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ME 257 1.1
Lecture Note 1 ODUCT

These notes on Thermodynamics of Gas Flow will e concerned with a
portion of that branch of engineering study called fluid mechanics. 1In
order to become oriented with regard to the realm of fluid mechanics to
be covered herein, the different realms of fluid mechanics are listed
below:

(a) Agoystics. The fluid velocities are extremely small compared
with the velocity of sound, and the variations in pressure, temperature,
and density are also very small.

(b) Meteorology. The fluid velocities are extremely small compared
with the velocity of sound, but the variaticns in pressure, temperature,
and density are of significant magnitude.

(c) Incompressible Fluid Mechanics. The fluid velocities are small
cunpared with the velocity of sound; .the variations in temperature and

density are asmall, but the variaticn in pressure may be significant. It
may be shown that the error produced in the computation of pressure var-
iations by neglecting density changes (compressibility) is of the order

of one=fourth the square of the ratio of the stream velocity to the sound
velocity; thus, this ratio may be as great as 0.2 (corresponding to a
velocity of about 200 ft/sec for air at normal atmospheric temperature)
before the computed error in the pressure variation exceeds one per cent.
For many’ problems in the flow of gases, the refore, the flow may with little
error be treated as incompressibdble.

(d) Compressible Fluid Mechapics. The fluid velocities are apprec-
iable compared with the velocity of sound, and the variations in pressure,
tcnporntgro. and density are all of significant magnitude.

The latter realm of fluid mechanics, often called Gas Dynamics, is
the principal sudject of these notes. Further, the study herein will bde
restricted almost entirely to that of one-dimensional flow.

view ic

Since the study of fluid flow, no matter how complicated, is based
on the fundamental laws of conservation of mass, Newton's 2nd Law of
Motion, the lst Law of Thermodynamics, and the 2nd Law of Thermodynamics,
these will be our tools of analysis. It is quite proper, therefore, to
begin our study with a review and clarification of these laws as applied
to one-dimensional fluid flow problems.
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Consider in turn then the laws listed below:

Applied |System - An arbitrary Control volume - An arbitrar
to=MN collection of matter volume at a w
of fixed identity. gpace.
Law
(1) Conservation m=constant
of mass 9230
at
(2) Newton's l‘:mn:ﬂ.d.!
2nd lLaw of at
Motion
F= d(mv)
dat
(3) 1st Law of
Thermodynamics | A E=Q - W
(4) 2nd Law of du(é&)
Thermodynamics T
as=aq/T

Each of these laws:is stated in the first instance for a mass of fixed
identity and the mathematical statement of the laws as given above apply to
a mass of fixed identity or to a gypteq®. In fluid flow problems it is use-
ful~and convenient to have a mathematical statement of these laws as they
aprly to an arbitrary volume at a fixed location in space or to a gontrol
yoluyne®*®. We desire therefore, to develop such expressions and to complete
the block diagram of the fundamental laws in succeeding notes.

® BSystem is defined as an arbdbitrary collection of matter of fixed identity.

¢¢ Control volume is defined as an arbitrary volume gt a fixed location in

space.
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Lecture Note 2 CONSERVATION OF MASS '

The Law of Conservation of Mass states that mass can neither de
created nor destroyed. Thus if we consider a quantity of matter of fixed
identity and of mass m we can write for this system that the mass remains

constant or does not vary with time and

a -
at = °
Now consider using this equation to obtain an expression applicabdle
to the flow of fluid through a control volume.

In the figure herewith fluid is flowing through a duct. Mark out a
region bounded by the duct walls and sections (1) and (2) and designate
this region as the control volume. We desire to obtain an expression for
the derivative dm/dt when applied to the mass system of fluid which at time

(1) Time ta

Mass system contained within control volume

m ; .~ crmout
ln%‘ s . Fyre ;
_.=74-Tf-/ ' TTH
; j -
i F "-—A 32

77

¥y LT T rrrr——"7

-~ | &= A4 s,

(1) Time t,

Mass system not coincident with control volume
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t. is contained in the control volume. Recall that by definition
m

n -
at —im £

At-»0

where 4t =¢t, - t,
mt.:.mu system at time t.
:ntb-.: mass system at time tb

Let the mass éontained within the control volume at any instant of time bde
designated as BH. Notice that as time progresses ff identifies masses of
different identity. This (@) is not to be confused with m, my , or m,
which refer to a mass. of fixed identity.® a b

In order to evaluate the time derivative of m we notice that at time
t. m and #ff are identical so that

n = B .

On the other hand at time tb our mass system is not comrletely bounded
by» the control surface. A small portion of the system, denoted by s Bout °*
has gioved out of the control volume while a much larger portion is
still in, and occupies most of, the control volume. Also during the time
At a mass Smin » foreign to our system, has flowed into the control volume
as indicated in the figure. We note; therefore, that at time ty
our mass system consists of the mass in the control region less the
foreign mass § my, and plus the mass § m,,;- This gives

mgy, = By ~8myy + § Moyt
Using these we can write

mtb "mt.-“'m'tb ’mta + S Byt = S Bin
and
m, - @

E.:-cm
b x
o & out “ Sy

At-»o | At

*By the Law of Conservation of Mass dm_ 0 but it does not follow that
: dt

%%30. This illustrates the point that the law applies to a collection of

matter of fixed identity.
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Now Snout -/ A, 45,

since, by making At small enough, the density and cross-sectional area
throughout § m are constant and equal to the value at station (1) or
station (2). Substituting for S m and taking limits we obtain

dm - 4K
at at c.v. t 2 Ay Vo - B 4V

which states that the rate of change of our mass of fixed identity equals
the rate of change of the quantity of mass in the control volume plus the
net outflow of mass from the control voluge. Now dm/dt= O so

(%l.vf N A M= g Y, (1)

which states that accumulation of mass in c.v.=z mass inflow - mass outflow.

In case of steady flow (ﬁ s O and
c.v. ,

fl A 71’./02 A, V, (1a)

which relation $s known as the continuity equation. Thus we have develcped
a mathematical statement - eqn (1) - of mass conservation as applied to the
flow of fluid through a control volume.
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MOMENTUM EQUATION
Lecture Note 3

In the application of Newton's Second Law of Motion to fluid flow
studies it is useful to have a mathematical statement of the law which will
directly a;ply to flow through a control volume. Starting with the equation

(Force on mass ayatem)xi d (Momentum of pasy aYPtem)x

at

we will in this note develor a ®"control volume exrression of the cnd lLaw of
Moption' following a procedure completely analogous to that used 4n obtaining
the continuity equaticn or "control wvolume expression of the Law of Mass
Conservation®. In the present case it will be necessary to evaluate the time
derivative of the mamentum, M, of a system in conjuntion with flow of fluid
through a control volume.® (See footnote page 3.2)

Consider flow through the region (control volume) bounded by the duct
walls and the sections (1) and (2) shown in the figure below. In this
derivation we require that the stream projerties at (1) and (2) be uniform

. ‘across each respective section and that the velocities be in the same
direction.

—

Mass system conteained within control volume

;Mt’
1) b

Mass system not coincident with control volume



ME 257 3.2

It 4s desired to evaluate the derivative

d(momentum of mass)_ :
at

at the time t. using

d(momentip of mass). a 1im “tb- "‘.
at At—>0 4t

where M = x-momentum of mass system under consideration.

If we leot ﬁ:x-momontum of fluid contained within control volume at any
instant
then Mg = Mtb -9 S m, 4V, 5 mout

Mt.= Et.

We obtain, therefore

aM/dt =  1im (g, - V) Smpa + T Smour) - My,
4 t—>0 at

> At-:*u; {Cdtb- Mg_'_ 62 $%ut = V1 O My \
At At yj

Thus we see that the derivative depends uron two terms:

M, - M
(tb ta
At

which represents the rate of accumulation of x-momentum within the contrcl
volume and :

V28mous - vsmm)

t
which represents the net ratéof outflow of x-momentum for the control region.

\-—\f\o’

¢In the case of mass conservation we evaluated the time derivative of the mass,
m, of the system. It is interesting to note furkher that that derivative
equaled zero in accordance with the mass conservation law while the momentum
derivative equals not zero but the force on the system in accordance with the
2nd Law of Motion.



Now gm, =( PlAlvl) at

Smout = (/A7) At

dM/dt = 1lim
At=P0

(02 2v2 '101‘1" \2
74

and finally, remembering that the force on the mass equals this derivative, we

get the ®"control volume expression of the 2nd Law of Motivn "commonly called

the momentum equation.

