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\i>> Summary

\
In-thie paper we-°stablishSexistence and uniqueness theorems
for a class of functional equations occurrinz in the cheory

of multi-stege games.’
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§l. Introduction.

In the preceding papers of this series [1], [3], we have studied
two particular classes of fuxtional equations which arise in the
theory of dynamic programming. The first paper, [l ], presented
some results concerning the equation
(1) r(p) = Max [R(P,Q)+h(P,Q)r(T(P,Q))],

(a detailed exposigion is to be found 1in [2]), while the second paper
>f the seriesg, [3], was devoted to a discussion of equations of the

form

~\
(2] dX4 = Max fi(x;,xa,...,xn,t;Q),xi(O)aci,isl,Q,...n.

dt Q

Equations of the first type arise fromn the study of discrete
processes, while equaticns of the second type arise from the study
of a certaln class of continuous decision processes. Partial differen-
tial analogues of (2) arise fron the calculus of variations, and
from the theory of integral equations, cf {4],15].

All of these equations pertain to one—-person decision processes.
In this paper, we shall study a class of functional equations arising
from the theory of multi-stage games. The equation we shall use to
illustrate cur techniques 1s

(3) r(P,p') = Max Min [/ /" [R(u,v)+h(u,v)r(T,T')]dG(u)dG'(v)]
G G' D(p,p')

= Min Max [ ... ],
G' G

where T = T(P,P';u,v), T'=T'(P,P';u,v), and G(u),G'(v) are distribution
functions for u and v respectively over the allowable regions. To simpl-
fy the notation, we wr.te R(u,v) and h(u,v), althougn we actially allow

these functions to depend upon P and P'.

(2)
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The precise restrictions we shall impose upon the functicis
which appear will be discussed below.

The earliest formulation of multi—-stage games in terms of
functional equations, of which we are aware, is contalned 1in
R. Bellman and J. La Salle, [ 11 ], and R. Bellman and D. Blackwell,
[ 10 ], where "games of survival" are intrcduced. Following this,
further stud.es of the existence and uniqueness of the solutlon,
together with properties cf the sclutlicn, are contalined 1n9§eisakoff
(13 ], and vellman, [ 6 ]J. The first paper stating some general
existence and uniqueness theorems for other classes of multi-staye
games 1s that of?éhapley, [15:]. Since then, a number of papers
have appeared on the subject of multi-stage zames. The subject has
attracted a great deal of attention, and deservealy so, since tie
thecry of multi-stage games constitutes a natirsl extension of tre
Von Neumann-Morgenstern thecry. In some sense, we may even conslider
the multi-stage process as basic, giving rise tc the single—stage
theory as a limiting case corresponding to a "steady state”. This
is a clear inference from the E. own—Von Neumann iterative sclution
of games. A concept of this type 1s useful in discussing tne play
of n—person games and ncn—zero 3um games. For an application of
this 1dea, see [ = ], wnere the idea 1s ajpplied in a neuristic rashion.

We shall begin cur discussion in the fcll:aing secticn wit: tne
description of 2 mulii—stage game arising from the stucy of two-—-persocn
allocaticnmgocesses. The "principle of cptimality", [7], w11l be used
to show that we may reduce the study of the N-stage prccess to the

study of a certain system of recurrence relations. We snall then con-
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sider, in turn, the corresponding process involving an unbounded
number of stages, the process where the interaction is stochastic
rather than deterministic, and finally, scme time—dependent cases.
In this way we shall be Yed to consider the equation in (3).

Using this equat.on as our mcdel, we shall turn to a discussion
of existence and uniqueness, under various hypotheses concerning
the coefficient functions. Our proofs will depend upon the method
of successlve approximaticns, and a lemma which exploits the
quasi-linear aspect of the functional equation.

We shall demonstratg9%ﬁe strateglies determined by the functional
equaticn are effective, and consider the stability of the solution
under changes in R(u,v).

The method we shall employ in presenting the results sketched
above 18 alsc applicable to the one-sided functiocnal equsation

(4) £(P,p') = Max Min [R(u,v)+nh(u,v)c(T,T*)],
u v

as was pointed out tou us by W. Fleming. We shall also use a
cruder metr.od to treat this problem.

Finalliy, we shall discuss some other classes of multi-stage
games, such as "gamee cf survival" and "pursulit games", which lead
tc¢ functional equations amenable tc the same analyslis.

2. Description of a Multi-Stage Gime

.Let us now describe in detsil tne multi-stage game we wish to
analyze. TwcC playerr, whom we may rather prcsalcally uesignate by
A and », pusseseing,respectively, resources which we may represent

as M-dimensional vectors, P and P', are engaged in a multi-stage

(4)
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process carried on in the following manner. At the beginning of
each stage of an N-stage process, A allocates a certain quantity of
his resources, a vector u, and B a certain quantity of his resources,
& vector v; this will be represented symbolically by the notation
O<ugP, OKv<P'.

