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C
ABSTRACT

The flow about a slender flat-plate delta wing at angle-of-attack is

represented by replacing the vortex core-feeding sheet system associated

with leading edge separation by a force-free concentrated vortex. Secondary

flow phenomena near the leading edge are approximated by allowing infinite

flow velocity around the leading edge. The problem is reduced to a two-

dimensional one by assuming a conical field and using slender wing theory.

Computed pressure and lift distribution, vortex position, lift coefficient,

and flow patterns are compared with test data and with the theories of Brown

and Michael, and Mangler and Smith. The nonlinear characteristics of the

lift curve with angle-of-attack and the strong influence of secondary flow

simulation on vortex position and pressure distribution are displayed. The

vortex is shown to be further inboard than predicted by previous theories and

to correlate well with experiment. The nonlinear component of lift, the

pressure distribution, and surface flow pattern are also shown to correlate

well with experiment.

...



CONTENTS

ABSTRACT ................... .. ........ ......

NOMENCLATURE ................... .............. xi

I. INTRODUCTION ....................... 1.......

II. ANALYSIS .......... .......... * ...... 5

A. Basic M odel ........................... .. . 5
B. Boundary Conditions .. .......... ......... 7

C. Potential Solution ............................. I I

D. Cagculation of the Force on the Wing ................ 19

E. Pressure Distribution and Span Loading .............. 23

F. Streamlines and Stagnation Points .................. 28

III. DISCUSSION OF RESULTS ........................ 37

IV. CONCLUSIONS ...... . .......................... 43

APPENDIX .............................. 45

REFERENCES.. ......................... 47

-vii-I



ILLUSTRATIONS

1. The Characteristics of the Flow Field About a Slender
Flat-Plate Delta Wing . .. . . . . . . . .. . . . . . . . . . . . * 2

2. Coordinate System . . . . . . * . . . . . . . . . . . . . . . a . . . . . . 6

3. Schematic Diagram of the Separated Flow Around
Wing Leading Edge . ..... . .. . . .. . .. . . I . .* . . . . 10

4. Generation of the Concentrated Vortex.... *... . . . . ..... 12

5. Transformed Coordinate Systems . .. . . . ..... ........ 13

6. Computed Vortex Location ........ ............... . . 17

7. Comparison of Calculated and Measured Vortex
Lateral Position . . . . o. ..... 0 .................. *a0 is

8. Variation of Vortex Strength with Angle-of-Attack .... .. .. . 20

9. Calculated Lift Coefficient.......... ....... . . .. . . . .* o o . 21

10. Comparison of Computed and Measured Nonlinear
Component of Lift Coefficient..... . . .. .... ..... .... 24

11. Comparison of Calculated and Measured Pressure
Coefficient . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . ..a 27

12. Comparison of Computed and Measured Span Loadings ...... 29

13. Streamline Defined in 0 Plane ..... .. . . . . .. o * o 31

14. Streamline Patterns in the Cross-Flow Plane. .. . ...... . . 32

15. Stagnation Line Location .o.......................... 33

16. Computed Surface Streamlines on a 20" Delta Wing . .. .... . 35

17. Drag Coefficient of a Two Dimensional Wedge ........ .. . 39

18. Flow in the Plane Perpendicular to the Leading Edge ....... 40

19. Force-Free Vortex Position and Strength. . o . .. o . o . . o . o. 46

-ix-

Preceding Page Blank



NOMENCLATURE

a semi-Epan at chordwise station x

AR aspect ratio

CL lift coefficient,

CL lift curve slope

Plocal " Pfree stream
C pressure, coefficient, l U2

k vortex-core strength

M Mach number

p pressure

q magnitude of cross-flow velocity vector

r magnitude of Z, +Z

S wing area

t time

U free-stream velocity

v,w disturbance velocity in y and z direction, respectively

W complex velocity potential, 0 + i p

x coordinate along wing in free stream direction

y coordinate along wing normal to free stream

Y real part of

z coordinate normal to wing surface

Z imaginary part of

a angle-of-attack



iNOMENCLATURE (Continued)

iZ
i argument of ,tan 1

~Y

semi-apex angle of delta wing

, vector dstance in circle plane, =Y + iZ (see Fig. 5)

71 imaginary part of0

0 vector distance in 0 plane, e + in (see Fig. 5)

real part of 8

p density

T vector distance in physical cross-flow plane, x + iy (see Fig. 5)

D disturbance velocity potential - real part of W

4) stream function - imaginary part of W

(--) complex conjugate of quantity ()

Subscripts

o value at vortex position

0o free stream condition

Superscripts

condition with the right vortex removed
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I. INTRODUCTION

In recent years, the concentrated effort on high speed research has

overshadowed the low speed problem areas associated wit low aspect ratio

wings and slender lifting bodies. With the advent of actual "hardware" there

has been a forced return to the consideration of low speed slender wing

theory. Particular interest has been directed toward the case of delta wings

with leading edge flow separation. This class of flows has been investigated

experimentally and analytically, but theoretical efforts to predict the basic

aerodynamic characteristics have been only partially successful.

