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Preface

Although this study was begun with the thought in mind of

providing an unbiased evaluation of various describing-function

generating schemes (unbiased, since I had no hand in any of them),

it has ended up as an introduction to a describing-function genera-

ting scheme of my own, as well. I should not really call the correc-

ted-conventional describing function my own, since it is really only

an unconventional, "corrected" form of the conventional describing

function developed by Kochenburger and others, and its only theore-

tical justification is that it is based on the conventional tech-

nique. Let me assure you, however, that the basic linear functions,

used as being representative for the purpose of the study, were

chosen before the idea of correcting the conventional describing

function came to me, and therefore they in no way (intentionally,

at least) were chosen because they favor the corrected-conventional

technique. As a matter of fact, I first realized the possible ben-

efit of such a correction while trying to improve on another uncon-

ventional technique presented by Gibson called the nev rms describ-

ing function. And it was on his examples that I first had success.

I wish to express my appreciation for the encouragement, guid-

ance, and assistance that my Faculty Thesis Advisor, Professor J. J.

D'Azzo provided me, as well as for the original topic. I, further-

more, would like to thank Mr. R. 0. Anderson of the Flight Control

Division (R&TD) for sponsoring my work and also providing guidance

and advice. Some of the greatest tangible assistance, though, came

from Mr. H. E. Petersen of the Analysis Branch of the Digital Com-
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puter Division (R&TD) who programmed and ran the describing function

equations on the digital computer so that they could be plotted, and

Mr. David K. Bowser of the Control Criteria Branch of the Flight

Dynamics Laboratory, Flight Control Division (P&TD), who envisioned,

programmed, and ran the digital computer verification of the analog

computer results. Last, but not least, I thank my wife for typing

this thesis.

Robert R. Rankine, Jr.
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Abstract

A describing function is an amplitude-dependant generalized

* transfer function of a nonlinearity which can be used to repre-

sent the nonlinearity when its input is approximately sinusoidal.

Phe simpler and more prominent or accurate describing-function

generating schemes include (1) the conventional, (2) the minimum

average error, (3) the equivalent gain, (4) the new rms, and (5)

the corrected-conventional. An evaluation of these various schemes,

based on the accuracy with which the describing functions they pro-

duce can predict the amplitude and frequency of self-sustained

oscillations in a nonlinear system, reveals that the corrected-

conventional describing functions are more accurate for single-

valued nonlinearities.

iv



GGC/EE/64-16

Contents

Page

Preface . .. .. .. .. .. .. .. .. .. .. .. .. . .. ii

Abstract . . .. .. .. .. * . . .... . iv

I. Introduction . . . . . . . .. . * . . * .. . .. I

The Problem . . . . . o . . . 2
Describing Function Generating Schemes to be

Studied. .... 3
Nonlinearities to be Studied ......... .. 4
Linear Systems to be Studied ........... 5

Analysis of the Problem ............... 6
Assumptions . ... ................. 6
Criteria .. .......... ....... 9

Procedure . . . . .. . . . . . . . . . . . . 9

II. Linear Systems . . . 0 .. . . . . . . . . I & . . 0 11

General Block Diagrams . .9...... 9. .. 11
Linear Transfer Functions . . . . .. . . .. . . 12

III. Describing Functions . & . ... .. . . . . . .. . . 23

Definitions . . . . . . . . . . . . .. .. . 23
The Conventional Describing Function .. .... 23
The Minimum Average Error Describing Function . . . 24
The Equivalent Gain Describing Function . . ... 25
The New R14S Describing Function . o . . . . . . . . 25
The Corrected-Conventioxial Describing Function • • 26

Derivations . . .. . . .. * . . .. . . . 27

IV. Amplitude and Frequency Predictions . . . . . . o . . . . 35

Saturation . . . .. .. ............. 36
Saturation Combined with Dead Zone .... . .. . 41
Ideal Relay . . . . . . . .. .. .................... 46
Relay with Hysteresis . . . . o . . . . . . . . . . . 51
Relay with Dead Zone . .. * .. .. . . . . . . . . 59
Relay with Dead Zone and Hysteresis o . . . . . . . . 64
Dead Zone . . . . . . . . . . . . . . . . . . . . 74

