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SUMMARY

It is shown that if in an economy each consumer has a
fixed income and acts s0 as tu maximize a concave, continuous
and homogeneous utility function, then beth a social welfare

and a community utillity function exist.
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AGGREGATION OF UTILITY FUNCTIONS

1. Introduction. The concepts of economic equilibrium

and aggregation of utilities have been discussed separately in
various papers. While equllibrlum has been shown to exist under
very general assumptions (sce [l]), the community revealed pre-
ference may, under these same assumptions, possess intransiti-
vities; in which case one knows a priori that a community (or
aggregate) preference ordering does not exist.

An apparently related questiocn is that of a community
pseudo-utility (or cocial welfare function). There we ask
whether there 1s an explicit function of the individual's
utilities (and independent of prices) which is maximized at
equllibrium.

The purpose of this paper 1s to show that 1f every member
of a community has a fixed income and acts according to a con-
cave, continuous and homogeneous utility function then both a
community utility and a social welfare function exist. ?hu- one
is able to define, unambiguously, the index of the communlty
standard of living as well as the price index.

For the reader who 1is interested ln practical calculations
of equilibrium distributions and prices, these are shown to be,
in our model, the primal and dual variables of a concave pro-
gramming problem with linear constraints. With the obJective
function given explicitly in terms of the individual's utilities

one can use any of the known methods of concave programming tc
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calculate the desired quantities.
Our basic tool is the saddle point theorem for concave pro=-
gramming {see for example Theorem 1 of [4]). We do not, however,

requ’re the functions in question to be differentisble.

2. Definitions and Assumptions. In the model to be dils-

cussed we have m buyers Bl’ cesy Bm and n goods Gm, ey Gn'
A bpundle of goods 18 a vector x = (&l, cee, en) in real n-space
with 53-2 0 for each §; 53 represents a quantity of GJ.

We further assume that each B1 has a fixed positive income

Bi, ang that we have chosen our monetary unit in such a manner
that ifl Bi = 1. Plnally, each buyer, Bi' has a real valuad
non-constant utility function ui(x) defined for all bundles

x, with each uy being concave, continuous, homogeneous of

order 1! and ui(x)_2 0 for all dundles x.

Before proceeding further an explanation of the above is
called for. The requirement of fixed income, is of course not
as general as one would wish; it has however wide applications
and it 1is this assumption, together with homogeneity, which en-
ables us to accomplish the tasks outlined in the introduction.

The fact that if in the above model we remove the require-
ment that each u, be homogerieous then the community demend need
not be rational is well known. One need not go very far to con-
struct examples with an intransitive community preference.

For s given set of non-negative prices p = (wl, sy "h)

1See Section 3.
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the demand set of B,, denoted Di(p), 18 the set of all bundles
which maximize Bi's utility wilthout exceeding his persocnal

budget. More formally:
Di(p) -{xlui(x) 1s maximal subject to: x ) 0 and xp ¢ Bie} .
In general, Di(p) may be the empty set; however when prices are

all positive 1t follows from the continuity of uy that Di(p)

18 non-empty. We also define tie commmunity demand to be

m
D*(p) - {x'x = I

2 Xy, Xy € Di(p) for all 1 =1, ..., m}

In words, D.(p) i3 the set of all those bundles that_are demand-

ed at prices p, by the community as a whole.

The community-pseudo-utility function VY, denoted C.P.U,
18 defined by

m g
1 4 (xlo ey ’%) - 1:1 [ui(xi)] 1

for every collection of m bundles Xys sver Ko
The community utility function u, denoted C.U., 18 defined
by

B

xp 1is the inner product of the vectors x and p, while
x > 0 means that every component of x 1s non-negative,
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m 3)
u(x) = Sup {Y(xl’ ”"’Sn) Xp ++e,X, are bundles and 1flx1 {x }
Our goal is to demonstrate, among other results, that u 1s a
true aggregate utility function and that YV 1s a social welfare
function for the model under consideration. The latter result
iz given in Theorem ** while the former means that for every set
of non-negative prices p,D’(p) is precisely the set demanded
with utility u and income 1. PFormally, we must show that if
p -‘(rl, cees ¥,) D O then

D’(p) - {x'u(x) 13 maximal subject to x ) 0 and xp S.l} .