The principle features of separated flow about thin delta wings are

* presented in Fig. 1. The separated flow shed from the leading edges form

conical spirals which curl up over the top of the wing into cores of concen-

trated vorticity. These cores and their generating sheets are the primary

vortex system. Large negative pressure peaks and strong adverse pres

gradients outboard of the peaks are produced on the wing upper surface.

The boundary layer separates in the area of the adverse pressure gradient

and forms a secondary vortex system which, by virtue of its proximity to the

wing surface and leading edge, has a significant effect on the pressure dis-

tribution and the strength and position of the primary vortex system. The

exact nature of the secondary vortex system is not well understood and, in

fact, several flow visualization studies (Refs. I and 2) indicate that for

certain conditions, it may consist of two or more sets of vortices generated

by the boundary layer.

Previous analyses (Refs. 3, 4, and 5) of this problem have replaced

the primary vortex system with an equivalent set of symmetrically located

concentrated vortices above the wing. Conical flow is assumed and slender

body techniques are used to determine the vortex strength and position

through application of suitable boundary conditions. Legendre (Ref. 3)

requires a force-free vortex and application of the Kutta condition at the wing

leading edge. No attempt is made to account for the effect of the vortex

-1-

Preceding Page Blank

- J -- ' '-.. .. . .. 2 pop= - -



CORE

SECONDARY

VORTEX SYSTEM--
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Figure 1. The Characteristics of the Flow Field About a
Slender Flat-Plate Delta Wing.
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feeding sheet and, as a result, the isolated vortices, whose strength increases

with streamwise coordinate violate Kelvin's theorem of the constancy of circu-

lation. This results in a multi-valued solution to the wing force system I
(Refs. 6 and 7). Brown and Michael (Ref. 4) attempt to eliminate the multi-

valued character of the force system by postulating concentrated vortices r
fed by planar feeding sheets; the vortices and feeding sheets each sustain

balancing forces such that the net force on the system is zero. The models

of Legendre, and Brown and Michael, have been only partially satisfactory

in predicting vortex position, lift coefficient, and pressure distribution.

Subsequent analyses (Ref. 5). have incorporated refinements in the primary

vortex feeding sheet structure with only minor improvement in results.

The discrepancy between theory and experiment is generally attributed

to the presence of the secondary vortex system which has not been considered

in previous analysis. Because of its proximity to the wing surface, the

secondary flow is believed to influence tho solution to a large extent. The

secondary vortex system has been mentioned by Brown and Michael, and

Mangler and Smith; a very interesting discussion of the problem is given

by Rott (Ref. 8) wherein it is pointed out that due to secondary flow the applica-

tion of the Kutta condition for a single vortex model makes no sense and at

most, only semi-empirical results could be expected.

It is apparent that for improved results the secondary vortex system

must be taken into account. The solution of the problem, considering both

vortex systems, is beyond present capability.
t

An approximation of the real flow must be resorted to which will

possess the characteristics of the primary and secondary vortex systems and

will not require the solution of the complete equations of fluid flow with

viscous dissipation.

The present analysis attempts to account for the effects of secondary

vortex formation using a simple model. The secondary vortex system is

simulated by an appropriate modification of the boundary conditions. A flat-

plate delta wing is considered and, as in the previous analyses, conical flow

is assumed and slender body techniques are applied to obtain solutions in the

cross-flow plane.

