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GASEOUS DETONATION PARAMETERS *
by
C.W. Busch, A.J. Laderman and A.K. Oppenheim

University of California, Berkeley

ABSTRACT

This report describes the development of a method programmed
for a digital computer to evaluate one-dimensional detonation
parameters in gaseous media. The calculations are based on the
assumptions that the mixture is cqpprised of ideal gas consti-
tuents and that the wave process is governed by equilibrium end
conditions.

Details of the analytical method of solution are presented
including the IBM 7090 computer program, described in Fortran
language. Sample input and outprt data with instructions for
preparing the input data are given.

Finally, computations are performed for a number of hydrogen-
oxygen mixtures from H2+02 to 3H2+02 at several initial conditions
covering a range in pressure from 0.1 to 760 mm Hg and in temper-
atures from -180 to +200°F and a comparison is made with calcula-
ticns of other investigators for a stoichiometric mixture initially

at NTP.

*This research was supported by the United States Air Force, through
the Air Force Office of Scientific Research of the Air Research and
Development Command under Grant AFOSR 129-64 and the National Aero-
nautics and Space Administration under Contract No. NAS8-2634.
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i1
NOMENCLATURE

Dimensional Variables:

Q@ - scund velocity

BJ'; - defined by eq. 6.1.17
Cp; - molar specific heat of Jh species
Cp - mass specific heat of gaseous mixture -
& - defined by eq. 6.1.13
J; - molar Gibbs free energy at ith species
- molar Gibbs free energy at ith species at one atmosphere
h: - molar entkalpy of (th species '
h - enthalpy per unit mass of the gaseous mixture
m: - molecular weight of i(th species
- molecular weight of gaseous mixture
- number of moles of {th species
- total number of moles of gaseous mixture
- pressure
- mole fraction of jlB component in hypothetical system
universal gas constant
- specific gas constant
- molar entropy per unit mass of the gaseous mixture
- absolute temperature
- particle velocity relative to the wave

- volume per unit mass of the gaseous mixture

>.<<c—|071’$%e~.0‘63,~33

o~

- mole fraction of {th species

- chemical symbol denoting the (kb species

N
1

iteration parametersdefined by eq. 6.1.14

stoichiometric coefficients for i(¢b chemical reaction

~20

£
b ity
1

enthalpy change for the (th chemical reaction defined by eq. 6. 2.3
Gibbs free energy change for the (kb chemical reaction defined by
eq. 6.1.15

Y‘ - specific heat ratio

2
O

M; - chemical potential of (th species
Subscripte

1 - denotes initial properties upstream of the wave

2 - denotes final properties downstream of the wave
f - denotes properties based on frozen composition
e - denotes properties based on equilibrium composition



iii

Dimensionless Variables:
C - CP/R:

% - h/RIT

w7 - mz/m.

Ml b ul/al
MQI2 - uz/“‘e,z
M, - Ue/ay,,

P - &/n

pressure ratio at CJ state

pressure ratio at von Neumann spike

z
'

< U
'

o
L)

pressure ratio in Hugoniot curve where V = 1.0

/T

VZ/V.I = uz/ul

V evaluated from Hugoniot equation at given P and approximate T
V evaluated on Rayleigh line at given P

-V evaluated on Rankine-Hugoniot curve at given P

L << <0

- V evaluated from equation of state at given P and ©
AB - correction to O at specified P on Hugoniot curve

AE‘ - correction to R,
AEM- correction to Pw

AE:;' correction to R:x
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1. INTRODUC TION

The calculations of detonation parameters have been made by several
investigators, notably Lewis and Friauf (1), Berets et al (2), Edse (3),
Wolfson and Dunn (4), Luker et al (5), Eisen et ai(6), Bollinger and Edse (7),
Barrere's (8), Gordon and Zeleznik (9), and Bird et al (10).

The distinguishing features of the various analyses are summarized in
Table 1. All have in common two basic assumptions, namely that complete
thermodynamic and chemical equilibrium is established immediately down-
stream of the wave, so that dissipative effects and variations in chemical
reaction rates can be disregarded, and that the constituents of both reactants
and products behave as perfect gases.

