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SUMMARY

Given a set of N cities, with every two linked by a road,
and the times required to traverse these roads, we wigh to
determine the path from one given city to another given city
which minimizes the travel time. The times are not directly

proportional to the distances due to varying quality of roads,
and varying quantities of traffic.

The functional aquation technique of dynamic programming,
combined with approximation in policy space, yield an iterative

algorithm which converges after at most (}N-1) iteratione.
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§1. 1Introduction.

The problem we wish to treat is a combinatorial one involving
the determination of an optimal route from one point to another.
Theee problems are usually difficult when we allow a continuum,
and when we admit only a discrete set of patlhs, as we shall do
below, they are notoriously eo.

The purpose of this paper is to show that the functional
equation technique of dynamic programming, [1],[2], combined
with the concept of approximation in policy space, ylelds a method
of succeseive approximations which i8 readiliy acceseible to either
hand or machine computation for problems of realistic magnitude.
The method 1s distinguished by the fact that it 18 a method of
exhaustion, i.e. it converges arter.a r{inite number of iterations, °

bounded in advance.

§2. Pormulation.

Consider a set of N cities, numtered in some arbitrary fashion
from 1 to N, with every tw¢ iinked by a cirect road. Tne time
recguired to travel from { tc J 18 not directly prorortional to
the distance between i anc J, due to road conditions anc traffic.
Given the matrix T = (tij)’ not necessarily symmetric, wnere cij

i the time required to travel from i to J, we wish to trace &

patr. between 1 and N wnich consumes minimum time.




P~1000
12— 2056

-2
Since there are only 2 finite number of paths available,
the problem reduces to choosing the smallest from a finite set
of numbere. This direct, or enumerative, approach is impossible

to execute, however, for values of N of the order of magnitude

of 20.

We shall construet a search technique which greatly reduces

the time required tc find minimal patns.

§3. PFunctional Equation Approach.

Let us now introduce a dynamic programming approach. Let

(1) f, = the time required to travel frcm 1 to N, 1=1,2,...,N-1,
using an optimal policy,
with fN = 0.

Employing the principle of optimality, we see that the ti

satisfy the nonlinear eyetem of equations

(2) £, = Min ftuu  1e1,2,...,N1,

booger L J

-

£y, = 0.

/{
This system differs from the usual systems encountered in

dynam‘ > programming in that we do not nave a ready computational

scheme.

§4. Uniqueness.

let us show that there exiats at mnst one solution of the
system in (3.2).
Assume that {ri} and {Fi}are two solutions, with rN - FN =0,

and let k be an index for which f —Fk achieves it maximum. Then

k
(1) £, = Mo [ t,. s 1, |
K sk [ SR
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F, = Min t
Ko ok LW

Let the minimum in the first equation be assumed for § ~ r, and

o R, ]
e By

the second forJ = 8. It 18 clear, since t1J > O for all 1,J,
that r ¢+ k, 8 ¥+ k. Then we have the equalities and inequalities:

(2) r, =t _+°f <t +°f

k kr r ks s’

Fk = tk. & Fs < tkr + Fr’
These lead to

(3) ¢, -F <, -F,

Since k was an index where rk - Fk achieved its maximum, we must
have

which can only be true if in (2) we have

(5) £ = tyg + 1Ty

Now repeat this procedure for the pair {rs,re} . It
follows, from the foregoing argument, that there mutst be another
pair {rp,pp} “ith f - F = f —F, = f, —F. Furtnernore,

p¢#8, and p ¢ k, since we have

(6) fro = tys * tsp + rp.

Proceding 4n this way, we exhaust the set of points | = ],

2,...,N-2, with the result that one of the terms ir the ccntinued

equality above must be f, - P, = O. ‘Hence f, = P, for 1=1,2,...,N1.
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§5. Approximation in Policy Space.

Let us now turn to the protlem of determining an algorithas
for obtaining the solution of the system in (3.2). The baeic
method ie that of tuccessive approximations. We choose &an initial
sequence {r§°)} , and then proceed iteratively, setting

(1) rﬁk*l) = Min [ e, .+ o0 |, qa1,2,... 841,
J#t 4

rxsk+1) - 0

for k=0,1,2,...,
\0)

The choice of {fi } seemg tO0 require some care. Let us
then invoke the concept of approximation in policy space in order
to ottain a sequence which is monotorie increasing.

Perhaps the esimplest policy that we can employ is to proceed
directly from { to N. Define

§hm Gy Aml,2g e e

It followe that rﬁl) as defined by

~

(1) | () .1.2....
SOy ST ] 1=1,2,... 81,

rél' s 0,

satisfies tne irequality

(4) r§1) < f£°), 1=1,2,...,N.

This inequality is immediate when we realize trat ril) ~epre—
sentes the minimum time for a path with at moet one stop. It
follows then inductively that the sequences {rik)} as defined by

(1), with t§°) as in (2), satisfy the inequalities
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(51 £{k1) ¢ oK) a10,0 08, ke0,1,2,..
It is important to note that there are many other policies

*

we could employ to cbtain monotone convergence.

It follows that

(6) 1lim rik) = T Amly2) - - =
k—>m
furnishing a solution to (3.2).
It 18 clear from the physical interpretation of this itera—

tive scheme that at most (N-1) iteratioas zre required for the

sequence to converge to the solution.

§6. Computational Aspects.
It 1s easily seen that the iterative scheme discuesed above

is a feasible method for elther nand or machine compvtation for

valuea of N of the order cf magnitude of 50 or 100.

For each 1, we require only the column (t,,), J=1,2,...,N
Hence, the memory requirement for a digital

of the matrix T.

computer is small.

Monotone Increasing Convergence.
.2), let us conri-er tne sequence of

§7.

-

Turning back io (

approximations definecd by

(1) r§°) 5:2 by 1=1,2,...,K=1,
r§°) = 0,
ri“‘l) i E ty, + rgk) E, T P I
rrgk+l) . ;+

¢ I owe tnis choice of an initial rolicy to P. Haight.
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It is clear that r§“*1) 2 rf“). It 1s not, however,
obvious that thie method yields a uniformly bounded sequence.

To establish this, let us show, inductively, that
Kk
(@) £ e, 1m0, 8oy ReD,L,2,000,
where {ri} 18 tne solution of (3.2).

Tne inequality 1s certalinly true for k = 0. Hence, assuming

that- it holde for k, we have

(k+1) _ [ (k) ] [ ]
2 i VRS R A A TR

< B,

It Tollows that the sequence {fik)'}convergcs to {ri}
as k > ®, furnishing the desired monotone convergence. Once
again, only a finite number of iterations will be required. 1t
ie to be expected that the first method will converge more

rapidly.
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