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U or Ibf    pound fore« 

ft 

h enthalpy,  ggg      ö i       or    £*1 
maee Slut sec- 

V    reloelty.      length ft/see 
time 

▼ epeeifie rolume 

Q heat, 

V work. 

rol      ft3 
nass     aiug 

energy     ft # 
maaa slxtg 

energy ft ^ 
mass slug 

Cp(cT) apecifle heat at eonstant preaaure (rolume),  ■ qn*rfly     f, ** 
mass-temp    slug nR 

T absolute temperature,  ^ 

P pressure,    force      JL- 
length squared     ft^ 

f mess density.  infs8 —2^ 
TOlune ft3 

k ratio of specific heats,  Cp/cv 

R gas constant,  energy ft L, 
mass-temp       slug ^R 

w maes rate of flow. 2S£f.      fiiÄ 
time        sec. 

A  area, ft 

M Mach number 

a  speed of sound  ft/sec. 

M»fV/a«=-VA* 

F impulse function, p A ^"PA V^^ force - # 

&   force of fluid on duct, # 

y specific weight,  i'?rde   ^SL 
volume       ft 3 

Subscript 0 designates  total  or     stagnation ralue of  property. 
Superscrljt  • designates value  of  property at  point   in flow where mach 
number   is  one.     (Exception:     M* which  is defined above). 
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ME 257 1.1 

Lecture Note 1 ODUCTION 

These notes on Thermodynamic s of Gas Flow will be concerned with m. 
portion of that branch of engineering study called fluid mechanics.  In 
order to become oriented with regard to the realm of fluid mechanics to 
be covered herein* the different realms of fluid mechanics are listed 
belowi 

(a) Acoustics.  The fluid velocities are extremely small compared 
with the Telocity of sound« and the variations in pressure, temperature, 
and density are also very small. 

(b) Meteorology. The fluid velocities are extremely small compared 
with the velocity of sound, but the variaticns in pressure, temperature, 
and density are of significant magnitude. 

(c) Incompressible Fluid Mechanics. The fluid velocities sre small 
compared with the velocity of sound; «the variations in temperature and 
density are small, but the variation in pressure may be significant.  It 
may be shown that the error produced in the computation of pressure var- 
iations by neglecting density changes (compressibility) is of the order 
of one-fourth the square of the ratio of the stream velocity to the sound 
velocity; thus, this ratio may be as great as 0.2 (corresponding to a 
velocity of about 200 ft/sec for air at normal atmospheric temperature) 
before the computed error in the pressure variation exceeds one per cent. 
For many problems in the flow of gases, the refore, the flow may with little 
error be treated as incompressible. 

(d) Compressible Fluid MM^JBAML« Th* fluid velocities are apprec- 
iable compared with the velocity of sound, and the variations in pressure, 
temperature, and density are all of significant magnitude. 

Tti9  latter realm of fluid mechanics, often called Gas Dynamics, is 
the principal subject of these notes. Further, the study herein will be 
restricted almost entirely to that of one-dimensional flow. 

Since the study of fluid flow, no matter how complicated, is based 
on the fundamental, laws of conservation of mass, Newton's 2nd Law of 
Motion» the 1st Law of Thexaodynamies, and the 2nd Law of Thermodynamics. 
these will be our tools of analysis. It is quite proper, therefore, to 
begin our study with a review and clarification of these laws as applied 
to one-dimensional fluid flow problems. 

u 



MK 257 1.2 

Consider in turn then the laws listed below: 

j ^S^  Applied J 

La«   ^^ 

System - An arbitrary 
volume at a fixed location id collection of matter 

of fixed identity.    { 

I 

space. 
1 

(1) ConaerTation 
1     of mass 

m-s constant      i 

^=0 

I 

1 (2) Newton's 
|     2nd Law of 

Motion 
F— d(mv) 

1        dt 

1 

j (3) Ist Law of 
1 Thermodynamics A B-t - V 

1 (4)  2nd Law of 
1 Thermodynamics 

ds^tt^/T 

Sach of these laws, la stated in the first instance for a mass of fixed 
identity and the mathematical statement of the laws as given abore apply to 
a mass of fixed identity or to a system*.  In fluid flow problems it is use« 
füllend conrenlent to hare a mathematical statement of these laws as they 
apply to an arbitrary rolume at a fixed location in apace or to a control 
Tg^ygie**. We desire therefore, to develop such expressions and to complete 
the block diagram of the fundamental laws in succeeding notes. 

* System is defined as an arbitrary collection of matter of fixed identity 

•• Control volume is defined as an arbitrary volume ft a fixed location in 

space. 

• 
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L«etur« Mot« 2 

2.1 

COMSroVATIOW QE M^gg. 

Th« Law of ConMrration of Maas states that naas can naithar be 
oxraatad nor destroyed.  Thus if we consider a quantity of matter of fixed 
identity and of maaa m «re can write for this system that the mass remains 
constant or doea not rary with time and 

dB - o 
dt • 

Now consider using this equation to obtain an expression applicable 
to the flow of fluid through a control roluma. 

In the figure herewith fluid ia flevins through a duct. Mark out a 
region bounded by the duct walls and sections (1) and (2) and designate 
this region as the control Tolume. We desire to obtain an expression for 
the deriratire dm/dt when applied to the maaa system of fluid which at time 

Time t 

Mass aystern contained within control volume 

but 

A »2 

Masf> system not coincident with control volume 
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ta is containad in the control rolume.    R«o«ll that by definition 

a«.^       far "^ 
dt 

Atb -mt; 

At-^O    \ ^ 

where     ^1 t — tb - ta 

m^ -sememe eyetem at time ta 

3u s  mass system at time t. 

Let the mass oontained within the control Tolume at any instant of time be 
designated as B. Notice that as time progresses ■ identifies masses of 
different identity. This (m) is not to be confused with m, mt ,  or mt 
which refer to a mass, of fixed identity.* a      b 

In order to eraluate the time deriratire of m we notice that at time 
t. m and S are identical so that 

«t^ "v 
On the other hand at time t^ our mass system is not completely bounded 

by the control surface. ▲ small portion of the system, denoted by £ mout * 
has qkored out of the control volume while a much larger portion is 
still in, and occupies most of, the control Tolume. Also during the time 
At a mass S min • foreign to our system, has flowed into the control rolume 
as indicated  ^  in the figure. We note, therefore, that at time t^ 
our mass system consists of the mass in the control region less the 
foreign mass § min and plus the mass 3 

mouf  ^bis gives 

mtb= ^b *^mia ^ Smouf 
Using these we can write 

«t^ - "Ha = tttb - ^ -HS mout " S min 

and 

dm      lim J_* —^8    oüt"&% 1 
dt At^o\  ^t T ** ) 

•By the Law of Conservation of Mess dm_Q but it does not follow that 
_ dt 
^-0. This illustrates the point that the law applies to a collection of 

matter of fixed identity. 
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Now $ out 'J*>    ^ 

since, by making A* small enough, the density and cross-sectional area 
throughout £01 are constant and equal to the value at station (l) or 
station (2). Substituting for Sm  and taking limits we obtain 

dm   _  41 
dt   ""  dt c .T. ^2 A2 v2 -^ Al ^1 

which states that the rate of change of our mass of fixed Identity equals 
the rate of change of the quantity of mass in the control rolutne plus the 
net outflow of mass from the control rolope. Now dm/dt% 0 so 

(S?i.w:  ^ *! Ti    -^ *a »s d) 

which states that accumulation of mass in C.T.S mass inflow - mass outflow« 

In case of steady flow /'dm ) (am  I m    0  and 
\dt /e.T. 

y^i AI v^2 ^ (la) 

which relation ia known as the continuity equation. Thus we hare developed 
a mathematical statement - eqn (1) - of mass conserration as applied to the 
flow of fluid through a control volume. 
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Lecture Note 3 

NEWTON'S SECOND LAW OP KCTICN AND THE 
KOMHNTÜM EQUATION 

3.1 

In the application of Newton's Second Law of Motion to fluid flow 
studies it is useful to have a mathematical statement of the law which will 
directly aiply to flow through a control volume.  Starting with the equation 

(Force on mass system), s d CMo—ntum of y 
x dt 

we will in this note develop a "control volume expression of the 2nd Law of 
Vption* following a procedure completely analogous to that used in obtaining 
the continuity equation or "control volume expression of the Law of Mass 
Conservation" .  In the present case it will be necessary to evaluate the time 
derivative of the momentum. M, of a system in conjuntion with flow of fluid 
through a control volume.*  (See footnote page 3.2) 

Consider flow through the region (control volume) bounded by the duct 
walls and the sections (1) and (2) shown in the figure below.  In this 
derivation we require that the stream properties at (1) and (2) be uniform 
across each respective section and that the velocities be in the same 
direction. 

y/ /////V////y. / 

Mass system contained within control volume 

S« in 

UU4SM*""" "{gi rSm, 

rrifrrr*m*>nriri*rrr>'*'i 

Mass system not  coincident  with control volume 

but 
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It  i» desired  to eraluate the deriTatire 

d(momentum of mesa)T 

dt 

at the time %    using 

d(moment*^ of inaas)x m xim 
dt ilt->o 

fe^) 

where M » x-mcmentum of mass system under consideration. 

If we let   M—x-momentum of fluid contained within control rolume at any 
instant 

then Mt^ Mtb - ^    % «in-f V2 ^ mout 

"t.« Bt. 

We obtain, therefore 

dM/dt 

or      lim 

irefore      ^,        r _ 
("(Mt  - ^  ^ln + V2     Ä^, - «, 

s   lim  < ■ ■■-.-■ .. f ■ ■ 

Thus we see that the derivative depends upon two terms: 

(\P-) 
which represents the rate of accumulation of  x-momentum within the control 
volume and 

fa-nut _: li^ 
s net ratff"^of outflow of which represents the net ratfof outflow of x-momentum for the control region. 

•In the case of mass conservation we evaluated the time derivative of the mass, 
m, of the system.  It is Interesting to note further that that derivative 
equaled zero in accordance with the mass conservation law while the momentum 
derivative equals not zero but the force on the system in accordance with the 
2nd Law of Motion. 
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•o dK/dt sr     lim 

A t->0 
I ^t%; + (fc—zr^—p* f 

and finally, ramembaring that tha foroa on the mass equals this dariTati-re, we 
get the "control rolume expression of the 2nd Law of Motion 'eoomonly called 
the momentum equation. 

m 2 2 
(Force on Mass)xÄäg +0^*      "-^l^l 

dt 

Ulis is an expression for the force on the mass coincident with the control 
region at the instant t , since in the limit ^bx^a 

If the flow through the control region is steady then there is no 
accumulation or diminution of momentum in the control rolume and 

dH « 0 
dt 

So the momentum equation for steady one dimensional flow becomes 
 2 — 2r 

Force  on Maess^fl^A^     -   j& j1!7! 

Concerning this equation of momentum Prandtl and Tietjens* make the 
remark.  "The undoubted value of the theorem of momentum lies in the fact 
that its application enables one to obtain results in physical problems 
from Just a knowledge of the boundary conditions. There is no need to be 
told anything about the Interior of the fluid or about the mechanism of the 
motion."  This statement applies equally well to each of the "control 
Toliane equations." 

Application of Momentum Equation 

Usually the situation is such that one is more interested in tha 
force of fluid on duct between section (1) and (2) than in the force on the 
mass system.  To obtain the former, denoted by scriptcJ^. we observe that 
any force acting on the mass in the control region (neglecting gravity) will 
act at the control boundary and will be either a sheering force tangent 
to the boundary or a pressure force acting normal to the boundary.  If then 
we make a traverse of the control boundary at a given instant we find tha 

•Prandtl-Tiet jens. Fundamentals of Hydro-and Aero-Mechanics, page 233, 
McGraw-Hill, 1934* 
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forces depicted in the figure herewith to be acting on the mass system 
at that instant. Sunming the 

(£dA) pdA 

PiA 1A1 
(pdA)x 

P^s 

(pdA) 

^ (r<iA)x 

control Tolume boundary (duct %*a)ls not  shown) 

x-component  of   these forces orer the  control  rolume  (c.r.)   boundary we obtain 

(Force on mass), *  e~   (pdA)x ^ £~m       i^^)x 

where 'C » shearing stress at mass system boundary, 
sunmations 

Now,  expanding the two 

c.r. (PdA). duct 

and 

walls 

£.    c?rdA)x x 

(pdA)x +- f— (pdA)x^  «t (PdA). 

duct 
walls 

(tfLOx 

Therefore, substituting the expanded sunmations, 

(PdA) (Tores on mass)   sr 
x      duct 

walls 
xfduct      ^^x^^; (pdA^^  T2    (pdA) 

walls " x 
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Where the first two summations represent the force of duct on fluid (s ~^x) 
Using this fact then, the total (force ou mass)x is seen to be made up of 
the following three forces 

(Force on mass )x   "^"x^^^l  " ^^ 

Thus we have found two expressions for the (force on mass) t 

(a) the expression (Force on mass)xa "\J^x "*" 'l^l " P2A'2 

which actually represents an identity obtained by examining the possible forces 
acting at the c.v. boundary and svimming these forces and 

(b) the equation (Force on aia8s)z 
m^2A2^2    " '^l^l^l 

which was obtained by application of Newton's law of motion. 

Combining (a) and (b) we obtain an equation for the force of fluid on duct (J?'). 

^x- (Pi^i -h/i^)  -  1*2*2  +yd2k272) 

or 

3x F1 -F2 

'- 

where F ä pAf/TLV and is called the impulse function. Notice that F is 
a function of the stream properties and area at any given section and is 
therefore a function of position along the stream. 
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Lecture Met« 4 

'4.1 

fjBST ya <y TIgRyiOpYNAfQCg 

Ttoe lew of ooneerretion of mess end the 2nd Lew of Motion have,   in the 
preeeedin^ notee,  been written for e fixed mess syetem following which the 
continuity end acoientuB equetion were developed for e control rolumo.    It  ie 
propoeed  in this note to follow the «erne procedure,  or method of et tack,  in 
hendling the let Lew of nxermodynexnica. 

Die firet lew of thermodynamice  states,   symbolically,  for e maee  if fixed 
identity 

Heet  - Work-Eb  - E^ 

where X. - S ie the change of internal energy of the mass system in state b 
end etate a end where heet andvork ere, respectirely. the amount of heat added 
to end the emount of work done by the system es it changes from stete e to 
etete b. Let ua now use this statement to develop an equation applicable to 
fluid flow through a control volume. 

Consider the control volume below bounded by the solid boundary walla end 
eeetions (1) end (2).  In epplyiag the first lew let us select es our maee 
system that matter bounded by the control volume at time t . At time t^ this 
system hes moved to the position shown.  The change of internal energy of the 
system 

'm in 

Mess system contained  within control  volume 

out 

Mass system not coincident with control volume 
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durin« this change of state is  (following the procedure used for mass and 
manentum) 

»+ -    E.    • E    -    E^.    ^.   ^B    .   - £*4m. t           t tv         t^ ▼        out             i&. oa oa 

where the bar symbol refers, as before, to the energy of the mass in the 
control Tolume.  In order to eTaluate ^ B ^ .and ^B.  we simply multiply 
the mass increments that have flowed out ana into the control rolume in time 
£ t by the internal energy per unit mass of their respectire increments. 
Thus 

S Eout-  fi^n - C^^AgTaAt)^ - (>jA1V1At)e1 

so ws hare, by substituting into equation (1) 

Heat-Work _ H        ^      ♦- / >ÖA v x     ,  JOL v \ 

and for steady flow, with w «/^A2V2 ~J\*iVi  and Bt   «  Bt   , 
b       a 

Heat »Work _ Heat-Work 
w^t   "" unit mass  e2 * ei 

We know by experience that  the •aprgjr associated with a unit oi  mass  in the 
presence of a graritational field and motion is 

V2 

2 

where u is the internal energy of a unit mass in the absence of potential- 
kinetic effects and g is the acceleration of gravity.  Thus we have 

- U-^^-" *^2 «j     -   K*^- Heat-work £    y^—-   +   z2   g }        -     fu^-^~ ^ Z,   g) (2) 

Up to this point we have considered only the right  hand'Side of  equation 
(1).    Let us examine next the left side and in particular the work term.     As 
the mass  system passes from state (a)  to stete (b) work is done on the system 
boundaries (which move to the dashed positions of state b) by pressure forces. 
At the  same  time there may be work done by the  system through a shaft  protrud- 
ing through the control  surface.     Thus we may write for the work term 

Work spreasure force work-t-shaft  worK 

The pressure force work at  section (1) is 
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(presBure z «r««)^ x (distance moved)« 

where T^ S  specific rolume 

Since work la done on the system by the pressure force at (1) a minus sign 
is ineluded abore. In like manner we find the pressure force work At (2). 
Whence 

pressure work« ^^"^^ Pl*l ^"V 

Since ^mmdenslty z rolume s^t AT^t 9   w^t we may write 

pressure work „ 
 ^t  *  p2T2 - PlTL 

Now the left hand side of equation (2) takes the form 

Heat -Work •  Heat-pressure work-shaft work - Heat^Shaft work  /        k 
w^t ^ZTt wit     " *l?2T2-PlTl? 

This result combined with the right hand side of equation (2) gives after 
tranapoaing and using the definition of enthalpy. hvu^-pT, 

where qm.heat transfer per unit mass 

Wx3t shaft work per unit mass. 

This equation is called the steady f low energy equation and is the 
mathematical form of the IsfXaw which applied to flow through a control Tolume, 
It may be of Interest to note at this point that two fundamental laws are used 
to obtain the stsady flow energy equation - the 1st Law of Thermodynamics and 
Newton's 2nd Law of Motion. The latter enters in the derelopment of the 
kinetic energy term 1^/2  which, of course* was not covered in this note» 
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Lecture Note 5 

COMBINATION OP THE LAWS OF THERMODYNAMICS AND OP FLUID MECHANICS 
FOR INCOMPRESSIBLE FLUID FLOW 

For a steady flow of a single fluid stream through a control surface 
fixed in apace, the first law of thermodynamics and Newton's second law of 
motion yield the energy equation for steady flow: 

2 2 
(ug^p^f^l— -^gzg) - (u1^p1v1-|-^-i-gz1)cQ - Wx (1) 

where Q, denotes the heat transfer into the control volume per unit mass of 
flowing fluid, Vx denotes the shaft work delivered out of the control volume 
par unit mass of flowing fluid, the subscript 2 refers to the stream leaving 
the control surface, and the subscript 1 refers to the stream entering the 
control surface. 

If the sections 1 and 2 are so close to each other that only Infinitesimal 
effects occur, we may write the equation in differential formt 

du't-d(pv)-t-dX--hgdzSdQ - dW_ (2) 
2 

or, since 
d(pv)» pdW* vdp /o\ 

equation (2) may be written 

du-fpdvf-vdp-^dCV^yf gdasdQ - dWx (4) 

or, transposing some terms, 

dW 4-vdp4-d(72/2)4,gdz » dQ - du - pdv (4a) 

For a pure substance we have the following relation between properties, 
where s is the entropy: 

TdsaBdu-4-pdv (^) 

The second law of thermodynamics may be introduced by the relation 

t^»Tda^ du-hpdv < 6 ) 

which,  when inserted into equation (3)« yields 

dQ - du - pdv^O (f) 

Combining equations  (7) and  (4a),  we obtain 

\6 dWx4 -   fdIrfd(y2/2)^gd^ 

or, in integral form, r   ^.^ 2      3£ 2 1 
„ *.        I    A  _._   .   T?    " T, _/_ _  v !       (8) 

x       - /    ^P "•"— -1 -f« «<»2  * »!>  | 
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This «quatlon, which places a limit on the maxi Mian shaft work which may 
be dalirered. Is not eaaily evaluated in practlea because one seldom knows 
how the density rarles with pressure.  If the fluid is incompressible, however, 
we obtain iamedlately (usine/S^l/v) t 2 

or. Introducing the definition of the head, H, in length units. 

