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SUMMARY

The free oscillations of a slightly viscous liquid in a cylindrical

tank (of arbitrary cross section) with a free surface are analyzed and

the decrement of motion caused by laminar boundary-layer friction

and time-varying depth calculated. An increasing or decreasing (in

time) depth is shown to have a destabilizing or stabilizing effect,

respec .vely, but the magnitude of this effect is negligible for

practical configurations. The results are applied to a circular tank,

and it is shown that the depth may be considered infinite when it

exceeds the diameter. The sloshing oscillations in a 10-foot

(diameter) tank are found to have a (longest) period of 1. 8 seconds

and, assuming the kinematic viscosity to be that of water at 200dC.

a time to damp to one-half amplitude of 7 minutes for mean amplitudes

smaller than about 10 inches. The transverse, oscillatory force on

the tank walls associated with a sloshing amplitude of one foot would

have an amplitude of 2700 pounds and would act 2. 7 feet below the

mean surface.
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SECTION I - INTRODUCTION

We shall consider the free oscillations of a slightly viscous

fluid having a free surface but otherwise constrained by a vertical,

cylindrical tank of varying (in time) depth. The preliminary analysis

will be carried out for a cylinder of arbitrary cross section, after

which the results will be applied to fuel sloshing in a circular tank. *

The effects of friction on the motion of the liquid are, by

hypothesis, small and are confined to a thin 'oundary layer at the

wall. It follows that a first approximation to the fluid motion, adequate

except for the calculation of damping, may be calculated by neglecting

friction entirely; this approximation then may'be used as a basis for

the calculation of the boundary layer flow. We find it expedient in

this approach to aim at an energy formulation and toward this end

consider the kinematics of this first approximation in Section II,

establish the corresponding kinetic and potential energies in Section III,

find the laminar boundary layer solution and corresponding dissipation

function in Section IV, and calculate the frequency and decrement of

the mean motion in Section V. The local equation of motion does not

appear throughout this sequence but is introduced a posteriori in

Section VI to calculate the dynamic forces on the tank walls, he

results established in Sections II through VI are applied to rcular

tank in Section VII and a numerical example considered.

This problem also has been considered, from a somewhat different
viewpoint, by R. R. Berlot in Ramo-Wooldridge Report GM- TN-2
(2Z March 1956).
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SECTION I - KINEMATIC FORMULATION

We consider a small distnrbance, (x, y, t), of a free surface of

liquid from its equilibrium position z = 0 in a cylindrical tank of cross

section A and depth h, as shown in Figure 1. The effects of viscosity

being negligible in first approximation, the fluid motion will be

irrotational, in consequence of which we may express the velocity at

any point in the liquid as the negative gradient of a velocity potential 4.

The compressibility of the liquid also being negligible, this potential

must satisfy Laplace's equation

V 2 , = 0 (2.1)

The kinematic boundary conditions on 4, as dictated by the assumed

velocity t at the free surface and the condition of zero normal velocity

at the walls of the tank, are

- 4z = t on z = 0 (2. Za)

4,= 0 on z = -h (2. Zb)

4 = 0 on S (2. Zc)
n

where (2.2a) is imposed at the mean position of the free surface by

virtue of the assumption of small displacement; S denotes the lateral

area of the cylinder, and n is the inwardly directed normal to S.

•z

h
nh

Figure 1. Cross Section of Cylindrical Tank
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The solution to (Z. 1) and (2. 2), due originally to Poisson1 and

Rayleigh, may be exhibited in the form3

(x, y, t) -- q(t) 4)(x, y) M .3)

(x, y, , t) - -q(t) l(x, y) { cosh[k(z+h)] /k sin-h (IN- (2.4)

where %P is a solution to the Helmholtz equation

V2 tp+k Z  =0 (2.5)

subject to the boundary condition

4n =O on C (2.6)

where C denotes the boundary of the cylinder in a plane 6f:constant z.

The homogenous boundary-value problem presented by (24-5)

and (2.6) is analogous to that presented by a vibrating membrane or

propagation of sound in a cylindrical tube and possesses a doubly

infinite number of solutions, say , corresponding to those values

of the parameter k, say kij, that are permitted by the boundary condition

(Z.-6), The t ij, as is well known, are orthogonal, so that the correspond-

ing modes of motion are independent; accordingly, we may omit the

subscripts with the implication that '4 denotes one mode only. We

find it convenient, in the subsequent analysis, to render 4' dimension-

less and normalize the individual modes such that

fZdA = A (2.7)

We also have, from the consideration (dictated by continuity) that the

mean.. elevation represented by must vanish, the relation

ffq dA = . (2.8)

We emphasize in concluding this section that the formulation to

this point rests on purely kinematical assumptions, viz., irrotationality

and :incompre s sibility.
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SECTION III - KINETIC AND POTENTIAL ENERGIES

