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ABSTRACT

Presented is a summary of the analytical and experimental effort
during the second quarter of a one year contract to investigate and develop
a film protected, convectively coocled nozzle for advanced solid rocket
applications. The work performed included thermochemical analyses of the
reactions encountered in the boundary layer between the injectant, the
free stream, and the nozzle wall; heat transfer analyses on alumina parti-
cle radiation and convection heat transfer te the nozzle wall; fluid
mechanics analysis ¢f injection into a turbulent boundary layer with
accelerating flow; cold flow laboratory experiments on injection into a
turbulent boundary layer through discrete holes; and rocket motor tests
of the cooling concept on the Philco Solid Propellant Simulator.
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SECTION 1

INTRODUCTION

The emphasis in present and future propellants for solid rocket
motors has been toward higher impulse. This can be accomplished by either
reducing the molecular weight of the exhaust products, increasing the flame
temperagure, or both. Presently, flame temperatures of the order of 6500°F
to 6800 F are being considered. Many tests have been conducted with pro-
pellants in this category and they have shown that this increase in tempera-
ture has produced major problems in thermal-structural integrity and sur-
face regression, especially for long duration applications.

The investigations and results of contract AF 04(611)-8387,
"Applied Research for Advanced Cooled Nozzles" showed that thermal pro-
tection concepts capable of containing these high energy corrosive pro-
pellants are limited. One concept which showed feasibility was the film
protected, convection cooled nozzle. The purpose of the present contract
is to obtain further analytical definition as well as experimental veri-
fication,

This report summarizes the work conducted at Philco Research
Laboratories during the second quarter of the one year contract. In most
areas work was a iontinuation of that reported in the First Quarterly
Technical Report.™ The thermochemical analysis of the reactions en-
countered in the boundary layer between the injectant, the free stream, and
the nozzle wall was completed. Heat transfer analyses were performed on
alumina particle radiation to the nozzle wall and convection heat transfer
for the sub-scale and demonstration nozzle contours. Efforts continued on
an analytical and experimental investigation of the fluid mechanic aspects
of injection into turbutent boundary layers. Four rocket motor tests were
conducted on sub-scale nozzles in which convection cooling and convection
cooling with injection were evaluated with methane as the coolant/injectant.




B 12

The culmination of the various aspects of this investigation is
to provide sufficient analytical and experimental background tc allow one
to design and optimized film protected-convectively cooled nozzle. How-
ever, as is indicated in the results of the work performed during the past
quarter there are still several areas which require better understanding.
These areas will receive concentrated effort during the remainder of the
program.
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SECTION 2

STUDY AND ANALYSIS

2.1 THERMOCHEMISTRY

As a continuation of the work reported in the First Quarterly
Reportl, thermochemical analyses with carbon tetrachloride as an injectant
were accomplished. Also included are the analyses of CCl, and CH, with
alumina removed from the boundary layer.

Carbon tetrachloride is a liquid under ambient conditions, and
its use as an injection fluid involves the problems of flow regulation
and boiling. Nevertheless, at the temperatures of interest it decomposes
endothermically to carbon and chlorine. The resultant chlorine should be
relatively unreactive with the walls of the injection capillaries. Thus,
like methane, and unstable carbon-based molecule is being added to the
boundary layer. Unlike CCl,, however, the hydrogen which results from
the endothermic decomposition of methane is relatively reactive above
4000°F with respect to the graphite throat contour.

The enthalpies, in BTU/lb, of the free stream and the free stream
plus various weight percentages of CCl, have been computed as a function
of temperature and are shown in Figure 2-1. As discussed in the First
Quarterly Reportl, three ratios of injection gas to combustion gas mass
flow rates have been considered, 1:9, 1:1, and 9:1, The combustion product
spectrum chosen is that from the 6720°F aluminized propellant system simu-
lated in composition by the so-called "Hot Soligd" composition.
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The enthalpy values shown represent the summation of the heat of
formation at 536°R plus the change in eathalpy above that temperature of
all of the combustion products and of the products of the reaction of the
combustion products with CCl,. These data, then, include the heats of any
reactions which occur when CCl, is mixed with the free stream. Figure 2-1
also gives the enthalpy values if no chemical reactions between the CCl,
and the combustion product species are allowed to occur. Assuming the en~-
thalpy of mixing is zero, the difference in the enthalpy values at any given
temperature with and without reaction represents the net heat of reaction
at that temperature.

In comparing the enthalpy values of the CCl,-free stream with
those for CH4-free stream given in the Fixst Quarterly Report, it should
be remembered that any direct couparison is on a mass basis, i.e., 10
pounds of CHy; to 10 pounds of CCl,. Since the injection capillaries re-
present a volume limited rather than a mass limited system, a truer compari-
son would be on a molar basis, i.e., the number of pound atoms of carbon
being injected into the boundary layer per pound mole of injection gas.
Thus, the 10 w/o CH4 curves (10 1bs. CH, + 10 1bs combustion product gases)
represent 10/16 or 0,62 1b moles of CHy and 0.62 1lb atoms of carbon. 0.62
1b moles of CCl, (0.62 1b atoms of carbon) is represented by 92 lbs of CCl4
and CH, is less exaggerated when compared on a molar basis rather than a
mass basis.

The "B'" values of CC14, i.e., the amount of wall material required
to theoretically saturate one gram of the gas mixture (CCly plus combustion
products), are shown in Figure 2-2, A negative 'B" value implies that there
is more than sufficient carbon from the decomposition of the injectant car-
bon tetrachloride to saturate the mixture. As with the enthalpies, the
90 w/o CCly curve can be compared directly to the 10 w/o CHy curve given
in the first quarterly report. Again, the difference in the "B" values
between CCl, and CH, is less exaggerated when compared on a molar basis
rather than a mass basis. Indeed, when compared in this manner, CCl, offers
a major advantage in that the Cly is relatively inert to the grapnite wall.