The principal results of this paper are:

Theorem 1. The function u 1s a true aggregate utility
function for the model.

Theorsm 2. If x ¢ D’(p) and u(x) -'V(xl, cee, xh) then
x, €D, (p) for 1 =1, ..., m. Conversely, if x, € D,(p) for
1 i i 1

m
i=1, ..., » and x--if1 X, then u(x)-V(xl, ...,an).

Theorem 3. If x 11 a bundle with each component positive
and u(x) = V¥{x., ..., x.) then there exist price p such that
1 X
X € D’(p).

Theorem 1 1is self explanatory, Theorema 2 and > may be

3See Section 3,
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interpreted in terms of equilibrium properties as follows:

Given a bundle x then the collection of bundles

Xys eees X and the price vector p are called an equilibriym

distribution and prices for x, respectively, providing p 1is

a non-negative vector, x, e Di(p) alli=1, ..., m, iglxi < %,
and px g_l. This 18 the standard definition of equilibrium
when x represents quantities of the goods Gl’ ceey Gn avail-
able in the economy, i1.e. at prices p every buyer has maxi-
mized his utlility, there is sufficient supply of each goods in
the economy to meet the demand and only free goods (those with
zero price) can be in oversupply. Also, for a fixed bundle x,
a collection of bundles Xps vees Xy is called a waximizing
distribution for x providing wu(x) -"Y(xl, cees xm).

Theorems 2 and 3 are then equivalent to (as is seen trivi-

ally by using Theorem 1 and comparing the two expressions for
*
D (p))

Theorem 2*. If for the bundle x there exists en equili-
brium distribution and prices then every maximizing distribution
is an equilibrium distribution. Conversely, if Kys orey Xy
is an equilibrium distribution for the bundle x then 1t is a
maximizing distribution.

Theorem 3*, If x 18 a bundle with each component posi-
tive then every maximizing distribution 18 an equilibrium distri-
bution.

At first glance one may wonder why Theorem 2* does not say

that every maximizing distribution is an equilibrium distribution.
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This is simply not true. Por, as is the case when x 1is iden-
tically zero, the set of equilibrium distributions is empty
while the set of maximizing distributions, in view of the con-
tinuity of the C.P.U., is never empty. Theorem 3* does, of
course, guarantee that an equil’brium distribution exists in
case x 13 positive. It should be mentloned that Theorem >*
has been proved, under much weaker assumptions elsewhere (see
[1]). One of the reasons for it3 inclusion here is that other
methods of proof depend on general fixed-polnt theorems while
here use is made, essentlally, of separation, theorems for convex
sets.

Finally, certain unigueness questions can be answered
rather easlly in the framework of our formulation. Equilibrium
prises need not be unique without further assumptions, and cer-
tainly one cannot expect equilibrium distributions to be unique.

However, the satisfaction of each buyer at equilibrium, or the

pey-off, 1is unique.

Theorem 4. Suppose that for a given bundle x there are
two equilibrium price vectors p and q with Xys eoes Xy
and Yys eees Yy being the corresponding equilibrium distribu-
tions. Then “i(xi) - ui(yi) for every isl, ..., m.