- 2 2
(Force on mas)xg% + POAY, - ﬂlAlvl

This is an expression for the force on the mass coincident with the control
region at the instant ta' since in the limi¢ t, =t

If the flow through the control regicn is steddy then there is no
accumulation or diminution of momentum in the control wvolume and

aM .
at = ©

So the manentum equation for steady one dimensional flow becomes

V2
[Forco on Mlsls;OzAZ 2 p 14 l'

Concerning this equation of momentum Prandtl and Tiet jens® make the
remark. "The undoubted value of the theorem of momentum lies in the fact
that its application enables one to obtain results in physical problems
from just a knowledge of the boundary conditions. There is no need to be
told anything about the interior of the fluid or about the mechanism of the
motion.®” This statement applies equally well to each of the ®"control
volume equations.®

Application of Mamentum Equation

Usually the situaticn is such that one is more interested in the
force of fluid on duct between section (1) and (2) than in the force on the
mass system. To obtain the former, denoted by scriptgz. we observe that
any force acting on the mass in the control region (neglecting gravity) will
act at the control boundery and will be either a shecring force tangent
to the boundary or a rressure force acting normal to the boundary. If then
we make a traverse of the control boundary at a given instent we find the

*Prandtl-Tiet jens, Fundamentals of Hydro-and Aero-Mechanics, page 233,
McGraw-Hill, 1934.
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forces depicted in the figure herewith to be acting on the mass system
at that instant. Sumning the

*
_’/N(m}x (2)
e 7

PiA ; J PoAo
"—'A (pda)y Z. (pdaA)

1l A, &

: (Tan),
pdA control volume doundary (duct walls not shown)

x-component of these forces over the control volume (c.v.) boundary we obtain

(Force on mass); = c.z". (pdA)y 4 ‘E". (’Zé‘)x

where T: 3 shearing stress at mass system boundary. Now, exranding the two

sunmations
5;. (PdA), = duzci (pad) 4 ‘L (pda); ¢+ ‘;2 (paA)_
wvalls 1
and c.;. (Tu)x X duct (’(u)x
walls

Therefore, substitutina the expanded summations,

s
(Porce on mass) = dE; (PA) p gyt (AN + ?; (paa), * {, (paA)_

wvalls walls
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Where the first two summations represent the force of duct on fluid (= -Jx).
Using this fact then, the total (force ou zmsa)x is seen to be made up of
the following three forces

(Force on mass), -Fxt+ Pi1d) - PoA.

Thus we have found two expressions for the (force on mas)x:
(a) the expression (Force on msa)x: '&x + ;;:LA1 - p2A2

which actually represuats an identity obtained by examining the rossible forces
acting at the c¢.v. boundary and sumning these forces and

2
(b) the equation (Force on mass), 8/02A2V2 - /01A1V§

which was obtained by application of Newton's law of motion.
Combining (a) and (b) we obtain an equation for the force of fluid omn duct (F).

. 2
F x = (pyA, +/91A1V§) - (poA2 +/6212V2)
or
I =T -0

where F sp&fﬂvz and is called the impulse function. Notice that F is
a function of the stream properties and area at any given section and is
therefore a function of position along the stream.
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Lecture Note 4 LIRST LAy OF THERMODYNAMICS

The law of conservation of mass and the 2nd Law of Motion have, in the
preceeding notes, been writéen for a fixed mass system following which the
continuity and momentum equation were developed for a control volume. It is
proposed in this note to follow the same procedure, or method of attack, in
handling the lst Lav of Thermodynamics.

The first law of thermodynamics states, symbolically, for a mass if fixed

identity
Heat - Work= Eb - E.

where - l. is the change of internal energy of the mass system in state b
and state a and where heat andwork are, respectively, the amount of heat added
to and the amount of work done by the system as it changes from state a to
state b. Let us now use this statement to develop an equation applicadble to
fluid flow through a control volume.

Consider the control volume below bounded by the solid boundary walls and

sections (1) and (2). In applyimg the first law let us select as cur mass
system that matter bounded by the control volume at time t_. At time t, this

system has moved to the position shown. The change of 1nt=rm1 energy of the
system

Y
,, 1
(L Ll dd ) ps

Mass system contained within control volume

s Time tb

Mass system not coincident with control volume
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during this change of state is (following the procedure used for mass and
mamentum)

E, - E,L, = E_- E, ., AE_ _-&&5, .
tb - b t. cut in.

where the bar symbol refers, as dbefore, tc the energy of the mass in the
gontrol volume. In order to evaluate § E .and S E wo simrly multiply
the mass increments that have flowed out and into the control volume in time
& t by the internal energy per unit mass of their respective increments.

Thus /
§ Egut~ §Fin = (SBAN24)e; - (A4 V1A t)e
so we have. by substituting into equation (1)

B, - E
Heat - — t t
.Z :ork - T At = L ('/02‘2'2)‘2 - (AnV)e

and for steady flow, with w-a oAV = /AAV) and B, = B
b a

Heat-Work _ Heat-Work
vAt unit mass~ ©2 - ©)

We know by experience that the ensrgy associated with a unit of mass in the
presence of a gravitational field and motion is

osu-wg + Z g

vhere u is the internal energy of a unit mass in the absence of potential-
kinetic effects and g is the acceleration of gravity. Thus we have

722 v =
Heat-work el & 1
Heatowork & {u,+3 "Z28> - mt e e

Up to this point we have considered only the right hand -8ide of equation
(1) Let us examine next the left side and in particular the work term. As
the mass system passes from state (a) to stete (b) work is done on the svstem
boundaries (which move to the dashed positions of state b) by pressure forces.
At the same time there may be work done by the system through a shaft protrud-
ing through the control surface. Thus we may write for the work term

Work =pressure force work<4shaft work

The pressure force work at section (1) is
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(pressure x area), x (distance moved),

=-pAAa,= -p ) L (6-%: -p171_5m1
&

where v, = specific volume

Sinfe work is Aone on the system_by the pressure force at (1) a minus sign
is included above. In like manner we find the pressure force work at (2).
Whence

pressure work s pzvzs' m,= p,¥) S'ml

Since Sm-donaity x volume =/ AVAt = w/\t we may write

21‘0'820 VQ:E
wat & pyvp = PV,

Now the left hand side of equation (2) tukes the form

t- Heat-press work- t work Heat t work
vj t = vl t * v%t - (p2v2-p1v1)

This result combined with the right hand side of equation (2) gives after
transposing and using the definition of enthalpy, h su+pv,

2 2
‘1";%’("2*'!%"*’ za“) : 61‘* G-tz ‘)

where Q= heat transfer per unit mass
Ix:l shaft work per unit mass.

This equation is called the steady flow energy equation and is the
mathematical form of the lst law which applied to flow through a control volume.
It may be of interest to note at this point that two fundanmental laws are used
to obtain the steady flow energy equation - the lat Law of Thermodynamics and
Newton's 2nd Law of tion. The latter enters in the development of the
kinetic energy term V</2 which, of course, was not covered in this note.
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Lecture Note 5

COMBINATION OF THE LAWS OF THERMODYNAMICS AND OF FLUID MECHANICS
FOR INCOMFRESSIBLE FLUID FLOW

For a steady flow of a single fluid stream through a control surface
fixed in space, the first law of thermodynamics and Newton's second law of
motion yield the energy equation for steady flow:

2 2
\£ \'

(uptpvp—=— + gz;) - (w+pvitL-+ez))=Q - v, (1)
where Q denotes the heat transfer into the control volume per unit mass of
flowing fluid, W, denotes the shaft work delivered out of the control volume
per unit mass of flowing fluid, the subscript 2 refers to the stream leaving

the control surface, and the subscript 1 refers to the stream entering the
control surface. '

If the sections 1 and 2 are so close to each other that only infinitesimal
effects occur, we may write the equation in differential form: ’

du+d(pv)+d%2-+'gdz=dq - awy (2)

or, since

d(pv)= pdvt vdp (3)

equation (2) may be written
du+ pavevap+a(Ve /2t gdz=4dQ - dwx (4)

or, transposing some terms,
dux-o-vdp.{-d(vz/z)-!- gdz = A4Q - du - pdv (La)

For a pure substance we have the following relation between properties,
where s is the entropy:

Tdsa=du-<tpdv 5)
The second law of thormodynmics‘may be introduced by the relation
Qe Tas£ autpdv (6)

wvhich, when inserted into equation (5), yields
dQ - du - pavifro (7)
Cambining equations (7) and (4a), we obtain

av_& - Eap+ a(v2/2) +gi7]

or, in integral form, 2 v 2 o v 2 -'
b Umw e
) §

2
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This equation, which places a limit on the maximum shaft work which may
be delivered, is not easily evaluated in practice dbecause one seldam knows
how the density varies with pregssure. If the fluid is incampressible, however,
we obtain immediately (using/“sl/v): -

v.2 v22
Bt e )@ rEre) o

or, introducing the definition of the head, H, in length units,

d 2
= \'A
Hegtmgt? (10)
we have i (11)
le,Sg(Hl - H2)

Under eonditions of thermodynamically reversible flow, for which friction
would be excluded, only the equality sign is applicable in equation (6), and
hence equation (11) becomes

Furthermore, if the shaft work is zero between sections 1 and 2, equation .
(12) shows that for reversibvle flow the head H is constaat. This result is
essentially the statement of the Bernoulli equation, since the head H as de-
fined by equation (1¢) is identical with what is called the Bernoulli number
of the streamlins.

The form of equation (l1) suggests that we define the ®"lost head,"
Hf,o, by the expression

W
He, S3ue -vp=m -, - vy (13)

By comparison of squations (11) and (13) it is evident that I{Q must always
be a poaitive number or zero. The lost head is associated with frictional
effects, and its magnitude may usually be found only through éxperiment.

Application to Flow in Piping Systems. A piping system usually caomprises
straight lengths of pipe, elbows, reducers, and other fittings. There are
losses of head through these various canponents, and to keep the fluid fl'owing
requires the use of a pump, compressor, or fan. An important design problem
therefore, is to estimate the total 1loss in head through the piping system.

Since there is no shaft work associated with any element of a piping
system equation (13) becomes

Hl - H2= H/{lQ (lh)

For the fluid velocities commonly used in engineering practice, the lost
head in a component is approximately proportional to the velocity head,
hence we may define a

c = #L a5
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where C is a lost-head coefficient. The value of C depends to scme extant
on the velocity, density, nature and size of the fitting, and nature of
the approach flow to the fitting, but in most eases C cshanges by only small
amounts with changes in these variabdbles.