There is some ques.ion as to whether oxr not the condensed Alp0Oqg
particles in the combustion free stream enter into the boundary layer.
On this basis, calculations of enthalpies and '"B'" values have been made on
mixtures of CCla-"Hot-Solid" and CH4-"Hot-Solid," eliminating Al,03 as a
product of combustion, i.e., assuming that Al,O3 is neither reactive with
the graphite wall nor the injection gas. The results are shown in Figures
2-3 through 2-6. As would be expected, the enthalpy values are more posi-
tive, reflecting the relatively high negative enthalpy of formation of
Al 03; and the "B'" values are more negative, reflecting the reactivity of
A1203 with the carbon in the boundary layer.
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Z.2 FLUID MECHANICS

A primary advantage of the nozzle concept under study is that the
opportunity of moderating the thermal and chemical action of the combustion
products on the nozzle contour is provided through the use of controlled
fluid injection. The objectives of the fluid mechanics studies have essential-
ly been (1) to determine the nature of the interaction resulting when discrete
three dimensional wall jets are injected into the boundary layer in the nozzle
inlet and {2) to formulate an analytical model capable of predicting the thermal
and chemical consequences of the fluid injection along the nozzle contour.

The cold flow injection studies covered in Section 3.1 are felt to
have provided adequate insight into the problem of the injection interaction.
However, considerable uncertainty remains concerning the formation of a two
dimensional wall jet in a nozzle from a large number of three dimensional
wall jets. Fortunately, there is no absolute reason why a uniform film need
ever be achieved in the nozzle. The penalty for sacrificing the continuous
film appears to be limited to a reduction in the effectiveness (thermal and
chemical) of the fluid and the formation of slight irregularities on the
contour., It is currently felt that actual nozzle firings will provide the
only reliable indication of the occurance of jet coalescence. The fourth
subscale test (with methane injection) is interesting in this regard. The
apparent failure of the internal methane manifolds led to nonuniform injection.
Additionally the pyrolytic graphite washer surface temperature, injection gas
mixing and/or injection gas nonequilibrium effects were great enough to promote
chemical reaction between the methane and graphite. The resulting grooves
mark the extent of jet spreading. In some areas the jets actually coalesced
in abnut 10 hole diameters. In other areas the jet patterns remained quite
narrow and did not coalesce. It is thought that the wide patterns correspond
to relatively low methane injection rates and the narrow patterns correspond
to local injection rates which approached the design values, It is also felt
that the major loss of mnterial just upstream of the throat of this nozzle was .

due to a thermo-structural failure of the surface and was not a direct consequence

of the fluid injection. However, the excessive surface temperatures implied
here are due to inadequate cooling (or poor design heat transfer predictions)
and could be related to the presence of the internal cooling passages near the
surface. In comparison, the nitrogen injection nozzles tested during contract
AF 04(611)-8387 were significantly cooler due to higher intermal convection
cooling capacity. These nozzles did not experience major contour failures
upstream of the throat and uniform injection was apparently realized. The
injection jet patterns were also observable in these tests because the surface
under the core of the jet was completely protected from corrosion. The actual
circumferential spreading of the inert jets is obscured somewhat because dilution
of the combustion products with nitrogen can only reduce the rate of reaction.
Thus, the jet boundaries are not sharply defined. The interesting observation

-11-

P




n

is that the effective core of the jets persistsfor a considerable distance down-
stream of injection. The axial length of the observed ridge and groove pattern
is evidently proportional to the injection to free stream velocity ratio. At

the present time, it appears reasonable to conclude that the rate of jet spreading,
whether due to turbulent convection, simple diffusion or a combination of these,
is slow relative to the axial transport. It is also apparent that the partial
failure of the nozzle surface downstream of the injection point produces an un-
stable situation and must be avoided. The instability results from the use of
counterflow cooling. That is, the thinning of the nozzle wall downstream of the
injection point leads to higher local wall temperatures in the cooling passage
and hence higher cooling rates and higher cooling gas bulk temperatures., Sub-
sequently, the hotter gas becomes less effective in cooling the washers upstream
of the point of contour failure. Finally, the injected gas has less film cooling
capacity and the effective heating rate at the point of contour failure should
increase, This may then lead to propagation of the fault in the contour in the
upstream direction and the instability increases. In future testing efforts

will be specifically directed toward increased convective cooling of the washers
just upstream of the throat region. 1t is expected that the effects of both
inert and methane gas injection will become more obvious when contour integrity
is insured.

At the beginning of this contract it was recognized that there was no
possibility of analytically describing the fluid mechanic development of a three
dimensional wall jet in the nozzle. It was also recognized that existing analyses
for two dimensional wall jets could not be realistically applied to the present
problem. Consequently, efforts were directed toward the development of an
improved analytic description of a two dimensional wall jet in an axisymmetric
nozzle, Basically, the approach taken was to start with the case of incompressable
flow without heat transfer, mass transfer or chemical reactions. It was poust-
ulated that the essence and practicality of the more complex cases (compressable
flow, heat transfer, etc.) could be determined from the solution of the simplest
model possible. Several analyses were developed for the incompressable case.
These are currently being formalized for presentation in a subsequent report.
Unfortunately, these analyses are of such complexity as to require numerical
solution. Although the extension of each analysis, to include the omitted
effects mentioned above, does not appear to be out of the question, the increase
in cowplexity would be extremely severe. It would not be possible, considering
the additional requirements for computer programming and program checkout, to
achieve any numerical solutions within the contract period. It is also felt
that it would be extremely difficult to evaluaté the accuracy of the analysis
because of the necessity of including a number of rather severe assumptions.
Specifically, turbulent transport parameters would have to be provided.

Although it would be of significant general interest to complete the analysis,
the immediate requirements for extending both the qualitative and quantitative
understanding of film development dictate a shift of emphasis to a less sophisti-
cated approach.