As a result of this allocation, there are two consequences, A
receives a pay-off of R(u,v), a scalar function, and B a pay-off of
~R(u,v). Furthermore, their resocurces are altered, P 18 transformed
into T(P,?';u,v) and P' becomes T'(P,P';u,v). The process now continues
in the same fashion for (M-1) additional staces.

The total return to A of the N-stage ;rocess is assumed to be
additive,

(1) RN-RN(u,u,,...,uN_I;v,v,,...,vN_l)-R(u,v)+R(u,,v1)+...+R(uN_1,vN_1),

There are two ways of treating tne N-8tage process. We can elther
consider the N-stage game as a single-stage game of complicated type,

requiring a choice of the set of vectors (u,u,,...,uN_l) by A, and the

depends upon the

set (v,v,,...,vN_1) by B, where the choice of u and v,

choice of U Uyyeee,Up 10VoVi, oo,V 4, OF we can use tne functional

equation approacn of dynamic programming, !6], (7], and thus reduce the

dimensions of the process. For the case ¢ unbounded processes, or

processes involving stocnastic interaction of u and v, whicn we shall

discuss below, the recurrence relation technique seems to be tne only

feasible one, while in the case of finite deterministic processes, this

technique 18 simpler analytically, conceptually, and computationally.
Let us now maxe some assumptions of continuity. We snall take

R(u,v) and n(u,v) to be a contlinuous function >f u, v, P and P' over

) (5)
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any finite (P,P';u,v)- region, and similarly for T(P,P';u,v), T'(P,P';u,v)
to be continuous functions of P,P',u and v. The case where P,P',u,v,
R(u,v),T,T', assume only finite sets of values 1s also interesting and
may be treated by the same general techniques.

The value of the N-stage game described above 18 given by the
expression

(2) vNclgx "é'.’ Y4 RydG(u,uy, v yuy 2 )G (Vyvy,eee, vy )]

=Min Max [ ... ],
G' G

where G and G' are distribution l'unctions over regions of quite

complicated form defined by the inequalities

(3) 0<ugP, OgvgP?,
O<u KT, OV <T!',

OQUN_1€TN1 s OV STy,

Note that T and T' depend upon P,P', u and v, T7,,T;' depend upon
P,P',u,v,u,,v,, and 8o on.
Observing that vy depends upon P and P', the initial states,
and only upon these quantities, let us define the sequence of functions,
{?N(P,P')} , by meane of thd relation
Ne N=1.2,...
§5. The Principle of Optimality.

(4) £y (P,PT) = v

In [7], we enunciated a principle which ylelds the functional
equations of the theory of dynamic programming, namely the

Principle of Optimality. An optimal policy has the property that

(6)
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whatever the initial state and initilal decisions are, the remaining

decisions must constitute an optimal policy witn regard to the

state resulting from the first decisions.

Applying this to tne multi—stage game, we obtain the following

recurrence relaticn

(1) £.(P,P')=Max Min (/ g/’ R(u,v)dG(u)dG'(v)=Min Max [ ... ]
G G' Oug G' G

Ogv<P!

I‘N+1(P,P')-ng H(i}r'x [éé;sé/’ R, v)+ry(T,T1)]dG(u)aG" (v)]

Ogvgp!
r Hé? Méx ... ]
That the above principle 1s valid fcr one--person processes where
we ave attempting to maximize a return or minimize cost is clear
by contradiction. Since its validity may not be as obvious for Jame
processes, let us present a brief proof for the sake of completeness.
The recurrence relation in (1) provides a sequence, not neces—
sarily unique, of pairs of distributicn functicns, {GN(u,P,P'),G'N(v,P,P'ﬁ
which furnish the sequence{f‘N(P,P')s . In order to show that the
function t‘N(P,P') 18 actually the value of the N—stage zame, 1t 1s
sufficient to show that A can guarantee an expectec return of fN}P.P')
if he chooses u at the first stage of an N-stage process 1in accordance
witY the distribution function GN(u,P,P'), when the states of A and
B are described by P ani P)} respectively, and similarly that B

can guarantee an expected loss of not mcre than —fN(P,P').
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To demonstrate this, consider the one-person N-stage process
in which A employs tne fixed strategy rerresented by the sequence
of distribution funcciona,'{ck(u,P,P')f, k=1,2,...,N, and B attempts
to minimize A's expected N-stage return. It 1, sufficient to consider
this prccess, since any other policy employed by B yields a larger
expected return for A. Let
(2) wN(P,P') = N-stage expected return to A when A employs
the fized strategy QGN(u,P,P')f, B employs
a minimizing strategy, and A and B are in the initiai
states P and P'.