-A 
we have 

♦S1"1 (10) 

Under conditions of  thermodynamicaliy reversible flow,  for which friction 
would be excluded,   only the  equality sign is applicable  in equation  (6),  and 
hence  equation (11)  becomes 

(Vx)revf g(Hl  -H2) (12> 
Furthermore,   if  the  shaft work is zero between  sections 1 and  2,   equation 

(12)  shows that for reversible flow the head H is constant.     This  result  is 
essentially the  statement of the Bernoulli  equation,  since  the head H as de- 
fined by equation (10)  is Identical with what  is called the Bernoulli number 
of   the  streamline. 

The form of  equation (11)  suggests that  we define the  "lost head,* 
H/^2  & the  expression 

Hil2    £|<Wx       -V=H1   "«2-     ^ 12    "«v"x
rov      x'-"l       "2 g (13) 

By comparison of   equations  (11) and  (13)  it  is evident  that f{£   must  always 
be a positive number or  zero.    The lost head  is associated with frictional 
effects,  and  its magnitude may usually be found only through tkparimsnt. 

Application to Flow  in Piping Systems.    A piping system usually comprises 
straight lengths of  pipe,  elbows, reducers,   and  other fittings.     There are 
losses of head  through  these  various  couiponents,  and to keep the fluid flowing 
requires the  use of  a  pump,   compressor,  or  fan.     An  important design  problem 
therefore,   is  to estimate the total  loss in  head  through the piping system. 

Since there  is no  shaft  work associated with any element  of a piping 
system equation  (13)   becomes 

Hl-H2*Vl2 C14) 

For  the fluid  velocities  consnonly used   in engineering practice, the  lost 
head   in a component   is approximately  proportional  to the velocity head, 
hence  we may defi-.e - 

0 ^ ^ us) 
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where C is a lost-heed coefficient.    The ralue of C depends to some extant 
on the Telocity« density, nature and aize of  ehe fitting, and nature of 
the epproaoh flow to the fitting,  but  in moat eases C changes by only small 
amounts with changes  In these rariablee. 

Approximate  ralue» for C for rarloua types of fittings are listed 
belowt 

yitting C. 

45-deg.  elbows 0.3-O.i*. 
90-deg.  elbows,   standard radius 0.7-0.9 
90-deg.   elbows,  medium radius 0.5-0.8 
90-deg.  elbows,  long sweep 0.4-0.6 
90-deg.   square  elbows 1.0-2.0 
Tee 1*0-2.0 
180-deg, return bend 1.0-2.0 
Open gate  valTe 0.1-0.2 
Open globe ralre 6-9 
Open angle valve 3-5 
Sudden contraction from Infinitely large  pipe 0.5 
Sudden expansion to infinitely large  pipe 1 
Straight pipe 0.01 g - 0.04 ^ 

For the straight   ripe,  L refers to the  length of pipe and D to the diameter. 

The total  loss  in head for a complete  piping system is the  sum of  the 
loeses for the   individual components. 

Application to Hydraulic Turbines    The efficiency  of a hydraulic  turbine  is 
defined as  the ratio of   the actual  shaft  work delivered  to the work which 
would be delivered under reverslblo conditions for the same change in heads 

^ d      ^turb ,   ,v 

From equation (12), however, 

(Wturb)revÄ gCHl " H2) 

so that 

Using equation (13), the turbine efficiency may be expressed in terms 
of the losses- in the turbine, 

77 .     "turb _ "turb 1  (18) 
7turb   = RRJ  - H2) Wturb ^5«^      1 ^.fg^Ba, 

turb 
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from which wo  get 

^turb * ^ttturb (19) 
Vturb ' '^txarb 

Application to Pump« and Fana.    For   incotnpresaible flow,  the efficiency of 
a pump or fan is defined as the ratio of  the roTersible shaft  work input 
for a given  increase  in head to the  actual  nhaft work input  to the machine: 

7. d/       (wDvtD^ reT 
PUmp    * Wpiinp (20) 

from equation (12),  bowewr, we may write,  upon noting that  the thermodynamic 
shaft work is the negatire of the work input,  that 

(Vpump) rer^ e(*2  ' Hi) 

so that 

g(H2  - H1) 
Ypumr  *■ w (21/ 

• '    * "pump 

tfe now relate the efficiency to the  losses by introducing equation 
(13) in the form 

Wpump =* "x««^  " «I"«-«/        ) 0 pump 

so that we obtain 

>) •    Wptjnp "^/pump    .    , ^Cpumc 
/pump - w »    1 -      w ""I (22) pump pump v««/ 

from which w« get 

Wpump     ^ "7puap (23) 
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Lecture Note 6 

6.1 

TOE VELCCITY OF SOUND (1) 

The  variation of  fluid density  in a compressible fluid  flow field  is 
generally the result  of pressure rarlatlon  throughout the flow field.     It 
might be expected therefore that  the rate of  change of density with respect 
to pressure (d^/dp),  compressibility factor,  is an Imi ortant parameter  in 
compressible fluid flow studies.    Such is the case and,  as we shall see,   this 
derivative  is connected  closely with the  propagation velocity of small 
disturbances  its reciprocal  being equal,  in fact,   to the square of  velocity 
of  sound  (dp/d'sX^a2). 

Let us now develop the speed of sound  or  the velocity of an   infinitesimal 
pressure wave proceeding along a pipe of uniform cross-section.    This wave 
might  be  considered   to have been initiated, for example,  by a slight   inward 
motion of a piston at  the left hand  end of the pipe.    The development to 
fo?low will  Illustrate also the application of  the   "control volume  equations" 

wave front moving 
velocity a f    at velocl 

stationary wave front 

dT 
P   +dp* -»-> 

V 
p 

0 

/ 

I 
site. 

U    P 

8   -dV, 

S    7 / s /  / 

"t 
— -  > 
Variation of pressure and 
velocity of fluid at a given 
instant of time* (Observe at 
rest with respect to duct) 

Variation of pressure and 
velocity of fluid at any 
Instant (Observer at rest 
with respect to wave front) 

(1)  This note reproduced from mimeograph notes by A. H. Shapiro, M. I. T. 
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Zte thm  figure on th« ^jaft abore the ware front ia aaaunad to propagate 
to the right with a Telocity a. nie fluid through whichJbe vmve  front has 
paaaad ia at a preasure (p -t- dp), haa a danaity (^P+l/*)*  and moTea to the 
right with a Telocity dV. The fluid into which the waTe ia propagating has 
a preaaure p, a density >^, and is motionless. This frame of reference ia 
one of "unsteady motion* aince as time progresses the atveam properties at 
a giTan duet aaetion Tary with time. 

To simplify the analysis let us assume the point of Tiew of one traTeling 
with the waTe. To this obaerrer the ware appears at rest and the proceaa 
appears steady as shown on the right in the figure abore, Fluid flows steadily 
frooa right to left approaching the wave front at a Telocity a and leaTing with 
a Telocity (a - dVj» while the fluid pressure and density changes from p and 
^ to p ♦ dp andw^f d^^ respectiTely, across the-ware. 

For purposes of analysis consider the infinitesimal ware front many 
times enlarged and draw a control surface about the wave fr-nt region to 
get control volume shown in the figure below. 

(2) 

s s J* s *. 

(i) 

s  ^ 
(a-dV) 
(P4.dp) *t 

* 

wave front 

r 

y-?—s s y 

I 

.t-z^ 

p.^» (p^dp)A > 

9    S 
control surface 

mass | 
system I 
with i 
forces i 
acting | 
thereon , 

  J 

PA. 

Let us apply the momentum, and continuity equation to the steady flow through 
this control volume.  We hsve by the momentum equation (taking direction of 
fluid velocity to left c.a posit ITS and denoting the inlet section as 1 with 
outlet indicated by subiicript 2) 

(Force on mass)x s^^A.V.  (Vg • ▼*) Cl) 

While the continuity equation states 
(2; 

For the case under consideration 

^fß*- ^ 
vi^ a - dV 

(Force on mass) ~ pA - (p "•■dp)A 
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Substituting the»«  into equation (1) and (2) giTee 

pA  -  (p-h dp) A «A a  (•  - dV - a) (la) 

^A a ss (-^- d^    A (a - dV) (2a) 

Simplifying 
dp »^a dV (lb) 

H* 0 T 
0»   -^dV-Ha d-^-  (d>>)(dV) (2b) 

or,  finally. 

^■2'     «^ 

The ratio ^P-pia written as a partial dorivatiTe at constant entropy because 
the TariatTdn in pressure and temperature are Tery  small and,  consequently, 
the process ia nearly rerersible.    Moreover,   the rapidity of  the prooeas, 
together with the amtllness of  the temperature Tariationa, makes the  process 
nearly adiabatic.     In the limit the process may be considered both reversible 
and adiabatic,  and therefore,  isentropic. 

For a perfect  gas we have the  iaentropic relation 

(jnXto. ~ constant. 

Putting this into logarithmic form, differentiating, and noting that p'^RT, 
we obtain 

In p - k In^s— constant 

«IOCity Of 3C Thus we get for the velocity of sound in a perfect gas 

/isBT. 

In the cas» of air with k«l,4   R-1715  ft2 m- ae this becomes 
sec^ ^ 

a*49«l   JT        (T in 0R) 

where units to be sssociated with 49*1 Äre  ft 
sec SpSR 
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Pre«»uro Propagation from g Point Dlaturbanc« 

The  physical significance of the sound Telocity may be illustrated by 
considering the uniform line r motion of a point source of disturbance through 
a compressible medium.  At each instant of time the point source may be imagined 
to emit an infinitesimal pressure wave which spreads spherically with the 
speed of sound from the point of emission.  The pressure pattern which exists 
at any instant is then found by superposition of all the pressure pulses which 
wave previously emitted. 

The accompanying figure shows several patterns as seen by an observer 
moving with the point disturbances.  In each pattern the point 0 represents 
the present location of ^he point disturbance, the point -1 represents the 
location one unit of time previously and so cm. For each of these previous 
locations there is drawn a concentric circle showing the extents to which 
the corresponding wave has spread.  For example, to find the present location 
of the wave which was emitted at time -3 * circle is drawn with -3 as a 
center and with a radlua 3**'« where t is the unit of time.  The distance 
between point -3 •nd point 0 is then given by 3 Vt, where V is the velocity 
of the point disturbance with respect to the medium. 

For a stationary source, shown in Figure (a), the pressure change 
spreads uniformly in all directions.  Vhen the source moves at subsonic 
speeds. Figure (b), the pressure disturbance is felt in all directions 
and at all points in space (neglecting dissipation due to viscosity) but 
the pressure pattern 1  no longer symnetrlcal. 

For supersonic speeds Figure (d) Indicates that the phenomena are 
entirely different from those at subsonic speeds. All the pressure distur- 
bances are included in a cone which has the point source aa its apex, and 
the effect of the disturbance is not felt upstream of the source of disturbance. 
The cone within which the disturbances are confined is called the Mach cone. 
Figure (c) shows the pressure pattern at the boundary between subsonic and 
aupersonic flow, that is, for the case where the stream velocity is Identical 
with the somd velocity. 

Figure (d) illustrates the three rules of supersonic flow proposed 
by vonKarman*.  These rules apply only for small disturbances, but are 
usually qualitatively applicable for large disturbances. 

^'Supersonic Aerodynamics—Principles and Application', by Th. YoaKarman, 
journal Aero. Sco., Tol. 14, so. 7 (1947) pg. 373 
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(•) V« 0 (b) 
 > • 
-> V*A/2 

mach  cona 

Zone of 
Silence 

(c) (d) 
^▼= ^« 

->    T=2« 
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*• Th» Rule of Torbidden Signal».  Hie effect of preaaure clvingea 
produced by a body moTlng at a apeed faater than sound cannot reach points 
ahead of the bo0y. 

b. flm Zone of Action and the Zone of Silence« A atationary point 
source in a auperaonic stream producea effects only on pointa that lie on 
or inside the Mach cone extending downstream from the point source.  Conrerse- 
ly, the pressure and Telocity at an arbitrary point of the stream can be 
influenced only by disturbances acting at pointa that lie on or inside a 
cone of the same rertex angle extending upstream from the point considered. 

c. The Rule of Concentrated Action.  The proximity of the circles 
representing the different pressure impulses in the figure is a measure of 
the intensity of the pressure disturbance at each point in the field of flow. 
Thus, for the stationary source, the intensity of the disturbance is symnet- 
rical.  In the case of the supersonic source, we have the rule of concentrated 
action:  the pressure disturbance la largely concentrated in the neighborhood 
of the Mach cone that forma the outer limit of the zone of action. 

The configurations shown may eaaily be observed in the form of gravity 
wavea on a free water surface when a sharp-pointed object ia drawn through 
the water at varying speeds. 

The Mach Mumber 

In the preceding section it was shewn that the nature of the flow 
pattern dependa on the relation between the stream velocity and the sound 
velocity.  The ratio of these two velocities is called the Mach Number.  Thus, 

MsV/a 

The  apeed of   sound   in thia equation  ia  to be taken at  the local  temperature 
and preaaure  of the stream,   and,   of course,   varies  from point  to point  in 
the flow field. 

nie  semi-angle of the Msch cone  (figure d)  is related to the Mach 
Number as follows: 

sin  o^* 1 
^     M 

Note that the Mach angle is imaginary for aubsonic flow« 

From the preceding section we see that the Mach Number la a criterion of 
the type of flow pattern.  Later it will be shown that it is a convenient 
parameter that will appear in our working equations. 
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Lecture Note 7 
TOTAL WtESSURE AND TOTAL TSMFERATURS* 

The purpose of this note is to introduce the concept of totsl temperature, 
essure, p0, and to show that the ratic 
0) and static to total pressure (p/p0] 

T , and total pressure, p0, and to show that the ratios of static to total 
temperature (T/T-) and ststic to total pressure (p/p0) are each functions of 
Mach Number* 

Total Temperature 

Consider the steady flew  energy equation 
2" 

H+\ ^ * =    U+^J-»-« 
The kinetic energy terms may be combined with enthalpy to form a new term, 
total enthalpy, h . Thus 

^0= *+*-• 

If the flow under consideration is that of a perfect gas, then 

d h =. c dT 

and d h s c dT 4. d V_ 
o   p  T  2 

p       2cp' 

or d h0Ä cpdT0 

Where T ss T t" ?—      snd is defined as the total temperature. 

The physical significance of total temperature may be illustrated 
by the use of the following figure.  If in the figure an observer should 
trarel with the slug of gas shown at the same velocity as the gas he would 
be cognizant only of the random motion of the molecules.  Hence, since the 
static temperature and pressure result from the random motion of the gas 
molecules, the observer would sense static values of temperature and 
pressure.  In a flowing gas the molecules have superimposed on their random 
motion the directed motion of the flow.  The kinetic energy of the directed 
motion is the cause of the difference between the static and total temperature, 

T0 - T=^— 0     2cp 

• Reference:  pp. 20-21, AAT IR 5514 
I .-i       , 
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Lecture Note 6 
NOZXE DESIGN 

By simile area flow we mean the  one dimensional  flow of  a perfect   ras 
in the absence of friction or heating effects.     This  type  of flow satisfies  tfee 
following conditions: 

1. frictionless 
2. adiabatle 
3*     one dimensional 

A simple area type of flow may be used to accelerate the  stream flow or to 
decelerate the flow velocity.    The flow passages producing these  effects are 
called nozzles (accelerate flow)  and diffuser« (decelerate    flow) respectively. 

Consider a  simple area  flow.     The equations  satisfied  by  this flow are 

p »fRT (state) 

T,-#•—i—   ^ T~+ 9*- s T   « constant (energy) 
±     2c„ * cp 0 

'P 

/ 
AV (continuity) 

^T_\  k-1 
VTl/ 

where subscript (1) designates conditions at the inlet to the flow being 
considered and no subscript denotes any station downstre jn from the inlet. 
Since there are five variables in the above four equations (p, ^ , T, V, and A) 
we may select one as an independent variable and find each  of the remaining 
fo u* in terms of this one.  Practical problems generally fall into either one 
of two classes. 

(a) It is desired to pass a given mass rate of flow with minimum losses 
between two regions of different pressures with some assumed variation 
of pressure, say linear, between the two regions. 

(b) Given a nozzle, what mass rate of flow and pressure distributions 
will exist through this passage of variable area for various pressure 
ratios applied across the unit? 
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In case (a) our Independent or known variable is pres are, p.  In case (b) 
our quantity of known variation is area, A.  We shall consider each case in 
turn. 

As an illustration of case (a) consider the following example. 

Example (a) It is desired to expand 0,62 slugs of air per sec. reversibly 
and adlabatically between a reservoir and exhaust region with following 
conditions. 

p - 30° psia Passage length =5" 

^=560° R Exhaust region pressure = 40 psia 

V, —100 ft/sec. Linear variation of pressure 
from reservoir to discharge region 

w-O.62 slugs/sec 

Design a nozzle to meet above requirements. 

Solutions:  Of the five variables in the four applicable equations one, 
the pressure, is known throughout the flow.  Hence we have 
four equations in four unknowns.  To determine the area at any 
particular station we proceed as follows 1 

Combine continuity and state equations and evaluate p and T thai 

W=:ipjr CD  (state and continuity) 

T0-T^-l- (2)  (energy) 
2cP 

T = T0(p/po)   k (3)  (2nd Law) 

With p known, use (3) to find T at any given station. Then equation (2) gives 
V at this station. For these values of T and Y along with the known values of 
w and R equation (1) gives the requisite area of the nozzle at the selected 
station. And so forth foi any station. 

The results of the example may be sunmarized in the form of a plot p/p0 
w/A, A» V and Mach number, M, versus nozzle station along with a t-s diagram 
of the expansion process. 
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M=.l 

Station Station 

th 

These graphs illustrate 

a) To decrease pressure, sections of decreasing area are required until 
a pressure of p« 0,328 P0 is reached. For reduction of th« stream 
pressure below this value a passage of diverging area is required. 

b) For p/p^ 0,528 we hare M<1 and for p/p^ 0.528 we have M >1 
which indicates that in subsonic flow the pressure decreases with 
decreasing area and vice versa for supersonic flow. 

o) The stream velocity increases continuously through the nozzle.  Thus 
we may say that in subsonic flow a converging area accelerates the 
flow and that a diverging area accelerates the flow in supersonic flow. 

d) The area decreases to a minimum (throat) and then increases. 

a) At the throat of the nozzle M»lt P/P0ä 0.528, and, obviously, 
w/A is a maximum« 
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Thm  expansion prooeas through the nozzle is shown as a solid -rertleal 
line on the T-a diagram from the pressure pi to the exit pressure, nie ralue 
of the stream pressure and temperature at the throat of the nozzle are indi- 
sated on the diagram by p^ and T^^. 