-12-
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At the close of the second quarter a new approach to the film analysis
was formulated and work was started on its development. Basically, it is planned
to select an existing film cooling analysis to characterize the thermal development
of the film. This will amount to assuming that the energy transfer from the
combustion products to the film is the same as it would be to the wall with rno
injection. The wall recovery temperature will then tend to rise exponentiaily
with distance. This kind of approach deperds heavily on knowing the heat transfer
coefficient te a wall which would be at the local film temperature. Consequently,
efforts to improve the heat transfer computer program (Section 2.3) have been
accelerated. Some of the available film cooling analyses have shown rather good
accuracy in experiments where molecular weight ratios differ from unity. Unfortun-
ately, very little experimental data is available for the case of both accelerating
flow and nonunity molecular wejght ratio. Following the selectior of a reasonably
accurate film cooling model, a simplified mass ¢ramsport equation will be super-
imposed and the two equations will be solved numerically ctepwise through the
nozzle. At the present time it is felt that a turbulent mass transport model
should be assumed. A diffusion model will also be considered for comparison.

The initial results of this effort are expected to be available during the third
quarter. It is expected that subsequent sub-scale nozzle test results (thermo-
couple data) will provide a good check on the results of the film analysis when
the revised film coefficients are used in the thermal analyzer program. The
appearance of the nozzle throat surface will provide the only clues to the
accuracy of the mass transport analysis.
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2.3 HEAT TRANSFER

a. Flame Side Radiation

During the second quarter, some consideration was devoted to the
evaluation of the radiant heat interchange between the walls and combustion
products of the film protected nozzle. The radiation expressions presented
in the first quarterly report were modified to include the effect of particle
emission. Specifically, the equations representing tke transmissivity and
emissivity of a gas were no longer valid with the presence of a scattering
media.

The scattering induced by the presence of alumina particles is sufficient
to substantially alter the emission characteristics of an absorbing gas. For
example, from References 2 and 3, the monochrcmatic emissivity of an isothermal
homogeneous particle cloud may be expressed as:

e +x,+x5'[ - (g, +8on 4 85 )521

’ Yo

a 324 Pat .
where ¥° is defined as the absorptlon coefficient, 8 is proportional to the
energy scattered by a control volume in a specified direction and 352 represents
the energy scattered by particles between O and 1 (path length) that originates
in the control volume. Recently, data has been acquired at Philco Research
Laboratories on the monochromatic emissivity of molten alumina particles
(Reference 2). The data was obtained from an alumina cloud that was optically
thin and at temperatures approaching 5200°R. However, the condition of optical
thinness will reduce the emissivity of a particle cloud to

» = X;aﬁ

with 3 set egual to zero (transparent gas). Applying the absorption co-
efficient, 8 8" found for the optically thin case to an optically thick medium
will result in an unpredictable error in emission (e.g., unpredictable in the
sense that the magnitude of scattering, which is entirely neglected, has not
yet accurately been evaluated).

Assuming negligible scattering, the data of Reference 2 may be applied
to cases below 5200°R. Above this temperature, extrapolation is required. Such
extrapolation may induce major errors due to the potentially complicated depend-
ency of alumina emissivity on temperature. Therefore, as was noted in Reference
3, the total emissivities obtained from the spectral emissivities of Refecence
2 should only be applied to cases where approximate calculations suffice.

Calculations were made for the f£ilm protected nozzle utilizing the

previously described total emissivities with the results presented in Figure
2-7. The radiant heat flux in the chamber is shown to be rather large relative
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to previously predicted values. However, it must be remembered that the chamber
is subjected to a large heat flux only during the transient heating period. At
near steady state conditions the wall temperature is estimated at 4500°R with

2 heat flux of 2.0 Btu/inz—sec. This value of heat flux, together with the
others presented in Figure 2-7, are conservative but provide a reasonable
estimate of the importance of alumira cloud radiation.

b. Flame Side Convecticn

During the second quarter, coavective heat transfer coefficients were
calculated for both the 1.25 and 2.50 inch throat diameter nozzle contours. The
contours feature (1) 30 to 1 contraction and 10 to i expantion ratios, (2) 30°
conical inlet, (3) 20° conical exit and (4) circular throat with a curvature to
throat radius ratio of 2.0. The method of calculating the boundary layer growth
and heat transfer coefficients is presented in Reference 4. Figure 2-8 is a
plot of the convective heat flux calculated for the subscale nozzle (1.25 inch
diameters throat). The alumina cloud radiation heat flux has been superimposed
to show the total predicted heat flux. The data is presented in this manner to
demonstrate both the apparent relative importance of alumina cloud radiation
and the potential danger of basing the nozzle inlet thermal protection design
solely on convective heat transfer predictions. t may be observed that the
constant wall temperature cooling requirements increase from 1277 of the con-
vective flux, one inch upstream of the throat, to 2807 three inches upstream.
This is precisaly the region where major inlet failures have occurred in testing
during the present contract and during contract AF 04 (611)-8387 as well. It
should also be noted that the fluid injection will not be as effective in reducing
or controlling the wall temperatures in the inlet region when radiation is the
primary mode of heat transfer. This situation also provides a qualitative ex-
planation for the observed corrosivity of the injected methane during the fourth
subscale nozzle test.

During the third quarter, the heat transfer coefficients used by the
thermal analyzer computer program will be changed to includz the revised esti-
mates of the radiation contribution to the total heat transfer. It is antici-
pated that the results will indicate that some design changes will be required
in order to insure adequate thermal pro’ection of the rozzle inlet. Also,
to achieve greater insight into the accuracy of the radiation analysis, an
.ffort will be made to obtain transient temperature histories for the simulator's
graphite chamber liner. Since the convective heat tvransfer tc the liner is
about an order of magnitude less than the radiative cortribution, it should
be reasonably easy to distinguish the presence of large radiation heat fluxes.
In the interim, nozzle testing will proceed using cooling gas mass flow rates
which will be 25 to 507 higher than the original estimates in order to improve
inlet performance., If this step is not taken, it would appear that the value
of the film injection will be extremely difficult to evaluate because the