Then we have the recurrence relations

(3) wi(P,P') =Int , [ Klu,v)dG(u,P,P')]dG'(v),
G' Ov<P! O<u“P

wy.,(P,P') = Int [/ " [R{u,v)+w,(T,T')]dG, . (u,P,P*)]dG"v
Nt G' ogv<P! [OS“SP[ A a2l

updn employing themlnciple of optimality for the ohne—person process.
Considering the origin of the functicn F,, we see that the
minimum in the relation for w,(P,P') in (3) is attained by the function
G'=G,', not uniquely in general. Hence,
(4) wi(P,P') = v,(P,P').
Since w;i=v;, the relation for 4z ylelds in the same way the fact
that wozvp, and thus, inductively, we see that
(5) wy(P,P') = vy (P,B").
In precisely the same way we show that if B employs the
strategy {G'N(V,P,P')g, A cannot cbtain?%ggn vN(P,P'). Hence
vN(P,P') is the value ol the N-stage geme.

§4. Related (lasces of G-mes.

Proceeding formally for the moment, without regard to the

existence of the quantity we define, let us ccrsider the unbounded

(8)
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process. Define

(1) f(P,P') = the value of the infinite stage process to
A when A has P initially, B has P', and both
players employ optimal strategies.

If £(pP,P') exists, it satisfies the equation

(2) r(P,P') aMax Min [/ / [R(u,v)+£(T,T")]dG(u)dG"(v)]
G G'  OKucP
0KV<P!
= Min Max | o I,
ag' G

provided that Max-Min = Min-Max. The legitimacy of fhis will be
discussed in the following sectlons, under suitable assumptions.
Let us, however, observe brlefly how more general processes
can give rise to various extensions of (2). 1f we allow the process
to be time-dependent in the sense that the return from the kEE
stage, as well as the transformations T and T', depends upon k,
in place of the function defined by (1), we must consider the sequence
of functions
(3) r(P,P';k) = the value to A of the infinite process begin-
ning at the k stage when A possesses P
at this stage and B possesses P', and both
employ optimal strategles.

This sequence satisfies the recurrence relation

[/ / [R(u,v,k)+0(T,,T", ik+1)]dg(u)dG" (v)
0 <ugP

0 <vLP!

(&) f(P,P';k) = Max Min
G G!

= Min Max [ se ].
G a

Let us now complicate the process to a further degree. We have
assumed in the above formulation that the interaction between the
players was perfectly determined once u and v were chosen. It is

{nteresting occasionally to consider more general processes in which

(9)



P-676
5-13-55

a choice of u and v merely determine a distribution of outcomes,

dencted by the functlon Kk(z,t,t';u,v), wnich depends upcn the stage,
is

where z/the value <f R(u,v), t the value ¢f T, and t' the value of

T'. Then (4) 1s replaced by

(5) £(P,P';k) -Max Min [ W lz+e(t,er k1) )oK (2, 8,81 5u,v)]
S ag(u) 46'(v)]
OgV<P?

-Min Max [ ... 7.
G' G

Flnally, let us consider the case where we are not interested
in the sum of trie returns, but in some nonlinear function of the total
return. A particularly important example is the probability of
achleving a return cf at least Ro. This 18 tre expected value of
the function defined by
(6) é (U) = G, OSu<R0’

a 1, uzﬂo.
aR

Another interesting utility functicn is e .
describe the general non-linear

To / .ituation, we must introduce an additional state
variable, a, the return obtalned by A from %:he previous stages
of the process. Defining f(P,P',a;k) essentially as in (3), we

obtain the functional equation

(7) r(P,p'a;k)-Max min Lv" " [ o/ 0(t,00,a0z;5041)dK, (2,8,85u,v)]

G G! Oqu¢P
OGV<P! dG(u)aa’(v)

= Min Max [ ... ]
G' G

We shall nct coneider any of these moure complicated functional
equations since the basic aporcach is the same 'n all cases, desplte

the fact that the analyt!: detalls increase in complexity.

(10)
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A genuinely new class of functional equations emerges from
the study of "learning processes”, [14], [9]. Here it is
assumed that the distribution function K(z,t,t';u,v) exists, but
1s not completely known. In the course of carrying out the process,
additional information 1s obtained concerning K. The problem
18 cnce again to maximize the expected value of the total return.
It is clear, of course, that we are encroaching upon the domain of
sequential analysis. We shall consider the functional equations
obtained in this way in a subsequent work.
The methods we employ here, combined with those used to
establish the results of [3], can be used in very much the same form

to treat the ronlinear differential equations

(11) ' dx,
—= = Max Min [0ﬁdﬁtl(x,t;u,v)dG(U)GO'(v)]
dat G G
= Min Max [ ... ], 1=1,2,...,n,
ag' ¢

and similar types of integro-differential equations, cf. [16], [17].