The work in references (1), (2), (4), and (5) followed similar approaches
and in particular, specified the CJ state as that for which the final Mach
number, based on the frozen sound speed, was equal to unmity, Lewis and
Friauf made use of this condition in their equations and proceeded to caicu-
late detonation properties by determining successive corrections to the
assumed 1nitial values of the independent variables, T, and V; using an iterative
technique. Berets et al (2) used the same method, while Wolfson and Dunn (3)
and Luker et al (4) performed the calculations in a similar manner but with
T, and p, as the independent variables,

It was subsequently shown, however, that the correct specification of
the CJ state must be based on the equilibrium sound speed. This problem
was circumvented by Edse (3) and Bollinger and Edse (7) who determined the
CJ state from the condition that the corresponding wave Mach number is a
minimum. An imtial estimate was made for the CJ value of the final tem-
perature in both cases, the corresponding properties on the Hugoniot curve
evaluated,and then corrections to the CJ temperature found. This is essentially

the approach used by Eisen etal(6) who chose, however, M, as the independent



parameter. The latter method gave double-valued solutions for each value
of M, and the CJ state was determined when both solutions converged,
yielding the minimum vave Mach number. In addition, Eisen et al (6) were
the first to evaluate the final equilibrium Mach number as a check on their
CJ calcuiations,

Barrere (8) developed a graphical method for calculating detonation
properties which gave results in good agreement with those of Eisen et al(6).
The CJ state in this instance was defined as the point on the Hugoniot curve
at which the entropy was a minimum,. Incorporating this into the conservation
equations, |, and p, were used as the independent variables to evaluate the CJ
properties.,

Zeleznik et al (9) were the first to actually utilize in their computations
the principle that at the CJ state the equilibrium Mach number is unity. On
this basis initial estimates were made for the independent variables p and
T, and corrections found until the Hugoniot equation and equation of state
were satisfied.

Bird et al(10) computed the CJ properties by finding the point of minimum
wave Mach number. Since the thermodynamic properties are functions of the
final temperature, |, , alone, this parameter was chosen as the independent
variable, eliminating the need for re-evaluation of these properties at each
iteration. The program is generalized to include the presence of condensed
phases in the products of reaction,

In the present work, a method was developed for the determination of
detonation and deflagration parameters including, in addition to the CJ state,
solutions on both the deflagration and detonation branches of the Hugoniot
curve. The procedure was programmed for an IBM 7090 digital computer in
Fortran language. For detonations the calculations are terminated when states

with pressure ratios corresponding to the von Neumann spike on the one end,



and the conditicn that the density ratic is equal to unity on the other, are
attained. For deflagrations, the calculations are restricted, of course, to
values of the pressure ratio equal to and less than unity. It should be noted
also that since the allowable chemical reactions are specified in the input
data, the parameters for other processes, such as non-reactive or dissoci-
ative waves, may be easily determined,

During the initial phases of this study, the wave velocity was chosen

as the independent variable, following the approached used by several other
investigators. For each specification of the velocity, then, solutions on
both the strong and weak branches of the Hegoriot curve were obtained and
the CJ state determined when the solutions converged at the minimum value
- of wave velocity. However, difficuities in obtaining convergence within a
desired accuracy were encourniered and it has been then found that the most
convenient independent variable is the pressure ratio.
Since the thermodynamic properties of each constituent are uniquely
functicns of the temperature alone, the temperature ratio suggests itself
as a convenient independent variable. ﬁowever, as shown in Figs, 10 and 11,
where temperature and pressure ratios are plotted respectively against the
dimensionless entropy, the variation in the pressure ratio is about ten times
greater than that in the temperature ratio along the Hugoniot curve, so that
choosing the pressure ratio as the independent variable aliows greater
latitude 1n making an 1mitial estimate of its value at the CJ state.
The CJ state was specified by the condition that the local equilibrium
Mach number 1s equal to unity which, within the accuracy of calculations,
corresponds exactly to the state of minimum wave velocity.
Calculations of detonaticn parameters were carried out for several

hydrogen-oxygen mixtures over the range of initial conditions as follows:



Initial Initial
Pressure Temperature
Composition mmHg oF
H2 + 02 760 -180
-50
190 +60
+200
10 )
ZHZ + O2 -180
! +60
3H2 + O2 0.1 -180
+60