-16-




=
T > A
S 2
" —{
S : S
=
o
o Z2
D - ofoted m
1 R 31 aRRAR . HH und Bas: < B
+E e LR L radfialdgeid ERaRE R nad kn! gangungdbans i H H c© =
L EEEEF T T b SR L =3
N g ﬁ ot L - : FH < P
1 uz , ! T TR E 3 § ~ » H
N T EHFEEEERERLE b rusggeadiss HH HH H M m =
pRganedns 1 [ 14 - npsdpudy o o = =3
w:ﬂ#wnxr_ " L ..AH '!:. 4 4 e rl.I.nL U.. » J” * | an) M m
o T1HTE - Se LELEE . HLEELL 2hguns »y e L35 HH o ~ oy o)
- T - . T 2 npugus T, B
E FLEL L R F R Tahides i T LVO 3 B B3
M (380§ £ 4.8 5 § T » 4 " il -] 3 < o ~N
s bt T Agea YSRSRRRUAEANTARAEN gdafay & i sxdusiiafasiisla . M DM
SR . LT E Sidy Apim~a SSdhdfgn L » Yau [ wn M M.N ¢ ]
o R H PO FRFERERE T ] i i 5 B2 o
R 128822 EduREs: é,. RO 8 XN'Td IATIOTANOD — © wm ot
= | . e §e an bt o o4 14 > ofodede -
o T} T SHEEE R e T TR £2 13 < g 5
» " , W EITT »e 1T ] " m Em
. EETELEEEELEEL TR R H o MO
ne " +- . 171
TIE AT T g X014 TVIOL O H
b4 ¥ _ 11 3
s g N FIHTHT H ] .
. .
h 3 .r;: L.. T 1 ™~ o~
1 1 - : X0Td NOIIVIAWY .
- sx 11 r » " M 11 0 m
I: o4 b o} ., .lli - m
" x.q.. 4 £ - -4 [
o~ 4 58
o
{
o ] ] o o o o o (=) o o o o o o
LY L ] L] L] L] L) . - . -
3 a' o~ i () o o0 ~ 0 V2 <t (32] o~ —
e ~ -t - -t

Aomm-u.zg\:amv XT3 IVIH TIVM TVIOL ANV FAIIDFANOD




failure of the inlet contour will lead to nonuniform injection and eventually
to failure of the cooling passage walls.

In the first quarterly report, it was suggested that the boundary
layer heat transfer program (Reference 4) could be used to estimate the change
in heat transfer due to the film injection. Several trial calculations were
made in which the boundary layer energy thickness was arbitrarily increased
by as much as a factor of two at the point of injection while the momeéntum
thickness was not changed. The changes in erergy thickness were chosen to
correspond roughly to the additional energy deficit which would result from
the injection of a continuous film of metiane at the preliminary design flow
rate. The calculations showed less than a 107 reduction in the throat heat
transfer coefficient when free stream transport properties were used. This
was found to be primarily due to a combination of the use of a logarithmic
skin friction law in the computer program and the fact that the energy thic ness
Reynold's number was very large at the injection point. From this it follows
that the heat transfer coefficient would be more sensitive to the value of the
boundary layer specific heat than to the energy thickness. Therefore, the
addition of hydrogen (from the methane dissociation) could lead to increased
in the heat transfer roughly proportional to the degree to which the injection
gases mix with the free stream and to the difference in specific heats of the
two gas streams. Since this type of model apparently obscures the important
mixing and film cooling effects which are known to exist, it can not be regarded
as a particularly useful mechanical means of investigating film injection.

As indicated in the first quarterly report, the boundary layer program
(Reference 4) is also being examined to delineate changes which could improve
both the theory and programming. One such improvement would be to remove the
restriction of the use of the 1/7th power law velocity and temperature profile
assumption which is used to determine the boundary layer shape parameters. At
the high Reynold's numbers which pertain to the present problem, higher order
profiles should be used. A method for determining the appropriate value of the
power law exponent is available and could be used. Another area of interest
is the one dimensional flow assumption. Currently, a method of calculating
the axisymmetric flow conditions at the edge of the boundary layer is being
examined. This method would utilize the transonic flow analysis by Hall,
Reference 5, and the axisymmetric version of the nozzle flow analysis described
by Holt, Reference 6. It is also apparently desirable to minimize the use of
the perfect gas law assumption in the program. The use of variable free stream
properties can be incorporated by using the results of the rocket propellant
performance program with the present heat transfer program., It is expected
that some of these changes will be made and further evaluated under another
contract. However, during the third quarter, efforts in the area of flame side
heat transfer will be confined to the evaluation of the radiation heat transfer
and to the investigation of potential film cooling effects.
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SECTION 3

LABORATORY EXPERIMENTS

3.1 COLD FLOW TESTS

During the second quarter, the cold flow testing has been
devoted to the evaluation of the fluid mechanic properties of parallel
three dimensional wall jets. The present testing was, essentially, a
continuation of the injection studies presented in Reference 1 with
concentration in the area of wall coverage. The important parameters
that were studied which effect wall coverage by a protective wall jet
consisted of hole spacing, injection rate, injection angle, and hole size.

The cold flow injection apparatus used in the first quarter was
slightly altered in that the tubular wall was lined with ozalid paper and
ammonia was employed as the injectant. By injecting ammonia into a nitro-
gen main stream in the form of a wall jet, the concentration of ammonia
at the wall can distinctly be determined from reaction zones developed
on the downstream ozalid paper, the degree of the ammonia - ozalid paper
reaction being a function of ammonia concentration.

A technique had to be developed in the ozalid tests in order
to (1) reproduce identical flow conditions that existed in Reference 1
and (2) obtain reproducible data between experiments. In order to repro-
duce flow conditions, the Pitot probe and tubular end support section

were assembled in the exact configuration that existed in Reference 1 after

lining the wall with ozalid paper. Since the degree of the ammonia -
ozalid paper reaction is sensitive to temperature, infrared radiation,
time of exposure to ammonia, and ammonia concentration, it is important
that each run be subjected to identical developing techniques. Therefore,
in each run the ammonia exposure time was fixed at 5 minutes and the
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experiment was run without exposure to sunlight. With the more important
developing variables fixed, doubts remained concerning the problem of
ozalid paper developing and the results have been only considered
qualitatively,

In the experiments, six different injection geometries were
studied, all of which are listed in Table 3-1. In all cases the injec-
tion hole diameter was fixed at .0625". The injection angle is viewed
from a plane passing through the axis of the tube and the ianjection point;
whereas the skew angle is viewed on a plane normal to the axis of the tube.