Harlng designed a nozzle to meet certain operating conditions, it is now 
of practical and academic interest to inrestigate the characteristics of the 
nozzle when operating at other than designed conditions, for example 

w^0,62 slugs/sec. ?! ^r300 psia, and/or Pexhftu-t r«gion^^
0 psiA' 

This problem comes under ease (b) noted abore and will be considered next. 
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Lecture Not« 9 

9.1 

NOZZLE OiERATTNG CHARACTERISTICS 

As an Illustration of the tyje of problem coming under class (b) as 
listed in the preceding lecture note consider home problem 9*1 which deals 
with the following.  Giren a nozzle with known inlet total pressure and 
total temperature at what mass rates of flow and for what corresponding 
exhaust region pressures will it operate reversibly and adiabatically? 

Probably the simplest way to investigate this question is to deal 
with a single equation which in itself contains the restrictions placed 
on the flow by continuity, Ist Law, equation of state and 2nd Law.  The 
four applicable equations may be combined into a single equation as 
follows.  Ve have 

W_£AY 
* RT 

T0»T^ 
2c. 

P»P 
&) 

k/k-1 

(1)  (cont. and state) 

(2)  (energy) 

(3)  (2nd Law) 

Equation (1) may be written 

w _ pV 
A ~RT 

wherein 

and 

▼ =^2^ (Trt - T •p VAo 
;N p o 

1 - JL 
Po 

k-lA 1 

Substituting these .expressions for p, V, and T we obtain after simplifying 

*»H£) 

ä * Es. 
A ^ 

r        2/k      k^.1' 
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If  then this equation  is satisfied at  every section of the flow,   it 
follows that  the conditions  im, osed  u^ on the  flow by the  1st Law,   2nd Law, 
continuity equation,   and   state equation are  satisfied.     41 th p0 and T0 
known  in any  piren flow we may effect a graphical solution of the  above 
equation by plotting (w/A)  versus  (p/p  )  where  the latter may  in the  physical 
problem vary from 0  to  1.    A graph of  the relation w/A = f(p/p0)   is  given 
below for,  of  course,   some assuned  value of  p0  and T0. 

For  constant  values  of 

A 
/ 

'r 
v. M>1 > 

With the above plot values of w/A and p/p0 satisfying the equation 
w/A —f(p/p0) may be easily found«  The ratio of w/A may be determined at 
any station of a given nozzle with w known.  Entering the graph with this 
predetermined value of w/A we find the value of (p/p ) that must exist at 
the nozzle station selected. The ratio of p/p0 along with T0 and p0 fix the 
state of the fluid at this section. 

It is to be noticed on the plot that, for a given value of (w/A), (p/p0) 
is not uniquely determined.  In any particular problem we can however by 
examining the physical aspects of the flow, determine which value of (p/p0) 
is applicable. 

As an illustration assume a nozzle is discharging air from a large 
reservoir isentroplcally with maximum mass rate of flow existing through 
nozzle.  Plot the pressure distribution through this nozzle. 

With the reservoir pressure and temperature known a plot of w/A versus 
p/p may be made.  Then with mass rate of flow through nozzle known we can 
for nozzle sections b, c, d, e, and f measure area and determine (w/A). 
With this value of w/A corresponding values of p/p0 are read from w/A - p/p 
plot above. 
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B«gliinlii£ at the reservoir v/pQ- It  then as    »/A Increase« P/P0 decrease« 
from a to b to e et  throat as indicated on  W/A - p/p0 plot.    After reaching 
the nozzle throat the ratio w/A decreases again and now there may physically 
exist either value of the (p/p0)  corresponding to a giren w/A with a contin- 
uous variation of pressure through the nozzle being maintained.    Thus at 
section d the pressure may be that  corresponding to d or d*.     The final 
pressure distributions that may exist for reversible and maximum mass rate of 
flow are shown in the sketch below as solid  lines« 

flow   ' 

Cross-section of nozzle 

0,526 

o 
•a o 

I 
09 

1.0 

o 
i •»-« 

feg I8 

I 
SB 
XI 
o 

Nozzle station 

Suppose now the nozzle to be operating with w less than maximum. 
Proceeding in the manner described above the pressure distribution indicated 
by the dashed line on the sketch is obtained. Since 

( ) 

a Mach number scale may be placed along the vertical ordinate of the 
graph. This scale indicated in what Mach number range the nozzle is 
operat ing. 
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Mozale Flow With Shock in Dlffueer 

9.4 

The above example illustrates that for an exhaust region pressure 
between pf,and p^  there is no solution of the relation (w/A)»flp/p  ) hence 
it is impossible  to hare rarersibis flow through the nozzle in this range 
of exhaust region pressures.    Physically it is possible to hare a discharge 
region pressure in this range.    What happens when such an exit region pressure 
does exist?    To answer this question let us discuss the operating charac- 
teristics of  a nozzle used as a high speed wind  tunnel* 

The figure below shows a wind tunnel which operates intermittently by 
means of an eTaeuated reserroir.    The atmosphere acts as the  supply region 
from which air is drawn through the conrergent section,  test  section, and 
diffuses into the evacuated reserToir.    Below the sketch of  the tunnel there 
is  indicated  the  pressure distributions through the tunnel for seren different 
exhaust region pressures«   

Taeuum 

0.528 

reserroir 

4  

(2) 

(1) 

During the  operation of  the  tunnel   seven distinct  conditions  present 
themselves.^ 

•Paraphrase  of   pp.  3-5.   Part  I, High Speed Aerodynamic Lecture Series  by 
Dr.  B.  H.  Goethert. 
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1. For condition one, wherein the pressure in the reservoir is less 
than the pressure in the end of the diffuser, the tunnel is operating at 
maximuD rate of flow with subsonic, sonic, and supersonic flow in the con- 
vergent, straight, and divergent sections of the nozzle respectively.  The 
transition of the diffuser pressure to the lower reservoir pressure is achieved 
through a system of expansion waves« 

2. For condition two, wharein the pressure in the reservoir has been 
increased to the diffuser outlet pressure by the inflowing air, no pressur. 
disturbance occurs at tha diffuser end« 

3. For condition three, wherein the pressure in the reservoir has be- 
come greater than the diffuser outlet pressure, the transition to the greater 
reservoir pressure is produced by an oblique shock wave with flow upstream 
of nozzle «Sit unaffected. 

4* For condition four the pressure in the reservoir has increased to 
a value which produces a normal shock wave at the nozzle exit. 

5« For condition five the reservoir pressure has attained a value which 
produces a normal shock in the diffuser. Flow preceding the shock is un- 
affected. Downstream of the shock subsonic flow exists. 

6. For condition six the reservoir pressure has reached a value which 
produces reversible flow throughout the tunnel with sonic flow in the throat 
and subsoniS.ftsv elsewhere. 

7«  For condition seven the reservoir pressure has reached a value 
producing subsonic flow throughout with a reduced mass rate of flow. 

Notice that the flow conditions in the test section remain constant 
as long as the reservoir pressure is not greater than that corresponding 
to oonditicn six. 

The analysis of nozzle flow that we have attempted so far has been 
confined to reversible flow considerations only. The flow through a 
discontinuity such as a shook wave is irreversible and hence we can not 
predict the nozzle pressure distribution such as that corresponding to 
condition 3 by the analysis we have made so far.  In order to complete our 
study of the operating characteristics of a nozzle ws will need to consider 
plane shock waves. This anaits our further attention. 
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Lecture Note  10 

10.1 

SIMPLE AREA FLOW 

Consider • gas to be flowing steadily through a duct  which satisfies 
the conditions 

(a) Constant area, 
(b) frictionless, and 
(c) adiabatic. 

The stream properties of such a flow would  in general be  constant through- 
out.     If,  however,  any one  of  the  conditions listed  was  removed  the  stream 
properties would  then change with  the  effect (variable  area,  friction or 
heating)  present«    In the work to follow we will study how the  stream 
properties  (p,  p0, T,  T  ,  V,  M,  F)  depend  upon each of  these effects individ. 
ually and  then collectively«    The  individual cases to be analyzed are shown 
in the figure below.     Each of  the  flows     indicated  in the figure  is of 
practical     importance,  for  example,   in  the  study of  flow  through a ram-Jet 
engine.     The  simple area  type  of  flow applies to the   inlet diffuser and 
exhaust 

Simple  area 
Flow 

Simple Friction 
Flow 

Simple Heating 
Flow 

> 
^2 

> ▼i * ^ - s» > 

■ -                     -« 

^   - — ^ 

(i) 
i 

(1)                                      (2)            (1) (2) 

i 

frietionless 
»diabetic  dud t 

a« itabatic,   constant 
area duct 

frietionless 
area  duct 

constant 

nozzle,   the  simple heating flow  to the combustion chamber  and the  si: pie 
frictional flow to flow between diffuser and flame holders of  such an engine« 

The  purpose  of  this note  la  to make a  study of  the   simple area type of 
flow.     Our  imnediate objective will be  to determine how the stream properties 
(Pt  Po»  T»  To» v» M» y) 2f. "the flow depend upon the  independent variable area. 
▲«    A physical interpretation of  the problem at hand  is,  for example,  the 
following«     Assume we have a frietionless,  adiabatic flow of a perfect gas 
in a constant area duct.    The stream properties of this flow are invariant 
throughout« 



257 

Frictionleas,   «diabatic 

10.2 

Frictionleas. Adiabatic 

Stream properties eonatant Stream propertiea may rary 
with area 

Suppoae now that we rary at will  the area of the duct,   that  is,  the duct 
area becomea the independent rariable of the flow.    Ve want  to inveatigate 
how the stream propertiea of  the flow change with,  or depend upon,  the duct 
area.     Ve may note  imnedlately  that  the atream properties p0 and T    do not 
rary with are«  in the simple are« type of flow since  it  is an iseniropic 
flow.    The  simple area flow may be used to accelerate a flowing gaa in 
which case the duct used is called « nozzle or conditions may be such thst 
the flow  is being decelerated   in which  instant the duct   is called  a diffuaer. 

The  following expressions relating the stream properties of the flow 
under  study may be written 

P   s-^T 

w   -z.&V 

""  kRT 

constant 

(State) 

(Continuity) 

(Mach No.) 

Fc  pJLd-f kM2) 

k-1 

(Impulse Function) 

Po = P^1 "^ ■£• *0  "     * constant (2nd Law) 

2c. 
V2 ? 

= T^—f.Td^^i M2) «r  constant (1st  Law) 

The rariablea in this group of six equations are (since M always appears as 
a squared quantity, use M2 as a rariable) 

p, />, T, A, V, M2, F. 

Selecting one (area) of these seven variables as independent we may 
determine each of the remaining six dependent ▼ariables (p, y0, T, V, 1*^, F) 
in terms of the independent quantity, A.  Thus by assuming A to be known 
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v« hare six equations in six unknownt.   To solre  the equetiona «a they stenA 
would be difficult  if not   Impossible.     It will be found conrenient therefore» 
to first reduce the equations to a set of linear differentisl squationa with 
▼ariablea in logarithmic  differential form« 

The equation of a täte become a 

In p s In fi+ In T *» In R 

differentiating 

For total  proasure we may write 

In p   s In p ■♦• A- l1^-2) 
differentiating 

p  k.i LJ7T3r>ä 

0-P   *  x^JfclW2     ^ 

Reducing aimilarly each of the six equations to s differential form and 
assembling the resulta  there   is  obtained 

d£ . $J2 . dT 
p   ~   /O   ^ T (State) 

^^ ~ t- ^ « 0 (Continuity) 

^ 
- 2 Ä    . ^ (Mach No.) 

V T 

dT  dp    kM^.     äi^-dA .,   ,   ,      x 
y ^ P   T^Mp"    iP X^ (Impulae Function) 
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2 

To investigate the Tariation of the dependent  v-riablee with area  we 
muat find expressions relating 

*£ to At . äÄ to M etc. 
M2    A   P      A 

2 
and interpret the results.  First obtain ^_ in terms of ~ ,  This may be 
done as follows t M2 A 

By Mach equation get 

d*£ _ - /dV  drN 
M2 _ M v T; 

using continuity for SPL  in above find 

dM2 _ - /d/0 dA dT\ 

using equation of state got 

^-'(f't'f) 
and «ftth 1st and 2nd Law results obtain 

dM2 

-'(■'■«■) 
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or 

dM2 _ 

M2 
 2 

- 

-M2 

10^ 

dA 
A 

The results of similar simultaneous solutions of the applicable equations 
are summarized below 

1 1.  11 

dAA            j 

dM2 

I       M2 
2(1 +  k-1 M2)     ( 

2 
1 -M2          j 

1         ££ 
1 - M2 

P 
kM2                 | 

1 -M2 

^ 

M2 

l-M2 

1       dT 
T 

U-l) M2 

1 -M2 

i       ^ r 1 
1 ^ W^             1 

I          Table is read as follows                1 

dV ^  / .,;.,. \  dA 
▼     (^ 1 - M2;   A •*•• 
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General conclusions can be made relatire to the variation of the stream 
properties of the flow with the independent rariable area by these relations. 
For example 

dV 1     dA 
V     "  1 -M2   A 

indicates that in a subsonic flow (mO.) a convergent passage (dA"<0) will 
accelerate the flow (dV>0), Conversely in a supersonic flow a diverging 
passage is required to accelerate the flow.  Similar reasoning may be 
applied to determine the manner in which the remaining stream properties 
vary with the duct area in a subsonic or supersonic flow. 

Stream properties as functions of Mach Number 

For the isentropic flow under consideration analytical relations may be 
found between each variable of the flow and the flow Mach Number by re- 
arrangement and Integration of the tabulated results above.  As an example 
let us integrate the equation relating Mach Number to area between the point 

and any general point where v£z=.VF, in the flow where M2^ 1 and A « (A)Mä1 

Denoting (Al., by A* we have 

A   '   V    2(1-f k^ j/F"   M2 
A* 

Letting M  = x and ÄZi.=.b and multiplying  through by -2,   there  follows 
2 

1  -  x      dx 
l-f-bx       x 

J 1 -r bx J 
dx 

(l-^bx)x 
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vhi«h «zpazxds, by partial auna, iata 

10.7 

-2 In A   =       I dx A - b J 1 ^X 

^     -(b  +1) dx 
1 -^bx */    ? 

= - H^  lB "ri^f ^ i» - 

Whane« 

or, finally 

-2 In -^   = A* 
- In i 

x 

^> I? 
1+ iLiM2 

i     2 
k±l 
2 

iT" b 

krl 
k-1 

J 

A»    M 

¥] 

which gire« tha ratio of  the local flow area to flow area for M — 1  as a 
function of  the  local Mach Number for an  isentropic flow« 
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nils relation is  given below mm  m  ourre of A/A* rersus M for a given 
value  of   k.     The   curve may be   interpreted  for an assumed A* as  the  flow 
area required 

cx> 

,00 

A/A» 

.„..._. ...L 
1 
M 

for a given Mach Number.    It serves to illustrate further the area variation 
required to  increase the Mseh Number of a flow from sub to supersonic values« 
This curve  or  the tabulated values of A/A* vs. M (Tables   30  through 25 Keeasn 
and Kaye) may be used to find the area change required for any reversible 
Mseh Number  change.     Jar example  to diffuse air fron M. — 0*8  to Mp =  0.25 
would require a  diffuser with an area ratio of 

Ag     _     (A/A>)2 

A. 
 2,40 _ 2  31 

(A/A*)!   "    1.038    " *mJ± 

Or to expand fron M1 — 0.25 to Mg — 2.4 with 
would require a throat area of 

an Inlet area of A1 =. 3 In 

Atw* **-,   }   *      ^1 — ** (A/A*)!   1 2.40 3=- 1.25 la* 
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and an exit area of 

10.9 

^2 "117^7 Ai 
2«40 3 ~ 3 in2 
2 .40 

To continue finding the atream properties as functions of the flow 
Mach Number consider obtaining the relationship between V/7* and M. By 
preTious results 

*£ -    i    M 
V       1 - M^   A 

and using 

dA 
A 

1 -M2 
2(1^ k^l „fT 

dj£ 
M2 

we get 

2(1 ♦ fci. M2^ 
2 

M2 

which becomes 

M* •-2 - M  \ V*       \ 2(1 ^ kzl M2) 
2 

Proceeding along the same lines the following relation is obtained for 
Isentropic flow with rariable area 

F* 
1  k»^ 

M \j 2(kfi) (1 ^ ^.^T 

Similarly p/p*.    T/T*,^/*^* may be found  in terma of Mach Number, 
nnwrin     these ratios do not prore as usefulTin applications as the 
ratlos p/p«, T/T0, vO/>*0    which hare been glren as functions of Mach 
Nunber in lecture note 2 

^ They    are not therefore derlred here nor tabulated in the gas tables. 
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A« an example of the use of Table 30 of Oea Table« by Kaanaa and 
Kaye suppose an intermltteat supersonic wind tunnel exhausting to a 
Tseuum reserroir is to be designed for a Msch Mo. of 2 in a 1.2 ft^ 
test seotion.  If the tunnel reeeires atmospheric air at p -= 14*7 psia 
and T ~ 70°?, what are the required tunnel throat area and the test 
section stream properties? Assume isentropie flow with k» 1*4« 

p = 14.7 psia 

T -70°? 

Test 
Section 

& 

T* ~ 441^» 

T,  __ 294 0R 
X.*t> * ** 

test section 

EVACUATED 
RESERVOIR 

A schematic diagram of the tunnel and  the flow process on a T-s graph are 
giren in  the figures abore.    With M -  2  in the teat aection find 

(M •).—frrj-j     =  1.633    where  aubacript 1 stands for test  section 

(4^= i.aw.CI^ 0^55 

0?l'0-23<^=0- =r 0.1278 
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Tharrfora 

Ku^ A#g..>Lv  A, ^-rm=? - 0.712 ft2 th Tlfar^^-TBrfS'-0-' 

Ij yi "N  T0 = 0^55(530) = z^^C-itfi0») 
V o 

Pi'i -A-V - 0.1278(14.7) s 1.875 pala 

▼1=   M1     ytä*T1   ~     2     ^.4(1715)  (294)= 2 x 840 ^-1680 f|/*ie« 

"-ft^l   =^(0.000535)    (1.2)    (1680)   =  1.08   s~f7 i 



MB 257 11.1 

Lecture Note 11 
COKIflESIBILITy PHENOMENA 

Th9  shock wares occurring in a nozzle as discussed preriously are related 
to the flow discortlnultles existing about bodies in supersonic 1\ow fields. 
In order to establish relationships for the shock phenomena occurring in a 
supersonic nozzle and also to analyze in general the discontinuities occurr- 
ing in supersonic flow we take up next the study of ware propagation and 
compressibility phenomena  in a compressible fluid. 

Consider an infinitely small point source of disturbance which may 
produce periodic disturbances that propagate with the speed of sound through 
the surrounding medium.  Let this point source exist in a stationary fluid 
field under the following conditions 

(a) point source stationary 
(b) point source moTing at subsonic velocity 
(c) point source moring at supersonic Telocity 

4 sec. 

(•) (b) 

.i^f-i 
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The waves emanating periodically from the source will propagate spher- 
ically outward forming :he wave patterns indicated in the sketches herewith 
after any given time in:erval.  When the fluid and point source are at rest 
concentric circles are formed by the wave pattern,  jfhen the source moves at 
a velocity less than the wave propagation velocity, the wav-s form circles 
about their point of origin and consequently are no longer concentric since 
the source emanates each wave from a different position in the fluid.  In 
case (c) the spherical wave fronts are formed in such a manner that all wave 
front circles are tangent to a line making an angle yf$ with the direction of 
the source velocity such that 

sin/^l . 
M 

The tangent line is called a Mach line (each point on the Mach line is 
traveling normal to the line at the velocity of sound - hence Mach line is 
a sound wave and not to be confused with a shock wave which has propagation 
velocity greater than s;eed of sound). 