The best available source of thermodynamic data, namely the JANAF
Tables (11) prepared by the Dow Chemical Company, was used in the cal-
culations, Within the accuracy of these'data, the results for the CJ wave
were found to be 1n good agreement with those of references 6, 8, and 9
obtained for similar conditions. In additmn the CJ wave velocity exhibits
an increase, independently of c0mpos1ti.on, of approximately 15 percent as
the initial pressure was increased from 0.1 to 760 mmHg, and a decrease
of approximately 3 percent as the initial temperature was increased from
-180 to +200°F. Over the same range of initial conditions, the CJ pres-

sure and temperature ratios were found to be more sensitive functions of

tne 1nitial temperature than of the initial pressure,



2. DETERMINATION OF THE HUGONIOT CURVE

The detonation wave is considered to be a one-dimensional front and the
pro.css to take place in the absence 31' dissipative effects so that the simple
continuity, momentum, and erergy equations apply. The conditions of the
initial gas mixture, including its composition, are assumed to be known,
while the thermodynamic properties of each constituent of both the initial
maxture and final products must be specified as input data. Each gas species
is assumed to obey the ideal gas law so that the thermodynamic data of each
species can be expressed conveniently in the form of a polynomial expansion
in terms of the temperature. Any number of chemical reactions may be
considered in the equilibrium system, including the case of no chemical
reaction, corresponding to the Rankine-Hugoniot curve,

The final conditions of the wave are determined from a solution to the
conservation equations and the equilibrium equation of state. The equations

expressing conservation of mass, momentum, and energy respectively are:

M
v '{'f: 2.1
-
'Pa - 7:" = Vv, - V, Z. 2
ha'_ha"= 'é'(ula_ug} 2.3

where u is the particle velocity, v the specific volnme, - the pressure,
and h the enthalpy while subscripts 1 and 2 denote initial and final states
of the wave, respectively. The enthalpies in the energy equation are

evaluated by means of a simple summation procedure:

h =%X;h‘/m 2.4
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wicce the X , the mole fractions of the [ species, are determined for state 1

froin the spec:fied composition of the initial mixture and for state 2 from the

cunposition ocorresponding to local thermodyne.-ic equilibrium. The mean mole-
cular weight is a weighted average of the molecular weights, Im: , of the

o4
1.L s-ecies given by the relation:

m =ZXLm': 2.5
[ X

and HL- , the mclar enthalpy of the (b species, can be expressed as:
L] o T_
.= K d7 2.6
HL h" + L CFL.

o

where Hj is the enthalpy of formation at a reference temperaturev‘ _’; and
C’Po’ is the specific heat of the (th species,
The conservation equations, eqgs. (2.1), (2.2) and (2. 3), can be com-

bined to yield the well-known Hugoniot equation:

he = by =2 (po- R+ ) 2.1

which, expressed in dimensionless terms, has the form:

Yoo 2 =E(P- 2V +1) 2.8
where P is the pressure ratio ',E/’E, \/ the volume ratio, Vg/li and 7/ is

the dimensionless enthalpy defined as:

# Rv RiT o'l
where T is the temperature and R, the specific gas constant, is expressed

in terms of the umiversal gas constant R and the mean molecular weight:
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The equation of state of the medium behind the wave can be written as:

y Vi R>T 2.11

In dimensionless form, eq. (2.11) becomes

PV=6/7 2.12

where © and 777 are respectively the temperature and molecular
weighy ratics, 75/1: and m,'/m, , across the wave.

Since it is most convenient to work in the specific volume-
temperature plane, eqs. (2.8) and(2.12) can be rearranged to yield

the following expressions:
\/=E(7o‘2-79§)/(P—1) -1 2.13
V=8/Pm) 2.14

Both'Né and /77 can be deterﬁined, of course,once P and 6 are
known; hence, by specifying a value of P, solutions to sqs. (2.13)
and (2. 14) can be found as shown in Fig 1. The intersection of the
equaticn of state (2.14) and the Hugoniot equation (2. 13), which repre-
sents a solution point, i.e., a point on the Hugoniot curve correspon-
ding to final conditions of the wave, is found in the following manner.
An initial choice is made for & and, at the specified P, the equili-
brium composition and corresponding thermodynamic properties are
caluclated. If the initial choice of & was correct, then eqs. (2.13) and
(2.14) would be satisfied simultaneously within the prescribed accuracy.
If not, a correction to ©, A6 , is obtained by expansion of eqs. (2.13)
and (2.14) in terms of a Taylor series about the initial approximation to
©. Equating the resulting expansions and retaining only first order

terms, we obtain then:

26 =0y -V, - (),



where \/H and VS are the volume ratios evaluated from the Hugoniot equation
and equation of state respectively at the specified P and previous value of €.