Approximate values for C for various types of fittings are listed
below:

Fitting c
l&S-deg. elbows 003-°ou
90-deg. elbows, standard radius 0.7-0.9
90-deg. elbows, medium radius 9.5=-0.8
90-deg. elbows, long sweep 0.4-0.6
90-deg. square elbows 1.0-2,0
Tee 1,0-2.0
lBO-deg. return bend 1.,0-2,0
Open gate valve 0.1-0.2
Open globe valve 6-9
Open angle valve 3-5
Sudden contraction from infinitely large pipe 0.5
Sudden expansion to infinitely large pire 1l
Straight pipe 0.01 % - o.04 §

For the straight pipe, L refers to the length of pipe and D to the diameter.

The total loesiin head for a complete piping system is the sum of the
losses for the individual components.

Application to Hydraulic Turbines The efficiency of a hydraulic turbine is
defined as the ratioc of the actual shaft work delivered to the work which
would be delivered under reversibles conditions for the same change in head:

| 4 _Jturb
?turb = ° (wt‘-‘rh)rev. (16)
From equation (12), however,
(Wturb)rev-—- g(H; - H,)
80 that
w urd
}?turb = t (17)

Q(Hl'H2)

Using equation (13), the turbine efficiency may be expressed in terms
of the losses-in the turbine, ‘

Wiurd - Yeurn 1 (18)

B

Teurd = &, - 1) Yourv +E -r"—s:/;,,;h
turd
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eH =
Fhewry _ 2 Reurn (19)
Yeurd ’ ‘7turb

Application to Pumps and Fans. For incompressidble flow, the efficiency of
a pump or fan is defined as the ratio of the reversible shaft work input

for a given increase in head to the actual shaft work input to the machine:

from which we get

i’ (wnﬂp) rev

77pump W (20)

from equation (12), however, we may write, upon noting that the thermodynamic
shaft work is the negative of the work input, that

(wpmnp) rev = 8(Hz - Hy)

80 that
7 pumr = —_— 1 (21)
{ pumr wpump

We now relate the efficiency to the losses by introducing equation
(13) in the form

Woump = - Wx 2 a(H - Hl*H!pump)

80 that we obtain

w -gH et
7pump= _ngg___!m,_ 1 - _a'!m (22)

pump pump
from which we get

gr.'ﬂ - '7punp (23)

Wpump
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Lecture Note 6 THE VELOCITY oF sounp (1)

The variation of fluid density in a compressible fluid flow field is
generally the result of pressure variation throughout the flow field. It
might be expected therefore that the rate of change of density with respect
to pressure (d./9/dp), compressibility factor, is an imjortant parameter in
compressible fluid flow studies. Such is the case and, as we shall see, this
derivative is connected closely with the propagation velocity of small
disturbances itwe&iprocal being equal, in fact, to the square of velocity
of sound (dp/d=“a“),

Let us now develop the speed of sound or the velocity of an infinitesimal
rressure wave proceeding along a pipe of uniform cross-section. This wave
might be considered to have been initiated, f or example, by a slight inward
motion of a piston at the left hand end of the pipe. The development to
follow will illustrate also the application of the ®"control volume equations®

wave front moving stationary wave front
{ at velocity a
A IR R I A A s x.} ¢ 2l
av ! Vao a - 4v a
p"‘dpa"a P. p =p+dp Ep._/a
Pt L +i0 o
Ja s I 7 777 oS {" s ” f
|
|
i
A |
® _p¥dp l
ojpp _ g P
P i i
iy T
° : o i
18 | B

R o e ﬁ

A o .

g ' E encl S mt a

g —av rd i

! 0 ")

> 2 v 1
Variation of pressure and Variation of pressure and
velocity of fluild at a given velocity of fluid at any
instant of time. (Observe at instant (Observer at rest
rest with respect to duct) with respect to wave front)

(1) This note reproduced from mimeograph notes by A. H. Shapiro, M. I. T.
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In the figure on the Jeft above the wave front is assumed to propagate
to the right with a velocity a. The fluid through which the wave front has
passed is at a pressure (p + 4r), has a density (“244/”), and moves to the
right with a velocity 4V The fluid into which the wave is propagating has
a pressure p, a density f. and is motionless. This frame of reference is
one of "unsteady motion® since as time progresses the stream properties at
a given dust section vary with time.

To simplify the analysis let us assume the point of view of one traveling
with the wave. To this observer the wave appears at rest and the process
appears steady as shown on the right in the figure above., Fluid flows steadily
from right to left approaching the wave front at a velocity a and leaving with
a velocity (a - dV) while the fluid pressure and density changes from p and
L top ¢+ dp and. d_/a. respectively, across the- wave.

For purposes of analysis consider the infinitesimal wave front many
times enlarged and draw a control surface about the wave fr-nt region to
get control volume shown in the figure below.

(2) (1)

wave front

L. L z Z =~ | -

= - -~ " == ="

| |
(ﬁ ’) f | I system :
i with :
' | :p'Jo (p #dp)a > | forces i (3‘
| | acting |
: i | thereon |
= = s o o e J

control surface

Let us apply the momentum: and continuity equation to the steady flow through
this control volume. We have by the momentum equation (taking direction of
fluid velocity to left es positive and denoting the inlet section as 1 with
outlet indicated by subuscript 2)

(Force on msa)xzfiAlvl (72 - 71) 1)

While the continuity equation states

LMV = LA, (2,
For the case under consideration .

Li=P Loz pa af

Vlzn V2an-dv
Als A2’A

(Force on maa)x:-. rA - (p *dp)a
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Substituting these into equation (1) and (2) gives

pA-(p-}-dp)LtAa(a-dv-a) (1la)
Pra=(Aa) A(a-av) (2a)

Simplifyi
priiyine ap = e av (1b)
. H.0.7T.
o= - /adv 4+a d/o- (a2 (av) (2v)

onev. o]

The ratio $ is written as a partial derivative at constant entropy because
the variat in pressure and temperature are very small and, consequently,
the process is nearly reversible. Moreover, the rapidity of the process,
together with the amellness of the temperature variations, makes the process
nearly adiabatic. In the limit the process may be considered both reversible
and adiabatic, and therefore, isentropic.

or, finally,

For a perfect gas we have the isentropic relation
=B, = constant.
(P)Hk

Putting this into logarithmic form, differentiating, and noting that p=_RRT,
we obtain

ln p - k lnf= constant

petf @)= ipem

Thus we get for the velocity of sound in a perfect gas

.:\j(;é; = V.

In the cass of air with k=1, R=1715 f£t2 \
h m this becames

a®y9.1 T (T in °R)

where units to be associated with 49.1 are ft
sec
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Fressuro Propagation from a Point Disturbance

The physical significance of the sound velocity may be illustrated by
considering the uniform line:r motion of a point source of disturbance through
a compressible mediun. At each instant of time the roint source may be imagined
to emit an infinitesimal pressure wave which spreads spherically with the
speed of sound from the point of emission. The (ressure pattern which existe
at any instant is then found by superposition of all the pressure pulses which
were previously emitted.

The accaompanying figure shows several patterns as seen by an observer
moving with the point disturbances. In each pattern the point O represents
the present location of the point disturbance, the point -1 represents the
location one unit of time previocusly and so on. For each of these previous
locations there is drawn a concentric circle showing the extents to which
the corresponding wave has spread. For example, to find the present location
of the wave which was emitted at time -3 a circle is drawn with -3 as a
center and with a radius 3at, where t is the unit of time. The distance
between point -3 and point @ is then given by 3 Vt, where V is the velocity
of the point disturbance with respect to the medium.

For a stationary source, shown in Figure (a), the pressure change
spreads uniformly in all directions. When the source moves at subsonic
speeds, Figure (b), the pressure disturbance is felt in all directions
and at all points in space (neglecting dissipaticn due to viscosity) but
the pressure pattern i1 . no longer symmetrical.

For supersonic speeds Figure (d) indicates that the phenomena are
entirely different from those at subsonic spreeds. All the pressure distur-
bances are included in a cone which has the point source as its apex, and
the effect of the disturbance is not felt upstream of the source of disturbance.
The cone within which the disturbances are confined is called the Mach cone.
Pigure (¢) shows the pressure pattern at the boundary between subsonic and
supersonic flow, that is, for the case where the stream velocity is identical
with the sound velocity.

Pigure (d) ifllustrates the three rules of supersonic flow proposed
by vonKarman®. These rules apply only for amall disturbances, but are
usually qualitatively applicadble for large disturbdbances.

®*Supersonic Aerod&namic.--Principlo- and Aprlication®, by Th. ¥onKarman,
Journal Aero. Sco., Yol. 14, mo. 7 (1947) pg. 373
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a. The Rule of Forbidden Signals. The effect of pressurs chinges
produced by a body moving at a speed faster than sound cannot reach points

ahead of the bdogy.

b. e _Zone Actio a t Zone of ence. A stationary roint
source in a supersonic stream produces effects only on points that lie on
or inside the Mach cone extending downstream from the point source. Converse-
ly, the pressure and velocity at an arbitrary point of the stream can be
influenced only by disturbances acting at roints thet lie on or inside a
cone of the same vertex angle extending upstream from the point considered.

c. The Rule of Concentrated Action. The proximity of the circles
representing the different rressure impulses in the figure is a measure of
the intensity of the pressure disturbance at each point in the field of flow.
Thus, for the staticnary source, the intensity of the disturbance is syumet-
rical. In the case of the supersonic source, we have the rule of conc:ntrated
action: the pressure disturbance is largely concentrated in the neighborhood
of the Mach cone that forms the outer limit of the zone of action.

The configurations shown may easily be observed in the form of gravity
waves on a free water surface when a sharr-pointed object is drawn through
the water at varying speeds.

The Mach Number

In the preceding section it was shown that the nature of the flow
pattern depends on the relation between the stream velocity and the sound
velocity. The ratio of these two velocities is called the Mach Number. Thus,

M=V/a

The speed of sound in this equation is to be taken at the local temperature
and pressure of the stream, and, of course, varies fram point to point in
the flow field.