-3-
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U. ANALYSIS

A. BASIC MODEL

The flow about a slender flat-plate delta wing placed at an angle-of-

attack to the free stream is considered. The aspect ratio is restricted to

small values so that conical flow may be assumed. The physical flow, as

represented in Fig. I, is dominated by sheets of vorticity which emanate

from the leading edges and roll up into spirals over the wing upper surface

*to form the well-defined primary vortex cores. The vortex cores induce

strong negative pressure peaks on the wing upper surface and large adverse

pressure gradients outboard of the peaks. Boundary layer separation occurs

in this area and secondary vortices are formed which lie close to the wing

surface. The strength of the vorticity emanating from the leading edge is a

function of the direction and magnitude of that component of the free stream

velocity which is perpendicular to the leading edge. For a given wing semi-

vertex angle e and angle-of-attack e, the vorticity emanates at a constant

rate along the leading edge and feeds into the primary vortex core causing
it to grow linearly with streamwise coordinate.

The solution of this type of flow is made tractable by replacing the

primary vortex sheet-core system with a pair of concentrated vortices located

at the center of the feeding sheet spirals. This representation preserves the

general characteristics of the real flow. The coordinate system employed
is shown in Fig. 2. The origin is located at the apex of the delta planform,

the x axis is directed downstream and coincides with the wing centerline,

the y axis is horizontal and positive to the right as viewed upstream, and the

z axis is perpendicular to the wing plane, positive up. The equation of

motion to be satisfied for the slightly disturbed flow of the inviscid fluid is
the Prandtl-Glauert differential equation

(I A XXO= yy + sa =0

-5-
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Figure 2. Coordinate System.



where 0 is the perturbation velocity potential and M is the free stream

Mach number. Employing the restriction of low aspect ratio planform and

Mach number of order 1, the term (1 - MZ) xx is neglected and the equation

of motion becomes

I +0 =o (2)
yy zz

Equation (Z) is the two-dimensional Laplace equation in the y-z cross-flow

plane and allows the use of slender body theory techniques.

B. BOUNDARY CONDITIONS

The boundary conditions applied to the present model are the same as

those of Legendre except that the Kutta condition at the leading edge is

replaced by requiring the ratio between a and the vortex-wing plane angle

to be invariant. The Legendre model is somewhat unsatisfactory because of

its inaccurate representation of the vortex feeding sheet structure. However,

it is employed here because the potentially more satisfactory Brown and

Michael model yields negative results when the Kutta condition is relinquished.

Alternate models, primarily those of multi-vortex structure, are far more
,I

complex; they are considered to represent a refinement and/or correction to

the basic ideas of the present analysis rather than a starting point. Use of

the Legendre model must therefore be recognized as an attempt to examine

the basic characteristics of secondary flow with the simplest technique

available. These points are discussed in further detail in the appendix.

The boundary conditions applied to the present model are: (1) at the

wing surface, the normal component of velocity must vanish; (Z) at infinity.

the perturbation velocity must vanish; (3) the concentrated vortices lie on

streamlines; and (4) the concentrated vortices form an angle of a/4 with the

wing plane. Conditions (3) and (4) allow determination of the vortex location

and strength in the y-z cross-flow plane.

-7-



q
With the y-z plane fixed in space and the delta wing passing through it

at free stream velocity U, the flow can be considered two-dimensional and

unsteady, the variation with time t being obtained from the relationship

x = Ut and the condition of conical flow. The vortices will lie on a stream-

line if the sum of the steady-state and time-dependent components of velocity

at the vortex location is equal to zero. The local wing semi-span is a(t) and

the vortex location is given by the vector o (t) = y0 + iz o. For a fixed angle

of attack a and semi-vertex angle f, the quantity ao(t)/a(t) is constant by

virtue of conical symmetry. We then have

ro (t) = (a-o/a)a(t) (3)

The growth rate of T with respect to time is

o 0dadjt = (T o/ a) a-(4)

With respect to an observer at a9o, this represents a fluid velocity -do /dt.

Substituting Us for da/dt, we obtain, for the time-dependent component of

velocity,

T 0 (o/a)Uf (5)

The steady-state two-dimensional perturbation velocity at (r is (v + iw 0)

The superscript * denotes the velocity obtained by forming the expression

for the perturbation velocity minus the velocity due to the vortex at a0 and

taking the limit as w approaches a-" . The boundary condition on the vortex

is then

(v° + iWo)* - (o /a)Uc = 0 (6)

-8-



IThe real and imaginary parts of Eq. (6) yield two algebraic ee pressions;

one more is required to define the vortex system. Previously, this has been

the stipulation that the flow leave the leading edge tangentially. This condition

is obtained by requiring the velocity at the leading edge to be bounded. Rather

than this boundary condition, the present analysis assumes that the vortices

form a fixed angle of c/4 with the wing plane. Consequently, the Kutta condition

is not satisfied at the leading edge. The flow from the bottom of the wing

turns around the leading edge and travels inboard on the upper surface for a

- short distance until its velocity reduces to zero and an outboard stagnation

point is formed. As a result, a flow singularity exists at the leading edge, as

in the slender wing theory of Jones (Ref. 9); in fact, the Jones solution is the

first order approximation in a to the higher order solution obtained herein.