3. Proof of Theorems. We shall first prove several lemmas.

All matrices and vectors discussed have real components and we
use the conventional notation for matrix multiplication. If-

A= (“13) is an m xn matrix, x = (&, ..., &)
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y = (”1' cee, nn) are vectors, then xA stands for the vec-
m

m
tor (=2 40415 vees E Eiain) and Ay stands For the vector

n 1=l n im]
(lendalj’ cen, lenJamJ) while xAy stands for the inner
product of xA and y ({or equivalently x and Ay) 1i.e.
n m
XAy = 2 X .
y = 1_151”3“13 A vector inequality means that the same

inequality obtains componentwise. By Ri is meant the set of
real k-tuples x = (El, ceo, gk) with &i_z O i=1, ..., k. A
function ¢ : Rf — R (R being the set of real numbers) is
concave providing O(Ax + (1-A)y) > A &(x) + (1-7)é(y) for all
X, y € Ri and all A in the real interval [0, 1]; ¢ is posi-

tively homogeneous of order r (or, for short, r-homogeneous)

providing r 18 a real number and ¢(Ax) = ATO(x) for all x € Rf
and A > 0; when saying Q Js continuous we shall aiways mean
with reapect to the relative topology of Rf as a subspace of

R, We also say that ¢ 1s quasi-concave providing

¢(Ax + (1-A)y) > a whenever ¢(x), ¢(y) D a and & e [0, 1].

Lemma 1.

let A bean mxn matrix, b € R®, ¢ : RT —~ R a con-
cave function, Suppose A, b have the property that for some
X € Rf we have xA { b, &nd suppose X has the property that
¢(xy) 1s maximal subject to x5 2 O, xgA  b.

Conclusion: There 18 a vector Yo € R2 such that

(1) xyA¥g = bY, and

(2) O(xo)‘z 0(x) + (x5 - x)Ay, for all x € RE .
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Proof: By “he maximality of O(xo) the inequalities:
X € R':
xA{Db
0(xp) - b(x) < 0

have no solution. Whence it follows (see Theorem 1 of [2]) that
there 18 a y ¢ R: and a real number T > O such that y and

NI are not both zero and

XAy - by + 1 [b(xo) - O(x)] 20 forall xc¢ Rx_: .
If M=0 then y $0 and xAy ) O for all x ) O, but we
assumed that xA { O for some x ) O hence xAy { C unlezs
Yy = 0, both of which are impossible. Thus 7> 0, let Yo ™ %.Pr

then Yo € R: and

xAYo - by + O(xy - 6(x) D O, for all x € Rﬁ
or
O(xg) > 6(x) + (b - xA)yy for all x e af
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Letting x = Xq in the above we get

onyo_2 by,

but x,A { b and Yo € Rf,, hence x,A¥, g_byc . Thus
onyG - byo , completing the proof.

Lemma 2.

Suppose a, B, ¥ are real numbers with the property that

(3) a(l»kﬁ)_z v(1-A), for 811 A in some ope:
neighborhood of 1.

Then af = .

Proof: Por 0 A< 1 we have

1-2P
1A ) <

a

while for 1 { A we have

1P

*AS

g
But, 1lim L g (as may be seen, for instance, by dif-
A —»1 1-A 1-AB
ferentiating the numerator and denominator of the quotient =Y

a
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with respect to A). Thus ¥y Cap{y and ap=y.

Lemma 3.
If A, Db, 0, Xy Satisfy the assumptions of Lemma 1 and in

addition ¢ 1s l-homogeneous then O(xo) = XyA¥y and, thus,
(2) may be written

(3) XAYO) $(x) for all x € RT

Proof: Let A be a non-negative real number. In (2) let

X = Xxo, we then have
0(’(0) 2 O(XXQ) + (xo‘xxo) Ay,

= M(xg) + (1) xoAy,

or (1-2) O(xo) 2 (1-2) xoh¥q

Applying Lemma 2 we have O(xo) = XpA¥q-

Lepma 4,

o m

Let 51, oy am be positive numbers satisfying z Bi = 1,
Then for any a = {0y, ..., o) € Rm we have

51

m
(%) a (where o = 3
1_11§ -
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and equality holds in (%) if and only if a = o B,