The function q(t)y dimensionally a length, may be regarded as a

generalized coordinate for the particular mode (t and k) to which it

corresponds. The kinetic energy of this mode, allowing for variations

of depth with time, is given by

T= 1 hf-v dA dz (3. la)T

=f fdA [ z2 dz (3. Ib)2 j -hL

where p denotes the density of the liquid and m the mass per unit

depth (i. e., m = pA). The individual contributions of the three terms

in the integrand of (3. ib) may be evaluated according to

m d ' zff (h + dA mh 2 (3.2)
-h 2fC mi F . I.' ,

m (-iz z=" @ # 3] dA
SA -h =-h z=O z=0

=3 f- tdA = mhq (3.3)

fjfV)2 dAd __ kz+( 3  dAz --2. q (3.4)

where those integrals of O() vanish identically in virtue of (2.8) and

those of O( ) have been evaluated with the aid of (2. 71; the volume

integral in (3.4) has been converted to a surface integral with the aid

of Green's theorem, (2. 1), and (2.2). The end result for the kinetic

energy then reads
• I _cot-- .(k) ].2Z

T- To = mhqq + -t M k q (3. 5a)

T (mh) h (3.5b)
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where T is the kinetic energy associated solely with the changing level
of the liquid, while T - T0 represents the additional contribution of one

mode only; more generally, the terms on the right-hand side of (3. 5a)

may be summed over all modes but do not involve cross products of

the generalized coordinates.

The potential energy relative to the bottom of the tank is given

by

V=fP dAf pg(z+h)dA (3. 6a)
LI _h

=- (h 2 + 2h + 2 )dA (3.6b)

Evaluating the integrals with the aid of (2. 7) and (2. 8), we obtain

v-V 0  mg q (3. 7a)

V = mg2 (3.7b)

where V denotes the potential energy of the undisturbed fluid. We

remark that g, the acceleration of gravity, should be replaced by an

equivalent value (say ng) if the entire tank is subjected to an acceleration.

We shall proceed further on the assumption that h varies slowly.

The motion q(t) then will be approximately simple harmonic, and the

mean values of the perturbation energies may be approximated by

(neglecting the variation of h in averaging over one cycle)

I coth (kh) ]

T -T 0___ (3.8)q

V-V mgq (3.9)
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SECTION IV - VISCOUS DISSIPATION

We shall calculate the frictional dissipation of the free oscillations

on the assumption that viscous forces are negligible everywhere except

in a laminar boundary layer at the walls of the tank, reflecting the

well-known fact 5 that the logrithmic decrements associated with friction
2 1/Z 2 1

inside and outside of this layer are 0(v/coR ) and 0(v/wR )I,

respectively, where v is the kinematic viscosity, w the angular frequency,

and R a characteristic length proportional to area/perimeter (often

called the h ydraulic radius). The thickness of the boundary layer being

small compared with all other characteristic lengths, we may also

treat the viscous flow as plane and neglect the pressure gradient. The

linearized equation for the velocity v7 in the boundary layer then

contains only the inertial and shear terms and reads 6

Sv (4.1)

We require a solution to this equation that vanishes outside the boundary

layer (n-- co) and just cancels the tangential velocity, say

v cos (wt + e), calculated at the wall in the absence of friction, viz.,

0_0

v--- 0 0 n---- co (4.2a)

v = v cos(wt+e) , n=O (4. 2b)

The problem posed by (4. 1) and (4.2) corresponds to that for an

oscillating flat plate, first solved by Stokes 7 with the result 8

--1 -Pn --- o sv =e v cos (wot - Pn + c) (4. 3a)
0

P (c/2V) 1Z (4. 3b)
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The integrate:I flow defect per unit width of the boundary layer is

v coo (wt - w14)
0

d (4.4)

We infer from this result that the mean flow defect in the boundary

layer lags the outer flow by 450, and that the displacement thickness

is
6 -r (4.5)

The oorresponding Reynolds number is

0 1 0- AR (4.6)

where vo\f-2 and A(=w ,/F2" denote the r.m.s. velocity and

amplitude of the motion outside *,he boundary layer.