In case (b) it is observed that in the absence of fluid viscosity 
effects the disturbance waves will not die out and will influence the fluid 
field at an infinite distance about the source as time progresses.  In case 
(c) however it should be understood that the fluid field is completely 
undisturbed forward of the Mach cone and unly within the cone are disturb- 
ances experienced by the fluid. 

Subsonic Motion of a Wing 

The above considerations can be applied to the steady motion of a 
rigid body of  finite size through a fluid by imagining the steady state motion 
of the object to be acquired through a series of small separate impulses.  Each 
impulse giving rise to an increase in velocity (an acceleration) and causing 
a pressure disturbance tu emanate from the body.  Each of these disturbances 
spread out from the object with the speed of sound and in subsonic motion 
would produce a flow pattern extending, ideally, an infinite distance from 
the body.  Actually, of course, the disturbance fields about the object 
would die out at some distance from the object due to fluid viscosity effects. 

Let us apply these ideas to the subsonic motion of an airfoil in a fluid 
at rest (the atmosphere).  Vith the wing moving at a steady subsonic velocity, 
there exists about it a region of disturbance which is characterized by values 
of pressure, density, and velocity different from the free stream values of 
these properties.  This disturbance field may be imagined to have been pro- 
duced by emanation of waves from the airfoil during its acceleration up to 
the final steady state velocity.  After the disturbance field (stream condi- 
tions about this airfoil) has been established in this manner it will persist 
until the wing is again accelerated and new waves sent out.  As long as the 
stream velocity relative to thm  wing is everywhere subsonic, these waves will 
radiate in all directi ne.  Thus the pressure and velocity distributions 
about a wing in steady subsonic motion are continuous, i. e., no sudden changes 
in pressure or velocity exist as through a discontinuity such as a shock wave. 
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Suporaonlc Motion of «n Airfoil 

Suppose now an airfoil to be aocelerated to a low supersonic Telocity 
by a seri-s of separate impulses.  When the wing attains ,a supersonic Telocity 
the disturbance field about It cannot extend to great distances since the 
wing tends to OTertake the disturbances it propagates.  HoweTor, ininediately 
in front of the wing there must be some disturbance characterized by the 
stream lines spreading out so as to enclose the body.  Thus we are led to 
conclude that a disturbance due to the wing extends some finite distance ahead 
of it.  Since this distance is finite there must be a sudden change in stream 
properties at the boundary between this disturbance field and the free stream 
fluid.  These circumstances give rise, therefore, to a discontinuity and the 
existence of a discontinuous pressure and Telocity distribution about the wing. 
This discontin lity is known as a shock wave and through the shock wave  there 
are sudden changea in the stream properties.  In steady supersonic motion of a 
wing this discontinuity remains at a fixed distance from the wing and propagates, 
therefore, into the free stream fluid at the speed of the wing. 

Some insight into the origin and nature of the wave discontinuity present 
in the supersonic motion of objects can be obtained by considering the 
following facts which will not be validated here. 

(a)  The Telocity of väve propagation in a fluid is a function of the 
pressure rise across the wave and is given by 

2k Ui ^ ^    2kJ V-      =-- \    kRT propag. 

where subscripts 1 and 2 refer to conditions upstream and downstream 
of the wave respectively.  (For P2/P1 — 1 observe that V— kftT and 
hence the pressure increment across a sound wave must be infinites- 
imal). 

(b) A pressure pulse moves at sonic speed with respect to the fluid 
immediately in front of it. 

(c) The fluid in the wave of a positive pressure pulse is left with a 
disturbance velocity in the same direction as the pulse movement. 

As a conseouence of these facts it follows that in a series of positive 
pressure pulses each pulse overtakes ones in front resulting in a coalesence 
of the wave? Into a strong wave with a finite pressure rise.  The resultant 
strong wave propagates at a supersonic Telocity.  Now as a wing is accelerated 
to a supersonic Telocity the pulses sent out by the wing during its acceleration 
coalesence to form a strong WBTC in front of the wing.  During the formation of 
this wave its velocity increases until finally its propagation velocity becomes 
equal to the wing velocity after which time it remains at a fixed and finite 
distance in front of the ring. 



MS 257 11.24 

In the  figure  there is  indioated the form of auch a trnre  that  would accompany 
a wedge at  a  low »uperaonic   Telocity.     On the wedge axle  the ware la normal  to 

\ 
\ 
(a) 

the relatire Telocity of the stream.  As we go outward from the axis the wave 
becomes weaker, these portions of the wave being further from the source dis- 
turbance«  In accordance with (a) above these parts of the wave propagate at 
a lower velocity.  Consequently as we go away from the axis the wave bends 
backward approaching asymptotically in a straight line making the Mach angle 
AJ,   with the axis. At higher Mach numbers the wave is closer to the wedge as 
indicated In the sketch where M2>M^. 

Consider the transition of conditions about the wedge from the steady 
state condition (a) to the steady state condition (b) figure above.  The wedge 
may be imagined to be accelerated from M. to Mp by a series of impulses.  As a 
result of any given impulse the velocity of the wedge is increased and a pulse 
is sent out.  During the time interval required for the pulse to travel from 
the wedge to the wave the velocity of the wedge is greater than that of the 
wave and the wedge moves closer to the wave. After the pulse reaches the wave 
it causes an increase in the pressure rise across the wave and in the wave 
velocity.  Near the axis of the wedge the wave travels with the new velocity 
of the wedge and away from the axis it gradually weakens ard tjurves backward 
making the Mach angle ^ 2 with the axis.  Notice that^2 <>0l *■ accordance 
with sin y3 =   I. 

M 
If the Mach number of the wedge is sufficiently great and the half wedge 

angle less than 45° the wave will attach itself to the wedge as shown below. 
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The relative Teloclties of the stream through the wave at rarlous points on the 
wave are shown In the figure •  Cloae In to the wedge where the wave Is strongest 
the stream Telocity Is deflected an angle 60« At points farther from the wedge 
the Telocity Is affected less and less as the wave becomes weaker and weaker. 

Shock waves not normal to the free stream Telocity and through which the 
stream Telocity Is deflected are called oblique shock waves.  The Mach number of 
the stream entering an oblique wave Is supersonic while the leaving stream Mach 
number may be supersonic or subsonic depending upon the angle cj and the inlet 
Mach Number. Normal shock waves are normal to the free stream and leaTing 
stream Teloclties. The Mach number of the fluid passing through a normal shock 
always changes from supersonic to subsonic. 

▲ description of the flow field sbout objects in subsonic and sujersonic 
flight and the manner in which this field is built up has been attempted in this 
note«  Two general features in particular that have been discussed and that 
should be emphasized are restated here« 

(a) nie pressure and velocity distributions about a body in subsonls 
motion are continuous and extend to great distances from the body. 

(b) The flow field sbout an object in supersonic motion extends to finite 
distances in some directions - the boundary of the field in these 
directions being marked by a discontinuity (a shock «rave) in the 
field stream properties. 

Finally, it is pointed out again that as a shook wave becomes weaker it becomes 
la the limit a sound wave« 
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Lecture Note 12 
NORMAL SHOCK WAVE 

Imagine a fluid to be flowing through an adiabatic, frictionless, constant 
area duct as shown below.  In this steady flow field consider the region 
bounded by the dashed Una. We refer to this regie n as the control volume and 
its boundary as the control surface. Subscripts 1 and 2 designate flow con- 
ditions at the control rolume inlet and exit reapectirely. Let us investigate 

A\ Is* 

Poil jS 
•1 ! ,«2 
M1 i M2 

this problem: For given inlet conditions to the control volume what are the 
possible exit conditions?  One obvious and yet not trivial situation is that 
in which the inlet and exit conditions are identical.  There is possible, however, 
a not so obvious situation in which the exit conditions may differ from those 
at the inlet if the inlet flow is supersonic.  >fhen this situation exists and 
the control region's thickness is very small (of order 10-8 inches for air) 
the region represents what is called a normal shock wave.  To determine, for 
given inlet conditions to the shock, the seven variables listed in the figure 
at the exit of the control volume requires the simultaneous solution of seven 
equations.  The equations are obtained from application of the following 
definitions and physical laws. 

(1) Conservation of Mass (continuity equation) 
(2) Newton's 2nd Law of Motion (momentum equation) 
(3) 1st Law of Thermo (energy equation) 
ik) Equation of state 
(3) 2nd Law of Thermodynamics 
(6) Velocity of sound 
(7) Mach Number definition 

The equations to be solved are 

lvl - ' 2V2 (1)  /^V, -/^oV,, (dA- 0) 

(2)  P1^^V1
2= P2 + Pi*2 (dA ^ vj- = dF » 0) 



257 12.2 

T,2 T2
2 

<3)  Vl ^ "2- = ePT2 -'-2- (dT.^O) 

.,*   ^ 

2 

T1     T2 

M  T    My-> T 

Squatluns (1) through (4) represent 4 equation» in 4 unknowns and were first 
solred for the non-obrious condition of r".    ^ £L%   etc. by Rankine and Hugcniot 
to obtain what are now called the Rankine-Hugoniot relations? They will not 
be derived here, however.  With the following goals in mind it is necessary to 
effect a solution of equations (1) through (7).  Our goals are the following 
relations** 

^ = flCM!) 
Pi 

^2 
^ =f2(nL) 

^=f3(Ml) P01  -V"!5 

M22^ ^(Mi) \~~HW 
2)  divided  by (1)  and : rearranged give» 

P2 » Vi - v2 /<52v2 

*• Tabuloted in "Gas Tables" Tables 46-52 
* See ;p. 3Ö-39, Liepmann and Packett. Aerodynamics of Compressible Fluid, 

«filey, 1947. 
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o 
Using (6) in the form kRT = k ^-m2 w« substitut« ft- for -Ä 
and get ^ k    ^ 

2     2 
_ kCVi - V2). (1) 

T2     vl 

Equations (3) snd (6) along with ths definition of starred quantities glre 
the following relation 

k-1   2  "    2(k-l) 

a2- |  [(kM)a*2 - (k-DV2] . (u) 

Substituting In (1) the value of ag2 and a^2 as found from (11) we get 

| [(ktl)a*2 - (k-l)V2fj   1  [(kfa)a*
2- (k-pvj] 

"" —     -        -  ^  - k(y1 . V2). V 2 '1 

this simplifies to 

l(k«).»2   <%'ffy  «   J^i  (n-Ta) 

whence 2 
V1V2*** (HI) 

Pressure ratio across s normsl shock 

Using (1) equation 2 osn be written 

P2 = Pi ^iTlC^X - v2) 

or 

Si« it ^1 (»a.TjTa). 
Pl Pl    * 
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From (111), (il). •nd (7) 

7,^ ^r «-^ ai
2    fci.  M^f '1^2 164-1 

2^ 2 
k*lj (IT) 

If this relation along with -Si = -i— is used in the pressure ratio relation 

there results 

p2 

»I 
(*: i  kn Ml2 '*H) 

g«l^ ^  .^^xCH.) 

Density ratio acyoss a nomal shock 

Fron equation (1) 

using equation (IT) for V^Vg we hare 

M, 

1 kfl "l      k^l 

or 

Temperature ratio across a normal sfaock. 

Tl      Pl    ^2       f2^> 3iMi; 
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itfhlch,  after  a few trys,  becomes 

^2      (^"X2     -0    (^¥    Ml2) 
-     f3 (Mi) 

2(k-l) 

Total pressure ratio acrose > normal  shock 

tfe  hare 
de _ dT - feri d£   =    2ft    .    k^i.   ^P: 
e T 

P 
k    p ^     P, 

Whence, aerosa a normal shock ware vith dT « 0« 

£Eo-d£ , Jt, dj  . 
P0   P     k-1  T 

This may be written in terras of p and ^by replacing =£ with 
T 

dT_d£ . d^. 
T " p        T5^ 

which follows from the equation of  state*    Thus 

£P£_JS_    d/£    ,    1    dp 
p0      k-1     /O k-1   p    • 

Integrating from 1 to 2 we hare 

P, 
In ■^-C^)" - <\Y* 

or 

Po, / P 2\ 

k-1 
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for 

this relation gire« <i) 
1/* 

showing that dsorasse of p    is measure of degree of irrerersibility sssoeiated 
with the shosk or is a meaSure of  the departure of the process through the shock 
from a rerersible adiabatie process«    The total pressure relation, after using 

(£> fgdli) and j^^f^Mx), 

takes the form 

or 

fsa- 1 
k-1 

Po, 
1 k+1 

.        2             \k     /21c M 2 
k-#-l 1 

wl '(«DM!8)   {m*i 
' 

' *?*S k-1 
2]c_M2       .    *& 
ki-1    i               k 1 

I-k 
«    /ma    \ 

i+^%» 
—  1 ^"1^ 

Mach Number before and after a normal ahock 

In the deriration of 
P2 

we could hare« by interchanging indices, obtained 

Pi 

P2 
- fx^) 

Thus with the relation 

we may determine 

P2      P2/PI 
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fron 

this roAaoM to the form 

12.7 

M* - *=! =  1  

k 1 Ml k«. 

^ m k-1 "l      . 
~*t5iMi} 

Rayleloii1» Pi tot Bouatlon 

If a pltot tube is placed in a supersonic flow it will produce s detached 
shock ware and will measure the total pressure behind a normal shock. This 
Talue of total pressure along with the static pressure in the supersonic flow 
proride 

detached shock 

stagnation point (PQ») 

sufficient data to determine the Mach Number of the supersonic flow. The 
pressure rise, as the flow is brought to rest, is dirided into two parts, one 
P2/P1 due to the shock and the other VQ^/V2  due to Isentroplc compression be- 
tween the eh ck ware and the pltot tube head. We may write 

Pog Po1 P02 

Pi  Pi P01 
f ^ ^ * • t^vn) 

or 

This equation which relates the obserred total  pressure and the free 
stream static pressure  Is known as Rayleigh's pi tot equation* 

.': 



ME 257 12.8 

TO ACCOMPANY NOTE 12, NORMAL SHOCK WAVE 

NORMAL SHOCK FUNCTIONS FOR AIR 
(DATA FROM KEENAN ft KAYS  "GAS  TABLES."  TABLE 48) 

CO 00 

' 

6.000 

\ 

4 5 
UPSTREAM MACH NO.. Mz 
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Lecture Note 13 
OBLiaUE SHOCK WAVE 

Experiments show that when a wedge shaped object is placed in a supersonic 
flow there may result a plane shock wave emanating from the noae of the body or 
there may arise a detached shock wave which is curved and passes in front of the 
object.  It is found that the flow Mach Number and the wedge angle cOtogether 
determine which of these two types of shocks will occur. Consider the analysis 

attached^ 
plane 5^x 
shocfis^ 

wave angle 

sdeflection angle 

detached shock 

of oblique shock waves with the following purposes  in mindt 

(1) To determine the exit conditions from an attached oblique shock wave 
given the Inlet conditions and either u> or the wave angle e4 • 

(2) To determlBe the limitations on M and &> for an attached shock to 
occur. 

(3)    To show that the normal  shock wave is a special case of the oblique 
shock with o< ■ 900 and     6J = 0°. 

' 
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In the figure belov a flov ia detlected through an angl.el.J as it paaaea 
throush a abook wn vhioh akea an aDSl• o(vith the upatroam tlov Teloci ty. 

N = Vel. ooaapCinent nol'D!al to vaTe front 
L =Vel. component parallel to wTe front 

_L~l 
~ 

r - - - yl(_ :-~-~-
L/-- J --

I 

/ 
_/·\ 

/ 1/ O(r~;rn 
/ .,-r ' . l.J 

,. ,. ,-r·rr .,.,-

1777'''''''";77''' n/'77111''~ - -- - _J _ _ 

The control Tolume indicated by the dashed linea is selected s~ch that its 
upper and lower aidea are coiacident vith the flow streamlines and its enda 
are parallel to the shock front. For conTenience assume the areas through 
vhich the fluid entera and leaTes to be unity. The physical lava and def­
iaitlona liated below vill be applied to the flow through the control Tolume. 

(1) ConaerTation of maaa 
( 2) Mcuentwn normal to shock 
(3) Momentum parallel to shock 
(4) Energy equation 
(5) Equation of State 
(6) Geometry of Figure 
(7) 2nd Lav of Thermo 
(8) Velocity of sound 
( 9) Mach Number 

The equations vhich follov from applications of these nine conditions are 

( 1) 

( 2 ) 

PlNlLl; p~~ ( 3) 

N} 2 +- L 12 N/-r ~ 2 
cPTl+ 2 :cpT2-f- 2 (4) 
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TvT ~P&T (5) 
tan («K.^J) = £2 (6) 

2 2 

Ti   - T^                                                          (8) 

^ = N2 
(9) 

The first six squations are sufficient to determine all static conditions across 
ths shock wars for giren inlet conditions and U) or c<*    It will, howeror, be 
conTsnient and useful to solve the complete set of aquations simultaneously to 
obtain tte following relations* 

~ = ^(Mi sinc^ ) ^ = f3(M1 sin *<) 

g^^sin^) JS.^^.tocKJ 

2   bi~\ 2   2 
H*  sin2(*<-(J) = f5(M1 sinoC)      tan(e^-cJ)= I^T

41^1 Ml 0ln ^ 

Mi2 Bino<  cos C< 

where the functions f, , f , etc. are identical with those of nota 12. 
1  2 

Solution of the equations proceeds as follows 1 
Combining (1) and (3) we hare 

Z&l^l - v^ 0 

so L. -s L2 :=   L 

* Some  of which are  tabulated   in  "Gas Tables*  Tables 35  tluou^h 57« 
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and hence  (4)  become« 
*£ N22 

Ccmblnlne (1) with (2) we get 

Pi " P2*/WN2 * "l) 

•r 
p^ P2 

^NJ" *    ^^2  * (N2 " Nl) 

2 
which, by substituting    *-   for    ^y    from (8),  takes the form 

Iquatlons (4) and (8) along with th« definition of starred quantities giTe 

k-l 2 * 2(k-l) 

(ii) 
or aS«!    [(k Da*2 - (k-l) (M2^ L2>1 

2      o 
Substituting in (i) th« Talues of Sg and a1

z found from (ii) we find, finally. 

Notice that for the normal shook L * 0, N - V and (Hi) reduces to 

Preasur« ratio aaro«« an obliau« «hook 

follwiag a procedure analogous to that for the normal shock we get 

jJ«'l<Ml .1**). 

 s^ 



ME 257 

In like manner wo find 

13.5 

^1 

^t£*x      «in^) 

Po. 

1 Po 

Mg2  8ln2CP< - 6J) = 'cCMj^    slnc< ) . 