65. Statement of Principal Results.

Beiore stating our results, let us introduce some notation
and definitions. We shall take P and P' tu be n-— and n'-dimensional
vectors defined over reglions D and D' respectively, each contain-
ing the origin in its respective space. For all values of u,
v, P and P', the transformed vectors T(P,P';u,v), T'(P,P';u,v),
are required to lie within these same domains, where u and v are
k and k'—dimensional choice vectors respectively, constrained to

domains S and S' which, in general, depend upon P and P'. Since

(11)
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we are dealing with shrinking transformations, there is no loss in
-assuming D and D' to be finite.
In each space, let us introduce the norm, ||P||, equal to the

sum of the absolute values of the components of P,

n
(") el = Pl
i=]
nl
[er]] = £ [p,].
=]

Actually, these need not be tue same norms, and in some situations,
it might be useful to consider norms molded to the structure of the
functional equations arising, rather than standard .ijorms of the
above type.

The functional equation we shall consider is

(2) f(P,P') = ng Mér'l [ SS [l((P,P';u,v)

iy *h(P:P'»u"')f”"f')]"“(“"“’("f

= Min Max [ ... ],
G! G

where
(5; T = T(P,P'iU.V),
T' = T'(P,P';u,v)
To simplify our notation, let us represent the operator appearing
within brackets in equation (2) by T(P,P';f;G,G'), B0 trat the above

functional equations take the form

(%) r(P,P') = Max Min T(P,P';f;G,G')
a G!'

= Min Max T(P,P';f;G,G').
a' G

(12)
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Whether one wishes to call this one functional equation or
& pair of linked functional equations appears to be a matter of
taste.

The result we wish to prove 1is

Theorem 1. Consider tre above equation, (4), under the follow-

ing assumptions.

(5) (a) The functions R(P,P';u,v), h(P,P';u,v), T(P,P';u,v)

and T(P,P';u,v) are continuous functions of P and P',

u and v, 1n any bounded regions of the variables.

{d) The cholce domains, S(P,P'), S'(P,P'), vary contin-

uously with P and P'.

(c) T and T' are shrinking transformations, 1i.e.

[]
Maasz (1] T(P,Pt5u,v) || + || TouesPrsu,v)||) < k([IPHI+]]PT])
ue€
vesS!

where k lg a fixed constant less than 1.

(d) Let
w(c) = Max (Max |R(u,v)|).
[IP]| + ||P']|<c ues,
VES'
@
Then é w(k"c) < oo.
n=
(e) Max || nh(P,P';u,v)|| < 1.
u,v,p,p!

I1f the above conditions are satisfied, we can asse:rt tnat there

1s a unique solution of (4) within the class of functions r(p,p')

.Por simplicity, let us suppress the P and P' In R(P,P';u,v).

(13)

._----------llillII-----III---IIIIIIlllllllllllllllllllL___;__.
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which are continuous for all finite P and P' and vanish when P!

and P' are both null vectors.

This solution may be found by the method of successive approx—

imations,

(6) £ ,(P,P') = Max Min [ SS R(u,v)dG(u)dG'(v)] ,
G G! ues,
veS!

= Min Max [ ... ],
G' G

f (P,P') = Max Min T(P,P';fn;G,G'),

n+1 G G

= Min Max T(?P,P';f_;G,G'), n>>o,
a' G - =

R

with f(P,P') = 1im f (P,P') 1in any bounded domain of the
n—>@

(P,P') space.

We shall further demonstr .e

Theorem 2. Under the hypotheses of Theorem 1, a set of functions,

(Gwu),@'(v)), furnished by the functional equation constitute a set

of optimal strategies for A and B respectively in the multi-stage

game described in the precedinyg sections.

(14)
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§6. Lemma 5=

Let us presentd a simple but extremely useful inequality which

exhibits the quasi-linearity of the transformation

(1) L(f) = Max Min T(P,P'; f; G, G') = Min Max T
: G a G' G

Lemma 1. Let

(2) L(f) = Max Min [ A d/’[R(u,v) + h(P,P';u,v) r(T,T') ]
G G ues

ves! 4G(u)dG' (v) J
= Min M ene ’

| ]

Li(P) = Max Min [ 0/ dﬂ Ph(u,v) + h(P,P';u,v)F(T,T")
ues

veS'
dG(u)dG' (v) j.
- Mé? H;x [ e J.
Then
(3) [L(E)Ly (P)] < Max Wax [c/; S IR )R (0,0) |+
veS'

In(B,2*su,v) | [£(,7)R(T.T4)|] dg(u)da’ (v) ]