The existence of the outboard stagnation point is critical to this analysis

because it introduces the effects of the boundary layer-induced secondary

vortex system into the model. This is illustrated by the simplified flow

patterns in Fig. 3. An idealized model of the flow with the Kutta condition

applied at the leading edge is shown in Fig. 3a. The flow leaves the bottom

surface of the wing smoothly and the streamline emanating from the wing tip

encircles the vortex L and reattaches to the upper surface near the wing

centerline. The fluid confined by the wing and stagnation streamline rotates

counterclockwise under the influence of L. The upper surface experiences

a large negative pressure peak and adverse spanwise pressure gradient which,

in the real flow, induces a boundary layer separation. The real flow is repre-

sented schematically in Fig. 3b with the secondary vortex system denoted

by M. The flow field induced by M is clockwise. Near the wing tip and

close to the surface, M is dominant because of its proximity, and the flow

is directed inboard. Further inboard, however, L is dominant and the flow

is directed outboard. At some spanwise location B intermediate to L and M,

a stagnation point exists, and the streamline emanating from B passes

between L and M. This flow can be reproduced by the introduction of the

outboard stagnation point as shown in Fig. 3c, and it is seen that although

-9-
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the secondary vortex is not explicitly displayed in the velocity potential
describing the flow model, its primary effects are present at the surface

of the wing.

The stipulation that the concentrated vortices form an angle of a/4
* with the wing plane is based on the model shown in Fig. 4. Each element ofI the leading edge generates vorticity at a constant rate. The vorticity is

carried downstream at the angle of local flow and rolls up into the core
j depcted in Fig. 1. The sheet can be represented by a number of finiteI" filaments originating at uniformly spaced points along the leading edge.

The angle between the filaments and the wing plane is a/2 for the limiting

case of vanishing aspect ratio (Ref. 10). This value has also been used with
4 success by Gersten (Ref. 11) for slender wings of nonvanishing aspect ratio.
j The net effect of the filament series is considered to be the same as that of

i a single vortex with strength equal to the sum of the filaments and located
at their center of gravity. The equivalent concentrated vortex therefore forms

an angle of a/4 with the wing plane.

C. POTENTIAL SOLUTION

The complex perturbation velocity potential W(o-) is sought which is a
I solution of Eq. (2) and fulfills the specified boundary conditions. The flow in

the y-z plane is considered two-dimensional and unsteady with the time

dependence entering through the relationship

a = Ex = cut (7)

I The analysis is performed in one of three planes (see Fig. 5). In the physical
or cr plane, the wing surface lies on the real axis with leading edges at *a.

The vector distance is

T y + iz (8)

-- ii
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The wing in the a- plane can be mapped into a circle of radius a with its

center at the origin in the T plane by use of the transformation

T •, .(9)

with the sign changing from upper to lower surface. The vector distance in

the ; plane is given by

Y + iZ (10)

or in polar form

= rei  (11)

The wing can also be mapped onto the imaginary axis of the 0 plane by use

of the transformation

where

e = + in (13)

The complex potential for the desired vortex flow in the e plane is

given by

W(G) - [ln(O - Oo ) - ln(O + )] - iuae (14)

-14-



By application of Eq. (12), the complex potential in the physical plane is

obtained.77

In the circle plane, the complex potential becomes

I W~,).i~ln( 4 -ln(4+ %)a a)(6

Equations (14), (15), and (16) represent the wing in its appropriately trans-

formed state immersed in a uniform flow of velocity Uct in the o- and 0D plane i
and Uci/2 in the plane with two vortices of strength *k disposed symmetri-

cally abou'. the imaginary axis.

The vortex position and strength are now obtained by forming the

expression

I(v -iw )* limit I [W(O_) + -k 4n _17)

*Performing this operation and adding -UE (-r/a), Eq. (6) becomes

2 Uaar UCE0
ik 0___ _ __ _+_ _ a 0____

-15-



By separating Eq. (18) into its real and imaginary parts and introducing the

remaining boundary condition,

z O ( 9)

a

two equations are obtained which, when solved simultaneously, yield the

solution for the normalized vortex spanwise location yo/a and strength

k/2nUas as a function of a/t.