The semi-angle of the Mach cone (figure d) is related to the Mach
Number as follows:

sin 1
&‘M
Note that the Mach angle is imaginary for subsonic flow.

From the preceding section we see that the Mach Number is a criterion of
the type of flow pattexrn. Later it will be shown that it is a convenient
parameter that will appear in our working equations.
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Lecture Note 7
TOTAL PRESSURE AND TOTAL TEMFERATURE®

The purpose of this note is to introduce the concept of total t emperature,
To' and total pressure, p,, and to show that the ratios of static to total
temperature (T/T,) and static to total pressure (p/py) are each funetions of
Mach Number.

Total Temrerature
Consider the steady flar energy equation

V2 'v2
mr ] r o s [nr]en

The kinetic energy terms may be combined with enthalpy to form a new term,
total enthalpy, ho. Thus
2
n,= h4¥_.
° 2

If the flow under consideration is that of a perfect gas, then
d h= cpdT

2
v
and d hogcpd'r*.d?

2
— v
_cpd (T'hé_cp)
or d h°= cpd'ro

Where 'r°=-. T+ = and is defined as the total ®smperature.
' P

The physical significance of total temperature may be illustrated
by the use of the following figure. If in the figure an observer should
travel with the slug of gas shown at the same velocity as the gas he would
be ccgnizant only of the random motion of the molecules. Hence, since the
static temperature and pressure result from the random motioh of the gas
molecules, the observer would sense static values of temperature and
pressure. In a flowing gas the molecules have superimposed on their random
motion the directed motion of the flow. The kinetic energy of the directed
motion is the cause of the difference between the static and total temperature,

T - T_—_'——
© 2¢p

¢ Reference: pp. 20-21, AAF TR 5514
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Lecture Note 8
NOZ .LE DESIGN

By sim;le area flow we mean the one dimensional flow of a perfect gas
in the absence of friction or heating effects. This type of flow satisfies the
following conditions:

l. frictionless
2. adiabatic
3. one dimensional

A simple area type of flow may be used to accelerate the stream flow or to
decelerate the flow velocity. The flow passages producing these effects are
called nozzles (accelerate flow) and diffusers (decelerate flow) respectively.

Consider a simple area flow. The equations satisfied by this flow are

2 o) =§1:T2 (state)
1 2 _ -
'1‘1-4-2—‘=p = '1‘2 + Tc; = To = constant (energy)
W= f AV (continuity)
X
p (X ) k-1
P Ty (2nd Law)

where subscript (1) designates conditions at the inlet to the flow being
considered and no subscript denotes any station downstream from the inlet.
Since thereare five variables in the above fow equations (p, 9 , T, V, and A)
we may select one as an independent variable and find each of the remaining
fowxr in terms of this one. Practical problems generally fall into either 'one
of two classes.

(a) It is desired to pass a given mass rate of flow with minimum losses
tetween two regions of different pressures with some assumed variation
of pressure, say line:r, between the two regions.

(b) Given a nozzle, what mass rate of flow and pressure distributions
will exist through this passage of variable area for various pressure
ratios applied across the unit?



In case (a) our independent or known variable is pressure, p. In case (b)

our quantity of known variation is area, A. We shall consider each case in
turn.

As an illustration of case (a) consider the following example.

Example (g_} It is desired to expand 0.62 slugs of air per sec. reversibly

and adiabatically between a reservoir and exhaust region with following
conditions.

pl-‘- 300 psia Passage length =5"
D= 560° R Exhaust region pressure = 40 psia
Vl =100 ft/sec. Linear variation of pressure

from reservoir to discharge region

w=0.62 slugs/sec
Design a nozzle to meet above requirements.

Solutions: Of the five variables in the four applicable equations one,
the pressure, is known throughout the flow. Hence we have
four equations in four unknowns. To determine the area at any
particular station we proceed as follows:

Combine continuity and state equations and evaluate Po and To then

U=%! (1) (state and continuity)
To =T+ g (2) (energy)

g k-1
T = To(p/p,) k (3) (2nd Law)

With p known, use (3) to find T at any given station. Then equation (2) gives
V at this station. For these values of T and V along with the known values af

w and R equation (1) gives the requisite area of the nozzle at the selected
station. And so forth for any station.

The results of the example may be summarized in the form of a plot p/po
w/A, A+ V and Mach number, M, versus nozzle station along with a t-s diagram
of the expansion process.
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M=l

P/Po=
0.528

p - e e e e cwl e e e

Station
P
T J##f’fﬂﬂf* o
P
To i i i ...--""'#F 1
T =il e
Tth i "
‘ Pexit
e =

These graphs illustrate

a)

b)

c)

e)

To decrease pressure, sections of decreazing area are required until
a pressure of p = 0,528 Po is reached. For reduction of the stream

pressure below this value a passage of diverging area is required.

For p/po>0.528 we have M&1 and for p/p< 0.528 we have M D1
which indicates that in subsonic flow the pressure decreases with
decreasing area and vice versa for supersonic flow.

The stream velocity increases continuously through the nozzle. Thus
we may say that in subsonic flow a converging area accelerates the
flow and that a diverging area accelerates the flow in supersonic flow.

The area decreases to a minimum (throat) and then increases.

At the throat of the nozzle M=], P/po—0-528. and, obviou.ly.
w/A 18 a maximum,
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The expansicn process through the nozzle is shown as a solid vertical
line on the T-s diagram from the pressure py to the exit pressure. The value
of the stream pressure and temperature at the throat of the nozzle are indi-
sated on the diagram by pi) and Ty

Having designed a nozzle to meet certain operating conditions, it is now
of practical and academic interest to investigate the characteristics of the
nozzle when operating at other than designed conditions, for example

w #£ 0.62 slugs/sec., p; # 300 psia, and/or Poxtiatat rogion#“o psia.

This problem comes under case (b) noted above and will be considered next.
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Lecture Note 9
NOZZLE O: ERATING CHARACTERISTICS

As an illustration of the tyre of problem coming under class (b) as
listed in the preceding lecture note consider home problem 9.1 which deals
with the following. Given a nozzle with known inlet total pressure and
total temperature at what mass rates of flow and for what corresponding
exhaust region pressures will it operate reversibly and adiabatically?

Probadbly the simplest way to investigate this question is to deal
with a single equation which in itself contains the restrictions placed
on the flow by continuity, 1lst Law, equation of state and 2nd Law. The
four applicable equations may be cambined into a single equation as
follows. We have

vzﬂﬁ% (1) (cont. and state)
To-.-,'r+5f- (2) (energy)
°p
p \JK/k=1 (3) (208 Law)
>, ) ) (2ot tax

Equation (1) may be written

w _pv
A~ RT
wherein
) e
k-1/k
v=\I’2cp (To -T) 2¢p To [ - ‘p%
o\pr
o

Substituting these expressicns for p, V, and T we obtain after simplifying

W Po _‘2_ k i Lkﬂ.l
tal (BB -3
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If then this equation is satisfied at every section of the flow, it
follows that the conditions imjosed upon the flow by the 1lst Law, 2nd Law,
continuity equation, and state equation are satisfied. With p, and T,
known in any given flow we may effect a graphical solution of the above
equaticn by plotting (w/A) versus (p/p.) waere the latter may in the physical
problem vary from O to 1. A graph of fhe relation w/A = £(p/p,) is given
below for, of course, some assumed value of p, and To.

For constant values of
P, & Tb

d — — ——Ara'
| R

> 1€
R
|

§

/’ M>1- | “m<1 \
A T SN = SO L . e
n'lS‘ p;pa 1 -0

With the above plot values of w/A and p/p_ satisfying the equation
w/A=t(p/p,) may be easily found. The ratioc of w/A may be determined at
any station of a given nozzle with w known. Entering the graph with this
predetermined value of w/A we find the value of (p/p_) that must exist at
the nozzle station selected. The ratio of p/p, along with T, and p, fix the
state of the fluid at this section.

It 18 to be noticed on the plot that, for a given value of (w/A), (p/po)
is not uniquely determined. In any particular problem we can however by
examining the physical aspects of the flow, determine which value of (p/py)
is apprlicable.

As an illustration assume a nozzle is discharging air from a large
reservoir isentropicelly with maximum mass rate of flow existing through
nozzle. Flot the pressure distributicn through this nozzle.

With the reservoir pressure and temperature known a plot of w/A versus
p/p_ may be made., Thon with mass rate of flow through nozzle known we can
for®nozzle sections b, ¢, d, o, and f measure area and determine (w/A).
With this value of w/A corresponding values of p/p, eare read from w/A - p/po
plot above.
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Beginning at the reservoir p/p.= 1, then as v/A increases p/p. decreases
from a to b to ¢ at throat as {ndicated on w/A - p/p, plot. Leter readhing
the nozzle throat the ratio w/A decreases again and now there may physically
exist either value of the (p/po) corresponding to a given w/A with a contin-
uous variation of pressure through the nozzle being mainteined. Thus at
section 4 the pressure may be that corresponding to 4 or 4'. The final
pressure distributions that may exist for reversidble and maximum mess rate of
flow are shown in the sketch below as solid lines.