Differentiating eqs. (2.13) and (2. 14) with respect to © at constant P yields,

respectively:
¥ 45
S oy P-1 2.16
AM) - 722{ Llog 777 }
16/, P L (azoge),, 2.17
where ’%‘f 1s the non-dimensional equilibrium specific heat at constant

P and the subscripts H and S denote differentiation in the V-6 plane along
the path of the Hugoniot equaiion and along the path of the equation of
state respectively. The derivation of equation (2.17) is given in section
6.5. Successive corrections are made to the temperature, © , until the
values of \/ comI;uted from eqs. (2’. 13) and (2.14) agree within a pre-
scribed accuracy.

Eqs. (2.13) and (2.14) can also be solved by choosing & as the
independent variable and iterating for the correct value of P,

Eq. (2.15) then becomes

A6 = (Vi- \/)/t %T:GJ ~ 2.18

where the subscripts H and $ now refer to differentiation in the V-P plane
along the Hugoniot equation and the path of the equation of state respec-

tively. For this case eqs. (2.16) and (2.17) become respectively
)L)w‘,?[(p 1XV-;| )= (%- ,'VJ/(P 1) 2,19
(%%)e,s {1 + 9‘/'&?'9&)} 2. 20



Eq. (2.19) is obtained by straightforward differentiation of eq. (2. 13),
while eq. (2.20) is derived in section £,5, Fig. 2 shows the solution for a
point on the Hugoniot curve in the \/-P plane. The initial conditions are the
same as those of Fig. 1 and the value of G , Fig. 2, was chosen so that both
solutions correspond to some point on the Hugoniot curve. A comparison of
Figs. | and 2 shows that the Hugoniot equation and equation of state are nearly
orthogonal in the V-© (constant pressure) plane while in the \/-P (constant
temperalture) plane they are almost parallel. Hence, in addition to a wider
latitude for the initial choice of the independent parameter, choosing P ,
rather than ® , as the dependent variable should minimize problems
associated with convergence,

For purposes of illustration, Fig. 3 shows the Hugoniot curve for a
2H,$0, mixture initially at 60°F and 1 atmosphere in the PV plane. Shown
also is the CJ Rayleigh line whose intersection with the Rankine-Hugoniot

curve defines the von Neumann spike.
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3. DETERMINATION OF THE CHAPMAN JOUGUET STATE

The CJ state is defined as that state at which the final equilibrium Mach
number is equal to unity. It is determined by finding the intersection of the
thoniot‘curve with the line M,'Z =1, in the Mr.a'P plane. Fig. 4 shows the
Hugoniot- curve in the Mg," P plane fora 2 H+0, mixture initially at 60°F and
1 atmosphere, and the line Me,z =1 The CJ state is determined by making an
initial guess for the CJ pressure, PL‘; » linearizing the Hugoniot curve in the
M,lz-P plane, and solving for corrections in the initial choice of E; . At
each approximate value of Rs , the corresponding properties on the Hugoniot
curve are evaluated by the method described in the previous section,

While previously it was possible to find analytical expressions for the
derivatives of the governing equations, a numerical method must be used here.
The derivative of the Hugoniot curve in the' Me2™ P plane 1s found by taking a
small increment, $P , in the previous estimate of FZI and evaluating the
corresponding incremental change in Me',—‘,) §Me., . Hence, to a good approxi-
mation, the derivative of the Hugoniot curve in the M, P plane 1s given by

%%"—2- , and it can be easily verified that the correction A Rr is given by

ARy = /1 - Me)a)/(gMg,a/S P) 3.1

It is advisable to overestimate the imitial approximation to Rs in

. 1

order to insure that the corresponding value of V on the Hugoniot curve will
be less than one. The stability of the iteration procedure 1s improved by re-

quiring that

IARs] ¢ 1 3.2
which should prevent the new approximation to Py from becoming too smail
and yielding an imaginary wave velocity, The iteration is continued untii the
value of MQ‘E is sufficiently close to one, so that AP;: is less than a pre-

scribed value,.
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4, DETERMINATION OF THE VON NEUMANN SPIKE

The von Neumann spike conditions correspord to the properties behind
a non-reactive shock wave which propagates at a Mach number equal to that
of the CJ detonation. In this report the von Neumann spike is used to establish
the upper limit to the Hugoniot curve. The state in the P-V plare corresponding
to the von Neumarnn spike 1s determined by the intersection of the Rayleigh line,
which emanates from ihe initial state and 1s tangent to the Hugoniot curve, with
the Rankine-Hugoniot curve. Fig. 3 illustrates the solutirn for the case of a
ZH0+Q, muxture initially at 60°F and | atmosphere. The iterative technique
used in the method of solution 1s similar to that outlined in section 3, An initial
guess is made for F, , the von Neumann spike pressure ratio and the equations
of the Rayleigh line and Rankmé-Hugomot curve are linearized permitting cor-
rections to be found to the initial choice of P,y.