Proof: Let us write

(%) L(f) = Max Min T(P,P';f;G,G') = Min Max
G " G' G

Li(F) = Max Min T,(P,P';P;G,C') = Min Max

G G G' G

Let (G,,G,') be a pailr of functions yleldin, tne value L(f), and (Gz,Ga')
be a pair of functions yieldin, the value L,(F). Then, by virtue of the

saddle—point property,we have the followiny chain of 2qualities and
inequalities

'Ii is assumed tnat max-min e min-max for each transformation. A similar
result holds for the one—sided max-min operator; see H 14,
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(5) L(f) = T(P,P';£;G1,G1') 5 T(P,P';1;G2,6, )
]
< T(P,P';£;Gy,02 ),
Li(F) = T:(P,P';F;G2,62 ) > T1(P,P';F;Cy,Ga )
L
< Tx(P,P';Fjozﬁx )
Combining these inequalities we have
(6) L(r)-Li(F) > T(P,P';f;00,G,') — T4(P,P';F;G2,G,")

< T(P,P';f,Gy,G2') — T1+(P,P';F;G4,G2")

The inequality in (6) ylelds
(8) L(f)--L.(F) 2 (éis/)[ﬁ(u,v)—ﬁ,(u,v)+h(P,P';u,v)[f(T,T')—
v-D!
F(T,T'iﬂ dGg(u)dG,'(v)
</ [Rlu,v)-Ri(u,v) 4
u«<D

V(:D'

h(P,P';u,v)(}(T,T')-F(T»T'{[) dGy(u)dGa'(v).
Using the fact that a < ¢ { b 1mp11ea-|c| < Max (|a|, |b]), we
obtain from (8) the further inequality
(9) L)Ly (F) | ¢ Max U[ /2 [iRCu,v)-R(u,v) |+

.1 uxD
- veD!

-

In(P,P'5u,v) | |r(T.T')-F(T,T')J dGa(U)de'(V)! ,

L(p (/){IR(U.V)-Rx(U.V)I '
u€D

veD!
[h(P,P';u,v) | lr(T,T')-F(T,T'){j dGl(u)dGR‘(v)] ’

from which (3) follows {mmediately.

It 18 easy to make the modifications required to obtain the analogous
result for the case where Max N}n i{s replaced by Sup Inf.

§7. Existence and Uniqueness.

We can now proceed to a proof of Theorem 1,

(35)

..IIIIIIIIIIIIIIIIIIIlllllllIlIllllllllllllll""'-""""""""""""""]III
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Let
N I/

( t‘o(P,P') = Max Mir'x [ v R(u,v)dG(u)‘G(v)] ,

G G uesS ) 1

veS'
« Min Max | 5 B3 ]

G!' G |
and R
(2) Tre1(P,P') = Max  Min T(P,P'if_; G,G') = Min Max T,

G G

where T 18 defined as in (4.2) and (4.4).

By virtue of our assumptions concerning the coefficient functions,
nd the domains, S and S',
we can assert the existence of the saddlepoint in (1), and the
continuity of fo(P,P'). Inductively, then, all the rn(P,P') exist
and are continuous for all finite P and P'.

Let us now show that the sequence ifn; converges uniformly in
any finite pcrtion of the (P,P')-regions. Using Lemmasl we obtain

the inequality

(3) 01 (PBY)E (£,F0) | Max ”gf{}/’o/"fn<T-T‘)-fn_1(T'T')|

ac(u)ac' (v) |, n=2,3,...
Define the new sequence

(%) U ,1(c) = Max it . (P,PY)—r (P,P')|.

|{pl+]1P"]|ge M
Then (3) ylelds, using the assumption of (4a) of {3,

(5) un+1(c) S un(kc)r n=2,%,... ,

Alsq we have
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(6) If2(p, P j—f (P,P')] < M Max V> R(u,v)a6 (u)dar (v),
whence
(7) ua{c) < w(c).

Using cur assumption that w(knc) < @ we see that the series
z [rn+l(P,P')—fn(P,P'2] converges uniformly in any finite region.
;ence fn(P,P') converges uniformly to a function f(P,P') which
satisfies the original functiocnal equation.

This completes the proof of existence. Let us now turn to a
proof of uniqueness. Let F(P,P') be another solution which is
continuous at P=0,P'=0, and bcunded in any finite region. We see
that F(P,P') 18 then actually continuocus for all finite P and P',
although this fact 18 not necessary for our proof. It does simplify
it a bit since we can replace Sup—Inf by Max—Min.

We then have the two equations
(8) F(P,P') = Max Min T(P,P';F;G,G')

G G'

f(P,P') = Max Min T(P,P';f;G,G').
G G!

Applying Lemmal, we see that

(9) |F(P,P')=f(P,P')| < Max Max [J’ o/ |F(T,T")-£(T,T') |4GdG'.
G G' L u€s
ve 3!
Let

(10) s(c) = [F(P,P')-£(P,P")].