V. Conclusions . . . . . ...... . . .. .. .. 80

Overall Comparison of the Describing Function Schemes. 80
Trends in Describing Function Predictions ...... 82

v



GGC/EE/64-16

Contents

The Case for the Corrected-Conventional Describing
Function .. . . . 85

Recommendations . . . . .. . . . . . . . ... ... 86

Bibliography * 0 0 * • * • • • • & • • & • • • • . • & • • * 89

Part A - Numbered References Cited in the Text and
Appendices . . . . 89

Part B - Supplementary References o . . . . . . . . . 90

Appendix A: Derivation of the Corrected-Conventional Describing
Functions Used in this Study . . . 92

Saturation Combined with Dead Zone . .. . . e a . • 92
Relay with Dead Zone and Hysteresis . .. . . . . . . 95

Appendix B: Derivation of the New RMS Describing Functions
which Introduce Hysteresis . . . . 101

Appendix C: Experimental Procedure and Analog Computer Circuits 103

Procedure • * .. . . . . . . . . . . . . . . . . 103
Verification . . . . .. .. . . . . . . . . . . .. 106

Appendix D: Plots of the Corrected-Conventional Describing
Functions . .. . . . . . . . . . o 117

Appendix E: Other Describing Fur ction Derivations . . o ... . 126

Appendix F: Analysis of the New EMS Describing Function .. . . 128

vita *. o .o . .o.. . . .o.. . .o. .o.. . . . o. . . . . 130

iV



GGC/FLr/64-16

AN EVALUATION OF SLECTLD DESCRIBING rUNCVIJNS

OF CONTROL SYST4 NONLINIARITIEZ

I. Introduction

A "generalized transfer function" is an approximately equiv-

alent linear transfer function of a nonlinearity. It is used to

represent the nonlinearity in control system analysis, but is appli-

cable only when the input to the nonlinearity is sinusoidal. If the

nonlinearity is independent of the input frequencyCO, and is solely

dependent on the input amplitude, X, the generalized transfer func-

tion is known as a "describing function" or more specifically, a

"sinusoidal describing function" (Ref 4:405). One derives the de-

scribing function of a particular nonlinearity by using some scheme

to choose a sinusoid that will closely represent the output of the

nonlinearity in some sense (Ref 7:153). The describing function then

becomes the ratio of the amplitude and phase of the chosen output

sinusoid to the amplitude and phase of the input sinusoid; that is,

Amplitude and Phase of the Equivalent
Sinusoidal Output of the Nonlinearity

Describing Function = N Amplitude and Phase of the Sinusoidal

Input to the Nonlinearity. (1)

The foregoing definition of "describing function" is far more

general than that usually encountered in literature on the subject.

In the past, definitions of the function have usually encompassed

only the describing function scheme developed by Kochenburger
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(Ref 8:270ff) and others, based on the Fourier Series representation

of the output of the nonlinearity. Many other schemes for repre-

senting nonlinearities have been developed since Kochenburger's work,

however, and limiting the definition to this "conventional" describ-

ing function is apt to cause confulsion when one tries to define the

others. Thus, the term "describing function" will be used in its

most general sense in this paper, and the describing function orig-

inated by Kochenburger, which represents the output of the nonlin-

earity by the first harmonic of the Fourier Series expansion of the

output waveform, will be referred to as the "conventional describ-

ing function."

Since there are many schemes for producing describing functions,

the question arises: "Which, if any, is best?" The purpose of this

paper is to answer that question.