TABLE 3-1

GEOMETRICAL CONFIGURATION OF INJECTION TEST PIECES

Injection Angle Skew Angle Hole Spacing
Injector (degrees) (degrees) (Diameters)

1 15 0 5-4-3-2,5-2
2 20 0 "
3 25 0 "
4 20 10 "
5 20 20 "
6 20 0 3-3-3-3-3

With each of the six injectors, three injection mass flow rates
were run, These mass flows being representative of the Qu/(qu)a, and
Qu?'/(quz)‘,D range expected in the actual nozzle. For fully developed
turbulent pipe flow the velocity (uyy) was taken at a height from the wall
equal to the radius of the injection hole (Reference 1).

Under the flow conditions that existed in the injection tests
no measurable difference in wall coverage was experienced at injection
angles of 15, 20 and 25° and skew angles of 10 and 20°, Figure 3-1 is,
therefore, representative of the injection tests utilizing test pieces 1
through 5. Figure 3-1 clearly indicates the longitudinal dependence of
jet coalescence on hole spacing. The interaction of two parallel jets with
the free stream induces a flow field in which ammonia transport is promoted
in the circumferential direction a few hole diameters downstream of
injection.

h—-.




HOLE DIAMETER; 0.0625"
INJECTION ANGLE:  20°
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FIGURE 3-1. WALL COVERAGE BY FII™ INJECTION WITH VARIABLE HOLE SPACING
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In the region of coalescence there exists certain distinct areas
of jet mixing. The first is near the injection point, where there is a
large concentration of ammonia which is defined by the dark core of the
jet. 1In this region, the main stream is not yet mixed with the jet and
the presence of the core seems to exist as far as five diameters down-
stream. Beyond that, the core has mixed with the free stream and uniform
wall coverage is achieved for hole spacings as large as three diameters.
In this area the wall ijet may be said to have lost its three dimensional
character and the assumption of a two dimensional wall jet is applicable.
The transition of a three to a two dimensional wall jet was also observed
from a circumferentially Quz traverse. Downstream of coalescence the
wall concentration of ammonia decreases due to mixing with the main stream.
The wall jet is preserved further downstream for closer hole spacings.
This can be expected due to the greater amount of mass injection per unit

circumferential length.

The dependence of wall coverage by a jet on the free stream
velocity profile was determined by inserting a sandpaper trip just up-
stream of injection. The Quz profiles with and without the sandpaper
trip are shown in Figure 3-2. In both cases the QuZ traverses were made
without injection and at, the point of injection. Wall jet coverage with
and without the trip is shown in Figures 3-3 and 3-4, respectively. The
large decrease in downstream wall coverage in Figure 3-3 as compared to
Figure 3-4 can be at zttributed to the increase in main stream turbulence
and to a greater free stream momentum flux acting upon the jet. Just down-
stream from injection the region between injection holes is slightly
covered with NH;. Whereas, for the case with fully developed turbulent
pipe flow there are discrete regions where ammonia does not exist,

In photographing the injection results, the distinct color con-
trast that existéd in the origimal ozalid paper is lost. Some of the
interpretations presented above depend on the observation of the color
contrast, Also, the puncture in the paper at about 60 diameters down-
stream of injection resulted from the assembling of the Pitot tube support

system,
At the present time it is felt that the cold flow tests stand

completed, The cold flow testing has added to and improved existing
knowledge on detachment,velocity development and wall coverage of a three

dimensional wall jet.
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HOLE DIAMETER: 0.0625"
INJECTION ANGLE: 20°
HOLE SPACING: 3 DIA.

x/d =0 AMMONIA MASS FLOW EQUIVALENT TO FIGURE 3-4.
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HOLE DIAMETER: 0.0625"
INJECTION ANGLE: 209
HOLE SPACING: 3 DIA.
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3.2 CONCLUSIONS

Wall coverage by a three dimensional jet was found to be
independent of injection angle in the range studied. Injection angles
of 15, 20, and 25 degrees were tested and within the accuracy of the
experiment no measurable alteration of wall coverage was noted. Also,
skew angles of 10 and 20 degrees resulted in no definite alteration of

the flow field.

Wall coverage was found to be extremely dependent on hole
spacing., Hole spacings larger than 5 diameters under the flow conditions
existing in the cold flow tests are inadvisable as is shown in Figure 3-1.
However, alteration of the free stream velocity boundary layer has shown
te change the circumferential mass transport of ammonia (Figure 3-3).

An increase in the turbulence and velocity gradient of the main
stream by tripping the existing fully developed turbulent pipe flow
resulted in greater mixing near the injection point and a substantial
reduction in downstream wall coverage. This is shown by a comparison of
Figures 3-3 and 3-4. The application of a two dimensional amalytical
model to discrete hole injection is valid provided the hole spacing does
not exceed approximately four diameters, Under the flow conditions that
existed, a two dimensional wall jet was obtained at approximately five
diameters downstream with a hole spacing of three diameters. Therefore,
the assumption of a two dimensional model in an analytical interpretation
of the problem is feasible within certain limits of hole spacing and free

stream turbulence.

In the first quarter of the contract period a study of a three
dimensional wall jet was made in areas of jet detachment and Qu“ variation
1n the axial and circumferential directions., Jet detachment was found to
be a function of momentum rate with the critical ratio,of jet radial
momentum rate (Pu u,) to free stream momentum rate (Pul)eo measured at
approximately 0.4. A theoretical model was devised in which the critical
ratio was evaluated at 0.6. Therefore, to avoid undesirable jet detach-
men:, the momentum rate ratio should be kept below 0.4.

Radial Qu2 traverses were made through a three dimensional wall
jet at various downstream locations. These traverses were made for both
the attached and detached wall jet. For the detached jet the Quz profile
may be divided into essentially three regions. The first being near the
wall in which the free stream flows around the detached jet forming a
separated region where a high degree of vorticity exists, similar to flow
around a cylinder. The second region consists of the jet itself and the

third is composed of the free stream. Between the three regions there exists
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areas of large momentum transfer and therefore the profiles will change
rapidly in the axial direction. For the attached jet, radial profiles
resulted in termination of the mixing region at approximately 13 diameters
downstream of injection. The ?uz profiles for the attached and detached
jet are presented in the first quarterly report, pages 85 to 90.