The question of the stability of the laminar flow given by (4. 3)

does not appear to have been examined in the literature, but we may

approximate the amplitude of motion necessary to initiate turbulence

by comparison to the transition problem for steady flow along a semi-

infinite flat plate. The minimum transition Reynolds number for the

steady fio- problem, based on displacement thickness, is found

experimentally to vary between about 500 and '700, depending on the

level of free stream turbulence 1 0 (the theoretical minimum value is

about 420 11) Taking the lowest experimental value, we infer that the

oscillatory flow in the boundary layer will remain laminar if

A 50061 =500 ' (4.7)

We remark that this transition Reynolds number is rather insensitive
to the pressure gradient in the outer flow9 , from which we surmise
that the details of the outer flow are sufficiently unimportant to warrant
a moderate expectation of -uccess in the extrapolation to an
oscillatory flow.
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This result also may be obtained, at least as to order of magnitude,

on the basis of a transition time (equal to transition distance divided

by free stream velocity for the steady flow problem) Reynolds number

if the allowable time in the oscillatory problem is equated to some

fraction of the period; the numerical value of (4. 7) is obtained if this

fraction is assumed to correspond to a phase shift of approximately 450

The viscous shear in the boundary layer is given by -p. (8"v/an),

so that the rate of dissipation per unit area is, in terms of a dissipation
12function F

a = dn (4.8)
0

We require only the mean value of this dissipation function, viz.,

I __,, -2 o n 2 E2

._ = P v0  J os(wt -nn+e)-sin(wt Pn+Ej dn (4.9a)

S 0 e n (4.9b)

0 (4.9c)
1 ~02

We consider first the integral of V over the bottom, where

-2 (S ) /k 2 sh 2 (Ih) (4.10)
0 z=-h

the factor of two accounting for the fact that the mean square of v

is one-half the square of its amplitude in consequence of the assumed

harmonic motion. Neglecting the variation of depth over one cycle,

we then have

ifdA - 2 P ) dA (4. Ila)
0 k2 sh 2 (kh)

_V -2 rZd A  (4. 1llb)

k 2 sh 2 (kh)

= 2Aq csch (kh) (4. 1Ic)
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C-) where the integral has been reduced with the aid of Green's theorem

and (2. 5) through (2. 7). Similarly, the integral over the lateral wall
is

2 d x idch"F 5 1~~iz+h) (80 2 r.i ) 21d
ds-h c (h) h k( +sh2 da

=~ ~ h L+h cach (kh)~ FI(.6-a

+ ,o ,(Q) -h csch2 (h)J d (4. 12b)

Adding (4. 12b) to (4. 1 Ic) and multiplying the total by ILP12, the total

dissipation per cycle may be placed in the form

2T= 2am k'l coth (kh) (4.13)
where

a I + 12 £r a2kh) (4.14)

x +J (11 i8' ]d(415a

" N "  1+ 77(.,.

We may designate the ;engths R 1 and R2 , which are proportional to

wetted area divided by perimeter, as modified hydraulic radii.
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SECTION V - FREQUENCY AND DECREMENT OF MEAN MOTION

The mean (over one cycle) motion of the approximately harmonic

motion will be governed by the equation

--[('T T + (V-T 0 )J .Z2 5.1

provided that the change over one cycle is small. The mean values of

the parturbation energies are given by (3. 8) and (3. 9), while the

dissipation function is given by (4.9); noting that

wZ q (5.2)

for an approximately harmonic mo.ion, these means become

mw coth (kh) q (5.3)
0

V o mg q (5.4)

2 = z coth (kh) qL M W k (5.5)

Substituting (5. 3) through (5. 5) in (5. 1) and dividing through by mg,

we obtain

I We may obtain an adequate approximation to the frequency in

i (5. 6) by noting that the mean values of kinetic and potential energy

would be exactly e'ual for a truly harmonic motion, whence

2

= kg tanh (kh) (5.q
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, 13

in agreement with the classical result for constant depth. The

time dependence of o, as given by (5. 7), and the deviations from this

value associated with viscous dissipation are both second-order

effects in (5. 6), so that we may substitute (5. 7) directly in (5. 6) to

obtain [~
at + 2 a -kh csch (Zkh) q = 0 (5.8)

which yields

2a-kIh csch (Zkh) -J (5.9)

where qo is the initial, mean souare value of q.

The damping ratio (for the r.m. s. amplitude) implied by (5.9) is

-l= a - -7 kI csch (Zkh) (5. 10)

Substiuting a from (4.8), we have

" + kh csch (Zkh) V h (5. 11)

We note that time varying depth has a destabilizing or stabilizing effect

as h is positive or negative, respectively. The magnitude of the

effect is, however, rather small for practical values of (h/owh).

In most applications kh will be sufficiently large (say kh > 2)
Zkh

to justify the neglect of terms of order e- and the results (5.7) and

(5. 11) simplify to

W = kg I +0 (e Zk h (5.12)

1 [1 + 0 (e-2kh) (5.13)

In this approximation the effect of varying depth is negligible.
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SECTION VI - PRESSURE DISTRIBUTION

The pressure distribution (p) on the lateral walls of the tank

may be calculated from the Bernoulli equation

P " Po = p(4t - gz) (6. 1)

where p0 denotes the pressure above the free surface (the effects

of friction and changing depth on the pressure-are neglected). The

time derivative of the potential, as given by (2. 4), is

-. ;t {ch [k(z + h) IJ / k sh(kh)} (6. Za)

= {ch [k(z + h)]/ k sh(kh) (6.2b)

g~ {ch tk(z +h)j]/ ch(kh)t1 (6. 2c)

where, in (6. 2c), w has been substituted from (5. 7).' Substituting

(6. 2c) in (6. 1), we obtain

P-P Pl ch[k(z+hJ 1
- P = Pg ch(k ) - z (6.3)

We remark that, as required, p = p0 at z = ; (neglecting terms of

order 2 ); indeed, this requirement affords the usual derivation of

(5.7).

