. The input resistance and reactance of this
transformer as functions of frequency for various load resistances are
given in Figs. I and 2. The figures show that a wide range of impedainc,-

IlI



can be linearly matched over the 10 to 30 kc frequency range. The tr,ins-

former %%as used to match the input impedance (Fig. 3) of the preamplifier
to the loop. The gain (Fig. 4) of the transformer and preamplifier ib very
flat over a wide frequency range.

Signals received from several Navy VLF stations -"ere used to deter-
mine that a four-turn loop had the greatest e ective height (Fig. 5). The
loop antenna was found more effective with a single shield than with pairs.

The resonant frequency of the loop-preamplifier combination was meas-
ured by exciting the loop with a small coaxial transmitting loop with con-
stant input current, and was well above the 10 to 30 kc range (Fig. 6).
The foutr-turn, single-shielded loop waz selected for the basic element
ol the array and additional measurements were made on it. The far-field

nulls were measured by using transmissions from the Navy VLF stations,
and the null depths ranged 30 to 38 db for more) below the main lobes.
The null signals were usually below the sferic noise level and were there-
fore not detected.

The input impedance of the loop alone was measured and compared
with the theoretical reactance; the agreement was quite good (Fig. 7). For

frequencies well below resonance, the theoretical inductive reactance is

X L  42 fDN X 10-7 In D (1)
Ld

where f = frequency

D = diameter of the loop in meters

N = number of turns in the loop

d = diameter of the wire

The effective height of a loop is a measure of its ability to receive
signals. The theoretic~il effective height of a matched loop is

H wNA (2)e -

where A area of the loop, and X free-space wavelength. A comparison

of the measured and theoretical effective 'heights of the 10 ft square loop
is given in Fig. 8, where the theoretical curve is for a matched loop. At
the higher frequencies, the loop is not matched; at frequencies beyond

25 kc, the discrepancy between theoretical and measured values becomes
progressively wider.
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The cffL'ctiv " h , i :!t V, js it, a,ii r d by u , in -th , -t, nda rd c .a %ia l -h,,,
method (R f. 6). A coaxial tran -m ittin loop -it t wiv un di ,t.incc irom tIli.
test loop inlrc rses it in an lcutricitl fik-ld xprcu -'d by

6- 3 57 4Ef = 22 3/2 M -k .IR2 + r + r)

where Ef electrical field surrounding the test loop

R distance between transmitting and test loops

rI  radius of the transmitting loop

r2 = radius of the test loop

I current in the transmitting locp

4r r2k2  2-
R 2 + (r1 + r2)2

The effective height is

LV

t -- 
(4i

h e re V bL is the terminal voltage of the loop.

The effective height of the' loop-preamplifier combination was mea.-
ured (Fig. 9); it was determined that the height increases linearly over
the 10 to 30 kc range, but levels off beyond 80 kc. The lack of increase
is partly because of the inability of the transformer to match the rapidly
increasing reactance of the loop to the more slowly increasing reactance
of the preamplifier. The signal level of a transmitting station received
with the loop-p- -mplifier combination can be predicted by using Fig. 9
and Eq. 4. For ,ample, the Navy VLF station NPG (18.6 kc) in Southern
California has a field strength of approximately 2 invim. At this frequency,
the effective height of the loop-preamplifier combination is 24 in (from
Fig. 8). Therefore, from Eq. 4, the received voltage should be about 48
my; this signal was measured with the Hewlett-Packard Model 302A Wave
Analyzer and was actually 60 my. Typically wideband sferics of 10 v peak
measured from the loop-preamplifier combination indicated a field strength
of 0.5 vIm. An average effective height of 20 m was indicated (Fig. 9).
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"I t - ' ri .n : t s r.1de of these conflponent in!dic.t thit Ir

sufficiently linear and accurate for use in superdircctive arrays uv.r t..

10 to 10 kc frequency range.

MIXERS

LOOP ARRAYS MIXERS

The signals from the loops must be fed into a mi:.er, where they are
delayed and .ubtracted with the least possible errors or differences in
phase and amplitude. The No. I Emitter Follower Mixer (Fig. 10) built
for the two-loop array has the following characteristics:

a. Depending on the amount of delay inserted, 12 to 20 v peak-to-
peak is the maximum input voltage before distortion occurs.

b. Also depending on the delay, the loss (Fig. 11) through the mixer
is from 7 to 11.5 db.

c. The delay variation over a wide range of frequencies before and
after compensation is shown in Figs, 12 and 13, respectively.

d. The net voltage change between east and west channels (Fig. 13)
limits the null depth over a wide frequency range.

e. The nulling capabilities can be comput,-d from the data in Fig. 13.
When the array was nulled at 20 kc. with 5.2 Lsec delay inserted, the mixer
nulled -26 db at 10 kc and -20 db at 30 kc. When using a sine wave nulled
-51.3 db at 20 kc with 2.4 .Lsec delay inserted, the mixer nulled -23 db at
10 kc and -25 db at 30 kc. A typical sferic generated by the function
generator was nulled -34 db. It is concluded that the delay error deter-
mines the null depth at the higher frequencies, and the amplitude error
determines the depth at the lower frequencies.

The mixer was installed at the Johnson Valley field site. Two loops
placed 1 mi apart wcre used for a superdirective array; the array was
nulled on Navy VLF station NAA (18.6 kc, 60 deg true bearing) and two
patterns (Figs. 14 and 15) were taken with the passive pattern plotter
(PPP) at 10.5 kc (Rcf. 5). The large back lobes shown in the figulres are
results of nulling 50 deg off the axis. of the array. The figures also show
that pattern repetition was very good.