The cold flow tests have produced good qualitative conclusions
in areas of chemical protection by mass injection. Direct application of
the results to an actual rocket nozzle is inadvisable although general
knowledge on the properties or behavior of jets may be applied rather
well.

o ——— e
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1 1.

SECTION 4

ROCKET MOTOR TESTS

4.1 CHEMICAL DIFFUSION TESTS

In the First Quarterly Progress Report the theory and preliminary
design for the chemical diffusion motor tests were discussed. Early in the
second quarter a series of four tests were run with completely unsatisfactory
results, In the first test, an orifice sizing error led to a near stoichio-
metric mixture ratio in the H,_-0, generator. The resultant high temperature
flame caused the copper nozzle to fail early in the test. The second test
was run fuel rich for 45 seconds. The thermocouple readings indicated that
the copper sleeve reached temperatures well above those required for oxi-
dation. However, there was essentially no difference between the tempera-
tures measured in line with the methane injection and those in an uncooled
section of the copper sleeve. Close examination of the combustion chamber
and copper sleeve indicated a rather severe helical swirl which accounts
for the similarity in the temperature readouts. Additionally, no distinct
oxidation pattern could be observed on the copper surface, presumably due
to the reducing nature of the fuel rich flame. Both the third and fourth
tests were run with an oxygen rich flame. In one test the nozzle and copper
sleeve melted and in the other the stainless steel chamber ignited. It
was concluded that oxygen rich operation at relatively low temperatures
(1800-2000 F) presented injector and flow control requlrements that were

too exacting for this simple experiment.

Several steps could be taken to improve the performance of the
chemical diffusion motor. The addition of a mixing chamber and maintaining
balanced methare injection would probably eliminate the injector swirl pro-
blems. The H,-0, motor could be operated oxygen rich with an inert gas,
such as nitrogen, added to control the flame temperature. It would also be
possible to platz the copper detector sleeve with boron and run the moter
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fuel rich. 1In this case the water-boron reaction would occur on those
portions of the surface which were not protected by the film injection.

Action in the directions outlined above was temporarily suspended
early in the second quarter pending the achievement of an improved injection
fila development model and several successful subscale motor firings. At
the present time it is not clear just hcw the experiments as originally de-
signed could be of use in support of the film analysis or nozzle test pro-
grams. Until a better definition of the essential objectives of this type
of experiment is achieved, the continuation of the chemical diffusion tests
will be de-emphasized. It is anticipated, however, that some experimental
effort should eventually be undertaken to evaluate the integrity of the
final film cooling-mass transport model of film development discussed in
Section 2.2. During the third quarter the behavior of a boron plated
copper plate, exposed to high temperature water vapor, will be examined in
the laboratory employing the same technigue previously used with the

Cu-O2 and Ni-O2 systems.




4.2 SIMULATOR TESTS (SUB-SCALE)

During the second quarter of the contract period four nozzles were
tested on the Philco Solid Propellant Simulator. The nomingl test conditions
were 1270 pounds thrust, 700 psia chamber pressure and 6700 F combustion tem-
perature with a propellant containing 16% aluminum.

Tests 1 and 2 involved convection cooling of a pyrolytic graphite
washer-type heat sink nozzle with methane. Tests 3 and 4 involved fi. am injec-
tion of the methane into the entrance secticn after it had passed through the
convection passages. The results of these tests are presented in the follow-
ing paragraphs.

a. Nozzle Test No. 1

(1) Design Description

The configuration of the first nozzle tested is shown in Figure
4-1. The concept for this nozzle was to convectively cool a pyrolytic graphite
washer-type heat sink with methane, then dump it overboard. It was the purpose
to determine the effectiveness of temperature control on corrosion reduction.

The heat sink outside diameter was 5.0 inches and had a throat dia-
meter of 1.25 inches. The convection passages were nominally 0.25 inches from
the nozzle wall. There were 28 passages equally spaced and their diameter
was 0.040 inches except in the throat washer where it was 0.030 inches.

The design methane flow rate was 0.001 lb/sec per passage or a total
of 0.028 1b/sec. The calculated temperature distributions using the Thermat
Analyzer Computer Program (Reference 1 ) is shown in Figure 4-2 along with
the measured temperatures at the throat. The cooling analysis was based on
the undissociated properties of methane.

(2) Test Results

The nozzle was run for 21.5 seconds at the conditions shown in
Table 4.1. The chamber pressure vs. time is shown in Figure 4-3 and tempera-
ture histories are shown in Figure 4-4. Thermocouples used were the chromel-
alumel type. Comparison of temperature measurements made in throat washer
with analytical predictions are shown in Figure 4-2, The comparison of T1 and
TS (see location sketch in Figure 4-4) is given in Table 4.2.

As is indicated by chamber pressure there was no measurable corrosion.
Inspection of the nozzle after the test showed no corrosion at any point in the
entrance or exit section. This should be expected since the wall temperature
at no point in the nozzle should be greater than 5000°F .
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TABIE 4.2

COMPARISON OF PREDICTED AND MEASURED
TEMPERATURES IN ENTRANCE SECTION OF
NOZZLE NO. 1

Temperature T, (r = 2,25 inches)

1

t Computer Prediction Meagured
(sec) °r) (°F)

10 711 780

20 1182 1260
Temperature T5 (r = 2.25 inches)

t ComputeroPrediction Meagured
(sec) CF) (’F)

10 817 280

20 1334 1670
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The test was terminated prematurely because of over pressure in the
methane cooling manifold. This pressure was red-lined at 1000 psia because
the primary function of its measurement was to indicate clogging of the cooling
passages by the carbon particles formed from the dissociation of methane.
Evaluation of the test data indicated that the methane overboard exhaust nozzle
was too small. This nozzle was to have maintained the cooclant pressure at 700
to 800 psia to duplicate the pressures to be obtained when injection would be
involved. The nozzle was sized based on hand calculations of the character-
istic velocity of a methane, carbon, and hydrogen mixture at the expected ex-
haust temperature. This obviously proved unsatisfactory. To resize the nozzle,
a computer calculation was made to give the c* of the mixture as a function of
temperature; the resultant curve is presented in Figure 4-5.