Proof: If aw= 0 (i.e. a = 0) then the conclusion 1is
a
trivial. Suppose a ) 0, let Yy ™ e and consider the func-

a
tion f£(c) = g 711 defined for all ¢ = (yl, vee, ym) € H?
for which 2 Yy " l. This function 13 continuous on a compact
set hence achleves its maximum at Co ™ (yg, Ceey g). Note
that c, > O for otherwise f(cy) = O which clearly i3 not
the maximum value of f. But f 1is differentiable, hence all
partial derivatives of f are zero at Co: as are all partials
of

( ( )] m m-1 ( m-1 )
log [f(c)] = & B, log vy, = Z B, log v, + B, log (1- Z ¥
{ml 1 i juml i i m 1wl i

Thus
B g
_%- - —-8- - o 1-1, oo 0, m"l
Ys m
or
Bi - )71 for i=1, ..., m .
But
m m 0
z Bi - 2‘71 = l y
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thus
‘Yi-ﬁi-

This shows the maximum of f occurs at the unique point

C - (Bl, coos gm), as was to be proved.

lemma 5.

let O = RT -» R be continuous, quasi-concave, l-homogeneous

and ¢(x) > O for all x e Rf . Then the following are equiva-
lent

(1) ¢ 1is concave

(11) ¢ 1s non-decreasing (1.e. ¢(x) D ¢(y) 1f x> y)

(111) ¢ (x + y) D> O(x) + b(y) for all x, y ¢ R:

(iv) ¢(x) = 0 for sll x ¢ R: or $(x) > O for all x> O.

Proof. We shall show that (1) implies (11), (1i) implies
- (111), (141) implies (iv) and finally (iv) implies (1).
Suppose ¢ 1s concave and for some x, y € R: we have

x €y and é(x) > 6(y).
Let

z, = ky + (1-k) x = k(y-x) + x € R: s kel, 2, ... .
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Then

1
y =z, + (1 -'E) X .

3 I

Thus by concavity

O(y) 2 2 b(z,) + (1 -3) 6(x)

or

k [003) - 0(x)] + (x) > o(z) > 0.

This 18 clearly a contradiction, since k [O(y) - O(x)] may be
made arbitrarily close to — o by chosing k sufficiently
large. Thus ¢ 1s non-decreasing.

Secordly, suppose ¢ is non-decreasing. If ¢(x) and
¢(y) are both positive then, using quasi-concavity of ¢, and

since
x y
* ) =10 ) -
we have
Q‘x+zz ¢(x) X _ 4 ¢(y) y
(X)+¢(y) Q?(X)'W(Y) O(x)+0(y) 6(x)  O(x)+6(y) ¢(y)

> 1.
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Thus  &(x + y) 2 &(x) + 6(y).

If, then, ¢(x + y) < 6(x) + ¢(y) 1t must be that either
$(x) = 0 or ¢(y) = 0O but this would contradict the fact that
¢ 1is non-decreasing. We have thus shown that (1i) implies
(111). To prove that (1ii) implies (iv), suppose there is an
‘x >0 with ¢(x) = O. Now for any y > O there is & u > 1
such that

Z mux + (lep)y € R’:

(1r y<{ x then z ¢ R® for all u 2 0, otherwise let

Y= (N, ooy ) x-‘(gl, cees &) and let y = min

> 1).
m)gi Ny -&y

Now
1 1
x-uz+(l-i)y

and thus

°'“ﬂ?°%0+06%%9

hence 0(—-&————}9 1 O(y) = 0, and ¢(y) = 0, thus

showing that @(y) = O for all y € R’: + Finally, we show that

(1v) implies (1).

If O(x) = 0 for all x € R’: then ¢ certainly is con-

cave. Assuming ¢(x) D O for all x > 0 and ¢ 1s not con-
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cave we have
O(hx + (1 - MY)<M(x) + (1 - A) O(y)
for some x, y € R? and A € (0, 1). Let z = 1 ; A y then

O(x + z) < 0(x) + ¢(z). As above, if O(x), ¢(y) D 0, we would
have (using quasi-concavity of ¢) &(x + z) > d(x) + ¢(z).