Bxnreeslon relating ^.^ ,  and   OJ 

If all the shock inlet conditions and Cä are  giren  the first four 
relations abore are sufficient to obtain p»-^ .  t,  and  p    at the shock exit. 
The 3a st relation,  however,  will not give M2 unless,   in addition to M^ and oC # 
Lj Is known.    Our  next step  is  to determine 4/ss a function M,   andc< , 
By equation we hare 

using (ill) and expressing Telocity components in terms of the resultant 
velocities we get 

fc*2-  k^ L2 
Jsti 

V.2 sinc^cos«^ 

or by equation (ii). 
, . _     a, -     , ., V,     sin 0^ 

tan(o< -6^) = Jstl \ Si±L-i  
V,2 sincX cos0^ 

or,  dividing numerator and denominator by a^   , we obtain 

tan(o<.-CJ)-iSlä-^±I ^1^1    "l    "^ 
sin0^ cos 6^3 
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This «xpression relates M.»^, end &Jand by it we mmy  determine the limitations 
on M. andCJ for a plane snock to occur when a wedge sfeaped object is placed in 
a superaonie flow. It is conrenient to present this equation graphically by 
plotting^ rersua OJtor  ralues of H. as shown below« 

shock 
angled 

10   20    30   40   50 

deflection angle, oJ 

Obserre from the graph that there exists three possible situations for a 
given wedge angle f-u  • They are 

(a) Two values of A for given S'. For example 4/- 20°, M-s 4*0 give 
^ — 320 or o( » 84 . Either value of o< may occur depending upon the boundary 
conditions of the flow. Usually the wave with the larger shock angle occurs. 
However, with the proper adjustment of the downstream pressure the wave with 
the lower shock angle may be produced.* 

(b) One value of -^ for a given M-,. For example ^'-e. 23°  Mj^ 2.0, 
«A ^ 65°. 

(c) No value of^ for a given M-. For example A.J <.   20°, M, =1.5»' 
rfhen this oondition exists there occurs in the flow a detached shock wave. 

• See pp. 54-55. Ferri, Elements of Aerodynamics of Supersonic Flows 
MacMillian. 1949. 

■ 
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In this analysis there has been dereloped a series of equations with 
which it is possible to find the oblique shock exit conditions given the inlet 
conditions snd0^ or ^ •  It may be seen that each of the equations in this 
series reduces to its normal shock counterpart as g^- > 90° and^J—^0°. 
Lastly with the expression relating o< tc*J,  and M^ • which is graphed on page 
6, we can determine the limiting values of M and oJtov  an attached shock to 
occur when a wedge is placed in a sujersonic flow«  These are the aims we set 
oat  to fulfill. 
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Lecture Note Ik 
SIMPLE FRICTIONAL FLOW - I 

The flow to be considered in this note and the next is that of 
a perfect 91s through an adiabatic constant area duct with friction« 
The purposes of these notes are to determine the locus of the fluid states 
corresponding to such a flow on the T-s din gram, to discuss the charac- 
teristics of this simple frictlonal flow, and to establish certain expressions 
that relate the stream properties of the flow to the flow Mach number« 

Fanno Line 

Consider a perfect gas to be flowing In a frictlonless, adiabatic 
constant area duct. Throughout this flow the stream properties would 
be invariant. Suppose now there to be joined to this duct at section (1) 
an adiabatic constant area duct with friction as indicated in the figure. 
Downstream of (1) the stream properties 

No change in 
stream properties^i- } 

(1) 

Stream properties 
change due to friction 

will vary due to the presence of friction.  A relation between the stream 
properties at section (1) and the pressure and temperature at any down- 
stream station in the flow may be obtained by writing the energy and 
continuity equation for the flow. Thus 

2     =CP 
Cp Ti T+ J^- 

£-    AV. 
BT 

RT Replacing V in the energy equation by Ä   —as obtained from the continuity 
equation, we get A 

h+£~**Uf) C*)8 (i) 

For given inlet conditions (therefore given To and £ ) 

this equation represents a relation in terms of temperature and pressure 
that must be satisfied at any given point in the flow. By assuming 
values of T to exist at successive downstream points in the flew it is 
possible with this reist ion to determine the corresponding p at this 
point thus fixing the state of the fluid (pi, Tj., T^) at Mlected points 
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In the flow. Further, by arbitrarily assuming a value of entropy, 81, at 
the inlet to the flow the entropy at. downstream points in the flow may be 
determined by 

8 = l> In i R In PL. 
s. (ii) 

The Second Law through  equation (il)  further restricts  the values  of T 
and  p that may  exist downstream of the  inlet  by the fact  that   the fluid 
must proceed  through values of T and   p   corresponding to states  of   increasing 
entropy  since  the  flow process  is an  irreversible adiabatic  process. 

As an ilJustratlon consider a perfect gas  to be flowing from a  large 
reservoir through a  convergent nozzle thence through a simple frictional 
duct,    viith known  inlet,  conditions at  section (1)  (figure below)  we may, 
by assuming values of T to exist downstream as a result of  the frictional 
effects  in the  flow,  determine with equations  (1)  and   (11)   the locus  of 
states the fluid nay attain  in  the flow.     This locus plotted  on a T-s 
diagram is called a Fanno Line and appears as  indicated on the accompanying 
T-s plot. 

T* 

Fanno 
Line 

M r  1 

Subsonic flow through simple 
frictional duct« 
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Beginning at state (p . T ) on tao T-B diagram we find the flow to 
proceed iaantropieally to (p^? T. ) thence along the Fanno Line through 
states of inoreaaing entropy and increasing Msch number tending toward a 
Mach number of 1. For the flow to proceed beyond M * 1 would require a 
decrease of entropy in riolation of the Second Law. Thus we find in an 
initially aubsonio simjle frictional flow that the Mach number increases 
toward a limiting Talus pt  one. Similarly, in an initially supersonic 
simple frictional flow (figure below) the Mach number follows along the 
lower branch of a Fanno Line through states of higher entropy and lower 
Mach numbers toward a limiting Mach number of one.  It is impossible, 
therefore, for a flow to proceed along a Fanno Line or through a simple 
frictional duct Continuously from subsonic to supersonic or from supersonic 
to subsonic conditions. 

Supersonic flow through 
simple frictional duct. 

Fanno Line 

For given inlet  conditions to a  simple  frictional duct,  there  exists a 
Fanno Line representing the possible states that the flow may proceed through 
in the duct.     Whether  a portion or all  of   these  possible states  are  attained 
by  the fluid as  it  flows  through  the duct depends upon the amount  of  frictional 
duct length and  the pressures imposed upon the boundaries  (inlet and  exit) 
of  the flow system.    Let us examine the  effects of frictional duct  length 
and  "boundary pressures*   upon a glren system.    Suppose,  for example,  that 
we  hare a convergent  nozzle  - simple frictional duct  unit and  consider  ifa 
turn the  effects  of 

(a) frictional duet  length 

(b) reservoir pressure 

on  the flow through  the  unit. 
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Effect of Frictionftl Duct Length lp Subaonlc Flow» 

U.4 

To ezamina (a) we will eaauma eons tent reservoir end axheust region 
preseures and let the duet length Tary. km  a starting point let the unit 
be such that at its exit M s 1 and the exhaust region pressure is Just 
attained. 

U)   (3) (1)   (2) 

Fanno lines for flows with same 
T    but different mass flow rates. 

r4> 1'3>^i> w2 

For this case (figure above) the flow through the unit from (p.* T ) follows 
isentropically down to the Inlet of the simple frictional duet thence along 
a Fanno Line corresponding to w, to M - 1 at duct exit «eetictb (1).  If now 
the duct length is increased to (2), everything else remaining the same, we 
find the flow trecess to follow along a Fanno Line corresponding to a lower 
mass rate of flow »2»    Throughout this latter flow M< 1.  If the duet length 
is Increased further beyond (2) the mass flow in the unit continues to de« 
crease and in the limit w tends to zero as the duct length tends to infinity, 
Now, on the other hand. If the duet length Is decreased to (3). ve find the 
flow process to proceed isentrcpieally down to the duct inlet and thence 
along a Fanno Line of mass rate of flew w > w . As the duct length goes to 
zero, the Mach number of the nozzle throat Increases to a Mach number of one 
coxx es ponding to a maximum mass rate of flow w, through the nozzle (as the 
duct length goes to zero the unit becomes a sloiple convergent nozzle). 

Effect of Reservoir Pressure In Subsonic Flow. 

Consider next (b) that Is the effect of reservoir pressure on a given 
unit. First let the reservoir pressure, p0 , and exhaust region pressure 
be the same. ■*• 
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For this ease there is no flow. If now the reserroir pressure Is increased* 
to s Talue Pog slightly above the ezhSust region pressure flow will start 
with a low mass rate W2 through the unit IKl everywhere • The process is 
indicated 

(2) 

on the T-s diagram as a vertical line from p     v T0 to the  inlet of the simple 
frictional duct and thence along a Fanno line2 corresponding to a mass flow 
w2 to the exhaust pressure at the exit section (e) 6f the duct.    As the total 
pressure  increases the mass flow increases, and w,. > w^>  Wq^w2.^wl~   0a 

The exit Mach number of  the unit remains constant at unity-'for p0>p0.   (as  —      • > • •     —   —— ——. - . ^...^w _.._.,...,, ..  w.^..,  * w*   yo    ^OJi v 

indicated  in the figure).    The expansion from pe to P«-^«-* r^nn ^*r'or 

p0 > p0    takes place in the exhaust region. oxnausx regxon 

It has been assumed in the above that the simple frictional  duct was 
preceded byja convergent nozzle and hence experienced only inlet  conditions 
corresponding to subsonic flow«    Let us next examine (a)  and  (b) as noted 
above (effect of duct length and reservoir pressure on flow) for the case 
in which the  simple frictional duet  is attached to a convergtet-diverging 
nozzle which may provide supersonic  inlet  conditions to the frictional duct. 
We find now that  in order for some Values of duct length and reservoir «ou 
exhaust region pressures applied  to the flow to be satisfied, discontinuities 
in the form of normal shock waves must exist in the flow.    This situation 

*    To increase the reservoir pressure at constant temperature will require 
coAling of   the reservoir.    Let the reservoir pressure be   increased reversibly 
and isothermally than the change  in reservoir entropy is given by 

^s^fcj) and since t <• 0 (cooling) then^s^.0. 
rev 



ME 257 14.6 

is analogous  to that   of a  frictionless nozzle operating with a normal  shock 
in  its  divergent  section. 

Effect  of Frictional  Duct Length  in Supersonic Flow. 

As  an example,   assume  a  supersonic  nozzle -  aluple  frictional duct  unit 
and   consider  the effect  of   (a),  frictional duct  length,   on  the flow through 
the unit.     Initially let  the unit  be operating such that the flow leaving  the 
unit   is at M   c 1 and at exhaust region  jressure with a mass rate of flow 
w^  through it.    This  condition  is  indicated   on the  T-s diagram below where 
the  flow process originates  at  p   ,   T0 and  proceeds   insontrcplcal^yto  the 
supersonic branch of  the Fanno line  corresponding to  w^  and  then follows 
along  this Fanno line  to M s 1  and   P^xhaugt  re«ion       Now *S  the duct  lene'th 
is  increased   to (2)  we find   that  the new boundary  condition of  increased  duct 
length  can be  satisfied by  assuming a normal  shock  to occur  at a point  in  the 
duct  such  that  the combination of duct  length preceding and following the 
flow discontinuity produce a Mach number of  one at   the duct  exit.  The flow 
process  corresponding to  this  condition is  shown by  the  arrows  numbered 2« 

T* 

M« 1 

(1) K >  1 

Msl 

-— —r~i 
(2) M > 1       MO-i 

M = l 

-.(3)     N   l   M^: ^e* — —   A  

Hsl 

UT"""""'! VK 1 

Ms 1 

M<a 

(6) M^ 
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As the duet length is Inereeeed further the norael shook progresses upstreem 
to the duet inlet, thence into the nozzle until it resehes the nozzle thront 
(5)« Further inereese in length beyond that oorreepondiog to (3) reduees the 
■ess rste of flow through the unit end the flow progresses through the duct 
for these esses along Fsnno lines of lower nsss flows ns indiested by (6). 

Supfoee now s flow corresponding to condition (1) nbore exists and let 
the duct length be reduced.  In thie cess we find that the stream properties 
in the remaining portion ere unaffected and as the duct length is reduced to 
zero the flow reduces to that through a conTergent-dirergent nozzle exhausting 
to the discharge region through a system of oblique shock wares set up in the 
exhaust region. These conditions sre illustrated echenatically below. For 
(1) the flow proceeds isentropicslly to the duct inlet, thence along a Fanno 

T« — 

M>1 

(4) 

Oblique shock wave» present in 
diecharge region in cases (2), 
(3). end (4). 

line to M ^ 1 at (1). For (2), (3) and (4) the exxt eunditiona from the unit 
are as indicated on the T-s diagram. Notice that p^, p r p are each letos 
than Pexhaust region. Th9  rise in Pr«»sur« to Pexhaust in the8e ca8e8 l3 

attained through a series of oblique shock wares set up from the exit of the 
duct. 

gff ect of Reaerroir Pressure in Supersonic Flow. 

As  the   Isst  consideration of this note,  let us  examine  the effect  of 
reaerroir source pressure on supersonic  simple friotlonal flow.    Starting with 
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the reaei-Toir  pressure of  our conTergtai-dlverglng nozzle-simple frlctionel 
duct unit equal to the exhaust pressure, we hsTe  rmoi flow.    Now es the reserroir 
pressure increases the flow through the unit increases.    Finally a Mach of one 
is reached in the nozzle throat and at the duet exit.    Up to this point the 
flow processes for each reserroir p    appear on a T-s diagram as for condition 
(6),  page 14.6.    For reservoir  pressures beyond that   just  giTing sonic throat 
conditions,  a normal shock arises downstseam of the nozzle throat and pro* 
greases downstream as the  reserToir pressure, and hence mass flow are increased. 
A typical flow process for  this condition is that of  (4)  psge 14.6.    As  the 
reserroir pressure is Increased further the normal shock reaches the duet exit. 
The flow process for this  condition is indicated on the T-s diagram below. 

P. 

T T* — 
M> 1 

Normal Shock at Exit 

For  reservoir pressures  above  that producing a  normal shock at the duet  exit 
the flow process appears  as for condition (3)  page  14*7 with oblique shocks at 
the  exit of  the duct.    These  oblique  shocks become  weaker and Ideally disappear 
as  the  total pressure reaches a value producing a duct exit pressure correspond- 
ing to the discharge region pressure.    This condition corresponds  to that  of 
condition (l)  page 14.7«     Lastly,   with the reservoir  pressure increased further 
we find the mass flow to  increase and the flow Mach number to remain constant, 
such that M 9 1 at duct   exit.     This condition  is  illustrated in the  sketch 
below.     The transition from the higher duct exit  pressure to the discharge 
region pressure 

T* 

^ ^ **»' s 

W*' 
/ 

X 

8 External Expansion 
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takes place  in the exhaust region«    The rarious flow processes   obtained 
as the reserroir pressure is increased  from that corresponding to the exhaust 
region pressure to that  giring the condition indicated in the  sketch above are 
shown on a single T-s diagram on the following page« 

In this note the Fanno line has been presented and its  use illustrated« 
The effect of 

(a)    frictional duct length 

and (b)    reserroir pressure 

on the stream flow properties of a simple frictional duct attached  in turn to 
a oonrexgent nozzle and a supersonic  nozzle have been described.    In the succed- 
ing note the simple frictional flow will be Inrestigated analytically and re- 
lations between the flow stream properties and the  stream Mach nunbers will  be 
obtained.     These relations will  permit  a simple quantitStire  analysis of the 
flow under consideastion* 
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Lecture ^ote  15 

15.1 

SIMPLE FRICTTONAL FLOW - II 

An analysis identical In method to that of note 10 only applied to 
simple frictional flow vdll be made in this note.  It will be shown that a stream 
property at any given station in a.simple frictional flow divided by its value 
corresponding to the point where M = 1 on the Fanno line of the flow is a 
function of the Mach number at the given station.  Thus, for example, the 
properties of the stream at section 2 of the flow unit depicted below divided 
by the starred 

• 

T* 

Po, 

(2) 

M3< 1 

(3) 

/ *3  ^exhaust 

y 

values of  these  properties  give 

(^•W (FV)   = ^"s5 

Qä -^ ($i) ' \^) •*" 
Further it  will  be shown that the duct  length beyond  station (2) required to 
cause the flow to attain a Mach number of 1 at the duct  exit  is a function of 
Mach number at   section (2).     This  length will be called  L     _    and we will  find 

that this length multiplied by the constant 4f/D where f  is duet friction fac- 
tor and 5 the duct diameter gives a relation such that 

(^H ^    fCMg), 
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To obtain the abore relations we write equations inrolTing the stream 
properties of the flow in terms of logarithmic differentials. Towards this 
end let us first apply the momentum equation to the flow under study and 
reduce it to a form inrolring logarithmic differentials. Ve hare 

J- F1 - F2 

and between any two sections separated an infinitesimal distance dx 

Now       FapAi-pAV2 «pAtwV 

so dF = 1. dp "f- w d V 

and 5 J^fo1" case of d A=   0 is due only to frietional  forces and  is given by 
(figure below) 

where ^.s shearing force of duct on fluid per unit of duct wetted area. 

A.   =   wetted duct area. 

TdA 
.///////, '///// ' */ rt 

Flow 
t 

P^ -> (p + dp) A 

r—  dx—». 
Ti—;—  

^   y       w ^—  Sfveloped surface  of duct 

1   //■'■■ 

t* £ 3-   is used here to indicate an infinitesimal force, of fluid on duct, and 
is not an exact differential as compared to d F. 
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Therd follows after substituting into equation (i) 

f d A^ » - A d p - W d T. (U) 

Introducing the duct-fluid coefficient of friction defined as 

and  the hydraulic diameter D defined as 

Dr:^    x-sectional area 
wetted perimeter 

^ dAydx    " ^    dAw     * 

rdAv =. f /qL M^ . 

Placing this result  in  (11)   the momentum equation takes the form 

A d  p-»-w d Vi- f ^21    4A    dx- 0. 

Dirldlng this equation by Ap we obtain 

P ^     * P*        Vp 2\D/ 

where 

p     " RT ~ kBT 

so finally 
|£+kM2^t!^(itfdx)= o (lll) 
P 

nils equation along with those obtained from the equation of  state »to,  give  the 
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following system of equations to be satisfied  simultaneously in the  simple 
frictional flow of a fluid, 

-r"-^-*-^- (state) 
P 

t7rTT 

ä^i-^sO (continuity) 

^+   yi"^    *lS = -~r (total Pressure) p        11-^ M2 ^ po 

to^M^Ä^    (^=0 (momentum) 

dFT dV      dT 
~~2   =   2 -^p- - ^p" (Mach number) 

fl^^^T^F" ^5 (impulse function) F       p      ^.-HsM^        i^ 

^a*^    .    JsdL   ^ (entropy) 
Cp    _T k        p 

This constitutes a system of eight equations in nine rariables -p, /Ö , T, M, V, 
p0, x, f, a. Ve select one as the independent rariable and solre for each of 
the remaining dependent Tariables in terms of the independent ariable. Select- 
ing, therefore, iifdx as the independent Tariable these equations may be com- 

bined to give eaen dependent Tariable as a function of iifdx. As an example 
consider obtaining the relationship D 

d*d«f (Ufdx\ 
M2    V D ^ 
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One procedure is outlined herewith. 

(a) Using the state equation obtain p.Z0, T related 

(b) Using the momentum equation obtain V, x%Pt  T related 

(c) Using the continuity equation obtain V, x, T related 

(d) Using the Mach equation obtain Vr t  xt T related 

(e) Using the energy equation obtain M , x related. 