. Max
LIPLI+]IP' I ¢

Then (9) ylelds the relation

(11) a(c) < d(kej,
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which, upon iteration, yields A(c) ¢ a(k"¢), 11=1,2,...,. Since

F and f are both continuous at P = O, P' = O, and have .he common
value O there, we see that A(k"e¢) > 0as u ——? @ Hence A(c) =0
and P = f.

This completes the proof of Theorem 1.
86. Successive Approximations in General

The sequen-e of approximations, {rn(P,P')f , we used to
construct the function f(P,P') was precisely that obtained

the sequence of values assoclated with
from/the finite n—stage processess. This is actually not the
best sequence to use if we are interested only in the infintte
stage process. As we nave pointed out elsewhere,[ 4], [7],
approximation in "policy space”, here "strategy space", 1s in
many ways a mo'e natural and more important type of approximatio:n.

To Justify this and other types of approximations we require

Theorem 3. Under the assumptions of Theorem 1, the sequence

def . ned by

(1) rn+1(P,P') - ng Mé? T(P,P';fn;G,G'), n=0,1,...
= Min Max
G' G

Converges to the solution of (5.3) for any initial function fO(P,P')

which is continuous in any finite part of the (P,P')—domain,

and equal to zero at P=0,P'=0.

The proof is precisely the same as that given above.

§ 9. Effectiveness of Solution.

We have established cxistence and uniqueness of the functional
equation we derived under the assumption thatj?zfinite process
possessed a value for each player. The question now arises as
tc whether the functional equation actually yields sufficient

information to allow each player to obtain this value. If so,

42« AN
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we say that the solution 1s effective.
To show effectiveness, under the hypotheses of Theorem 1,
we must show that if A uses a distribution function G(u) = G(u;P,P')
obtained from a pair (@,G') which yleld the min-max, then, regar‘-
less of what B may do, we can guarantee a return of at least
£(P,P') %o A.
Employing this fixed strategy, A's return will be, at
worst, detarmined by the solution of the functional equation
(1) P(P,P') = Mér': [/;eg/ [R(u,v)+h(P,P';u,v)F(T,T')]dG(u)dG'(v)].
veS?t
It is ecasy to show, using the techniques of the preceding sections,
cf [2], where these equations are treated in Cetail, that this
equation hes a unique continuous sclution which 18 zero at

P=0,P'=0, PFurthermore, the solution of this equation may be

obtainea as the limit of the sequence defined by

(2) ?(P,P') = Min [/ / R(u,v)dc(u)da" (v) ]
G' [ ues
veS!
P, (P.PY) = Hér"\K‘g/[R(u,v)-bh(P,P‘;u,v)Fn(T.T')dG(u)dG'(v)]
VES'

It 18 clear, from the derivation of G(u), that F = f,. Hence,

inductively, F_ ., = f .., as defined by (7.2). Thus

(3) F(P,P') = 1im P o= 1lim £ = r(p,P').
n—>o n—>a

This demonstrates the effectiveness of the solution in the
continuous case.

$10. Stavility of the Solution

An important aspect of any physical process is the dependence
of measuring functions (in “his case, the value of the game),

upon the parameters and coefficlent functions which determine

(20)
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the process. In general, we expect small changes in these
quantities to result in small changes in the measuring functions.
If this ie true, with appropriate definitions of "smallness",
we say the process 1s stable. A principle of wide validity 1s that
physical processes ar. stable. Of course, 8ince the mathematical
transcription of any physical process Js never precise, we
cannot conclude immediately that the mathematical process, as
defined by the equation, 1is stable. Actually, one of the most
useful tests of the realism of a mathematical model of a physical
process is that of stability.

Let us now estadblish
Theorem 4. Let

(1) alc) = Max  |R(u,v)-R'(u,v)].

Max
LIP}|+||P"]]<e u€s
v€S'!

Then, under the hypotheees of Theorem 1, the solutions of

(2) f(P,P') = Max Min /[R(u,v)+h(P,P';u,v)t‘(T,T')]deG'
G G! ue¢s
veS'!
= Min M
g |l P

F(P,P') = Max Min E/° o/’R'(u,v)+h(P,P';u,v)F(T,T'XJdeG']
G G' u€s
T€S !

=» Min Max [...
G' G J

(21)
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satisfy the inequality

(3) £(P,B)-F(P,P')| < 5 o(k"e).

n=0

 Proof: Applying the Lemma of §3, we see that

(4) |t (P,P")-F(P,P')| < Max Max (/ é/>ﬁn-ra'|+|f (T,T')-F(T,T' )|J

k;‘: % deGj

Iteration of this inequality yields the desired result.

$11. Purther Results.

There are a number of different ways in which the results of

Theorems 1 through 4 can be extended and generalized.

These results depended upon the fact that the transformation
(T,T') was a shrinking transformation, in the sense explained above.
An intuitive visualization of this is to consider (P,P') as repre-
senting the resources of each side. Then each play of the game
diminishes the total resources available.