Thus, say, ¢(z) = O and we have

O(x + z) < §(x),

Taking a sequence 1z  converging to =z with each 2z, > 0,
we have ¢(x + zk).z O(x) + ¢(zk), but by continuity of ¢ we

must also have @(x + z) D ¢(x) + ¢(z). Completing the proof.

lemng 6.
The C.P.U. ¥ 18 concave and continuous.

Froof. By Lemma 5 we see that each uy is non-decreasing
so that ¥ 1s non-decreasing, ¥ 18 also continuous since each
u; 1s, and of course Y 1s l-homogeneous. It remains to show
that ¥ 1s quasi-concave. Consider the functions £(€y, «ovs &)
= f{x) = 7* efi defined for all x > O and g(x) = log £(x)
defined fér all x > O. Now if gy, denotes the 1, k partial
derivative of g then
Py

By (x) =0 if 14k and g,(x) = - Ef



P-136
7-1k-
-16-~

Hence (see [5] p. 87, No. 35) g 1is concave and f 18 quasi-
concave in the interior of Rﬁ, but being continuous it must

be quasi-concave over all of R: . Now 1if

Vlxgs eees %) KV (3ys vees 3p)

then
m By
1 4 (Ax1 + (1—k)yl,..a, Ax, + (1~X)ym) = iwl[ ui(kxi + (l-l)yi}
m By
27 [y (x) + @A ()] 2 ¥ (xps oy %),

completing the proof.

lemma 7.

The C.U. function u is concave, continuous, l-homogeneous

and u(x) > 0 all x ¢ Rf .

Proof. That u(x) ) 0 for all X e R: is trivial. To
show homogeneity, let A ) 0 and let

u(x) ' (xll seey 75“)1 u(ix) ' 4 (ylr ceey ym)

then

i=]1
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Thus

m moy,
S Ax; (M and % < {x,

iml i=l

whence 1t follows that
Y xg, v, A KV (g0 ens )
and
PR 0D Yoy e
But Y 1is l-homogeneous so
MY (s ees X)) KV (3ys vees 3) <MY (xg, wnes X))
or
au(x) < u(rx) < Mu(x)
and
u{Ax) = Au(x) .

We show iext that u 1s super-additive (i.e. for any x, ¥y € R:
u(x + y) D u(x) + u(y)).
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U(X)-\V(xl, co ey JSn)
u(y) 'W (yl" csey ym) .
Hence
mn m
IoxC(x, Z y<v,
i=} im]
thus
5 ( )
S (x, +y X+y
1e1 + 0 AT
whence

ulx + y) DV {x; + ¥, «oos X3 +5)

but by Lemma 6 V¥ 1is super-additive thus

w(x + ¥) 29 (%, ey %) + ¥V (yy, «ovy yy) = ulx) + uly).

It is clear that homogeneity and super-additivity of u suffice
to show that u 18 concave; it is of interest, however, and
not difficult ¢n demonstrate, that u 1s also continuous. Let

xk be ¢ swofasnc s An R: converging to x 1n R: . Let
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u(xk) = Vf(xg, v, xﬁ) and let u(x) =V (xl, cees xm). Since

k

the Xy are bounded we may assume, taking a subsequence if

necessary, that the x? N

continuity of YV, the W’(x?, ooy xﬁ) converge to

converge to X, in Rf . Hence, by

mo K m
V(z, ..., £). But = x7{ x* hence 2 X, { x and thus
1 m 1=1 11 T
Y (xl, cee, Zm) g_W'(xl, cee, xm) . We thus see that
Im u(x¥) < u(x).
. k k K
et x = (G“l" sy gn) y X 0= (&l: ey gn) 5 We may

ascume that g? >0 for all k whemever £, > 0. Iet

X
€0\
n <%i) (12 x = 0 let A, =1, all k),

Al{ = mi r
¢ go
*J
then A, > 0 and A, converge to 1. But A x < x¥  so that
m N n -
A x, € XX (because we may assume that = x, = x). Thus
{=m1 | [ A 1=l i