4

1. 0
(3]
P/Pg 'g
i
(-]
3
0,528 —41.0
o
o =
. g
<8
-}
(-]
ol S -

Nozzle station

Suppose now the nozzle to be operating with w less than maximum.
Proceeding in the manner described above the pressure distribution indicated
by the dashed line on the sketch is obtained. Since

M= f(-n-
Po

a Mach number scale may be placed along the vertical ordinate of the
graph. This scale indicated in what Mach number range the nozzle is
operating.
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Nozzle Flow With Shoeck in rf r

The above example illustrates that for an exhaust region rressure
between p,,and py there is no solution of the relation (w/A)= £(p/p,) hence
it is impossible to have reversidble flow through the nozzle in this range
of exhaust region pressures. Fhysically it is possible to have a discharge
region pressure in this range. What happens vhen such an exit region pressure
does exist? To answer this question let us discuss the operating charac-
teristics of a nozzle used as a high speed wind tunnel.

The figure below shows a wind tunnel which operates intermittently by
means of an evacuated reservoir. The atmosphere acts as the supply region
from which air &s drawn through the convergent section, test section, and
diffuses into the evacuated reservoir, Below the skestch of the tunnel there

is indicated the pressure distributions through the tunnel for seven different
exhaust regiom pressures.

- 7 .
(\ normal shoe S - - yaeuum
.;Z><f reservoir
\‘\‘*"""--—-.-h___________ —I/”,—"—;- ) .
atmosphere flow . ! i
G wl 5 el
T g test \zé/
section ; ko
J [~
1.0 i"*:g::_‘ i A g d Eéi":‘-;" f1ow
B S e —(7)
p/p.| N e T _——(6)
Po S (5)
0.528 | - T~ =)
{ \\
\\\ = (3)
g TT(2)
i - (1)
(o) i S L L s AL S———
During the operation of the tunnel seven distinct conditions present
themselves.®

sPararhrase of pp. 3=5, Part I, High Speed Aerodynamic Lecture Series by
Dr. B. H. Goethert,
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l. PFor conditiocn one, wherein the pressure in the reservoir is less
than the pressure in the end of the diffuser, the tunnel is operating at
maximun rate of flow with subsonic, sonic, and supersonic flow in the con-
vergent, straight, and divergent sections of the nozzle respectively. The
transition of the diffuser pressure to the lower reservoir pressure is achieved
through a system of expansion waves,

2. For condition two, wheréin the pressure in the reservoir has dbeen
increased to the diffuser outlet rressure by the inflowing air, no pressur

digturbance occurs at the diffuser end,

3. Foar conditiocn three, wherein the pressure in the reservoir has be-
come greater than the diffuser outlet rressure, the transiticn to the greater
reservoir pressure is produced by an oblique shock wave with flow upstream
of nozzle exit unaffected.

4. ¥Yor condition four the pressure in the reservoir has increased to
a value which produces a normal shock wave at the nozzle exit.

5. For condition five the reservoir pressure has attained a value whigh
produces a normal shock in the diffuser. Flow preceding the shock is un-
affected. Downstream of the shock subsonic flow exists.

6. Por condition six the reservoir pressure has reached a value which
produces reversible flow throughout the tunnel with sonic flow in the throat
and subsonit. flow -elsewhere.

7. FYor conditicn seven the reservoir pressure has reached a value
producing subsonic flow throughout with a reduced mass rate of flow.

Notice that the flow conditions in the test section remain constant
as long as the reservoir pressure is not greater than that corresponding
to conditicn six.

The analysis of nozzle flow that we have attempted so far has been
confined to reversibdble flow considerations only. The flow through a
discontinuity such as & shock wave is irreversible and hence we can not
predict the nozzle pressure distribution such as that corresponding to
condition 5 by the analysis we have made so far. In order to complete our
study of the operating characteristics of a nozzle we will need to consider
plane shock waves. This gwaits our further attention.
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Lecture Note 10
SIMFLE AREA FLOW

Consider a gas to be flowing steadily through a duct which satisfies
the conditions

(a) Constant area,
(b) frictionless, and
(c) adiabatic.

The stream properties of such a flow would in gemneral be constant through-
out. If, however, any one of the conditions listed was removed the stream
properties would then change with the effect (variable area, fricticn or
heating) present. In the work to follow we will study how the stream
properties (p, p,, T, To. V., M, F) depend upon each of these effects individ-
ually and then collectively. The individual ceses to be analyzed are shown
in the figure below. Each of the flows indicated in the figure is of
practical importance, for example, in the study of flow through a ram-jet

engine. The simrle area type of flow applies to the inlet diffuser and
exhaust

Simple area Simple Friction Simple Heating
Flow . Flow Flow
T v . v, N I
AR 2] - L . %,
// i

(1) (2) (1) (2) (1) (2)

frictionless adilabatic, constant frictionless constant

adiadbatic duct area duct area duct

nozzle, the simple heating flow to the combustion chamber and the sirple
frictional flow to flow between diffuser and flame holders of such an engine.

The purpose of this note is to make a study of the simple area type of
flow. Our immediate objective will be to determine how the stream properties

(pPe Por Te Tose V. M, F) of the flow depend upon the independent varjable area,
A¢ A physicael interpretation of the problem at hand is, for example, the
following. Assume we have a frictionless, adiabatic flow of a perfect gas

in a constant area duct., The stream properties of this flow are invariant
throughout.
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Frictionless, adiabatic Frictionless, Adiabatic
+- -
Stream properties constant Stream properties may vary

with area

Suppose now that we vary at will the area of the duct, that is, the duct
area becomes the independent variable of the flow. We want to investigate
how the stream properties of the flow change with, or depend upon, the duct
area. We may note immediately that the stream properties p_. and T do not
vary with area in the simple area type of flow since it is an 1sen%ropic
flow. The simple area flow may be used to accelerate a flowing gas in

which case the duct used is called a nozzle or conditions may be such that
the flow is being decelerated in which instant the duct is called a diffuser.

The following expressions relating the stream properties of the flow
under study may be writtem

p =ﬁu~ (State)
w = /AV  constant (Continuity)
2

G A (Mach No.)

KRT
F e pA(l 4 WM°) (Impulse Punction)

K
k-1

Po = P(1 + %l M2) " & constant (2nd Law)

To_: Tf-g;- Q;T(l+53'l M2) = constant (1st Law)

The variables in this group of six equations ere (since M always appears as
a squared quantity, use as a variable)

P, O, T, A, V, M, F.

Selecting one (area) of these seven variables as independent we may
determine each of the remaining six derendent variables (p. 2, T, Vv, M2. r)
in terms of the independent quantity, A. Thus by assuming A to be known
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we have 8ix equations in six unknownss To solve the equations as they stand
would be difficult if not impossible. It will be found convenient therefore,
to first reduce the equations to a set of linear differential equations with
variables in logarithmic differential form.
The equation of state becomes
lnp = lnp.o-ln Te¢ ln R

differentiating

wasfrg

For total rroessure we may write

lnp = 1o p+ K 1n (1‘*%-1- n2)

differentiating
" k-lcam) ]
P 1{a+ k—;l-,'uz

Reducing similarly each of the six equaticne to a ditferential form and
assembling the results there is obtained

dp _ 4/ 4T
P O + (State)
a4/, dA L dv ,
S+ oty =o0 {Continuity)
- o av dT
55_ 2 v " 1 (Mach No.)
aF _ d "Vl aM° _ dA
T —pp- + T+ B2 VAN (Impulse Function)
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Q’?+ _wuf/e %:o (2nd Law)

1+ k=) M2
2
ksl 2
2
aT 2 -
iz + T % 0 (1st Law)

To investigate the variation of the dependent vzriables with area we
must find expressions relating

e A AR g, A .
M2 A P A
2
and interpret the results. PFirst obtain M in terms of A | This may be
done as follows: M2 A

By Mach equation get

(% F)

using continuity for 8V in above find

v

using equaticn of state get
, 4T
T

af _ ., (en .
)
and With lst and 2nd Law results obtain

;.
S ()

q's
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or ‘l— 7
2(1+ k=1 M3)

am _ "é'l M '

M : 1 - M !

[Py -t

The results of similar aimultaneoui solutions of the applicable equations
are summarized below

dA
A

-8

ﬂ dA/A
2(1 + k-1 M)
e - =
1 - M
av
= - )
1 - M2
dp KMS
P 1 -M
a° M
L 1 -M
aT (k=1) M2
| 1 -M
ar . S
F 1 + k@

Table is8 read as follows
[\

dA
€L ete.
v 1-M2> A
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General conclusions can be made relative to the variation of the stream
properties of the flow with the independent variable area by these relations.
For example

av _ 1 a4

v 1 -M A

indicates that in a subsonic flow (m&1) a convergentpassage (dA< 0) will
accelerate the flow (dV >0). Conversely in a supersonic flow a diverging
passage is required to accelerate the flow. Similar reasoning may be
applied to determine the manner in which the remaining stream properties
vary with the duct area in a subsgnic or supersonic flow.

Stream properties as functions of Mach Number

For the isentroric flow under consideration analytical relations may be
found between each variable of the flow and the flow Mach Number by re-
arrangement and integration of the tabulated results above. As an example
let us integrate the equation relating Mach Number to area between the int
in the flow where M°=1 and A s “)M‘]. and any general point where M2—= M<,
Denoting (A)M_ by A® we have

A Mo
/ 4 _ f L - M e
A - 20+ kL) )

A®

Letting K2== x and kT""’-=b and multiplying through by -2, there follows

41‘—: ;-x g_£
1l+bx x

x
= = / —dx f - ax
_ 1+ bx 4 (l+bx)x
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wvhieh expands, by partial sums, inte

% x
2 1n A - _ - S + ax ; ax
e 1+ bx x =D 1+bx

1 1
b
= «(b +1) dax + ax
l +bx x
i 1

Whence _’ krl

2
= | EA
or, finally 2(1 + k=) M° | k-1
A__-1 2
A* M kHl

vhich gives the ratio of the local flow area to flow area for M =1 as a
funotion of the local Mach Number for an isentropic flow.
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This relation is given below as a curve of A/A® versus M for a given
value of k. The curve may be intsrpreted for an assumed A® as the flow
area required

o e o et s e Tl A m s e =) e e —— > oD

for a given Mach Number. It serves to illustrate further the area variation
required to inerease the Mach Number of a flow from sud to supersonic values.
This curve or the tabulated values of A/A® vs. M (Tables 30 through 35 Keemsmm
and Kaye) may be used to find the area change required for any reversible
Mach Number change. For example to diffuse air from Hl = 0.8 to M2= 0.25
would require a diffuser with an area ratio of

A, _ (A/A%), 540

i, T A%, T T.o - A
Or to expand from M1= 0.25 to H2= 2.4 with an inlet area of A, = 3 1n2.

would require a thrcoat area of 1

1.25 132.