The resultant set of equations is not amenable to analytic solution and,

therefore, a numerical technique was used. Two nontrivial solutions for

YO/a were found to exist (see Fig. 6). The primary solution starts at the

wing leading edge and moves rapidly inboard to a minimum spanwise position

of y0 /a = 0. 55. The vortex then travels upward and outboard to a maximum

height of z /a = 0. 605. The secondary solution starts at the wing leading

edge but deviates only slightly in its lateral position with increasing a/c to

form a gentle backward S curve and form a closed loop with the primary

branch. The primary branch conforms to experiment in the low and middle

ranbe of a/c. The upper part of the primary branch, where the vortex

swings sharply outboard, has no verification in experiment and is considered
the region in which the model tends to weaken. The secondary branch does

not conform to experience over most of its range and is rejected in its

entirety.

The solutions of Brown and Michael, Legendre, and Mangler and Smith,

as well as a limited number of test points, are also shown in Fig. 6. These

curves are to the right of the experimental data and all fail to predict the

very rapid inboard travel of the vortex at small a/E.

Because of the limited data on vortex lateral and vertical position, a

second correlation has been attempted as shown in Fig. 7. Only the vortex

lateral position is presented, as determined by flow visualization studies and

surface pressure distributions. The test data form a band the lefthand side of

-16-
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which is bounded by the present solution for vortex location. In the lower

ranges of a/4, the predicted rapid inboard movement of the vortex is

satisfactorily verified by the data. The width of the band here and in sub- I
sequent correlations is attributed to normal scatter in reducing the data, the

variation in leading edge condition, and the wide range of aspect ratio and

Mach number.

Figure 8 presents the variation of vortex strength with a/i for the

primary and secondary branches. The secondary branch solution yields

higher values of k/2wUat for all G/ and would therefore indicate higher

values of kinetic energy in the surrounding fluid. On this basis, the rejec-

tion of the secondary branch seems consistent since the configuration

representing the lowest energy state is expected to be found in nature.

D. CALCULATION OF THE FORCE ON THE WING V

The force acting on the wing is first obtained from momentum con-

siderations; the wing surface plus the lines joining the leading edge to the

concentrated vortices are used as the contour of integration, as in Ref. 4.
2

Converting to coefficient form CL/ we obtain, in circle plane notation,

L.f CL 21- izbEr aco P] (20)
PU at I 0

The first term of Eq. (20), 2v a/1i, corresponds to the slender wing theory

of Jones. Within the small angle approximation, E = AR/4 and the first

term reduces to the familiar wAR/2. The remaining terms involving k are

the nonlinear contribution to the lift coefficient. Equation (20) is plotted in

Fig. 9 along with the solutions of Jones, Brown and Michael, and Legendre.

The solution is seen to be always greater than the linear theory but less than

that of Brown and Michael.

-19-
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The lift can also be computed by use of the unsteady form of Bllasiuq'

theorem using the wing surface as the contour of integration. For the lift

coefficient this procedure yields

-
a 

o 
k

+ sna2[a4 + 4r4osCo2P]0 2 -a )2 + 46a 2r zsin 2 Po] 2

2[ 4 4 2

+-a r + 4 r P0
+ r2

-
2 )(r 4a) 2  4 r 2 i

1a r ,in Cosos+ 0 0

2 82- (r a2 2 - 2 In j

which also consists of the linear term a1c/E and the nonlinear terms con-

tributed by the vortex. Equation (21) is also plotted in Fig. 9 and is seen to
fakl below the linear theory of Jones in the low range of P/O. This charac-

teristic is a consequence of the vortex model employed and is displayed in

the results of Legendre to an even greater degree.

-22-



A comparison of the various theories, with test data covering a wide

range of aspect ratios, yields unsatisfactory correlation. The data form a

wide band with the solution of Brown and Michael as an upper limit and many

points lying on or below the linear theory. The scatter is so great that no

conclusions seem possible. The reason for the scatter can be found by noting

that the Jones linear theory deteriorates in accuracy for aspect ratios much

greater than unity. For example, at aspect ratio 1, the Jones value of CLQ

is over 20 percent greater than that predicted by the more accurate theory

of Ref. 12. This deviation is of the same order of magnitude as the nonlinear

term of Eq. (20) and tends to mask it. Since the nonlinear characteristics of

the theory are of interest here, it is considered that a correlation with the

linear contribution removed is of greatest significance. Such a correlation is

shown in Fig. 10 where the nonlinear terms of Eq. (20) and of Brown and

Michael as well as the nonlinear components of test data are presented.