YOy s Nx) = A W, ey ) VG, e, X))

and, since the hk converge to 1, we have

¥ (xs eens %) = ulx) < Um u(x) .
Hence u(x) = 1lim u(xk), completing the proof.
k

We now proceed to prove Theorems 1 - k.

18

Proof of Theovrem 2. Suppose %, ¢ D,(p) and = x, = x
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By Lemma % we know there exist Ry @ all non-negative,

such that for each i=1, ..., m we have

(5) 03By = ayx;P = uy (%)
(6) x P { By
(7) aiyp.Q ui(y) s for every v € R:

Note that ay > 0 for each i=l, ..., m, because otherwise we
would have bi(x) = 0 for all x; hence B, = x,p. Now

u(x) 2 ¥ (xy, «ovy ),

ifr
“(x) - V (Yl: eey ym) >\y (xl’ sesy JS“)
éhen
m g m 8 m B m By
1:i(aiyip) 1'21:1[u1(y1)} : >1:1[u1(x1)] ' '1Zi(aixip)
m ﬁi
"izl(aiﬁi)

thus
B m B

T 6{ .

m
* (y,p)
im=l f=]1 ~
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But
: oy, <
Z 0y x
1a1 1 77
hence
m
I yyp Cpx=1
i=l

which contradicts Lemma 4. Thus u(x) = V¥ (xl, cen, xm).
*
Now if x ¢ D (p) and u(x} =V (xy, ..., xm), let
m
© where x ¢ D (p). Using (5) - (7) and the fact that

X = .l Xi
(see first part of this proof)

' 1=l 0 0
Y(Xls seey Xm)"v(le s ey xm)
we have
B
m g i m B n g
1 (0] 1 1
r (a,8,) " = m [u (x )] a 7w {u, (x,) r Jax.p .
Eence
m B m B
L ﬁi i _<_ m (xip) 1 )
im] im]
m m
but izlxi { x so that leip { xp = 1, and thus by Lemma 4

x,p = By ard ui(xi) - B .

Hence 1if y € Ri , and yp B, then

ui(y) S aiyp g_ aiﬁi = ui(xi) .
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Thus x, < Di(p) for each 4=1, ..., m. As was to be shown.

Proof of Theorem 3. By Lemma 1 there exists q € R,
such that

m
qui-qx
i=]
and
m o] m B m
1 i
T ju,(x v |u T 4+ q 2 (X, -
1.1[ 1 1)] -21-1[ i(yi)] 9,551 - 1)

for every Yo covr ¥y such that y,; € R:.

Let y;, =X Xx,, where A\ D O then

n )
(l-l)j.:l[ui(xi)] 1 _>_ ‘l'l) qiglxi - (1‘)‘) qx

thus
m ]
qx -1:1[u1(x1)] 1y0.

let p = A then
qx
By

m ju, (y,) n n

For a fixed k, let y, = x, 1f 14k, y, = Ax, where A ) O.
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Thus 1 > kﬁk + p x, (1-A) hence by Lemma 2
Bk - pxk for every kwl, ..., m .