Atht A®

=(A/A‘)1 4 2.40 0=
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and an exit area of

(A/A®); 2,40 1 _ 2
LTAEH M T 200 g

To continue finding the stream properties as functions of the flow
Mach Number consider obtaining the relationship between V/V® and M. By
previous results ‘

and using
g T = -’@ ;‘_ﬁ
A 20+ k1) w2
we get \ 4
A 2(1 + =1 ) M2
Ve 2 | 2

which becomes

.=t -
Me Te M 2(1*3-;—1 2)

Proceeding along the same lines the following relation is obtained for
isentropic flow with variable area

L =
¥e M 2(ktl) (1% X5 )

Similerly p/p®*. T/Te,6 © /% mey bte found ip terms of Mach Number.
However, these ratios 4o not prove as usefultin applications as the
ratios p/pg. T/To. <2/ which have been given as functions of Mach

Number in lecture note 2

T They are not therefore derived here nor tabula‘ed in the gas tables.
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As an example of the use of Tadble 30 of Gas Tables by Keenan and
Kaye suppose an intermitteat supersonic wind tunnel exhausting to
vacuum reservoir is to be designed for a Mach No. of 2 in a 1.2 £t
test section., If the tunnel receives atmospheric air at p = 14.7 psia
and T = 70°l. what are the required tuynnel throat area and the test
section stream properties? Assume isentropic flow with k= 1l.4.

P = 14.7 psia ’ ! EVACUATED
"o 700’ RESERVOIR
14 Section
P .1 ?.""
T, = 530 Mp .
£ —00
— J ()
- " 9’1 5
“:ﬂ
Te — W?a:—,?t-
T ] throat )n
s
| (-
T) = 294°R _ N
SR test section
] PO ——
s

A schematic diagram of the tunnel and the flow process on a T-s graph are
given in the figures above, With M= 2 in the test section find

(Me) = (L) = 1.633 where subseript 1 stands for test section
1 Ve 1

(i&;l; 1.6875;(3—0)1: 0.555

(;; )ls 0.23 ;(;5)1;' 0.1278
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Therefore

A, = A°® - 2 __ — 2
th = zaﬁ;}l— ‘1 = —1%257—5 0.712 £¢

N :(-'L) T, = 0.555(530) = 294°R(-166°F)
'1‘0 1

Py = \ )xp = 0.1278(14.7) = 1.875 psia
Po

- 4,7 x 144 _— slugs
Pt (i-zp 7023 17]5 530 sk rtd

M. BRT. = 2 Va.4(1715) (294)=2 x 840 =1680 F4/med.

Y= M 1

w=@QAV; = (0.000535) (1.2) (1680) = 1.08 SUER

10.11
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Lecture Note 11 COMPRESSIBILITY FHENOMENA

The shock waves occurring in a nozzle as discussed previocusly are related
to the flow discontinuities existing about bodies in supersonic flow fields.
In order to establish relationships for the shock phenomena occurring in a
supersonic nozzle and also to analyze in general the discontinuities occurr-
ing in supersonic flow we take up next the study of wave propagation and
compressibility phenomena in a compressible fluid.

Consider an infinitely small point source of disturbance which may
produce periodic disturbances that propagate with the speed of sound through
the surrounding medium. Let this point source exist in a stationary fluid
field under the following conditions

(a) point source stationary
(b) point source moving at subsonic velocity
(¢) point source moving at supersonic velocity

X

<l»
"
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The waves emanating periodically fraom the source will proragate srher-
ically outward forming :“he wave patterns indicated in the sketches herewith
after any given time incerval. When the fluid and point source are at rest
concentric circles are formed by the wave pattern. #hen the source moves at
@ velocity less than the wave proragation velocity, the wav:s form circles
about their point of origin and consequently are no longer concentric since
the source emanates each wave from a different positicn in the fluid. 1In
case (¢) the spherical wave fronts are formed in such a manner that all wave
front circles are tangent to a line making an angle/ﬁ? with the direction of
the source velocity such that

sin,@: -:Z .

The tangent line is called a Mach line (each point on the Mach line is
traveling normal to the line at the velocity of sound - hence Mach line is
@& sound wave and not to be confused with a shock wave which has proragation
velocity greater than s;eed of sound).

In case (b) it is observed that in the absence of fluid viscosity
effects the disturbance waves will not die out and will influence the fluiad
field at an infinite distance about the scurce as time progresses. In case
(¢c) however it should be understood that the fluid field is completely
undisturbed forward of the Mach cone and only within the cone are disturd-
ances experienced by the fluid.

Subsonic Motion of a Wing

The above considerations can be arplied to the steady motion of a
rigid body of finite size through & fluid by imagining the steady staete motion
of the object to be acquired through a series of small separate impulses. Each
impulse giving rise to an increase in velccity (an acceleration) and causing
a pressure disturbance to emanate from the body. Each of these disturbances
spread out from the object with the speed of sound and in subsonic motion
would produce a flow rattern extending, ideally, an infinite distance from
the body. Actually, of course, the disturbance fields about the object
would die cut at some distance fror the object due tc fluid viscosity effects.

Let us arply these ideas to the subsonic motion of an airfoil in a fluid
at rest (the atmosphere). With the wing moving at a steady subsonic velccity,
there exists about it a region of disturbance which is characterized by values
of pressure, density, and velocity different from the free stream values of
these rroperties. This disturbance field may be imagined to have been pro-
duced by emenation of waves from the airfoil during its acceleration up to
the final steady state velocity. After the disturbance field (stream condi-
tions about this airfoil) has teen established in this manner it will persist
until the wing is again accelerated and new waves sent out. As long as the
stream velocity relative to the wing is everywhere subsonic, these waves will
radiate in all directiocns. Thus the pressure and velocity distributions
about a wing in steady subsonic motion are continuous, i. e., no sudden changes
in pressure or velccity exist as through a discontinuity such as a shock wave.
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Supersonic Motion of an Airfoil

Suppose now an airfoil to be asccelerated to a low supersonic velocity
by a seri=s of serarate impulses, When the wing attains _a supersonic velocity
the disturbance field about it cannot extend to great distances since the
wing tends to overtake the disturbances it propzgates. However, immnediately
in front of the wing there must be some disturhance characterized by the
stream lines spreading out so as to enclose the body. Thus we are led to
conclude that a disturbance due to the wing extends some finite distance ahe=sd
of it. Since this distance is finite there must be a sudden change in stream
properties at the boundary between this disturbance field and the free stream
fluid. These circumstances give rise, therefore, to a discontinuity and the
existence of a discontinuous presssure and velocity distribution about the wing.
This discontin:ity is known as a shock wave and through the shock wave there
are sudden changes in the stream properties. In steady supersonic motion of a
wing this discontinuity remains at a fixed distance from the wing and propagates,
therefore, into the free stream fluid at the speed of the wing.

Some insight into the origin and nature of the wave discontinuity present
in the supersonic motion of objects can be obtained by considering the
following facts which will not be validated here.

(a) The velocity of wave proragation in a fluid is a function of the
pressure rise across the wave and is given by

. = \| K P2 k-1
Vpropae. \\j AT E_kl (p1> T 21:.I

where subscripts 1 and 2 refer to conditions upstream and downstream
of the wave respectively. (For p2/p1:4 1 observe that V = kKT and
hence the rressure incrememt across a sound wave must be infinites-
im1)o

(b) A pressure pulse moves at sonic speed with respect to the fluiad
immediately in front of it.

(c¢) The fluid in the wave of a rositive pressure pulse is left with a
disturbance velocity in the same direction as the pulse movement.

As a consequence of these facts it follows that in a series of positive
pressure pulses each pulse overtakes ones in front resulting in a coalesence
of the waves into a strong wave with a finite pressure rise. The resultant
strong wave propagates at a supersonic velocity. Now as a wing is accelerated
to a surersonic velocity the pulses sent cut by the wing during its acceleration
coalesence to form a strong wave in front of the wing. During the formation of
this wave its velocity increases until finally its propagation velocity becomes
equal to the wing velocity after which time it remains at a fixed and finite
distance in front of the wing.
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In the figure there is indicated the form of such a wave that would accompany
a wedge at a loy supersonic velocity. On the wedge axis the wave is normal to
> :

~

i~ ;55 i
Ea S 2w = S
\ v, Vo

% 6""""' T +"" e T

N
\

(a)

the relative velocity of the stream. As we go outward from the axis the wave
becomes weaker, these portions of the wave being further from the source dis-
turbance. In accordance with (a) above these parts of the wave propagate at
a lower velocity. Consequently as we go away from the axis the wave bends
backward approaching asymptotically in a straight line making the Mach angie
s With the axis. At higher Mach numbers the wave is closer to the wedge as

indicated in the sketch where My>M;.

consider the transition of conditions about the wedge from the steady

state condition (a) to the steady state condition (b) figure above. The wedge
may te imagined to be accelerated from to M2 by a series of impulses. AsS a
result of any given impulse the velocity of the wedge is increased and a pulse
is sent out. During the time interval required for the pulse to travel from
the wedge to the wave the velocity of the wedge is greater than that of the
wave and the wedge moves closer to the wave, After the pulse reaches the wave
it causes an increase in the pressure rise across the wave and in the wave
velocity. Near the axis of the wedge the wave travels with the new velocity
of the wedge and away from the axis it gradually weakens ard curves backward
making the Mach angle 3 o> with the axis. Notice that s < 1 im accordance

with sin /9 = SlZ

If the Mach number of the wedge is sufficiently great and the half wedge
angle less than 45° the wave will attach itself to the wedge as shown below.
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’_‘\.‘L + ?E.I

The relative velocities of the stream through the wave at various roints on the
wave are shown in the figure. Close in to the wedge where the wave is strongest
the stream velocity is deflected an angle (V. At points farther from the wedge
the velocity is affected less and less as the wave becomes weaker and weaker.