We can introduce a shrinking transformaticn in another way

by imposing the conaition that

(1) In(P,P';u,v)| < k < 1.

A condition of this type can rrise in two ways. PFirst of all,

it may represent the discounted value of future actions as contrasted
with the present; secondly, it may represent a rrobability of
survival in situations in which there is a non-zero probability of
the termmination of the process associated with every play of the

(22)
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game of 916. Both concepts are connected through the intermediary
of prediction theory.

Having introduced (1), it is no longer necessary to assume
that (T,T') 1s a shrinking transformation. We must, however,
assume that (P,P') -d treamsforms always iie within some fixed
region. With these conditions, the analogues of Theorems 1
through 4 are readily obtained.

Furthemore, similar results may be obtained, using the
same methods, ior the generalized equations mentioned in {4,

under various combinations of the above assumptions.

Equations satisfying either of the above conditioms correspond
to the equations of Types One and Two discussed in our paper on
one—person processes, [2]. When we consider other types of processes,
the analysis becomes more specialized and complicated, cf. [2], §10.
In a different direction, we mey —elax the restrictions of
continuity which we have imposed and .nvestigate the conditiens

under which we obtain solutions to equations of the form

f(pP,*') « Sup Inf T(P,P';f;G,G'),
¢ a°

« Inf Sup T(P,P';f;G,G').
g' G

In these cates, w2 will obtain ¢—effective strategles.

P 2. Differeniiabllity.
If we assume that under suitable assumptions of concavity and
convexity the functional equation reduces to

(1) f(P,P') = max Mén R(u,v)+f(T,T')

then, in certain other fortunate cases, we can reduce the equation

(13)
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to a functional equation of more conventional form.

To 1llustrate the idea, consider the functional equation

(2) tix) = Max [gw)m(x-y)n(ayw(x-y))].
O<y<x

where 0<a,b <1, which we have discussed in a number of papers, 2| 7

-~

If the maximum’@ggggs in the interior of the interval, end if we
assume that g and h are differentiable, we obtain the two equations
(3) g'(y)-h'(x—y)+6-b)s' (ay+b(x—y))=0

f'(x)=h'(x-=y)+bf' (ay+b(x-y)),
which allow us to compute f'(x) via a relatively simple recurrence
relation.

Similarly, if we consider the equation

(4) r(x,y) -O;{?gx Osltgy [R(u.V;X.y)+f(T(x.y.u.V),T'(X.y.u.V))]

.g;:sx ;:¥g' -1

where x and y are now scalars, and assume that the saddlepoint
always
exists and is/inside the region for all nor—negative x and y,

we can reduce (4) to the set of simultaneous equations
Ru+'rurx('r,'r')+T'ury('r,r')-o,
1 Ve
(5) Rv+'rvrx('r,'1")+1'v ry('r,'r )=0,
r -R +T r (T,T'),
=R_+T_f_(T,T').

y y Yy
b13. One—Sided Min--Max

Let us now consider the equation
(1) f(P,P')=Min Max Eﬁ(u,v)+h(P,P';u,v)f(T,T')J,
ve St u¢ §!
which arises from the allocation process described above 1f the

second player 1s required to announce his choice of v before each

play. (%)



P-67€

5—15-5%
""sing a technique due to Wendell Fleming, we can treat this
equation 1in exactly the same fashion as thcse appearing in the

previous sections. We begin by noting that for any function R(u,v)

(2) Min Max R(u,v) = Min Max R(u,v),
vesS' ueS ves' (v)e€s

where u(v) is now a function of v which maximizes R(u,v, for
fixed v. Let y(v) be this function.

Let V be a value of v which minimizes R(U(v),v). Then we
have the two inequalities
(4) R(U(V),V) = < Z(u(v),v),

R(U(V),v) > R(u(v),v),

for any otnher admissible values of u and v.

Using these inequalities we readily obtain the analogue
of the lemma given in §4 for equations of the above type. In

this way we can establish the analogues of the previous theorems.

814. An Alternative Approach.

Let us now show that there are alternative approcaches which
cen dispense with cur lemma, and rely instead directly upon the
shrinking properties of the transformation. Let us, .or
simplicity, consider the most important case where R(u,v) and
h(P,P';u,v) are non-negzative.

Let, as above

(1) w(c) = Max | Mz~ Max R(u,v).
| {P||+]IP"||<c ueS ves!

As usual, let us introduce the sequence {Fn(P,P')% , where

(2) fi (P,P')=Mir Max R(u,v)
véeS' uel
fn+1(P,P')-M1n Max {F(u,v)+h(P,P';u,v)fn(T,T'{] ,n=1,2,...

ves' ueS
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Then
(3) fi(P,P') ¢ ra{(P,P') ¢ Min Max R(u,v)+w(kc{]
ves' u€Es
< £4(P,P")+w(ke).
Continuing in th.s fashion, we see that
(4) ra(P,P') < f3(P,P') < Min Max | R(u,v)+h(P,P';u,v)fe(T,T')+

veS' ued H(&.C)

< f,(P,P')+w(k‘c).