SHORT BEVERAGE ARRAY MIXER

An improved mixer that uses higher impedance delay lines was designed

and test. I for use in a superdirec'tive Beverage array (Fig. 16). The

charactc ristics of this No. 2 Emitter Follower Mixer are:



,. F he n .ixi,;l .i :npu t v)ltaz,' h, rt, ,i itrtion is, t

b. Tle lo .s throut h the m ixcr i.' S PI. Tic.. 14t vottavc :)ut-ut
be tweek-vn t tst ,flnd -,t .. nncl• ox cr i v, il, frc, qi ncy range i a n if"

Fig. 17.

c. The net phase dcla', in niicr c, condi, b.tv n :ctr t nd tri
channels is Lziven in Fi :. 18.

d. f,c nullini' cap.ibilit it c,,n ht c urnputtcd fro.n t.e for,-oin, , t
by usink. the equation En = Ae . ' ith the mixt.r n, lL-d .t U- ic*

the null voltavecs at 10 kc and 30 kc slouard be - 5 7.4 db ;nd -'2.7 db, r . t-
tively. Fair ag reement was obtaint-d when a inulated sriuvr, r,ctive
array was conntcted to the mixer, vhich wa.- nulled at 20 rc. !-e n-ill
was -35.5 db at 10 kc and -29.5 db at 30 kc. The typical sferiL critt,!
by the function generator was nulled -34 dh.

e. The mixer was installed ;It the Johnson Valley site; t v. o [ - r.td'
antennas one-half mile in length and at 11 V dte.- relative orientation ..vrc
installed to form a superdirective array. The array was nulLcd on t}:rI,(
Navy VLF stations, with the following results:

Station NAA (16.6 kc, 60 deg true bearing), null -40 db

Station NSS (22.4 kc, 70 deg trie bearing), null -34 db

Station NPM (19.8 kc, 265 deg true bearing), null -3Z db

With the array nulled on NAA and using sferics, a 10.5 kc pattern (Fig!. I')
was made with the PPP. The large back lobe shown is a result of nulling:
60 deg off the axis of the array. An improved pattern (Fig. 20) was taken
under similar conditions, but with the antennas terminated in their char-
acteristic impedance and the array nulled beforehand on sferics arriving:
from 70 deg true. Tnder these conditions, nulls 25 db below the main
lobe were recorded, and the back lobes were down 17 db. Another pattern
(Fig. 21) was taken under like conditions, but with the array ntiled at 110
deg true; nulls 28 db below the main lobe, and back lobes 19 db below the
front lobe, were recorded. The 18 db side lobes are approximately vhat
would be expected from the theoretical pattern of such an array. l:Ire.
elements (-30 db back lobes) must be used to obtain lower back Lobes.
Another pattern (Fig. 22) was taken under the same conditions, but from
the cast-looking output of the mixer. Therefore, the pattern shows nullin',
on the axis of the array to the west at 290 deg true.

f. The input impedance of the No. 2 Mixer was 365-j82 for the cast
input, and 370-j85 for the west; the inputs are not purely resistive tt 20 kc.



. or ! ,- ?l.- t'r', calibration of nat dtl,ty a, a f..nction of in-,crt.d

(it.laN is :ivtin in Yie:. 2 i. rhe net deliv is very cloris" to th i:-crtocd di| laty

el'-te'd ')V the de vlay linen.

h. I 1. Bverahze anteras were terminated with their characteristic
im pu dane. (Z()). 'o ,ete rmine the impedance, the load resistance Qn

the ,antenna %%as increased until maximum power was delivered; a resis-

tance value of approximately 270 olFms was indicated (Fig. 24). R-sis-
! tn "c .."a then placed ,t tht far ter,;. 'nations of the |3e,.t'r~t e ant nna

to balance the termination and ground-plane resistances, thus providing
the proper antenna termination impedance. The west antenna required
'50 ohms, and the east 200 ohms. Input impedance measurements %e: e

made to confirm the frequency- response flatness of the Beverage; th.

results are plotted in Fig. 25, where Z is a nominal 280 ohms.

TRANSMISSION LINE CHARACTERISTICS

If the connecting transmission lines are not terminated in their char-
ict. ristic iTpcdafnces, pattern deterioration can result. Fic. 26 shows

that the phase delay can change markedly with variances in termination
resistance on a -vpical coaxial cable, RG58/U. Fig. 27 is a plot of the
losses ar -hast* delays through RC;G/U and RG22/U cables, over a

wide frei cy range. The figure shows that, if the cables are not ter-
--- |nated in their characteristic impedances of 53 ohms and 48 ohms,
rk -pectively, with the center conductors connected, the losses and phase
:lays vary with frequency. Usually, a termination resistance above Z

cau-ts the phase delay to increase, and the loss to decrease, with fre-
i ency. If the termination resistance is below Z 0 , opposite effects are

oh e rved.

CONCLUSIONS

Any error in phase or amplitude tends to deteriorate the pattern of

a superdirective array. Therefore, if the array is designed to operate

over a broad band of frequencies such as 10 to 30 kc, each array compo-
nent must be scrutinized.

In a broadband mixer, the phase errors dete-iorate the null depths
at the higher frequencies; at the lcwer frequencies, the null d ipths -2e

deteriorated by the amplitude errors.

High directivity was achieved with superdirective loop and Beverage

arrays that employed the components described in this report.

6
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