It 1s necessary to know the value of the derivatives, g—% , along both the
Rankine-Hugoniot curve and the Rayleigh line in the P-V plane, in order to
linearize the equations describing thcse curves, The first, g‘%)“ ,» 1s found
by taking a small increment in P, §SP, and evaluating the corresponding
increment in V , §V ; the ratio é-% » yields, then, a sufficiently gocd
approximation to the derivative, 3'%)” The second, %)R , 18 1nvariant and
may be found analytically. The dimensionless Rayleight line equation is given

by:
P-1=vimi(-v) 4.1

where Y; , and Mi are, respectively, the initial specific heat ratio and Mach

number. Since both Y

; and M, remain consiant along the Rayleigh line,

!
g%)g T Ymz 4.2

differentiation of eq. (4.1) yields.
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An initial approximation to the von Neumann :pike pressure, E,,,, » 18
made and at this pressure, the required derivatives are evaluated as outlined
above, It can easily be verified that the correction to the approximation of

PVN is given by:

27 = (v - w)[(E9),, + F3) 4.3

where VRH and VR are, respectively, the values of the volume ratio evalu-
ated from the equations for the Rankine-Hugomot curve and Rayle:gh line
at the previous value of P, . The iteration is continued until V is sufficiently

close to VR so that AP 1is less than a prescribed value.
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5. DETERMINATION OF THE POINT ON THE HUGONIOT CURVE AT V =1.0

The pressure ratio, f{,, , corresponding to the point on the Hugoniot
curve where V=] is used to establish the lower limit of the Hugoniot curve,
It 15 determined by the intersection, in the%-P plane, of the Hugoniot curve
with a line of 45° slope passing through the point #%:4-1, P= 0, corresponding

to the Hugoniot equation with /=10, The two equations are then:

X <% +4(P - v+ 5.1

Moo=+ (P-1) 5.2

Similar techniques are employed to solve eqs. (5. 1( and (5.2) as that
used in sections 2, 3, and 4. An initial approximation is made for R,:;;
the two equations (5. 1) and (5. 2) are linearized at this value of Pv=, , and a
correction found for the initial guess,

The derivative of eq. (5.1) in the ¥-P plane is found by taking a
small inorement §F in the approximate F,., and evaluating the
corresponding increment in 7/2) §#% . Hence a good approximation to the
derivative of eq. (5.1) is given by -é'zg- . The derivative of eq. (5. 2) is
obviously equal to cne. It can be easily verified then that the correction

to the initial approximation of F_, 15 given by:

AR, = (7.124-7,12m)/(1 - ) 5.3

where 74” and %v-: are evaluated from eqs. (5.1) and (5. 2) respectively

at the approximate Pv:; .

The iteration is continued again until % is sufficiently close to

val

7¥2H , that APV_' is less than a prescribed value,
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6. EVALUATION OF EQUILIBRIUM COMPOSITION AND
EQUILIBRIUM THERMODYNAMIC DERIVATIVES

The preceding anclysis requires the evaluation of the equilibrium com-
pcsition of & multicompcnent mixture of gases at a specified temperatucze
and prescsure, Brinkley (12) has developed a convenient method for equili-
brium calculations for use in machine computation, and this procedure has

been adeptad for cur work.,

6.1 Equilibrium Composition

Foliowing Brinkley (12) and Obert (14),we shall consider the procducts
to consist of a certain number of species, referred to as constituents, of
which a certain minimum number are components. The distinction between
constituents and components is derived from the fact that in a closed svstem
at a given pressure and temperature in which departures from equiiibrium
are considered, a component i1s defined as an independent variable wkile a
constituent is defined as a dependent variable. (In an equilibrium system
at a given pressure and temperature, the composition is fixed and herce
the components may not be varied independtly). For example, consider a
closed system in which H,, O, , and H,0 are present at a given pressure and
temperature., Any two of the three constituents may be considered as com-
ponents. Formal rules for selecting components were given by Brinkley (13).