The result is 

15.5 

M2 "      I-«2 D 

There are sunmarlzed below the relations between all independent rarlables 
and ijfdx • 

4fdx/D L 

dM2 

. I_ 

V 

d£ 
P 

1 - M2 

2(1 - M^ 

kM2^ 4- (k - DM2/ 
2(1 - M^) 

d/O kM^ 
2(1 - M2) 

dT 
T 

. lc(k - 1)M^ 
"* 2(1 - M2) 

iEa kM* 

F 
kM2 

2(1 ^ kM2) 

ds 
c 

(k^pM2 

2 
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Tu« «bore results indicate that the sign of rerietion of each of the etre 
properties M, T, p,P, end T with duet length z depends only upon the flow 
Ksch number« Thus, for example. 

dz 2(1 - M2) f* 
end friction accelerates the flow Telocity in subsonic flow and decelerates 
the flow in a supersonic stream. 

^^nax/ and the ratio p/p». T/T* etc. 

It is possible to determine the pipe length required beyond any siren 
station in a frictional flow to gite WL=. 1**  la the flow by integrating the 
relation 

from any pipe station L and Mach number M to the pipe ststion L* where Mach 
number is unity« 

Msl 

During the integration we assume f to be constant. Now 

D 

•• To obtain M= 1 without affecting the initial Talues of the stream prop- 
erties in a pipe would require proper adjustment in exhaust region pressure 
as the  pipe length is  increased« 
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Let y« 1^ 

X5.7 

• x' 

jW,./^^ ^ »/'-s-äx—-i^f1 ;jI^5T 
7 1 

Usinc partial fraction« w« find 

/   —ai—.i-=-i - in f7*t*C] * 

/ 
jiiL 

yCl-fay) - 
• In 

Th«r« is obt*iaed finally 

»   ^   kM2 2k 
fk f 1^ 

^l + ^M2 
2       « 

This relstion is plotted in the accompanying sketch.    This graph shows that 
the effect of friction on the stream properties is much greater  in supersonic 
flow than In subsonic flow.    For a pipe of I" diameter with an f of 0.01 the 

2,0  1  

0.82 

•Tabulated in •Gas Tables" pg. 157 



• 

ME 257 15.8 

figure indicates that to cause a supersonic flow to reduce from M'00 to 

M = 1 requires ^max^o.flp or a length of L..- - Of82 ^ I  » 20 inches. 
D *^*  4 x 0,01 

Whereas in subsonic flow the effect of friction is such that a 20 inches pipe 
length is required to change the flow Mach number from 0.65 to 1,0. 

To illustrate the use of the above relation consider the following 
example. Assume a flow exists as shown below with f « 0.0025  «nd pipe 
diameter D = 0.5 inches. With M, known it is desired to determine the exit 

CD (2) M*l 

^max2' 

Mach number from the pipe of length 50 inches. 

Solution t 
= 0.5 f.iTe8(     D7      * 1. D «1.07    (Table 42) 

~ Lmaxl  " ^-2 
so,  multiplying through by 4f/D. 

^.(^.(k^) 
1.07 - 

(rH - *•* 
4 x 0.0025     x 50 « 1.07 

0.5 
- 1 
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which glras M - 0.80. 

The interpretation of the relation 

in conjunction vith the Fanno line is that for a glren simple frictional flow 
the pipe length required to cause the flow to proceed from a siren state (a) 
on the Fanno Line to the state corresponding to Mach of one is a functiom of 
Mach number at state a.    s  PQ.        •P* 

^   ■ 

"xT 
.^^o 

Te 

The relations glren on page 5 of note 13 nay be combined to gire 

P -'i<^^ ^M,»«2)«! 
Po 

V^X)"!       y«**^)^   - 
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Baeh of whloh wmj  b« Integrated between (MT, p) «ad IT« lt P • P* etc. to 
gire 

fe TiCM) £a - i » f ,(M) 
Po' J3^ 

fe - f2<M> Jj-f^(M) oto. 

Thus wo find, for example, that the total preaaure at any station (a) in aiiB* 
pie frlotional flow dirided by the total pressure, corresponding to N s 1 
in the flow depends only upon the Maoh number at (a). The ratios p/p* ate« 
are plotted reraus Msch number below and are tabulated in aSaa Tables* by 
Keenan and Kaye. 

2.^ 

UL 

1.43 
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As an example of the use of  these tables consider the following experi- 
mental  set up used to determine    f    between station (1) and (2). 

10« 

1 7 D - 0,5' 
-i.  

(1) 
Pi » 35 psia 

p   m   50 psia 

*-*** 

-v 

M  • 1 

(2) 
p2 --. 25 .8 psia 

Solutions Poi — 50 psia 

0.7 so M^ » 0«TSC Isentropic Table) 
01 

With K, =• 0.73; ^r «1.426 (Fanno Table) x p* 

Whence Mg = 0.955    (Fanno Table) 

With M,   an/EJ)    known we find 
l       A p*/2 

Üfbsss 
D 

0.136;     it£issi 0.0026 

^xl Ä Ll-2 + Lmax2 

or multiplying by Uf/t) we hare 

Mr t*tLl-2 
D 

glTln«      W.i-2 
D 0.136  - 0.0026 

from which we find f « (0,15^)9.5 
4 x 10 

» 0.0019. 
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Loctur« Not« l6 
SIMFEB T0 FLOW - 2 

Thus far we h«T>t ooneidered  the steady one-dimensional flow of a perfect 
gas with simple area change and  simple frietional effects respectlTely.    We 
analyze next the flow of a perfect gas with simple heating effects.    This type 
of flow may altematirely be called simple T0 flow since we treat as our in- 
dependent Tariable the total temperature T0.    This Is  controlled through heat- 
ing as noted  in the steady flow energy equation with no shaft work 

T02  - T©| 
By simple T0 effects then we moan the following to obtain t 

constant area (dA -z 0) 
no friction (dF m 0) 
no shaft work CdT0«da) 

Let us determine the locus of  fluid states corresponding to simple T 
flow on the T-s diagram and discuss the characteristics  of such a flow. 

Consider then the flow of a perfect gas in an adiabatic frictionless 
constant area duct.    No rarlation of  stream properties would  exist in this 
flow.    If,  howerer, downstream of  seme station (1) the total  temperature of the 
stream is caused to change by the presence of heating effects as depicted  in the 
figure below then the stream properties will change.    A relation between the 
stream properties at (1) and the pressure and  temperature downstream of (1) 

o 

Flow     ^ 

No Nffects T T f f T r~ 
«- Heating Effects        —> 

(1) 

may be obtained by combining the momentan equation with the continuity 
equation*.     Thus. 

pi+ ^i V-p ♦^ 
w* /'AT 

•Compare following defTslopment with that of note Ik,  page 14.I. Notice the 
analogy with momentum equation here replacing the energy equation of note 14. 
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replacing V in momentum aquation ^J^ — X^) *rotD  continuity aquation gireo. 
aftar using 

^     RT 

h+  ^iv: Kit f 
For giren inlet conditions this equation represents a relation between 

pressure and temperature that must  be satisfied at downstream points in the 
flow« By assuming ralues of pressure to exist downstream the corresponding 
ralues of  temperature can be  determined from the above relation.    These values 
of p and T can then be used  in the following equation to determine the required 
ralues of entropy 

In I-    - R la £- + s 
T, Pi »I- 

The temperature entropy locus of such points that satisfy the continuity 
and momentum equations for simple T flow is called the Rayleigh line and is 
sketched below. 

T «-4T 

Ve can imagine the heating process in our flow to occur in a rerersible 
manner ;.o that between station (1) and any downstream station the entropy 
change is given by 

•<< 
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This indloat«« that hsatlac produo«« a flow with downatraam points at hlghar 
antropj and a haatinc prooaaa would tharafor« b« la the direction shown on the 
tsaparatura «ntropjr dla^sa.    Similarly a oooling prosess produess statss of 
lowar antropj. 

Ths Raylsigh 11ns indloatss that it la iapossibls to go fron s subsonlo 
flow to a supsrsonlo flow by a sontinuous hasting process sines heating beyond 
that point that givaa N.SB-1 would rsquire s dserssss In antropy.     It does appsar 
howsTsr that heating ths flow until s Mash Numbsr of one is obtainsd followad by 
cooling would produce s transition fron subsonic flow to supersonic flow,    nils 
situation is analogous to simpls area flow in that a daereass of arss to Mach 
of ona followed by ths rsrsrss effect of en srss inorssaa produess s trsnsition 
froa safcaonic flow to supersonl s floe in simpls area flow«    It seems quits 
improbable, howoTer, that ona could obtain experimentally the transition from 
subsonic  to supersonic flow with hasting followed by, cooling.    Ths msin reason 
being due to tha' fact that frietioaal effects in s rsal flow with besting can 
not be neglected. 

Consider s subsonic simpls lU  flow in whloh sufficient besting sffects are 
pressnt to produce sonic exit conditions from ths duct.    Ibis process is shown 
on ths figure below where (1) represents the inlet conditions to ths duct and (2) 
indicates ths exit condition corresponding to s Msch of  one*.    What happens 

T   * 

1 (2») 

1      A L,    ^—i ±~-± 

( 

"2 

2) 

s. 1 

•It is assumed here thst ths exhaust region pressure is et the relue required 
to giro this result. 
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|f th«re is hMitlng in excess of thst required to glre sonic exit oonditionst 
Sxperiments show that this further heating produces s reedjustaeAt in the 
flow which results in e reduced ones rete of flow with Mech one still mein- 
teined at the exit section of the duct. Thus the new flow process would 
lie on a Rayleigb line such as the dashed one in the figure with the flow 
proceeding from 1* to 2* with T02»^ 

To2* ^u* *• find e choking phenomenon 
to occur in eimple T flow as well ss in simple area and frictlonal flow. 
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Lecture Note 17 
SIMPLE T    FLOW -II o 

We consider in this note the problem of finding expressions relating the 
stream properties in a simple T flow to the flow Msoh Number« The procedure 
to be followed is that which wai used in notes 10 and 15. tfe will find 
relations such ss 

&)- 
fj (M) 

(» 
*2  (M) (TS)'V"> 

where the starred quantities refer tu the stream properties in simple T 
flow where the Mach Number is one« Thus referring to the temperature 0 

entropy diagram below we will find that T at (2) dirided by T0* of the 
Rayleigh line is a function of Mg and similarly for the ratios 

(P/P*) 2. b0/v0*j   2. «nd (T/t^ 

Po# 

o 

«a Sf      P2 

C 
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The following equations can be written for simple T flow: 

££ = ä-^ ^   dT 
p        J* T (state) 

dT   ^        2 _       d>£      dT0 
"^T   T jC,j

fa^'    «2   Ä   T (total  temp definition) 

^?-f- ^ - 0 (continuity) 

^^  yT    r>     äMlÄ-2fi (total pressure definition) 
P        i^fclM2 M2        P0 

dM2 dV dT , --3■ Ä  2-=- -      ^r- (Mach Number definition) 

ä£   4-  a*!-        äJC«o (impulse function definition) 
P 1 -MsM2 M2 

ds   _ dT k-1    dp . .   m.M   M^M     \ ~   — "^p"      "      ~jp    "T" (entropy definition) 
P p 

These seren equations hare the eight rariables p, -^, T, M2, T , ▼, s, and 
p0. Select T0 as Independent and find by simultaneous solution of the above 
system of equations how the remaining stream properties depend upon the total 
temperature rariation.  The results are summarized in the following tabulation. 
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K2 

"ft 

(1 ♦ Ml2)  (1-t- ^M2) 

1   -M2 

  
— 

p 

KM2 (1 + ti    M2) 

1  -M2 

.ad 2 

dl 
!               T 

(1 - Ml2) (i +-*=!   |^) 

1  -MS 

[  

^ 

l+J^M2 

"         1-M2 

T 
X+  tl M2 

2 

1  -M2 

41 

.       1 

1+^M2 

Table la reads 
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Son« of the more Important eoncluslona that can be drawn fron this tabla 
aret 

(a) 122 Ä . »!1 ^a 
dTo      2   To 

thus total pressure decreases with increasing T0 (heating) and p0 
increases with decreasing T0 (cooling) 

(b) ds -. 1 - M2  c^ 
dT  1 - kM2  T 

thus at M = 1, ^p « 0 and entropy  is naaxlmum at M = 1 

(e)    JM   - t(.U. To) 
«o        i - ^ 

thus effect of heating on Mach Number is of opposite sign in subsonic 
and supersonic flow. 

Other conclusions can similarly be drawn with the aid of the differential 
relations tabulated. 

6/ o . *o/po  etc. as functions of Mach Wygnber 

Notice that we hare found above the relation 

To       fl  (M)      „* 
This result may be integrated to gire T0/T0* in simple T0 flow as a function of 
Mach Number.     Similarly we have from the a bore table 

dp« dT 

or 

^ Ä    f2(M)    -To 'o o 

^ =   f2  (M)       f^M)       ä*£ 
po M2 
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whleh wh«n integrated from p0 to p0* and M to M ■■ 1 glrea PQ/PQ* in tanas of 
Maoh Ntanbar« Procaadlng along thaaa Unas ona can get the relations glran on 
page 210 of the Qaa Tfcblea by Keanan and Kay a. These re let lone are tabulated 
in the Qaa Tablaa on page 143 and following« A plot of the tabulated stream 
properties Tarsus Mach Vumber is giren below« 

Maoh Number 

NotiSg that  the atatio temperature ratio reaches a maximum just to the la ft 
Of M ■!•    This oorresponds to the maximum point attained on the subsonio 
branch of the Rayleigh line« 
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Lecture Note  16 SUPERSONIC DIFTIBERS 

Diffusere,  or passages which decelerate the stream to low Telocity,  are 
important elements in such different deriees as compressors,  wind tunnels, 
and ram jets,    nie supersonic diffuser offers certain unusual  problems not 
met with in the design of subsonic  nozzles. 

At first  thought it might appear  that a supersonic diffuser could be 
designed as though it were  the rererse of a conrerging-diTerglng nozzle. 
Two difficulties arise,  however«    First,  if  there  is a  supersonic nozzle 
within the  system,  it  is ▼irtually  impossible to design  properly the  throat 
of the diffuser because frictlonal  effects between the nozzle and the 
diffuser require that the diffuser  throat be  larger than the nozzle  throat. 
If the diffuser throat  is made slightly too small,   supersonic flow will not 
be attained  in the nozzle;  and,   if  the diffuser throat   is made slightly too 
large,   there will necessarily be a shock somewhere within the diffuser. 
Indeed,   eren  if the two throats did match perfectly,   it appears that  the 
combine  system would be unstable. 

▲ second and more serious difficulty arises.    Most flow systems start 
from rest and accelerate to the operating Telocity.     If  we focus attention 
on a supersonic wind tunnel as a particular example  (Figure 1) the discussion 
of Lecture Note 9 indicates  that a shock will awTe down through the nozzle 
as the pressure ratio across the nozzle is increased.    HoweTer, a normal 
shock reduces the stagnation pressure of the  stream.     It is evident from 
the relation . , 

lAl*   mtfU}   «va-ltiMti^    m±   M   «1.0.    i.A.. 9 f(M) eTaluated at M = 1.0, i.e.,  A ■? = 0,0l66 fi 
AP0   

x '  ■ A*P0 Sec 
the product of minimum area and total pressure Is constant for a 
flow rate and stagnation temperature. Thus 

A«P0 « liS = eoMtsnt (1) 0  0.0166 
During the period, therefore, when the shock passes through the nozzle and 
test section, the diffuser throat must be larger than the nozzle throat. 
The minimum ratio of the two areas necessary for starting corresponds to the 
condition of greatest loss in stagnation pressure, that is, to the condition 
when the shock is in the test section. Ignoring frictlonal effects, the 
minimum ratio of diffuser throat area to nozzle throat area is found by using 
■quat ion 1. Referring to Figure 1, we get 

AoxN 
minVPoy/  (M^B^X (2) 

The limiting contraction ratio for the diffuser, that is the minimum 
Talue of isiff. throat/^iff. inlet l8 shown in Fig. 2. For comparison, the 
contraction ratio for iaentropic diffusion to Mach Number unity is also shown. 

▲t the limiting condition, the diffuser is baroly able to •Swallow" the 
shock and the Mach Number at the diffuser throat is unity when the shock is in 
the test section. If the diffuser threat is smaller than required by (Iq. 2) 
either a normal shock will stand in the diverging portion of the nozzle or 
there will be no supersonic region at all in the nozzle. 

(%) 
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These ideas are illustrated graihically in the T-s diagram. Figure 3. 
In interpreting this diagram it is well to remember that all states on the 
same Fanno line have a common stagnation temperature and flow per unit area. 
A change in cross-sectional axea has associated with it a shift from one Fanno 
line to another.  It is clear from this diagram that during the "starting" 
condition ther  is a large loss in.stagnation pressure and a consequent in- 
crease in the area required to ;ass the flow.  The path of states during 
the limiting starting condition (at least while the shuck Is in the test 
section) is from x to y to •y to oy. 

Assuming that the diffuser throat is made sufficiently large, the shook 
will be able to enter the diffuser.  Its position during operating conditions 
will depend on the back pressure on the diffuser.  From the standpoint of 
efficiency, the shock should be maintained at the diffuser throat, for the 
shock will then occur at the minimum Mach Number in the diffuser. The  best 
desigi for a one-dimensional, supersonic diffuser of fixed geometry has. 
fherefere. a minimum area barely large enough to pass the flow during starting 
conditions, and has the shock at the minimum area during operating conditions. . 
The best starting and operating conditions are shown in Figure 1 and 3*  During 
operation, the path of states in Figure 3 i» from x to x* to y* to oy'. 

In practice, the shock is maintained slightly downstream of the throat 
during operation.  This is done because, with a fixed back pressure, the 
shock is unstable in the conrerging portion of the diffuser.  For example, 
if the shock were maintained exactly at the minimum area, a alight disturbance 
might make it move temporarily into the converging section.  But this would 
an&nent the loss in stagnation pressure, and, if the back pressure were fixed, 
the shock would move further upstream.  This would make the situation still 
worse, and the shock would move upstream progressively until it came to rest 
in the nozzle at a point where the stagnation-pressure loss in the system 
matched the back pressure on the system.  In order again to obtain supersonic 
flow in the test section, it would be necessary to lower the bacK pressure 
to the minimum value required for starting. 

To insure that a su ersonic diffuser of fixed geometry will start, tne 
throat must be made slightly larger than the limiting value to account for 
inaccurate estimates of the effects of friction, of the departures from one- 
dimensionality, and so forth. 

Thus, because practical considerations require that the best design be 
comprised by an enlargement of the throat and by an operating condition with 
the shock at a Mach Number greatar than the minimum in the passage, the 
practically attainable efficiencies of such diffusere fall short of the 
values which aeem possible in principle. 

The loss in stagnation pressure during operation is much less than 
during starting, as shown by Figure 3«  In the case of a wind tunnel, this re- 
duces the power consumption during operation, but the pressure ratio of the 
compressors and the maximum power are determined by the starring conditions. 
Thus, as compared with a simple shock-type diffuser, the contraction-type 
diffuaer is of advantage only in that it reduces the power expenditure during 
operation. 
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i<yi 

ideal   / 
) 

i 

T 
"^.ctual^-i. 2 

»Igurft 4 

Some of the starting difficulties mentioned abore may be aroided throu^i 
the use of diffuser» with adjustable throat», by temporarily orerspeeding the 
stream upstream of the throat, by pushing the shock through the throat with a 
large pressure pulse,  or using oblique-shock diffuser». 