The integrated pressure on a vertical strip of the tank is given

by

F ~ dpg+ ~i sh [k(z +h)] 1 2 264a_ppdzP +7(hz  ( 6. 4a)

J-h k chkh) -h
1 2hl

= pgh +2,g k- tanh (kh) + 0 t ) (6.4b)
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The corresponding moment with respect to the bottom of the tank is given

by

(p - Po)(z +h)dz I pgh 3 + pg I h tanh (kh)

+k -  [sech(kh)-1- } +(z) (6.5a)

1 3 -1
pgh + pg k tanh (kh)

[h - k1tanh (kh/2)] (6. 5b)

The center of pressure of the pe 'turbation () component is, therefore,

a distance

d = h - k - tanh (kh/2) (6.6)

from the bottom of the tank.
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SECTION VII - CIRCULAR TANK

We consider now the application of the foregoing results to the

more specific configuration of a circular cylinder of radius a. The

approximate solutions of (2. 5) and (2. 6) read, in the cylindrical polar

coordinates r and 0, 14

tj(r, 8) = Csk Js (kr) cos (se) , s = 0, 1, 2, . . . (7.1)

where J denotes Bessel's function of order s, and k is any root to
S

the transcendental equation

J (ka) = 0 (7.2)

The normalizing coefficient Csk is determined by the requirement

(2.7), viz.,

C2 C2 1
2 dA Csk 12 (kr) cos 2 (s e) rdrde

2 s
-kff na Jo

C l+60 kOa2_s 2 (ka) (7.3)

The dominant mode of oscillation corresponds to the smallest

root of (7. 2) and is specified by

6 = 1 , ka = 0. 58 6 7r = 1. 84 (7.4)

The corresponding frequency, as determined by (5. 7), is given by

kgtanh (kh) (7. 5a)

Z V aF o

S0. 216 tanh (1.84 h/a) (7.5b)
1a
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The. (reciprocal) hydraulic radii, obtained by substituting (7. 1)

and (7. 3) in (4. 15a, b), are found to be

12 k a - + (7..6a)

1 1 2 (7.6b)

The corresponding damping ratio, obtained by substituting (7. 5a) and

(7.6a, b) in (5. 11) and neglecting (h/ih), is

v )1/2 a-3/ g- 1 / (ka) 1/4 tanh 1 / 4 (kh)

° a + s + (ka - Zkh) csch (2kh) (7.7)

0a T

which reduces further to

Y = 1. 12 V a g 1 + (1 -- i-) csch (3. 68h/a)

*tanh 1 / 4 ( 1.84h/a) (7.8)

for the dominant mode of (7.4).

The depth correction functions for frequency and damping ratio,

as given by (7. 5) and (7. 8), are plotted as functions of the ratio of depth

to radius in Figure 2 and are seen to approximate unity rather closely

when the depth exceeds the radius and to differ therefrom by a negligible

amount when the depth exceeds the diameter.

We consider as a numerical example a tank 10 feet in diameter

and of equal or greater depth. The period given by (7. 5b) is 1.81 seconds,

while the damping ratio given by (7.7) for a liquid (e.g., water at 20 0 C)

having a kinematic viscosity of 10 "2 stokes is 4. 6 x 10-4; the latter

figure is equivalent to a time of 7 minutes to damp to one-half amplitude.
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The displacement thickness given by (4. 5) is 0. 054 cm, and the

corresponding minimum amplitude necessary to render the laminar

flow unstable is, according to (4.7), 27 cm (10.6 inches). We note

that this must be interpreted as a (spacewise) mean amplitude and that

it is based on the minimum transition Reynolds number.

The perturbation pressure on a vertical elemen f the wall of

a circular tank may be calculated from (6.4b). The corresponding

transverse force on the tank is given by

F pgk -1 tanh (kh) f , cos E - adO (7.9a)

2 -l
pgira 2 1I(ka) tanh (kh) cos (wt) (7.9b)

where denotes the maximum amplitude at the wall, and the phase

angle has been arbitrarily prescribed as zero. Assuming the dominant

mode of (7.4), (7.9b) yields a maximum force of 2700 lb (oscillatory)

for a sloshing of one-foot amplitude in a 10-foot tank of water. This

force, according to (6. 6), would act approximately 2. 7 feet below the

mean surface.
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