The constituents of the equilibrium system can be expressed symboli-

cally in terms of the components in the following form:
0 &= pg N ] i 3
YL Zj P‘J)j 6.1

where Y.. designates the chemical symbol of the it

constituent, YJ - the
chemical symbol of the jfb component, and P{f are the stoichiometric co-

efficients. In this section, L subscripts refer to constituents andJ and k
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subscripts refer to components. For example, consider the hydrogen-oxygen

system in which six constituents are assumed present, namely, H. » Oz » H:0»

OH , H , and O, and let the components be H0 and O,.

formed by the ﬁ-j‘s is:

Then the matrix

o Components
— =3
| ¥ Constituents

Ha -1.00 -0.50
0: 0. 00 1.00
H.0 1.00 0. 00
OH 0.50 0. 25
H 0.50 0. 25
(@) 0.00 0.50

The composition of the jnitial mixture determines the
each component in a hypothetical system consisting of components cnly.

The mass balance between the hypothetical system an

stituents is expressed then by the relationship:

2 Bjni =

d the equilibrium con-

where Nn; is the number of moles of the (! constituent in the equilibrium

system derived from the hypothetical system.

for the system under consideration can be expressed as:

A= 3

component respectively.

The mass action relations

where 4 and y; are the chemical potentials of the (th constituent and J'th

mole fraction of

6.1.2

6.1.3
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Dividing eq. (6.1.2) byn , where

n'%ﬂ;_ 6.1.4

leads to:

?ngi-"'—%j/n 6.1.5

which, when summed over thej componernts, becomes after rearrange-

ment:
E=1 +§(/85—1)x; 6.1.6

where ﬁ is defined by the relation:

/9‘~=JZ/9{,' 6.1.7

Substituting eq. (6. 1. 6) into eq. (6.1.5) yields finally:

LZ(,BLJ ‘(ﬂ-*l)cz\,,.)x‘- = 9 6.1.8

A quantity Gj can be defined now as the residue of eq. (6.1.8), i.e.,

G; =§(/‘9¢J"(ﬁ" _1)%),(‘.-%' 6.1.9

where (5; is identically zero when the correct set of X; are substituted
into eq. (6.1.9).

The chemical potential of the (th ideal gas constituent may be written
in the form:

M ’=/{‘-° + (R.TIOj(PJQ) 6.1.10

where /1{:’ is the chemical potential of the /™ constituent at the temperature
in question and one atmosphere. Note that the chemical potential of a pure

species is equal to the Gibbs free energy per mole. Hence, for this case:
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6.1.11

where 3f is the molar Gibbs free energy of the il constituent. Substituting

eq. (6.1.10) into eq. (6.1.3) and rearranging terms yields:

logtx) = f:(pT) —% B,z

where

j;i(»;:,')")"’ ~log(p) - A£3°/02

T

and Z:, the iteration parameter, has the formal definition:

ZJ' = "fog(p) - /09()3')

The quantity, Aig" . used in eq. (6.1.13) is defined by the relation:

,9°=9-3 Fij9;

Now an initial guess must be made for Z . Then substituting the

value of X‘.'from eq. (6.1.12) into eq. (6.1. 9)) expanding the resulting

equation in a Taylor geries about the approximate set of

J

only first order terms, one obtains a set of linear equations of the form:

2B, A7 =Gy

where

BT (g e

f Z'J'. With the new

and AZK are the correction terms for the initialchoice o
values of ZJ , the procedure is repeated and the iterati

desired accuracy.

on continued to the

6.1.12

6.1.13

6.1.14

6.1.15

2, and retaining

6.1.16

6. l. 17



18

6.2 Evaluation of the Derivatives 6[991):3 and | 3_[‘23.,)

Differentiating eq. (6. 1.12) with respect to log(T) at constant -p one

obtains:

[

. = Aﬁ..b. — ‘ QZ,‘
(e) |09T;‘7) AT ZJ—PLJ(';“)?T)'P 6. 2.
where we have made use of the thermodynamic relatior

(é logT),,f “A“h 6. 2.2

and A;h is defined as:
: L= HL-“:/@;J‘H- 6.2.3
Taking the derivative of eq. (6. 1.8) with respect to |09(T) at constant P,

where the correct set of X; have been used, and substituting eq. (6. 2.1) into

the resulting expression yields:

N

(STS"'),, Z q"(ﬂ l‘h)XAh/(RT 6. 2.

which gives a set of simultaneous equations from which the set of derivatives
@L)f may be determined, allowing, finally, the evaluation of the set of
derivatives 9—133#‘)79 from eq. (6.2.1)
The set of derivatives (‘é‘%%gé")r may be derived in a similar malnﬁer.