' n
(5) £ (p,P") ¢ rm,f?.r') < £ (P,Pt)enbdc).
Thus we have uniform convergence to a sclut‘on, under our

assrumption that £ w(k"c) ¢ @ .
n=1
R15. Probability of Survival.

briefly
Let us now/consider some other classes of multi-stage

games which lead to related classes of functional equations.

To begin with, let us consider the allocation process discussed
in §2 in which we assume that there is a probability h(P,P';u,v),
dependent upon P,P', u and v, that the process will terminate

at the end of the particulkr stage. The functional equation
governing the process 18 then the equation we have discussed

in the preceding sectione where f(P,P') 1s the expected
return to A. In the gliocation process, h may be either 1, or
a"discount factor"emphasizing the present value of a return as
opprsed to a future value.

§16. Games of Survival.

Associated with the p.evious concept of probablility of
survival is the class of games called "games of survival". Here
both rlayers are actuated by the desire to survive the other,
with each play of the game involving either a diminuation of

resources of one or both players, or an actual chance of elimination.

(26)
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Here the basic functional equaticn 1{s
(1) r(P,P')eMax Min t/‘ ./)h(P,P';u,v)!‘('Y‘,T')dG(u)dG'(v)\
G G' u«D =
v.D!
=Min Max S r |
G' ¢] J

where f(P,P') 18 now the prubability that A survive B. The
equation is valid only for P,P'>0 with the side conditions
(2) r(p,0) =1, P>0}

r(o,P')= 0, P'>0,

r(0,0) = 1/2, (as a matter of convention).

This equation 18 very much more difficult to treat than the
foregoing equations in the cases of greatest interest where
h-l nd T and T' a~~ merely restricted to lie in the bounded
regions containing P and P'.

Particular results may be found in "6i» Milzor and
Shapley,{lQJ. This approach is occasicnally useful in treating
non -zero sum games, see | gJ.

R17. Games of Pursuit.

Finally, let us mention the very interesting and difficult
problems connected with pursuit games. There 18 &8s yet no
aatiafaétory theory of continuous pursuit games, which necessarily
reastricts us to a discussion of discrete games.

Let us assune that two players, A and B, are restricted to
positions at the lattice points of the plane. A can move up to
k units from his position in either horizontal or vertical direction,
and B can move up to 1 units in the same manner. With both players
required to move simultaneously, we are interested in the strategies
which enable A to catch B, to catch B in minimum time, or to

minimize some other payoff function.
(27)
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[t playet n the unt: .ided region of the plane, it is not
easy to determine when cajture occurs, and the yiroblem 18 not
trivial for » bounded regton efther.

Let us set
(1) t(P,P') « the time required for A to catch B when

A 1s st the lattice point P, B is at the
lattice pouint Q, and both players employ
optimal strategles.

Then, without inquiring into the existence of our function,

the equation satisfied by f 1s

(o) (P,P') = 1+ Min Max (,/ /’r(P+e,P'+r)do(e)do'(r)J ,
G a'

= 14 Max Min )
G' G T

where G(e) and G(f) are distributions over the allowable

vectors e and f. This equation holds prior to capture.d At

capture, the process terminates. Very little has been/iznZonnoction
with eetablishing existence and uniqueness theorems for these
equations. We shall discuss them in a subsequent paper.

§18. Colcnel Blotto.

Let us now consider a wel)-known single—stage game vhich can
pruofitably be cunsidered tu be a multi—-stage process. Let A and B
possess the scalar quantit es x and y, both »ositive.

A divides x .nto a sum of N non—mnegative quantities X1,XgyeeosXy

and B dces likew!se with y, 8o that we have
(1) X = X14Xg+. . 4Xy, xiz 0
Yy = yl§y3+. . .+yN.

As a result of this allccation, A recelves a pay—off of
N
(2) RN(X1)YJ) - ‘;-:-l max (xi—yi'o)’

(c8)
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and B a pay-off of -RN(xi’yJ)'

Let us define fN(x,y) to be the value of this game. Then we

have the recurrence relaticns

(3) fi(x,y) = Max Min J‘T/’ " Max (x1-y1,0)dG(x)dG" (¥),
G G' 0 0

= Min Max (/”t/" . Max (x;-y1,0)aG(x,)dG"' (w),
G! G 0 0

fN+l(x,y)=Max Min ['L/"xg/" 4 [Max(xl—y,,0)+fN(x-x,,y-y,)]dG(x)dc'(M)]
G 0 0

G'
=Min Max [ ... ]
G' G

This formulation facilitates both analytical and computaticnal

treatment.
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