Shock waves not normal to the free stream velocity and through which the
stream velocity is deflected are called oblique shock waves. The Mach number of
the stream entering an oblique wave is supersonic while the leaving stream Mach
number may be supersonic or subsonic depending upon the angle () and the inlet
Mach Number. Normal shock waves are normal to the free stream and leaving
stream velocities. The Mach number of the fluid passing through a normal shock
always changes from supersonic to subsonic.

A description of the flow field adbout objects in subsanic and surersonic
flight and the manner in which this field is built up has been attempted in this
note. Two general features in particular that have been discussed and that
should be emphasized are restated here.

(a) The pressure and velocity distributions about a body in subsonie
moticn are continuous and extend to great distances from the dody.

(b) The flow field adbout an object in supersonic motion extends to finite
distences in some directions - the boundary of the field in these
directions being marked by a discontinuity (a shock wave) in the

field stream properties.

Finally, it is pointed out again that as a shock wave becomes weaker it becomes
in the limit a sound wave,
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Lecture Note 12
NORMAL SHCCK WAVE

Imagine a fluid to be flowing through an ediabatic, frictionless, constant
area duct as shown below. In this steady flow field consider the region
bounded by the dashed line. We refer to this regicn as the control volume and
its boundary as the control surface. Subscripts 1 and 2 designate flow con-
ditions at the control volume inlet_and exit respectively. Let us investigate

vy v
Py | ' ng
) NN T2 2.
pol ; ”p°2
al ! '.2
M, | JMQ

this problem: For given inlet conditions to the control volume what are the
possidble exit conditions? One obviocus and yet not trivial situation is that
in which the inlet and exit conditicns are identical. There is possible, however,
a not 80 obvious situaticn in which the exit conditions may differ from those
at the inlet if the inlet flow is supersonic. When this situation exists and
the control region's thickness is very small (of order 10-8 inches for air)
the region represents what is called a normal shock wave. To determine, for
given inlet conditions to the shock, the seven variables listed in the figure
at the exit of the control volume requires the simultaneous soluticn of seven
equations. The equations are obtained from application of the following
definitions and physical laws.

Conservation of Mass (continuity equation)
Newton's 2nd Law of Motion (momentum equation)
lst Law of Thermo (energy equntion)
Equationof state

2nd lLaw of Thermodynamics

Velocity of sound

Mach Number definition

Py ey o la o e
~olbhesw e
N’ N N N N NP

The equations to be solved are

1) Py, =P (aa = 0)

(2) p, #A¥ % b, + P2 (aa=F = arF = 0)



ME 257 12,2

, W ¥

(3) e Tyt 5= =cpT> +5- (4T, = 0)
P] - Po

(4) AT - (p =P RT)

A i S

(5) Poy 6}3-% 5., G,%;T)k'l (as - 82

a 2 l22
_ 22 2_

(6) -,rll- = T (a2 - kRT)
M%7 MET, 42

(7) ;lg-}': v 2 (Mz‘:- A
1% 1 KRT

Equations (1) through (4) represent L equations in 4 unknowns and were first
solved for the non-obyious condition of /‘i ff 2 etc. by Rankine and Hugoniot
to obtain what are now called the Rankine-Hugoniot relations? They will not
be derived here, however. With the following goals in mind it is necessary to-
effect a solution of equations (1) through (7). Our goals are the following
relations®*

.p_2:f M ’02 —

—= 1(My) pl-_fz(m)
T, Poo

= =ra(M,) — =1 (M)
7“5 Poy 4t
2

My £ (M) p%i = £4(My).

Equation (2) divided by (1) and rearranged gives

P2 _ P

=¥, -V
P, PNy T

s¢ Tabulated in "Gas Tables" Tables L4B-52
* See rp. 38-39, Liepmann and Puckett, Aerodynamics of Compressible Fluid,
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2
Using (6) in the form MRT = k 2-za® we substitute !k— for ﬁ

and get i
2 2
a a .
—sz - -%]-, = k(V; - V2). (1)

Equations (3) and (6) along with the definiticn of starred quantities give
the following relation :

2 2
2 L—_ .2
k1 T2 e 2(x-1)
.23 % Ekfl)l‘z - (k-l)V2] . (11)
Substituting in (1) fhe value of 122 and alz as found from (ii) we get

L Em)a“‘ = (m)vgﬂ 1 [:(H-l)-.‘z . (x-x)v;ﬂ
‘ v T v — = kW - V).

or

2 1
this simplifies to
(V3 = Vo) _
% (kﬂ.)l‘z TV & %l (V1 = V2)
1'2
whence o2
ViVo=a (114)

Pressure ratio across a normal shock
Using (1) equation 2 can be written

P2= P +/°171(71 - 72)
or

2. £ ve.v "
pl-l',' pl (1 12)
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From (111), (i1), and (7)
' V.V, = %= .2 'S Mz,__a___
Wa2=8"=98 My - (iv)

N

If this relation along with f%l = 5

is used in the pressure ratio relation

i

there results

3 = 1+-k(u12 -kl 2 -;;‘31-)

or P _ 2k 2 k-1 _
at s & oc
From equation (1) 2
e
Using equation (iv) for vlvz we have
2 - M
P k1, 2, 2
& Mt ka

or

=!‘2(H1}

E'I Py p2 f2(M1 = f3041)
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Wwhich, after a few trys, becomes

12.5

2k u.2
r (Bm

1) (1+ k=l M12)

Ty

2(k 1) M2

tal pressure ratio across & normal shoe¢

We have

ds _ar _k=1dp _ Mo _ k2
°p T k p To k

wWhence, across a normal shock wave with dT. = 0,

9P _ap . _k_

Po

a .
P k=1 T

d el
Olo'd

This may be written in terms of p and/"by replacing %% with

which follows from the equation of state.

dpo k dlo
P, k-1 r=a

Integrating from 1 to 2 we have

or

Thus

-1_4dp

k-1 p °

ln(Pa ) k-l
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P
for e
Po,
1/%
this relation gives [—':f .(:—i)

showing that decrease of p is measure of degree of irreversibility associated
with the shoek or is a meaSure of the departure of the process through the shock
from a reversidble adiadatic process. The total pressure relation, after using

(P P
<pf>=f2(u1) and p—lz =1£(M),

takes the form

. =
P ; k=1
—=£ = :lHk
p =1 4 2 2 2 _ k-
ol _(ﬁ (kfl) "1 ) T(T'f Ml %-}
ktl » 2 ;Ll 3
or - -
2:2 ;jL—Ml g!;.M12 - k=] =¢ (Mi)
Po, |1+ 'Lz.l M, 2 k1 k1l 4
In the derivation of
P2 _
g =£,(M)

we could have, by interchanging indices, obtained

p
o = £ 00).

P
% = W

My=£5(M)

Thus with the relation

we may determine
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this reduses to the form

;. mirir
M, = %ki g :fs(“l)

g tot t

If a pitot tube is placed in a supersonic flow it will produce a detached
shock wave and will measure she total pressure behind a normal shock. This
value of total pressure along with tHe statié pressure in the supersonic flow

ovid e
pr L /

/ detached shock

h | 2 (F_
/\
\

sufficient data to determine the Mach Number of the supersonic flow. The
pressure rise, as the flow is brought to rest, is divided into two parts, one
p2/p due to the shock and the other p /p2 due to isentropic compression be-
tween the sh~ck wave and the pitot tube“head. We may write

stagnation point (p°2)

- .
Pop _Poy.Pop _ [ . k- k-1
P1L P1 Poy (1 - ":3 « 1,(M)

or D —_ —_ o
o2 _ 2 kel 2k pn2 _ked] I-B _
. 'E’E‘ My |Fr§ . % = feM)

This equation which relates the observed total pressure and the free
stream static pressure is known as Rayleigh's pitot equation.

‘e

b ¥4
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TO ACCOMPANY NOTE 12, NORMAL SHOCK WAVE

NORMAL SHOCK FUNCTIONS FOR AIR

(DATA FROM KEENAN & KAYE °*GAS TABLES,® TABLE 48)

12.8

72l 6.000

S

S 8, =R 1‘%'{

O,

L
P
z_.=f.: b (AT = (i),

B

T 1 S S R | ﬂ.m
! T_ ] _-ﬂ
3 4 5 é 7

UPSTREAM MACH NO., M_
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Lecture Note 13
OBLIQUE SHOCK WAVE

Experiments show that when a wedge shaped object is placed in a surersonic
flow there may result a plane shock wave emanating from the nose of the body or
there may arise a detached shock wave which is curved and rasses in front of the
object. It is found that the flow Mach Number and the wedge angle w together
determine which of these two types of shocks will occur. Consider the analysis

detached shock

of obligque shock waves with the following purposes in mind:

(1) To determine the exit conditions from an attached oblique shock wave
given the inlet conditions and either W or the wave angle et .