Differentiating eq. (6.1.12) with respect to |og(,f9 at constant | we have now:
(g log —p)‘r = e szgf.j (;lo'g-?)r 6.2.5

while taking the derivative of eq. (6. 1.8) with respect to -P at constant
T , where again the correct set of X, have been used, and substituting

eq. (6. 2.5) into the resulting expression we obtain finally:

Bjk&bz;ﬁr= - % 6.2.6
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This provides a set of simultaneous equations from which the set of derivatives
( A !og’ 'P)T may be determined. Consequently, the derivatives (; ’OQQ'P )‘r

may be evaluated from eq. (6. 2. 5).

6.3 Partial Derivatives of Molecular Weight

-

The partial derivatives of the molecular weight can be expressed most
conveniently in terms of the partial derivatives of the mole franctions. Making

use of a mathematical idenrtity, we can write:

(3-109-50—) = - (.A.m_) 5

g T » m élogT—P 6.3.1
With the use of eq. (2.5), where m; is, of course, 4 constant, we obtain:

s, -z g

c)logT % M BleqT lp 6.3.2

Similarly, it can be shown that:

@:LS;’%)T = mnf‘@"%f)r | 6.3.3

6.4 [Evaluation of Equilibrium Specific Heat

The equilibrium specific heat per urit mass is denoted by the expres-

sion (‘31111')_P where
l’l =ZL- m 6.4.!
Performing the indicated diiferentiation yeilds then:

c?e'—‘—%‘*m‘;@-?‘),. + ;h;x&@éulf +§_-,§',~(§%),, 6.4, 2

where the first term on the right hand side represents the frozen composition
specific heat per unit mass, Cﬂ-_ . Expressing the derivatives in logarithmic

form we have:

C-Pe-'-‘ Cf{_“%%@%%%ﬁ‘?%(% 6.4.3
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Note that for the case of frozen composition, the derivatives on the right hand

side of eq. (6. 4. 3) vanish, leading to the identity that Cpe= Copy +

6.5 [Evaluation of Thermodynamic Derivatives @Tﬂp and (&'P)r

Differentiation of the ideal gas equation of state with varying molecular

weight yields:

and
' (g_}f%)T=—:¥’—(1+ log 'P)T) 6.5.2

These relations are necessary to evaluate the equilibrium sound velocity and
specific heat ratio, while eq. (6.5.1) has already been used in section 2.
The derivatives on the right hand side of the equations have been determined

already in section 6. 3.

6.6 Evaluation of the Equilibrium Specific Heat Ratio

The equilibrium specific heat ratio, Y, , is defined as:

- C
Ye= Con é. 6.

which upon substituting the well-known specific heat equation:

Cpe~Cwe =~ T@’%)i/(f:}‘s)r 6. 6.

(s

becomes:

Ye=—c ‘Q”% 6.6.3
fe+ T($tL/85

Substituting now eqs. (6.5.1) and (6. 5. 2) into (6. 6. 3) and rearranging terms

we obtain finally:

Ye = Cre %[1 “09 LJ/[“'( !ogf),] 6.6. 4



21

Note that for frozen composition, the derivatives of the molecular weight, m .,

vanish so that
=YW= —Sp¢
Ye = )i Gy R 6. 6.

6.7 Evaluation of Equilibrium Sound Velocity

The equilibrium sound velocity is given by:
2. (38
Qe \ J? )s 6.7.

The above can be expressed in terms of-p,V, and T and the specific heat data

by a number of ways. One is by the use of the specific heat ratio

c
- fe
Ye - C\/e 6. 7.
Now Cpo, = T(?’-,i-)19 and Cee® TRTH so that eq.(f. 7. 2) becomes
93} f2S
Ye’(AT}f 5\ 6.7.
Since, by the partial derivative relation between three variables,
35 (). 65)
* i AT /s (3P/T 6.7.
and .
) ) [ |
('ﬁ)ﬁ éT)s('bv)-r 6.7. ¢

Substituting eqs. (6. 7. 4)and {6, 7. 5)into eq. (6. 7. 3}ard simplifying gives:
0, pal
Yo = LT\l

= J
(%-’1‘—)5(@%)1— 2+ @—5) 5/(5;‘?)7' \
42~ v, B2,

Therefore the equilibrium sound velocity is given by the expression

aca = "Vayo(:(j_f}r 6.7.

o

7.

|

Hence

-
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Substituting eqs. (6. 5. 2) and (6. 6. 4) into (6. 7. 8) yields after rearrangement

e T/
T Qe - 6.7.9

for frozen compomtxon, (é.l_g__) (3‘)_}%2'@)70 0 and eq. (6. 7.9) reduces to the

— ]

classical thermodynamic relation

2 — L] 7' i @
ag = Y; (RT/P’? 6.7.1
It should be noted that the equilibrium velocity of sound is not equal to