The most common definition of diffuser efficiency is parallel to the 
definition employed for compressor efficiency. Referring to Figure 4 and 
assuming that  the Telocity  leering the diffuser is  negligible, we  define 

71 (^h)ideal    -   h^ " hl 
(^h)     ^   -, ho - h. (3) 

actual 
where  state 1  is the actual  state entering the diffuser,  2  is the actual   state 
leaTing the diffuser, and  3 i« * fictitious state at the actual leering 
pressure but at the entering entropy.      For a perfect  gas Equation 3 
hecomesi «r      (Tq - 1) 

Y 
and,since 

and 

we get. 

fel. 
^1 = CP2/P1)    k 

T1= a^AR 

7 D      = 
- 1 

ik) 
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Variable are« aupereonid diffuaer 

• 

Consider now, as a further illustration of the supersonic diffuaer 
operating characteristics, the flow through the arrangement of Figure 1 as the 
diffuaer throat area is increased from zero area up to and beyond the area 
required to start the diffuser.  It will be conrenient and helpful to show 
the rariation of diffuser throat area on a graph of area ratio rersus inlet 
Mach number as giren in Figure 5** 

1.0 

Area Ratio Req'd for 
Starting Tunnel 

Adiff. throat 

^diff. inlet 

M inlet M. test section 

Figure 3 

•Figure jj is not to scale also Figure k  is Figure 2 with the absiaaa 
extended to zero. 

• 
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In Figur« 5 the rarlatlon of th« diffuser lnl«t Maoh Number «s the diffuser 
throat area inoreases is along the line from (0) to (d) thenee to (e) and (f )• 
The rariation of inlet Maoh number as the throat area decreases from (f) is 
along the line (f) to (h) thenee to (b) and back to zerou In the discussion 
to follov *fe vlll assume that the back pressure is adjusted to the ralue re<» 
Quire^ to gire the eondition described through the unit« 

W nozzle test section  >' diffuser 

case (0) - no flov 

For the case of zero diffuser throat area no flow exists and M - 0 
throughout the unit. Now as the throat area is increased from a zero value 
the flov throughout the unit is subsonic proceeding and following the diffuser 
throat with M = 1 at this throat. This condition (case a) exists until the 
diffuser throat area becomes equal to the nozzle throat area and is depicted 
schematically below. 

J- nozzle ">^" test  sectiotrp    diffuser rfh H 
M<1 M ^ 1 

case (a) - Adiff^ throat'< 
A
nozzle throat 
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When the diffuser throat area equals the nozzle throat area sonio flow 
will exist at each throat with M ^ 1 elsewhere.  Assuming the test section is 
built for a design Mach number of 2 the throat areas will be equal when 

^iff- throat - (^V 2 - 0.595. ^iff. inlet     V AyM-2 

Case b is shown herewith. 

nozzle T 

M^l 

Msl 

;est section 

M 

case (b)  - ^dlff# thro-lt - 
A
nozzle throat 

With the area increased beyond that of case (b) a normal shock occurs 
in the dirorgent section of the nozzle and mores downstream to the test 
section as the area increases from condition (b) to (d). An intermediate 
condition between (b) and (d) is illustrated in the following figure. 

r nozzle ♦ <r test section' diffuser >l 

M< 1 

case (c) 
■(' 

dlff.  throat 
•) starting >{■ diff.   throat 

•) 
^>      nozzle 

throat 
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An infinitesimal increase in the diffuser throat area beyond that area 
(d) for which the normal shook is in the test section gives a swallowed shock 
as the inlet Mach number goes from a sub to a supersonic value and the 
diffuser is started with a normal shock at its throat. A further Increase In 
throat area from (e) to (f) does not affect the inlet Mach number but does, 
of course, increase the value of the diffuser throat Mach number. 

Condition (f) is shown below 

|f-    nozzle —^T <~ test section 

M >1 

M- 1 

condition (f) - Adlff# throat^Adiff.  throat) starting 

If,  after the diffuser has started«  we decrease the diffuser throat area 
from (f)  to a value (g)  we find that the inlet Mach number remains constant at 
the design value.    As far as geometry is concerned case (g) «ad case  (•) are 
identical.    Thus for the case (g)  we have schematically,  the following. 

nozzle —> ^ 
test 

section 

M- 1 

M>1 

case (g) - (Adiff # throat) atartln^
> (Adiff. throat?g^Anoxzle throat 
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Although ease («) and ease (g) are Identical geometrically, the flow 
processes existing for the two eases differ markedly. This results from the 
fact that the geometry corresponding to (•) and (g) gires a different flow 
depending upon whether that geometry is approached during the establishment 
of the supersonic inlet (when shook ««Tea of necessity occur ahead of the 
diffuser throat) or whether that geometry is attained after the establishment 
of the supersonic inlet flow. In the latter case no shocks preeeed the 
diffuser throat. -Thus is it possible to pass the supersonic flow through 
the diffuser throat as long as its area is equal to or greater than the nozzle 
throat area since the total pressure remains' constant between these throats with 
no intermediate shocks. 

When the diffuser throat area is decreased to h, sonic flow occurs in 
each throat. With an infinitesimal decrease in diffuser throat area from 
condition (h) a shock arises immediately ahead of the diffuser throat and 
advances into the oncoming flow until condition (b) is attained as depicted 
schematically above. Further decrease in diffuser area reduces the diffuser 
inlet Mach number from (b) to (a) to zero. 

rixed geometry supersonic engine inlet. 

The operating characteristics of a supersonic diffuser when used as an 
engine inlet can be illustrated in a manner similar to the discussion of the 
preceeding section. Consider the operating Conditions of a supersonic inlet 
of fixed geometry as the engine flight Mach number is increased from zero up 
to its design value.  In Figure 5 we show the variation of diffuser inlet. 

1.0 

Isentropic  Area Ratio,  A/A* 

diff.   throa ; 
kdiff.   inlet 

d   rShock Swallowed During Acceleration 

Starting Area Ratio 

fo« 

I /M—        -/2.0 L rv zir; 
0.57      l.o 2.0 

M.   .   .     or    M inlet   * 
Figure £ 
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Mach number with the area ratio (Afliff, th./Adiff. inlat^* "otiee in the 

diacusaion to follow that the diffuser inlet Mach number during some operating 
conditions is identical with the free stream Msch manber, M «o •  In general, 
hoverer, the flight or free stream Mach number is not eqoal to the engine 
inlet Mach number« 

Ve will examine the phenomena in the diffuser as the Mach ttumber, M«o ( 

of the free atream ia brought up to a ralue equal to and than greater than 
the diffuser design value of 2,0,  Later the phenomena will be discussed aa 
M o-o is decreased from a raluo greater than 2.0 to a zero ralue.  It will be 
aasumed throuitfaout that the back pressure on the diffuser is such to give the 
operating condition apecified at any instant. 

Tor  a design value of M*«m2 the diffuser area ratio required for start- 
ing is 0,822 as given in Figure 2. At zero free stream Mach number there is 
no flow through the unit and iLn^^g 0 corresponding to (a) to (b). During 

this interval of operation we have subsonic flow throughout the diffuser with 
M^M. . - as depicted below 

M 

M, 

case (a) to (b) - M, inlet (back press is held at proper value to 
give this state of affairs) 

When the free stream Mach number becomes equal to the subsonic M 
corresponding to an A/A*  equal to (Afnia*/

Athroat^» «ondition (b) exists 
and the throat Mach number is unity. 

M. 0,57 

Case (b) - M^g Minlet' Mftch number corresponding to an A/A.* 

^2^=1,22 isM 
throat inlet 0.57 

This case is shown above. 
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Sine©       Athroat --o,Q22  we have for  case  (b) an Ainlet   _  _J    -1.22 so  that 
Ainlet A* 0.822 

M^J^- M^   ,   ^   0.57 aa found from the  isentropic  tables. 
^^       inlet 

Aa the  free  stream Mach number  is now increased beyond M,^ 0.37 the  inlet 
Mach number  remains at  0.37 with M-   1  in  the diffuser throat.     The  inlet Mach 
number must  remain at 0,37 since A/A* -  A^njLqt  «-   a fixed  value.     Thus 

Athroat 
between a free  stream Mach  number  of  0.37 and 1.00 the condition shown herewith, 
wherein a free stream diffusion jxeceeds the  inlet applies. 

Case  (b)  to  (c)  - 1> Me» > 0.57    (A free  stream deceleration from M 
to M.   .   .   occurs ahead of  engine as 

strewn tube diverges.) 

When the Mach number of  the free  stream becomes  equal  to one  the area of 
the  stream tube  which handles the  air going  into  the  engine   is  equal to the 
engine diffuser  throat area as  indicated below for case  (c). 

Case (c)  - Ms  1 (Free  stream tube  area carrying air  that   enters 
engine     diffuser  throat  area) 
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With a free stream Mach number greater than one a normal shock stands in 
front of the inlet until M is increased up to the design value of 2,0, The 
intermediate condition is shown below» 

Case  (c)  to (d) - 1.0£Mo<2 

Whsn M -==2,0 the diffuser starts and the shock is swallowed doming to 
rest in the throat of the diffuser - sketch below. 

MOl^2.0 - M 

^TL 

^^ external oblique shock 

case (d) - M :: 2.0 
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▲a Mc^, baccxn«» greater than 2.0 the ahoek remalna awallowed  if the back 
preaaure  is maintained  sufficiently low. 

Summarizing the operating characteristics of the  inlet during the 
acceleration of Moo from 0 to 2.0 we haTe 

(.)   to  (*)     -    M«.»   Mlnl,t 

(b) to (c)  - Mo© increases and M^I1^e^ remains constant at a ralue corres- 
ponding to M^ 

(o) to (d)  - Mo^ increases with normal shook oocuring ahead of inlet and 
Minlets N. 

(d) and aboVa - shock is swallowed. 

rfith a deceleration of K^o from Vl^2,0  to (e) the shock remains swallowed 
until Mo^ equals the supersonic Talue of M corresponding to A/A* s 1.22 at (e) 
or from iaentropic tables when M=1^56. With Mo^l.56 the shock is disgorged 
and M:lnlet assumes a Talue of M.S 0,57.with a normal shock oocuring in front 
of the inlet until Moo becomes less than one. As the free stream Mach number 
becomes less than one we have a progression of states from (o) to (b) to (a) 
with the conditions already described for the acceleration from (a) to (e) 
applying. 
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L«oture Not* 19 
amaui Mnti gnpcfc MMM 

Problems in which • preaauro war« la aoring at a unifora rate through 
a fluid initially at rest may bo handled by using tha methods of lecture 
note 12, on the maraal ahoak MIT*. The equations «f nota 12 are applicable 
if tha abaerrer mores with tha normal shook ware and if tha fuintitiaa in 
tha boxad aquations refer to quantities relatira to the aoTing obserrer. This 
inTolraa changes in only thoaa quantities which contain a Telocity term, 
e.g.. Mach number, stagnation temperature and stagnation pressure. Note that 
tha atatio pressure, stream temperature, and sound Telocity are the a 
for either obserrer. 
to the obserrer at rest. 

Also the discontinuity mores with a Telocity Vx ralatipa 

Tha figures below show tha ateady flow through a discontinuity which 
ia fixed relatire to the obserrer and also the discontinuity adrancing into 
air at rest relatire to the obserrer. The steady'flow through the station- 
ary ware front may be transformed to the pattern of the moring discontinuity 

itatlonat^y discontinuity 

/£/£bUl U ///// 

py>px 

^   ¥y     ¥X ■>▼- 

^     I *y<Mx 

^7777777777777^777? 77777? 77777/ 
Obserrer riding into ware front 

--^    moring discontinuity 

stationary 

I 
(T, - Tv) 

Py>Px 

777777777777/? 7 //, 777? /////// 
Obserrer riding with gas ahead 

of ware front 

by imagining the obserrer mores with the low pressure gas. This obserrer 
sees the ware front moring to the left with a speed VXf and he aees the 
pressure in the stationary gas rise from pz to p» as the ware front ad- 
vances into the stationary gas. The gas behind the ware front trarela 
toward the front with a velocity (Vx - V ), and, since this is less than 
▼ , a particle of high-pressure gas falls further and further behind the 
front. 

In order to make the boxed equations of note 12 applicable for an 
observer at rest with respect to the gas proceeding the ware front, all 
quantities containing a Telocity term must be modified in accord with the 
change in coordinate system. Suppose we denote by primes those quantities 
measured relatire to an obserrer who is at rest with respect to the gas 
preceedlng the discontinuity.  Then we may write 

Px* « Px» V 
V= Tx; T • - T 1y    ^y 
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Mx - Vx/*x 

v= 
-0 

•v- VV 
v= L^-.H, M. 

V Tx <!♦ ^   H /> 

To> Tx 

To'   Ty    +     3f 

k 
P^    PxCl + ^^S) ^ 

Po,* -   Px 
k 

2x   k-1 

POy"     Py     [l + ^CV^16-1 

Through the use of these relstions and the boxed equstions of note 12 
the shook relstions for s moring WSTC msy be found.     It is worthy of note 
that  the change in stagnation temperature  is depenclent on the observer's 
motion,   as indicated  in the following expressions. 

T 2 - T 2 
AT^ =  T*^  - TÄ -=   T- - T, i--X *-= 0 lo7  ' 'o*        * * 2 cp 

e      o-        o»    r     x     o 

2 

Oy -O,     T       •«'       2   0p 

and since AT-0,we find 

. .  Tx(y« - Ty) 
AT 

"P 
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To Illustrate the applioetion of the foregoing consider finding the 
change of stream properties across a ware front propagating into a stationary 
gss with a ware Telocity of 2000 feet<;per sec« Let the gss ahead of the ware 
be at 20 psia and 500°!». 

We hare then the following schematically. 

2000 ft/sec 

L( //   / f/ / J \j J //////////// / 
P^* = 20 psia S   ^V *   T To  * m ? 

^•«.500^1 ^   py»=   T P0   *=   ^ 

7X
, =  0 

///s /7/ //// y////'/////////// /// 

To OOITS the problem we reduce it first to one for which the normal shock 
equation of note 12 apply. This is done schematically in the figure below 
by taking the point of Tiew of one trareling with the ware. 

T_ = 2000 ft/sec )  y s. ^    ^ « ? 

 >        J ^ Tx = 500°»       1  Ty = T 

Px = 20 psia    (  Py = * 

The latter problem is easily solred and the properties behind the wa-re front 
advancinft at 2000 ft/soc can than be found through the equations presented 
abore. The solution to the problem proceeds as below. 

We hare __^ 
M_s W9  ■M— - 1.62 

4f.i rSfc 
From normal shock tables then 

M   - 0.612 

(^)^-2.4        .inc.    ^xTx.      /?yTy 
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^=3.7;       2L=1^5 

y   s 2002   s 634 f t/aec. 
*   2.4 

Py = 3-7(20) » 74 p«i« 

Therefore, we find. 

Iziagt 

Ty « 1^5(500) » 775*^ 

WL* «•  - 0.83(mlnua sign means gas is mering to left") 

T • ^ M • 49-1  N[V = (0.«)<49.1) JTO « 1160 77 ^ ft/aee. 

poyn p /y -^ - 0.6235 

T • « 1160 f t/aec       Ty» - 775
0fc 

M • » 0,85 T • = Ö9l<^ 

Py* =74 pala p0 •=• 118.9 paia 

2000 ft/aec 
/ / , / / ' /y / J / / / / / , , 
px« s 20 paia < 7 • s 1160 /t/aec 

x S Ty - ^^    py' * 74 paia 
stationary     )  'V* - 0.65 

gaa        ( 
//"/ 77////y/////^/^x/// //•//— 

Notiee that the gaa following the blaat war« la falling farther and farther 
behind the ware front aince ita Telocity la leaa than the ware Telocity. 



BIBLIOGRAPHT 

L«cture Nota 2  - Consarration of Mass 

Hunaaker and Rightmiro, toitlnaarlng Application» of Fluid Machanica. Chap tar 
III, McGraw-Hill, 1947. 

Laetura Nota 3 " Monantum Equation 

Hunaaker and Rlghtmire, Epginaering Application» of Fluid Machanica. Chapter 
VI, Prandtl-Trlt jana, yundamantala of Hydro-and Aero-Machaalcg. page 233 et, 
seq., McGraw-Hill,   1934* 

Lecture Note k - Flrat Law of Tharmodynamlca 

Hunaaker and Rig^tadra, Inglnaarlmi Application» of Fluid Machanica.  Chapter V. 

Lecture Note 6 - Telocity of Sound 

Llepmann and Puckett, Af,'yfTMrri1wi ?f * CoPPre»»lble Flui^. page 19 at aeq,, 
Wiley,  1947. 

TonKarman, Suneraonie jg&taMBlStM Z Principle» and Application».  Journal 
of the Aeronautical Seience», TOI. 14, no.  7. pp. 373-402, July, 1947« 

Lecture Note 7 - Total Preaeure and Total Temperature 

Kaenan, Tharaodynaaiic», Chapter III,  Wiley,   1941 

Broadwell and Harria, 3ca^ Engineering Tmadf "»y»^* "^ a of the Turbo let. Turboprop. 
and Subsonic Remlet. Chapter II, AAF TR 3514.  July,  I946 

Lecture Note 8 - Nozzle Deaign 

Kiefer and Stuart, Rrineipjff fi^ *Pfilneer|nfl T^frmodynamlcf. Chapter ZI, 
Wiley, 1930. 

Lecture Note 9 - Nozzle Operating Characteriatica 

HuRisakar and Rightad.ro,  fnflfrTfTfftff Applio»tion of Fluid Maehanic». Chapter IX, 
McGraw-Hill,   1947. 

I 



-?- 

Lecture Not« 10 - Simple Area Flow 

Shapiro, Hawthorne, and Sdelman, The Mechanics and Thermodynamics of Steady 
One-Dimensional Gas Flow, Section 4 of Handbook of Supersonic Aerodynamics, 
compiled by Applied Physics Laboratory, The John Hopkins Unirersity, Silver 
Spring, HI. 

Keenan and Kaye.  Gas Tables,  pp. 206-210,  Wiley,   1948 

Lecture Note  11  - Compressibility Phenomena 

Taylor and Maccoll, the Mechanics of Compressible Fluids,  in Aerodynamic Theory. 
¥ol III (edited by V.  F.  Duraai), Springer,  1935- 

Hunsaker and Rightmire,  Engineerimt Applications of Fluid Mechanic«.  Chapter IX, 
McGraw-Hill,  1947. 

Lecture Notes 12 and 13 - Normal and Oblique Shock Waves 

Dailey and Wood,  Computation Curves for Compressible Fluid Problems.  Wiley,   1949 

K««nan and Kay«, Gas Tables,  pp. 211-213, Wiley  I946 

Liepnann and Puokett,  Introduction to the Aerodynamics of Compressible Fluids. 
Chapter 4. Wiley.  1947. 

Ferri, Elements of Aerodynamics of Supersonic Flows. Chapter III, MacMillian, 
1949 

Taylor and Maccoll, The Mechanics of Compressible Fluids,  in Aerodynamic Theory. 
Vol.  Ill,  (edited by W.  F. Durnad), Springer,   1935 

Keenan, Thermodynamics.   pp 334-335. Wiley,  1941 

Lecture Note«  14 and 15  - Simple Frietional Flow 

Shapiro, Hawthorne, and Bdelman, The Mechanics and Thermodynamics of Steady 
One-Dimensional Gas Flow,   in Section 4 of Handbook «f 3up«rsonic Aerodynamics, 
compiled by Applied Physio« Laboratory, The Johns Hopkins University, Silver 
Springs, Ml. 