The pressure drop through the cooling passages was 35 psi at 8
seconds. No later measure was.possible because "the trace went off the chart
due to the unexzpectedly high pressure, As was predicted by laboratory tests
(Reference 1 ), there was no carbon particle clogging. There was, however,
some graphite deposition in the collection manifold at the coolant exit in the
regions of low velocity. There was no evidence of clogging or flow restriction

due to this deposition.

The average particle size of the carbon was C.2 microns which is
approximately the same as obtained in the laboratory tests.

(3) Discussion

Except for the methane exhaust nozzle sizing problem the test
was completely successful for the short duration it was run. The measured
temperatures were very close, in most cases, to predictions. There was no
evidence of leakage of methane between washers to the surface even with the
unusually high coolant pressure.

Because of the excellent appearance of the nozzle, it was decided
to refire it. First, however, the nozzle was disassembled to replace O-rings
which char badly during temperature soak back after termination. On dissassem-
bly a radial crack was noted in the most upstream cooled washer which required
replacing. The washer containing the collection manifold was replaced also
so that the manifold could be reduced in size to possibly reduce graphite
deposition by increasing the gas velocity.

No photographs were taken of the nozzle after testing since nothing
of consequence could be shown.
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b. Sub-Scale Nozzle Test No. 2

(1) Design Description

Since the nozzle from Test 1 was refurbished, the configuration
is essentially identical to that shown in Figure 4-1. Because of the replace-
ment of the two entrance section washers recontouring was required and approxi-
mately 0.015 inches of material was removed from the nozzle wall throughout.

A new methane exhaust nozzle was installed. Methane flow rate remained
at 0.028 ib/sec.

(2) Test Results

The nozzle was run for a duration of 50.6 seconds at the condi-
tions indicated in Table 4.1. The chamber pressure vs. time is shown in Figure
4-6 and the temperature histories are shown in Figure 4-7. The comparison of
thermocouple data and predicted temperatures are shown in Figure 4-8 and in
Table 4.3. Figure 4-9 shows the comparison between the heat actually absorbed
by the methane and the calculated absorption based on computer results.

The chamter pressure decreased from 731 to 700 psia over the last
25 seconds which corresponds to a corrosion rate of 0.6 mil/sec for this period.
Inspection of the nozzle after the test indicated severe localized corrosion
over approximately a 90° arc in the two washers immediately upstream of the
throat. This corrosion had proceeded into the throat making it somewhat egg-
shaped. This area of corrosion is shown in Figure 4-10 and, as can be seen,
it went into the cooling passages which are approximately 0.25 inches from
the wall. The methane manifold pressure indicated that the breakthrough prob-
ably occurred at 30 seconds which would require a corrosion rate of 8.3 mils/
sec. Figure 4~11 shows the opposite side of the nozzle throat region which is
relatively uncorroded. Because of the egg-shaped configuration accurate meas-
urement of the less corroded areas were not possible however rough measurements
indicated a 5 to 10 mil dimensional change.

Deposition of graphite again occurred in the manifolds at a rate of
approximately 0.2 mils/sec but apparently caused no difficulty.

Prior to the apparent breakthrough into the cooling passage the ccol-
ant pressure drop through the passage had stabilized at approximately 75 psid.

(3) Discussion

As is noted in Figure 4-6, chamber pressure varied from 695 psia
up to 731 psia at 25 seconds then down 700 psia at the termination of the test
at 50 seconds., Flow rates of pvopellants were constant throughout the test.
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TABLE 4.3

COMPARISON OF PREDICIED AND MEASURED
TEMPERATURES IN ENTRANCE SECTION OF

Tempefature T

t (seé)

10
20
30
40
50

Temperature T

t (sec)

10
20
30
40
50

NOZZLE NO. 2

1

Computer Prediction (OF)

711
1182
1534
1820
2059

5

Computer Prediction (OF)

817
1334
1719
2025
2280

( r = 2.25 inches)

(r = 2.25)
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Measured (OF)

840
1440
1820
2100
2300

Measured (OF)

540
1060
1470
1760
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This hump has been noted previously in tests involving pyrolytic
graphite washer-type heat sinks. It appears to be caused by plastic deforma-

tion resulting from thermal expansion which causes a decrease in throat diameter.

Since there is a steep temperature gradient in the material, higher thermal
expansion at the wall will obviously create higher stresses and, at the high
temperatures present, dimensional change would tend to take place in the un-
restrained direction which is inward. Another mechanism which would have the
same effect is permanent '"c" direction contraction and "a' direction expansion
which occurs when pyrolytic graphite is heated above its deposition temperature
of around 3800 °F. Thls effect is time dependent and significant change does
not occur below 5000°F. Slnce the nozzle wall temperature was designed to
operate at a maximum of 5100°F to 5200°F it is doubtful if the effect would

be significant in a 50 second test. Also no "¢'" direction contraction was
observed after disassembly of the nozzle. Alumina deposition can be discounted
since the wall temperature was too high.

The entrance section surface regression was originally thought to
result from a pyrolytic graphite structural failure since it was localized and
could not have been caused by corrosion by the propellant gases. It is now
believed (after seeing the results of Tests 3 and 4) that the regression was
caused by hydrogen corrosion. Re-examination of the nozzle indicated a strong
possibility of a leak from the collection manifold upstream of the attacked
area. At the manifold the methane is mainly dissociated to carbon and hydrogen.
Leakage through a small passage would probably result largely in hydrogen with
the carbon filtered out.

The thermocouples in the entrance section were located in the region
of the corroded area hence their measurements are questionable. The effect on
the measurements in the throat region is not known. The coolant heat absorp-
tion comparison is also of no consequence since leakage into the main stream
would invalidate the calculationms.