The a/c axis of Fig. 10 represents the Jones theory. The data now

form a band for which the mean value is well represented by Eq. (20) up to

cA 1. 2. Within the low and medium range of a/E, the correlation is good

considering the nature of the simplifications made in the model and the simu-

lation rather than actual representation of the secondary vortex system. These

results indicate the importance of the secondary vortex system in the accurate

prediction of the nonlinear forces.

E. PRESSURE DISTRIBUTION AND SPAN LOADING

The unsteady form of Bernoulli's equation which is applicable to the

cross-flow plane is

Sc(t) + p  q2 + (22)
p 2 p 2 q T

-23-
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By rearrangement of terms, the pressure coefficient is obtained in the form 4-4

I 8(W + W) (23)
E

The second term of Eq. (23) is the ratio of the cross-flow velocity q

to the component of free stream velocity perpendicular to the wing leading

edge. The term is obtained by differentiating Eq. (15) with respect to a,

evaluating at the wing surface, and dividing by UE . The last term of Eq. (23),

the time dependent part of the pressure coefficient, is obtained from Eq. (16).

Combining all terms, the pressure coefficient is given by

C 2 f 0(C2  a 2 )

_2 sin P 6rUac) r
I. aCp / \ k k1- cos or

sin \_scos n +4 Z r2o s- "
- ~ ~ ~ ~ ~ ~ I- (~)li0 + +4 I 4 ] 7 T + ZPo -l

(24)

whe re

=2. sin - a (r +a)sin P sin P0

0

A1
+ ( - a2 ) 2 + 4r a sin Pj (25)

4r

0
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1 "a =(cos(2n - I)P cos(Zn -

nl 2n

E2 10) n sin 2nP

n= I

00 (26)

F1 2n F)no ZnP sin n0

00 i(2n-l1)

~ ~ n -a-~ sin(2n - I)P cos(2n - )P0
n~l

and the sign of 1T changes in going from the upper to the lower surface.

For small values of a/E I and FZ converge very slowly and can

be replaced by

El + E2  (r 12 2 a 2
roZ + a 2ar COS( PO) r + a + Zar COS(P + Po)]

(27)

By setting (k/2rrUat) equal to zero, the slender wing solution of

Ref. 9 is recovered.

The pressure coefficient can be expressed as a function of the wing

semi-span y,'a by use of the relationship y/a = cos P, and is shown in Fig. II

with the solution of Brown and Michael and the test results of Fink and Taylor

(Ref. 13).

The pressure coefficient of the present theory displays somewhat

different characteristics from those of Brown and Michael (Fig. Ila),
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primarily in the position of the negative pressure peak and behavior at the

leading edge. Test data verify the inboard position of the pressure peak and

the pressure plateau at the leading edge but the magnitude of the pressure

peaks is overestimated by both theories. It is of interest to note that even

at high values of a/c , where the predicted force coefficient tends to diverge

from experiment, very good correlation of pressure coefficient is obtained

(Fig. I lb).

The calculated value of normalized span loading for a/c = 0. 8 is

presented in Fig. 12. The theories of Jones, and Brown and Michael, and

the data of Ref. 14 are also shown for comparison. The characteristics of

primary interest are the large deviation between the calculated curve of the

present analysis and the elliptic loading and the good correlation with

experiment.

F. STREAMLINES AND STAGNATION POINTS

The streamlines in the cross-flow plane can be obtained from the

complex potential W = 0 + ip [Eq. (14)] by obtaining the expression for

and setting it equal to a constant, In the 0 plane, the normalized stream

function 4/Uac is

T (k\ 1 In L (28)
Ua -- "2 "aE, P2  e a

where

ii p~ =-9p~e =0+0 (29)
0 0

Rearranging terms

= exp[7 I - (30)
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The interpretation of Eq. (30) is shown in Fig. 13; from its geometry,

the relationship between the 8 plane coordinates can be obtained in the form

STo9 )21/2 - (.31)

The computed streamline patterns for a/- 0. 25 are shown in

Fig. 14 in both the 0 and Tr plane.