Now for a given k 1let, in (8), yy =% if 3 # k and

i
yk = x then

B
(9) >iruk—(——)( )] i ( ) for all X e R.
+ p(x, - x or a € R

”kak x +

Thus, if x € RE and xp é,ﬁk = x, p then
u, (x)

1 G;TEET s or uk(x) §~uk(xk) .

Thus x, € Dk(p) for ksl, ..., m.
Proof of Theorem 1. Suppose x ¢ D’(p); we wish to show

that for any y € R:, 1r yp< 1 then u(y) € u(x). Iet

m
X = ifl x, where x, € Dj_(p)r:1 and let u(y) =¥ (y;, «ooh ¥,)
hence % v v and thus 2 y,p { yp { 1. Thus by Lemma 4,
1e1 % ® 1=1"1" =

and usin; (5) -~ (7) we have
m
u(x) = Vlxy,eee,xy) = wluy (”i’] - ﬂlbiﬁi] 2 v(aiyip)
n B,
zdﬁﬂﬁﬂ = V(yyseeeyy) = uly) .

Hence u(x) > u(y).
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Conversely, suppose x maximizes u subject to x ) O,
m
xp{ 1. Let u(x) -‘V(x], cee, xm) then Z x, { x. Also
" i=]
P ¢ 0, for otherwise u(y) = O for all y which 18 cleariy not
the case, thus we apply Lemma 3 which tells us that there is an
N> O such that

Npx=Nw=ul(x) >0 and
N py D u(y) for all yenf:
Now for any Fis so0s Yy ER: we have:
(9) 2y, >ulZy)>W ) e 3 o]
9 nep 2y, u( 2y Vs coes Yl = 2 ju,(y
71 2 3 E ) 2V G s ) = 7 uy ()]

thus

(10) 2 > n [yl )17 for all R?
P y 4 or a Yy vees Y. €
1wl 1< 1ml u1 xy ’ 1’ > m +

Hence for every i=l, ..., m and every M > O we have
B8
1-2>@-Apx

thus, by Lemma 2, ﬁi =P X .
Now 4f y ¢ R and yp B, then from (10) we get

4y () —]pk < Ex, +yl<1- +yp (2
U Xy p[ﬂki y}' WP T IPA S
or uk(y) { uk(xk) . Thus x, ¢ Di(p:, for all im=1, ..., m.

m »
But px=1) I px, = 1, thus px = 5 P% hence x ¢ D (p) .
i=1 i=]1
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Proof of Theorem 4. Let p, @ be equilibrium price vectors

for the bundle x. Let x., ..., and Y., ¢+, Y. Dbe their
1 X 1 m

corresponding equilibrium distributions. ILet ai, a be the

1
corresponding numbers appearing in (5) - (7). Then a, 51 >0

for every 1 and

a a /a AN
L4 1,0 2 1, %
= B T=fB, =ZB+ = (= + =]88 ¢
(i ay 1) (1 IR AU 24 \51 “x) 17k
(z=pl+2 35 B °
s g%+ =(=B) =1.
P P h :9

a

1
Thus, say, 2 B, { 1.
2 2 i EI i Y

By lLemma 4 we then have

m [a L o Byfm g, m »p
i i i i
111[5 Bi} ’.rl<"1> RO

m B m B
hence w a, ¢ a, 1, but
iml “i=]l

B =ulx), &B =u,(y)

and by Theoren 2%



hence

m B m B
™ ai 1 = ai 1
1=l hE NN

and by Lenma 4
!
g PL=B o, o oG

Consequently ui(xi) = ui(yi) . Q.E.D.

P-iBég
T-14-5
-26-
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Conclusion. We have shown that under the assumptions

listed in the first paragraph of Section 2:

(1)

(11)

(111)

(1v)

A concave, homogeneous and continuous community-
utility function exists.

A social welfare function is given by $ [gi(xi)}ﬁi
or equivalentliy by §lﬁi log ui(xi). T;is function
18 concave hence: =

Equiilibriuwm distributions and prices may be character-
1zed as the primal and dual variables, respectively,
of a concave programming problem with linear constraints,
the constraints being the usual market budget lnequal=~
ities (1.e., the requirement that none of the goods

be over-demanded). The objective function is, of
course, the social welfare function given in (11).

While equilibrium prices and dis“ributions need not

be unique, the pay-offs are.
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