¢. Nozzle Test No. 3

(1) Design Description

The configuration of the nozzle for the third test is shown in
Figure 4-12, The concept for this nozzle was to convectively cool with
methane then inject through 28 discrete holes in the entrance section of the
nozzle at an area ratio of 3.0, It was the purpose of the test to determine
the increcase in effectiveness of film injection over that of temperature con-
trol on corrosion reduction,

The throat section washers for this test had an outside diameter of
3.00 inches and were backed by ATJ graphite, Convection passage geometry was
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similar to that in the first two tests. The coolant flow rate was the same as
in the previous tests,

(2) Test Results

The nozzie was run for 51.4 seconds at the conditions showm ia
Table 4.1. The chamber pressure vs. time is shown in Figure %4-13 and the tem-
perature histories are shown in Figure 4-14. Only one thermocouple measurement
was successfully obtained in the throat washer. A spring loaded platinum-
platinum, rhodium thermocouple blew out on ignition, however it did not cause
the test to be aborted.

As can be seen in Figure 4-13, the chamber pressure started falling
very rapidly at 28 seconds. A very cevere regression rate occurred as is indi-
cated in Figure 4-15. The regression rate was calculated from the rate of change
of chamber pressure assuming a constant c*. The final throat diameter arrived
at by this procedure compared very closely with the measured diameter after the
test. Entrance section regression immediately upstream of the throat was more
severe than the throat (see Figure 4-16).

The methane coolant pressure was very erratic with apparent loss of
injection at 36 seconds.

Comparison of measured temperatures with values predicted by computer
calculations are given in Figure 4-17 and 1ible 4.4.

(3) Discussion

As can be seen in Figure 4-15 the regression rate of the pyrolytic
graphite experienced was considerably greater than that generally experienced
with an uncooled nozzle (Reference 7 ). It was first thought that the
erratic coolant system operation and high regression rate was the result of a
gross mechanical failure of the nozzle. However, inspection of p.g. washers
failed to turn up any supporting evidence. There were only very minor delamina-
tion and no radial cracking. This latter observation alone indicates that the
regression was not due to extremely high wall temperatures (6000°F and greater)
which would result from an uncooled condition. In the past, uncooled heat sinks
run for 50 seconds with theoretical wall temperatures of 5800 F have been grossly
delaminated and has given evidence of local annealing at the surface (i.e., "c¢"
direction shrinkage). These observations led to the conclusion that the injected
dissociated methane corroded the p.g. at relatively low temperature.

The theory that the corrosion occurs at temperatures down toward

3000°F to 3500°F is supported by the fact that regression occurred all the way
to the convection cooling passages. This, however, brings up an interesting
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THROAT EROSION RATE, dr/dt (MILS/SEC)
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TABIE 4.4

COMPARISOR OF PREDICIED AND MEASURED
TEMPERATURES IN ENTRANCE SECTION OF

Temperature T5

t (sec)

10
20
30
40
50

Tempe rature T6

t (sec)

10
20
30
40
50

NOZZLE NO. 3

( © = 2.25 inches)

Computer Prediction (OF)

922
1468
1860
2160
2398

(r = 2.25 inches)

Computer Prediction (°F)

814
1328
1699
1987
2217
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Measured (OF)

1200
2300

Measured {°F)

1280
2050
2440
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question: why does the injected methane attack the p.g. on the hot gas side,
whereas there is no evidence of enlargement of the convection holes. One
explanation is that in the passages the hydrogen and carbon dissociation prod-
ucts of methane are, in fact, in equilibrium, wherea. upon injection the carbon
remains in a center core while the hydrogen diffuses radially giving 2 hydrogen
rich annulus around the injection stream. There are possibly other fluid
dynamic effects which could also give similar results.

As is noted when Table 4.4 is compared to Table 4.3, the injection
of methane caused a significant increase in the temperature measurements. It
is believed that this increase results from either surface regression which
reduces the thickness of material between the thermocouple and the surface
or a large increase in convection heat transfer coefficient due to injecticn
of a good heat transfer medium.

d. Nozzle Test No. 4

(1) Design Description

The configuration of the fourth nozzle tested, as shown in
Figure 4-18, was quite similar to the nozzle for Test 3. Since at the time
it was not realized that methane corrosion was probably the cause of the failure
of Test 3, the coolant conditions of the test were repeated in Test 4. Also
it was felt that a test terminated at first indication of throat area change
would aid greatly in the determination of the failure mode if it were other
than a coolant system failure,

(2) Test Results

The nozzle was run for 37.8 seconds at the conditions shown in
Table 4.,1. The chamber pressure vs, time is shown in Figure 4-19 and the
temperature histories are shown in Figure 4-20,

The throat corrosion was not as severe in this test as in the pre-
vious (see Figure 4-15) however the entrance section corrosion was again quite
severe, as can be seen in Figure 4-21,

Entrance section temperature comparison cannot be made for this test
with any degree of reliability because a computer run of this configuration
has not been made. However the throat section temperatures should be consist-
ent with previous calculations. This comparison is shown in Figure 4-22,

(3) Discussion

The results of this test fairly well substantiated the problem
oX Increased corrosion due to methane injection. Again temperature measurement
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throveghout the nozzle were higher than computer analyses have predicted. Corro-
sion rates were again quite high, however as noted in Figure 4-15, the throat
regression rate was lower at test termination than in the previous test at the
same time. In fact, the rate appeared to level out at 1.3 mils/sec. At preseat
no good reason can be given for this occurrence.

Another unexplained phenomenon is the sudden jump in the two entrance
section temperatures (see Figure 4-20) at approximately 10 seconds.

The appearance of the pyrolytic graphite in this test, as in the
previous one, did not indicate excessive temperatures. There was very miner
delamination and no radial cracking.

The washer immediately downstream of the throat had little er no
surface regression and, in fact, had about a 10 mil coating of alumina over
some of its surface.

As a result of Tests 3 and 4, it has been decided that the fifth test
will utilize helium as a coolant/injectant with the same nozzle geometry as in
Test 4. This will show conclusively if the methane is chemically attacking
the p.g. as is indicated from the test results to date. Helium was selected
since it is the best imert coolant and will be similar to hydrogen due to its
high specific heat, low molecular weight and high thermal conductivity. The
latter is of interest because it is desirable to know if the injection of a
good heat transfer medium gives an increase in convection heat transfer to the
nozzle wall.
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