The stagnation lines are defined as those generating lines of the delta

-. wing which are not crossed by surface streamlines. They are obtained by

equating the slope of the surface streamline to the slope of the generating

I~. iline c cos P and solving for P. The surface streamline slope q/U is

obtained directly from Eq. (24). The computed stagnation lines are shown

in Fig. 15 with a limited amount of test data. The inboard stagnation point

:--travels rapidly toward the wing centerline and rises along the z axis with

k increasing a/c while the outboard stagnation point travels slowly inboard

to a minimum value of y/a = 0. 80 and moves outboard again with increas-

ing a/c . It is interesting to note that the theoretically predicted reversal

of spanwise travel of the outboard stagnation line is verified in the test data

---of Lee (Ref. 15), and for the high Reynolds number data, the quantitative

correlation at low and intermediate a/c is quite good. Extrapolation of the

test data for y/a = I yields values of a/c on the order of 0. 2 - 0. 3 rather

than zero. This is because, even for sharp leading edge planforms, test
results show no leading edge separation at the initial angles of attack. The

data of Ref. 13, for example, show attached flow up to a value of a/c = 0. 3.

The data for the inboard stagnation point substantiate the theoretical curve

satisfactorily for the low and intermediate values of a/c. At the higher

values, the deviation of Lee's data is attributed to the effects of the center-

body mounted on the test model.
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k

In the two-dimensional cross-flow plane, the points at which the

(,/Uaa) = 0 streamline impinge on the wing surface are stagnation points and

may be obtained from Eq. (31) by taking the limit as approaches ,e ro.

The stagnation points are then given by

oa 0( Ual -
'nstagnation 71 o [ 2I Q k (32)

Equation (32), transformed to the a- plane, is also shown in Fig. 15.

The effectiveness of the outboard stagnation point in qualitatively

introducing the effects of the secondary vortex system can be clearly seen

by an inspection of the complete surface streamline pattern in the plane of

the wing. The surface streamlines are obtained directly from Eq. (Z4) and

two cases are shown in Fig. 16. These flow patterns show the characteristics

of multiple stagnation lines, herringbone patches and, at the lower angles of

attack, nearly uniform chordwise flow over the center section. These charac-

teristics are typical of those found in flow visulization tests (Refs. i and 2 ).
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InI. DISCUSSION OF RESULTS

A comparison of the present model of flow about sharp edge deltas with

separation has been made with previous models and with experiment. A

review of the results obtained indicates that the existence of the outboard

stagnation point results in a simulation of the effects of secondary vortex

formation near the wing leading edge. As a result, a more satisfactory

correlation of nonlinear lift, vortex position, pressure distribution, and span

loading and flow pattern is obtained with experi.-nent over the range of ala

than was obtained with previous analyses. However, the analytic solution

for lift is multi-valued and it tends to diverge from experiment in the high

a/ range.

All of the models considered herein possess inherent deviations from

the physical flow. These deviations are a consequence of the mathematical

simplifications made in attacking the problem through slender wing techniques

and in reducing the viscous phenomena to models readily amenable to analytic

treatment. The use of slender wing thec,-- restricts the range of aspect ratio

and Mach number. Furthermore, the assumption of conical flow is not com-

pletely accurate in the subsonic region. The experiments of Fink and Taylor

(Ref. 13) show that at low speeds a large region of conical flow exists near

the wing apex but the flow tends to become nonconical near the trailing edge.

Some error is introduced into the analysis when the vorticity field is repre-

sented by a concentrated filament. It is argued that the vortex core so domi-

nates the flow that the vorticity field seems a concentrated filament to the

wing surface. In spite of the small amount of vorticity contained in the vortex

sheet, its effect is not completely negligible because of its proximity to the

wing leading edge. This is shown by a comparison of the Brown and Michael

model with that of Mangler and Smith. The two models differ primarily in

their description of the vortex sheet, and the effect on predicted lift and

vortex position is significant.
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It is considere. hat the most important source of error inherent in

previous analyses is the omission of secondary vortex formation effects.

The importance of the secondary vortex system on sharp edge surfaces is

a function of the component of free stream velocity perpendicular to the wing

leading edge U, (see Ref. 8). In a plane perpendicular to the leading edge,

the vector sum of U( and Ue form an angle w with the surface of the wing.