Keenan and Kaye, Gas Table«,  pp. 210-211, Wiley,  1948 

Keenan, Thermodynamics.   pp. 331-332, Wiley,  1941 



-3- 

L«cture Notes 16 and 17 - Simple Heating Effects 

Shapiro, Hawthorne,  and Sdelaan,  The Meehanles and Thermodynamics of Steady 
One-Dimensional Gas Flow,  tn Sedtloa 4 of HMtfV?rt ff ryMP^^f'B4?  ATT,?^TPf"li''<f ■ 
Compiled by Applied Physics Laboratory, The Johns Hopkins Dhirersity, Surer 
Springs, Hi. 

Keenan aal Kayo,  Qas Tables,  pp. 209-210.  Wiley.  1948 

Keenan, Thenaodynamics.  pp 335, Wiley,  1941 

Lecture Note 18 - Supersonic Diffuser 

Kantrowits and Donaldson,  Preliminary Inrestigation of Supersonic Diffusers. 
NACA Wartime Report L-713. May,  1945 

Ferri, Ilements of Aerodynamics of Sunerapnic Flows. Chapter 9, MacMillian,  1949 

Lefiture Note 19  - Steadily Moring Shock Wares 

Shapiro, Hawthorne and Edelman, The Mechanics and Thermodynamics of Steady 
One-Dimensional Gas Flow,   in Section 4 of ffTwiw^jr pf Supersonio AfryJ'YTifr1 M 
compiled by Applied Physics Laboratory,  Hie  Johns Hopkins Dhirersity. Surer 
Springs, Ma. 



AIR rORCE INSTITUTS OF TECHNOIOOT 

Home Problems 
Thermodynamics of Gas Flow 

ME 257 

MaJ. D. H. Daley 



ME 257 Pl.l 
HCME FBOBLSMS 

The problems will, in general, be numbered as followst 1«1( 1.2( 
1.3, . . . 2.1, 2.2 3.1, 3.2 where 2.3. for example, 
reads problem number 3 ^  the problem set accompanying lecture note 2. 
(For all problems InrolTing air, assume air to be a perfect gas, 
unless otherwise noted, with k sr 1.4, R ■=• 1715 ft2/8ec2 ^B, and c_- uniess oxnerwise 1 
6000 ft2/sec2 OR) 

1.1 Show that the pa th of a constant pressure process of a perfect gas 
on a T-T diagram is a straight line.  (Inrestigate slope dT/dr by 
differentiating equation of state). 

1.2 The logarithmic differential of x is obtained by differentiating 
(In x) and is dx/x. Show that the logarithmic differentials of the 
properties p, T and /*(/&*   1/T) of a perfect gas are related by dp/p« 
dT/T-t" d z0//0 .  (Hint* Write equation of state in logarithmic form.) 
Doos d/0//0  « dr/r? Prore. 

1.3 The internal energy of 1.2 slugs of air in a rigid non-conducting 
container is increased as a paddle wheel in the container is turned 
by a mass of 20 slugs descending 200 ft. at a location where the 
acceleration of grarity is 23 ft/sec2. Find 

(a) A u (83,400 ft#/slug) 
(b) A h  if  initial  temperature of air is 70 F. 

(117000 ft#/slug) 
(o)     What would be the change of enthalpy of th« system of 

gas if the acceleration of grarity is 32.2 ft/see2? 
(151.000 ft#/8lug) 

1.4 Starting with the definition  of entropy «how that ds  « Op dT/T - R dp/p. 
Using this result ari results of problem 1.2 along wi th Cp - cT « R 
obtain, 

_ T 
(a) ds « cv ££ - R ^Ä cT ££ -»- R J^ 1 s2 - Si « c^ in ^ R In J| 

(b) ds - cT ^ - cp ^ = CT ^ -f- cp ^ , as - 81 « etc. 

1.5 Dividing ds as giren in (1.4)  by c    we obtain 

^»^T-—      to  « ff - ^   *? .    Thus for a rerersible adiabatic Cp       T        c p T k       p 
k-1 

process with 14 = 0 we hare ^1 s *=i. d£ OP ^ »A S.N k 
Cp T k       p Ti       V Piy 

Show similarly,  using 1.4 (a)  and (b),  that 
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Ti A ^2 / 

k-1 x ^ x k-1 

and 

for an iaentropic process. 

1.6 Plot a temperature-entropy diagram for air with lines of constant 
pressure and specific relume thereon for 
p  • 120,   60,  30, and 15  paia 
▼ •= 418 and 317.5 ft3/8lue 
Show an enthalpy scale along with the temperature  scale«    Select as a 
reference state of  zero entropy and enthalpy air at  15  P»4» *nd 400°**, 
Let   temperature and entropy  scales range from OPR  to ISOOHR (la    200%) 
and 

0 f1 ttt    to 9600 ft Ug     ^1" =  1250    Q W\ respectirely. 
slug0^ slug^l     \ slug^i J 

1.7 Graphically check the slopes (~}   «   —    and { —^  =   — at any given 
MS^'T       cT \ds/ p     Cp 

temperature  on the diagram of  problem 1.6. 

1.6    Find i(l) The work done by,   (2)  the  heat received  by«   the  increase  in 
(3)   internal energy,  (4)  enthalpy and (3) entropy of a system of one 
slug of  air which  is  initially at  120 psia and  1200°** as  its  specific 
volume  increases to 418 ft3/slug by the following processes.    (Sketch 
each process where  possible  on  the T-S diagram of   problem 1.6) 

(a) Reversibl« constant   pressure 
(b) Revers ills constant   temperature 
(c) Reversible constant   internal  energy 
(d) Reversible constant  enthalpy 
(e) Reversible adiabatic 
(f) Adiabatic  expansion  into an exhausted chamber. 

1.9 Air  expands  through a nozzle  from a large reservoir wherein T = 60°?. 
Vhat   Is the  temperature  of  the air  leaving the nozzle  if  the nozzle  exit 
velocity   is  1200 ft/sec?     Would  this  temperature  be measured by a 
st.it ionary therometer placed at the exit of the nozzle? 

1.10 Air enters a reversible adiabatic   turbine with Pi -  60 psia, ^=1800^, 
?1 =  200 ft/sec. through an area A^ of 3° ^Q*  inches.    The air leaves 
the  turbine with negligible  velocity at 30 psia*    Find the turbine 
horse-power output.     (417 hp). 

1.11 Solve for Ah of  1.10 graphically using h - s diagram of page 1.4* 
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1.12 A body of 10 Itan BASS is «etod upon by • horisontal force of  on« 
pound at a location vh«r« the equlTalont acceleration of grm-wity 
la 20 ft/aec2.    Neglect log friction, what ia the horizontal 
acceleration due to the one pound force? 

1.13 What would be the horiaontal acceleration in £roblea 1.12 if the 
body had e weight  of 10 pounds at the location where equiTalant 
£ ia 20 ftVaeoZt 
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3*9 Considar th« «toady flow of an ineomprassible fluid In a constant 
area piia of dlamatar D. Usinß th« continuity and momantum «quation« 
«how that th« pr«s«ur« drop betw««n two «tat ion«,'(1) «nd (2), a 
diatanc« L apart i« giT«n by 

P2 - Pi • - f  2   D 

whar« T i« th« pip« friction factor defined a« 

-Fr k 

(Note: Another friction factor 

(^) 

(7"^m wall-fluid shearing 
stress) 

time« u««d i« y» s 7^) 
3*10 Th« «treaa» properties at th« inl«t «nd «xit of « turbo-jet engine 

are giren below* Determine th« internal fore« of fluid on duct 
for th««« condition«. 

'JTZ/^AM/~IJlJ^?~!r 

Al- 

Pi * 

vl ■ 
T, * 

2.37 ft^ 

20.3 P«i« 

392 ft/sec 

5700R 

Aj « 1.8 ft2 

P2 « 15-3 P«i* 

▼2 s 1980 ft/sec 

T- 
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XOO ft. of 
3" I-D. pi 

Op«n glob« TftlTO 

pump 

tatet 
3.I  A pump discharges water through the system shown at the rate of 500 

gallons/mln. The loss coefficients aret 

Derice 

Inlet 

Elbow 

Open Globe 
Talte 

Sudden 
enlargernen 

Pipe 

0^ 

1.0 

8.0 

as per theoz{/ 

0.02^ 

The pump efficiency is 7OK 

(a) Estimate the  gauge  pressure at  the pump discharge,   in  psig. 
(b) Estimate  the power  required by the pump,   in horsepower. 
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5.2 

In certain reglona where hydro- 
electric power is ÄTelleble, a 
large amount of water at low head 
ia available in reaerroir B.  This 
amount is more than ample to take 
care of power demand a for most of 
the year, but at certain periods of 
the year, there ia a shortage. In 
such cases, if a small basin A is 
arailable near by at a rery high 
head, it may be economical to pump 
water to A during the times when 
there is excess capacity in B, thus 
making the water in A arailable 
when B is low in water. The sketch 
shows such a aye tern for transferring 
water from B to a, with a direct 
drire between the turbine and pump. 

Determine the ratio Q^/Q.* of water pumped to A to total water used by the 
turbine, assuming. 

s   20' Hi -  *'cw- *' 
(ANSi     Qp/Q.p ■  0.123) 

5.3 

. A 
100 • 

Air la drawn into a fan at  standard conditiona 
(^ s   0.075  lWft3) and ia  discharged from a 
nozzle placed at the exit of a 100-ft stack. 
The nozzle exit diameter ia 1 ft,  and the air 
flow ia 100 ft3/sec.    Assuming that all losses 
In the system are negligible except for the 
loeaea  in the fan,  and that  the latter has an 
efficiency of 6CÄ,  estimate 
(a) the power  input to the  shaft  of the fan,  in 

horaepower 
(b) the lost head  in the fan.  in ft. of air. 

ANSi     (a)    5.7 hp 
(b)     167 ft 



ME 257 P5.3 

5.4 

T 
T 

100' 

600*^ 

® 
14*7 pala 
70^ 

<-   12- 

/®V 
OVEN 

air in 
70°? 

Air is heated to 600°? in an oren and is then exhausted to the 
•tmosphera through s 12-inch sheet metal stack 100 ft. high« 

Assume that in addition to pipe friction there are miscellaneous losses 
amounting to two kinetic energy heads (based on the Telocity in the 
stack), and that the static pressure at (T) is the same as the static 
pressure at the air inlet. 

Bstimate the mass rate of flow of air through the system, in Ibm/sec. 

The head loss in the pipe may be estimated from 

Hi pipe 
= 0*02 « -- 

D 2g 

Answers    1*05   Ibm/sec 
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5*5    Wftt«r flows from a Imkm through • pip« of 1 foot insld« diaaoter 
and 5000 feet  long,  disc barging into the etaoaphere at a point 
100 faat below the lake*a surface.    If the friction factor 
inside the pi pa ia 0.02 what mass rate of flow would you expect 
to be discharged fron the pipe?    Neglect any head losses except 
thoae in the 5000 feet of pipe. 

5*6    Satimate the Tolvaa of room air flow per minute through a house- 
hold fireplace with a mean chimney gas temperature of 860°?«    The 
chimney height is fifty feet.    The flow losses  in the chimney amount 
to two kinetic heads,     use chimney ares of  one ft2. 

3*7    In eraluating a particular chimney design for a furnace, measurements 
of the  leaving gas Telocity from the chimney end of  the flue gss 
teaipereture ere made.     In a  100 ft.  chimney of  12" diameter  the flue 
gas temperature is found  to be 6009P when the exit Telocity from 
the chimney ia 40 feet  per second.    If the ambient temperature 
ia 70^ whet  is the magnitude of the flow losses through the chimney? 
(Assume the flue gases  to be air) 

;   t 

- 
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5*8    Air enter« the turbine ceaoede depleted below et 900 ft per second 
•ad et e pressure of 14*7 pels.    The eeseede Is e constant pesaaga 
eree-lmpulae type.    Treating the flow as Inooopreaalbla and assuming 
a loss coefficient through the cascade of 0.2 find the axial and 
tangential force on the ceaoede per unit of flow peaaage area.    The 
entering and  lea-ring Telocitlee make an angle  of 30° with the plane 
of the turbine wheel.     (-^ •    0.002378 slugs/f t3) 



















ME 257 P10.1 

10.1 Starting with as   kRT and  using relations deTslopsd in notsio 
show that 

ifi.   w     ?    *?      dA 

10.2 Show that in subsonic isantropie flow 

and Tice rersa for supersonic flow» 

10.3 DeriTe 

k-1    2        2(k.l) 

using energy equation,  equation for Telocity of sound, and defini- 
tion of  starred quantities«    Show that (a) reduces to 

(b) mf.  1LL1   a*2 

10.4    A supersonic wind tunnel is to be designed for a test  section Mach 
nunber  of  1.3*    The  inlet  conditions to the tunnel are to be 

p1 m 10.6 psia       ▲1  «1.2 ft2 

p0 s  14.7 psia       T0 •   600° R 

(a) «That  is the required test  section area? 

(b) Find T, p, T and w in the test  section 

(e)    If the tunnel exit  area is 0.2 ft.2 greater than the 
test  section area what is the limiting exhaust region 
pressure for sonic  throat conditions witth p0 ** 14*7 
and T0 -   600° R? 

(d)    Will the test  section conditions correspond to those of 
part  (b) up to the exhaust region pressure  of pert (a)T 



I 
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12.1 Draw the pressure distribution through the nozzle of problem 9.1 
assuming a normal shock occurs at the  station corresponding to 
(p/Po) ■   0.2 with rerereible flow elsewhere.  What exit region 
pressure  is required  to produce this flow? 

12.2 A supersonic diffuser is operating with a  supersonic  inlet   stream 
Telocity and with a normal  shock in the diffuser at  ststion  (2) 
as shown below.    The  stream Telocity  is reduced to a negligible 
magnitude at  the exit   of  the diffuser. 

flow 
-y    x *y 

r 
(1) (2) (3) 

inlet normal 
shock 

throat (4) 
exit 

Sketch the flow process through the diffuser on 
indicating on the temperature axis 

(a)    T0x.  T*x. Tx, T     . T*7. Ty. 

a T-s diagram 

Also sketch in pressure lines corresponding to 

(b)    p     ,  p*  . p     .  p*  . 
x y 

Make the sketch sufficiently large to be clear« 
page for the diagram if desired). 

(Use a whole 
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13*1    («)    A «•df» with inelud«d aogl« cf 20° is pl«o«d in a flow which 
Po m 100 psl«,  p » 20 pal«, «ad T0 * ÖOO P.    What ara tha 
axlt atraaa propartlaa fron tha attachad plana shook that 
result»,  l.a.,  p, T,  M. T, p0, and T0t 

(b)    «hat la tha aaxiaia p poaaibla In thla flow for an attaohad 
shook wara to occurt 

(a)    What la tha ■arlnun ineludad wad4Ea an^la for an attaohad shook 
to ooour  In tha flow of (a)t 

I 
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14.1    Aasume a flow to originate in a largo raaarroir with T * 340° R. 

p «75*1 P»l«. and, arbitrarily,  a « 100 —tUL i    Lot  tha flew 
aluc0 R 

proeaad through a comrergont  nozzle to M^ s.  0.4, thanea through a 
•implo friotional duet.    Plot tha loeua of fluid atatea (Fanno 
line.    In tha eomputationa let T = 503, 492. 450, 372, and  3420 p, 
reapeetiraly.      (Hot#I    W    ,    % *{>• 

14*2    To oauae tha flow of 12.1 to proeaad from M m 0.4 to M»1.0 
requires a certain duet length and azhauat region pressure *? p* 
of the Fanno line.    Suppose theaa  conditions are met  such that 
M s. 1 at exit of duet and then tha duet  length ia Increased, 
everything else remaining fixed.    Sketch on the T-s chart  of 
problem 14*1 the new flow process* 
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FANNO LINES FOR  PERFBCT GAS   -       T0      540° B  PARAMETER  IS  w/A  IN SLUGS/SBC- 
FT2 NUMBS BY CIRCLE  0 SHOtfS MACH NO.  AT THAT POINT 
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300 

1     1              1 1 I     1            1                 1 1                                         1                                    1        1 
I   1   l      l   1   I   '         1   i   '   '   i      •   i   r      1  !   1   !   1   1   !   1      1             '   '                  ■   1   '      ''ill!      ■                 1   1   !i   f "^ 

lillilllJI1         '         i ! 1 1 i i ! i ! i                         11 ' i ■    '      1 !                  i i | ! 
1    t hlaT  -1 Tn1 1             I 1       1 1                                                                           '     1     i                1 

1 i#3 1 rf-! ! 1 1 . 1 !     1 1 ! 1     1 1 1 1 1 I 1 I 1 1 1 1 1 i        1 1 t 1        1 ' * 1     1 1 1 1 1     '  1       ' 1 ! ! 1 1 

1 ul TH—■ ill-    i                                  III                     i                     l^**                                                                  1 

H 1  1       ! H i 1 jjdaSnl M till 1 n^TjdJ     11    i  n ITISJ        11 II11111! 11111 -t ^^HTi-iH IIII n-H-J J JTHT Li     11L J       MHJ       1 
1 t           1   t 1       t 1       ! 1           I               Nl     i     j             1       1 i isi   1 

IHH 1 M M HHH 11 M t M 1 H 11 M l~HHH 1 H 1 i *} i ISiH MM! n~HH 1 M i 11 tld"i JJ          djJJJJJJJJJjJJJJJJ^                                                NiB 
Mifflii^ii^1111i1"1ii1ffl11i11iifi3M^iTrl  I Int i'fr^ JJ              JJ H JJ ilM              J lUJ^S^JLTL fl [          JJJJJJJJJJJj. fl 
Hi          rnrn                      nt           i        HTrrHTrrHil 1                                          /                            /1 i                                            n 1 
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15.1     T    «  520° R 

40*  Bs g»«e 

X 

P! « 24- H«: 
P0       33.7 Hg 

8' 

ID (2) ter •  29,5» Hg 

Tub« diaastar • 0.76O1 

Find friotion factor f. Ana.  f * 0.0067 

3,5.2    What   la force  of fluid on pi pa of  (15.1)  between  aactiona  (1) 
and (2)?    Ana. gt«  1,10 

15*3    Air la flowing through a circular pipa of 1# diameter with 
following  inlet   conditiona. 

friction factor f « 0.0025 p      »   18 pala 
01 

Pj    =13.18  paia 

pÄ    »  600° R 01 

(a) If Mach equals  one at   pipa  exit,  what   la pipe length and 
maximum discharge region presaure?    (L^., m   10?"     p   »7.11  paia) 

(b) If pipa ia 60*   long what dlaeharga region pressure  la re- 
quired  to maintain abo-re  inlet  conditiona?    (12.38  pala) 

(c) With pipe  lengths   60*  and back  pressure - 7.11 pala  what   is" 
w/A?    (1.44 aluga/aae-ft2.) 

(d) If after condition (b)   la aatabliahad,  the pipe length ia  in- 
creased  to 107*  what  ia (w/A)?    (1.13 aluga/aac-ft2.) 

15.4    Consider  the  auperaonio  flow of air   in a 1*  diamatar  pipa with 
far   0.0025   and with following inlet  conditiona 

P0l=    20 psia 

Trt= 600° R 

Pi' 2.55 pala 

(i) 