(2) To determime the limitations on M and &/ for an attached shock to
ocour.

(3) To show that the normal shock wave is a special case of the oblique
shock with o< = 90° and &) = 0°.
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In the figure below a flow is deflected through an angle {Jas it passes
through a shoeck wave which makes an angle oCwith the upstrsam flow velocity.

N = Vel. component normal to wave front
L = Vel. component parallel to wave front

/) alss

4 - - _B.j

/_ v — Tf’ #?

/

R
i
g \

o

/ 7777

T
4 \ 7
! ,(rrr!

The control volume indicated by the dashed lines is selected such that its
upper and lower sides are coincident with the flow streamlines and its ends
are parallel to the shock front. For convenience assume the areas through
which the fluid enters and leaves to be unity. The physical laws and def-
initions listed below will be applied to the flow through the control volume.

(1) Conservation of mass

(2) Momentum normal to shock
(3) Momentum parallel to shock
(4) EBnergy equation

(5) Equation of State

(6) Geometry of Figure

(7) 2nd Law of Thermo

(8) Velocity of sound

(9) Mach Number

The equations which follow from applications of these nine conditions are

AN = P, (1)
plf 101N12= p2’f‘ p2N22 (2)
NiZ ¢ Ly° No2 4 L2

cpTl + — :cpT2+ > (4)
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71’;'1'1 5 le‘z G)

tan (X -o)) = "52 (6)
A >
Pl \ kel _ P2 k=l
(B = = A B ) i
2 2
0 . 2
T, 2 (8)
lil\l_'r; sinok= MQ“I‘E sin(eX -¢)) 53
N N
1 2

The first six equations are sufficient to determine all static conditions across
the shock wave for given inlet conditions and (J or o&, It will, however, ‘be
convenient and useful to solve the complete set of equations simul taneously to
obtain tie following relations®

P2 _ T2

Ff' = £,(M;, sincX) T = 304, sin =3

,02 Po

—==z=r_( sinok) 2 < in o<

0, fat"h o, £,(M, sinoX)
2 0l w? ain?

M2 8102 -WJ) = £5(M, &nX) tan(eK-c)) = el tieg) M1 SR <
M]_a sinot cos K

where the functions fl' f2. etce. are identical with those of note 12.

Solution of the equations proceeds as follows:
Combining (1) and (3) we have

A¥, -L)=0

so Ll-..-. 1.2.—_ L

¢ Some of which are tabulated in "Gas Tables® Tables 55 tiuough 57.
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and hence (4) becomes
N2 N2
o T, + S = T, + 5.
Combining (1) with (2) we get

Py - Pa=AN (N - Ny)

AR " P T )

which, by substituting ‘k—z for % from (8), takes the form

a1l 2
-il‘{- - -‘-S-;:k(NQ - Np ). (1)

Equations (4) and (8) along with the definition of starred quantities give

a2 Me 12 o ok
x-1 > 2(k-1)
. o= (11)
or 2= 1 [k 1)a2 = (k-1) (N°+ L E’

Substituting in (1) the values of 12 and 112 found from (11) we £ind, finally,

NN, = a®? - 12 (F‘i') (141)

Notice that for the normal shock L= O, N=V and (iii1) reduces to
'1'2 = .‘20
EPraasure ratioc asross an obliocue shock
Follewing a procedure analogous to that for the normal shock we get

P2
;1- = £,(M) sinX).
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In like manner we find

IR

T
Ei--: fB(Ml sinoK)

P°2
—= =2 ( sinoX)
Poy  Th M

M22 ain2(9'~ =) = f5(M1 sinh ),

ession relati e

If all the shock inlet conditions and ©X are given the first four
relations above are sufficient to obtain p./o, t, and p at the shock exit.
The last relation, however, will not give M, unless, in 8ddition to M; and X,

() 18 known., Our npext ster is to determine 4/as a function My and X
By equation we have

NiN.
tan( 4))— o _LZ

using (iii) and expressing velocity components in terms of the resultant
velocities we get

or by equation (ii)

tan(X -)) = ﬂ. a1 kﬂ 1

or, dividing numerator and denocminator by alz. we obtain

2, k=l
—_— = a:l.n
tan(A —()) = KT k#l M

N12 sin X cos V)
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This expression relates Mk
on and @ for a plane s

a supersonic flow. It is convenient to present this equation graphically by
plottingX versus (Jfor values of M, as shown below.

| B
s S
_h\_\r\\ _,__:
- "T,*\R1w;?
- + i _]'.-'
# - T /' :i-
P S
v 52 |
L A
Pl
1 {
20 = P e H
- | i
g IS R | 4 i
0 !

o 10 20 30 40 50
deflection angle, &)

Observe from the grarh that there exists three possible situations for a
given wedge angle4y . They are

(a) Two values of A for given M}. Por example 4/ = 20°, M= 4.0 give
A=3or A= 84°. Either value of A may occur derending upoil the boundary
conditions of the flow. Usually the wave with the larger shock angle occurs.

However, with the proper ad justment of the downstream pressure sthe wave with
the lower shock angle may be produced.*

(b) One value of A for a given M. For example #/= 23° M=2.0,
d - 6_500

(c) No value of X for a given

. Por example %4/ = 20°, M; =1.5.
When this condition exists there occ

8 in the flow a detached shock wave.

* See ppe. 54-55, Ferri, Elements of Aerodynamics of Supersonic Flows,
MacMillian, 1G49.

.6‘. and &Jand by it we may determine the limitations
ock to occur when a wedge shaped object is placed in

-4
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In this snalysis there has been developed a series of equations with
which it is possidble to find the oblique shock exit conditions given the inlet
conditions andX or & , It may be seen that each of the equations in this
series reduces to its normal shock counterpart as cA—> 90° and & =) 0°,
Lastly with the expression relating K ,¢)J, and M, , which is graphed on page
6, we can determine the 1limiting values of M and &Jfor an attached shock to

occur when a wedge is placed in a surersonic flow. These are the aims we set
ocut to fulfill.
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Lecture Note 14
SIMFLE FRICTIONAL FLOW - I

The flow to be considered in this anote and the next is that of
a perfect gas through an adiabatic constant area duct with friction.
The purpcses of these notes are to determine the locus of the fluid states
corresponding to such a flow on the T-s diagram, to discuss the charac-

teristics of this simple frictional flow, and to establish certain expressions

that relate the stream properties of the flow to the flow Mach number.

Fanno Ligg

Consider a perfect gas to be flowing in a frictionless, adiabatic
constant area duct. Throughout this flow the stream properties would
be invariant. Suppose now there to be joined to this duct at section (1)
an adiabatic constant area duct with friction as indicated in the figure.
Downstream of (1) the stream properties

—_—
No change in Stream properties
stream properties¢+—) change due to friction

(1)

will vary due to the presence of friction. A relation between the stream
properties at section (1) and the pressure and temperature at any down-
stream station in the flow may be obtained by writing the energy and
continuity equation for the flow. Thus

2
v v
CPTI"’-%:cpT"’T
w=E_ av,
RT

Replacing V in the energy equation by ¥ R’_:I‘_ as obtained from the continuity
equation, we get A

e 2
T, + ‘E't; .-_-r+élc.p(.:.3 (B =, (1)

For given inlet conditioms (therefore given To andlf )

this equation represents a relation in terms of temperature and pressure
that must be satisfied at any given point in the flow. By assuming
values of T to exist at successive downstream jpoints in the flow it is
possible with this relation to determine the corresponding p at this
point thus fixing the state of the fluid (p3, T1. To) at sdlected points
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in the flow. Further, by arbitrarily assuming a value of entrory, s,, at
the inlet to the flow the entropy at downstream points in the flow m%y be
determined by

s
S:ASJSI + 81 )

- T b
8 =|{¢c_ ln 32—« K 1ln + 8, - (i)
Lp Tl pL 1

The Second Law through equation (ii) further restricts the values of T

and p that may exist downstream of the inlet by the fact that the fluid

must proceed through velues of T and r corresponding to states of increasing
entropy since the flow process is an irreversible adiabstic process.

As an illustration consider a perfect gas to be flowing from a large
reservoir through a convergent nozzle thence through a simyle frictional
duct. with known inlet conditions at section (1) (figure below) we may,
by assuming values of T to exist downstreem as a result of the frictional
effects in the flow, determine with equations (i) and (ii) the locus of
states the fluid nay attain in the flow. This locus plotted on a T-s
diagram is called a Fanno Line and ajppears as indicated on the accompanying
T-s plot.

Subsonic flow through simple

frictional duct.
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Beginning at state (p , T ) on the T-s diagram we £ind the flow to
proceed isentropically to °(p : T.) thence along the Fanno Line through
states of increasing entropy and incroaatng Mach number tending toward a
Mach number of 1. FPor the flow to proceed beyond M = 1 would require a
decrease of entropy in violation of the Second Law. Thus we find in an
initially subsonic simple fricticnal flow that the Mach number increases
toward a limiting value of one. Similarly, in an initially supersonioc
simple frictional flow (figure below) the Mach number follows along the
lower bdbranch of a Fanno Line through states of higher entropy and lower
Mach numbers toward a limiting Mach numdber of one. It is impossible,
therefore, for a flow to proceed along a Fanno Line or through a simple

frictional duct dontinuously from subsonic to supersonic or from surersonic
to sudbsonic conditions.

Supersonic EiéJ“fhrough
simple frictiocnal duct.

##f,ﬂfsg; anno Line

_.c:-";_:"ﬁl

For given inlet conditions to a simple frictional duct, there exista a
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