The angle w has a large effect on the position of the concentrated vortex and

its strength. A qualitative measure of vortex strength can be obtained from

Fig. 17 which presents the drag coefficient of a two-dimensional wedge as

a function of w. To first order, the drag coefficient is a measure of the

vortex strength and is shown to increase with increasing w. The effect of

* planform shape on w is represented schematically in Fig. 18. For the delta

planforms considered, f is positive and Uc represents a velocity vector

directed inboard from the leading edge (Fig. 18a). The angle w (being greater

than w/2) forces the concentrated vortices inboard where they generate high

* adverse spanwise pressure gradients and separated boundary layer flow. The

vorticity, with its outboard movement restricted by Ue, tends to build up and

modify the entire flow field about the wing. A delta planform with apex

pointed downstream has negative E (Fig. 18b) and Uc directed outboard.

The swept sides now act as trailing edges and w is less than Tr/2. The con-

centrated vortices are forced outboard and their strength is less than the

previous case. Spanwise pressure gradients are correspondingly weaker

and the boundary layer generated vorticity tends to be washed off the wing,

thereby reducing its influence on the flow field. As a/c approaches zero,

the flow corresponds to that of a high aspect ratio tapered wing. In this case,

the success of potential theory attests to the minor influence of secondary

flow phenomena.

The present theory must be considered a simplified model which

represents the effects of secondary vortex separation only qualitatively.

Instead of introducing the secondary vortices explicitly into the mathematical

model, the boundary conditions have been adjusted to simulate their presence.

-38-



Lai

1.0

2.5

0 -.-

0 40 so 120 ISO 200

w, DEG

Figure 17. Drag Coefficient of a Two Dimensional Wedge.

z I

. 7 9
_ _ _



K'
0

hi
N

z
4

4h
a
'a
I.6

w 'I
______ ___ 0

U
'a

V

a
S

S

.60

'a

0
g

'hi
'a
0
I.

0 0
U

£
U
I-
4hi
£
0

.9 V

S

C)
-40-



This procedure simplifies the analysis and will not yield results which are

as accurate or valid over as large a range of a/c as a more sophisticated

approach. It does, however, display the basic characteristics of this type

of flow and demonstrates the necessity for including the effects of secondary

separation.
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IV. CONCLUSIONS

An approximate theory for the flow about slender delta wings with sharp

leading edges. qualitatively incorporating the effects of seccondary separation,

leads to the following conclusions:

1. Over the range of 0/, the secondary vortex simulation yields
improvements over previous theories in the prediction of the
flow field characteristics as indicated by the correlation of
calculated vortex position and streamline pattern with test
data. The concentrated vortices are shown to move rapidly
inboard with initial increase in&/* in accordance with
experimental observations. At the high values of a/e there
is divergence of vortex position from test data.

2. The solution for the nonlinear component of the lift coefficient
correlates well with the nonlinear component of test data.

3. The calculated pressure distributions correlate well with test
data over the range of ale. The lateral position and magnitude
of the negative pressure peak and the outboard negative pressure
plateau are predicted more accurately than with previous theories.

I
4.
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APPENDIX

THE FORCE-FREE VORTEX SYSTEM

The concentrated vortex feeding sheet system can be rendered force-

free by locating the concentrated vortex and its planar feeding sheet such

that the forces on each are of an equal but opposite magnitude. This leads

to an expression similar to Eq. (6) with the term (w /a)Ui replaced by
(2wo - a)Ua /a. The term (2 o - a)U /a now represents the velocity of the
center of gravity of a vortex system, this can be seen from Fig. 4a. None
of the vortex filaments of Fig. 4a are generated with conical symmetry
except that filament originating at the wing apex. Using the previous notation
for vorticity center of gravity position in the cross-flow plane, the vector
velocity of the apex-generated filament is (2wr - a)Ut /a. All other filaments
generated along the leading edge lie parallel to the apex filament and have a

velocity equal to it. Therefore, since every element of the vortex sheet has
velocity (2r o - a)UE /a, the vortex center of gravity at 0 will possess that
velocity.

Use of the Kutta condition at the leading edge, plus the force-free
vortex system as the boundary condition, yields the solution of Ref. 4. If
the Kutta condition in relinquished and the vertical position of the vortex is
fixed at 4 f, the resultant solution of vortex position and strength is of the
form shown in Fig. 19. The vortex starts at the wing centerline and moves
slowly outboard with increasing a/t. No real solutions exist outboard of the
1/3 semi-span point. The vortex strength k/ZwUat starting at zero is
initially negative; it then reverses and takes on large positive values. The
behavior of both y 0 /a and k/ZwUa is contrary to the observed physical
flow and is considered to be the result of a basic inconsistence in the boundary
conditions description of the flow at the leading edge.
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