X‘eRT/ m . If one wishes to use a similar expression it can be done by in-

troducing a quantity " such that

=TRT/m 6.7.11

Then by comparing eqs. (6.7.9) and (6.7.11)

- : .
[1 +(3lesm)] - & [1 (Seg). ] o
Clearly, if the molar mass m is constant
T’ P - V¢ 6.7.13

Cpg— R/m

However if the molar mass is varying,

a ( ) i(&fogf) (%Zg'ﬁﬂT/m

while from the temperature-entropy relations, with e the internal erergy

(Q.h%_}})_;??) (‘,}éﬁg‘f)s 6.7.14
Hence _]_,z (—%—E')S

which should be contrasted to Ye used in eq. (6.7.8).

-
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7. COMPUTER PROGRAM AND DATA

The program written for the IBM 7090 digital computér at the Computer
Center, University of California, Berkeley, to evaluate the detonation para-
meters of gaseous mixtures consists of four programs and subprograms. The
Fortran listings are given in Tables 2 - 7 which are discussed below. A flow
diagram illustrating the operations performed by the four sub-routines and

their interdependence is shown in Fig. 5.

Table 2 Source Program

This program loads the initial data into the computer and evaluates the
upstream thermodynamic properties. These initial conditions are then printed
out, and several constants are evaluated from the input data which are used

later in the program.

Tables 3, 4, 5 Subroutine Spec

There are three Spec subroutines which shall be denoted by Spec(a),
Spec(b),and Spec(c). The purpose of the subroutine in all three cases is either
to specify the pressure at which properties are to be evaluated on the Hugoniot
or Rankine-Hugoniot curve, or to converge to a particular pressure, e.g. R,
Ry or Pyag.

The thermodynamic properties and equilibrium composition are printed

out for each solution in this subroutine.

Table 6 Subroutine Main

Subroutine main is called by the Spec subroutine to determine the
correct value of temperature on the Hugoniot (or Rankine-Hugoniot) curve
corresponding to the given value of £, After converging to the correct 6,
the equilibrium sound velocity and specific heat ratio are evaluated and the

subroutine returns to subroutine spec.
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Table 7 Subroutine Brink

This subroutine is called by the subroutine main at each approximate
value of T and P to evaluate the equilibrium composition and several thermo-
dynamic properties,

Table 5 Input Data

The input data is given to the computer on IBM data cards. Instructions
for putting the required data on the cards are given below. The foimat state-
ment is given by each data card and the nur.nbers on the left indicate the
spaces on the card where the data must be inserted

Data 1: 1 card (7E10. 3)

1-10: _ ik atmospheres

11-20: T, » degrees Kelvin

21-30: convergence criterion for AZ'J'

31-40: . convergence criterion for AT, 4 fZJ. , 4F, and AP,.,
41-50: increment of P for Spec(a)

blank for Spec(b)allad Spec(c)
51-60: initial vaiue at P for Spec(a)
initial appraximation of Pc_;- for Spec(b)
initial approximation of P, for Spedc)
61-70: initial approximation for T corresponding to the iritial P
Data 2: 1 card (7E10. 3)
1-10: blank
11-20: initial approximation for Pv;. for Spec(b)

blank for Spec(a) and Spec(c)
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Data 3: 1 card (7110)

1-10: number of pressures to be evaluated on Hugoniot curve

for Spec(a)

blank for Spec(b)and Specic)

11-20: number of constituents in downstream equilibrium system
21-30: number of components in downstream equilibrium system
31-40: number of species in upstream mixture

41-50: 1if Re, is to be computed for Spec(b)

0 if Fy=; is not to be computed for Spec (b)
blank for Spec(a)and Spec(c)

Data 4: 1 or more cards (7110)

1-10: subscripts of constituents appearing in {nitial mixture
Data 5
11-20: subscripts of constituents appearing in lists of componerts

Data 6: twice the number of cards as the number of constituents in downstream

system
1-70: Data on each card is a line from Table 8: i.e. , each
card has coefficients for one species and for one
temperature range. The cards with the coefficients for
the constituents must appear in the order that the
constituents appear in the /g“j , i.e., Data 8. The low
temperature range coefficients must appear first
followed by the high temperature range coefficients.
Data 7: 1 or<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>