The Problem

The problem is to evaluate comprehensively the accuracy with

which the various describing functions can predict the amp!!tUde and

frequency of self-sustained oscillations in a nonlinear feedback con-

trol system. When this is done, it may be possible to choose a

describing-function generating scheme which produces describing func-

tions superior to all of the others, or it may be found that each type

of nonlinearity favors a different scheme. In either case, the con-

1Kochenburger in the United States, Dutilh in France, and Goldfarb in
Russia are generally given equal credit for having discovered the
method since their works were made knowon about the uame time.

2
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trol system engineer shall be able to obtain greater accuracy in

predicting the efiects of a nonlinearity in a feedback control sys-

tem as a result of this stuiy. This paper is not intended to be a

primer on the describing function method of analysis, but, rather, a

comprehensive evaluation of a few of the describing functions which

may be used in that analysis. Therefore, if the reader is unfamil-

iar with the general describing function technique for stability and

limit cycle determination by direct polar (i.e., Nyquist) plots, it

is recommended that he first consult the references (e.g., Ref 1:442-

444).

Describing Function Generating Schemes to be Studied. Since it

would be difficult, if not impossible, to research and include every

scheme for generating describing functions ever invented, only the

more simple and -rominent or accurate methods will be included. These

are (1) the conventional describing function originated by Kochen-

burger which expands the output of the nonlinearity in a Fourier

series and uses the first Fourier harmonic as the equivalent sinusoi-

dal output (Rei 6:2^Off); (2) the minimum average error describing

function originated by Gibson which, as its name indicates, mini-

mizes the average error between the equivalent sinusoid. and the out-

put o! the nonlinearity (Ref 2:3b1); (3) the equivalent gain origi.-

nated by irince which uses the maximum amplitude of the output of the

nonlinearity as the amplitude of the equivalent sinusoid (Ref 10:217);

(4) the new rms describing function originated oy Gibson which is

basei on equating the rms value of the actual nonsinusoidal outgat of

3
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the nonlinearity to the rms value of the equivalent sinusoidal out-

put (Ref 3:1321)1 and (5) the corrected-conventional describing func-

tion developed by the author which includes the effects of Fourier

harmonios higher than the first by taking as the amplitude of the

equivalent output sine wave, the square root of the sin' of the squares

of the amplitudes of the first and third Fourier harmonics,

One of the more prominent methods of improving the accuracy of

the conventional describing function, the use of Johnson's correction

terms (Ref 6:169ff), will not be included. The calculation of the

amplitude correction term is too complex to be very practical to the

engineer. One important result obtained by Johnson, however, will be

understood throughout this study: that the first correction term for

the fundamental frequency is zero, and that therefore the describing

function frequency prediction is generally quite accurate. Because

of this fact, this study will be primarily aimed at improving the

accuracy of the amplitude prediction; nevertheless, variations in

the predicted frequencies will result when hysteresis is studied by

the different schemes.

Nonlinearities to be Studied. In order to study how well a

particular describing-function generating scheme can produce a

describing function which accurately predicts a system oscillation,

it is necessary to choose a number of nonlinearities to which to

apply the scheme. The most often encountere nonlinearities are con-

sidered the most important, and the following nonlinearities are, in

the opinion of the author, the most often encountered. (3) dead

zone, (2) saturation, (3) dead zone combined with saturation, (4) the

4
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ideal relay, (5) the relay combined with hysteresis, (6) the relay

combined with dead zone, and (7) the relay combined with both dead

zone and hysteresis. Mach of these nonlinearities has an output

which is both odd periodic and odd harmonic for sinusoidal inputs,

or at least can be considered so by phase-shifting the axes. 2 Each

of the 5 describing-function generating schemes chosen will be

applied to each of the above 7 nonlinearities producing 35 different

describing functions to be studied.

Linear Systems to be Studied. It is also necessary to choose

some arbitrary, representative linear feedback systems into which to

introduce the nonlinearities. These were chosen on the bases (1) that

the frequency at which the direct polar plot of the system forward

transler iunction crosses the negative real axis be within the limits

of the analog computer and its recording devices, so that the predic-

tions can be checked experimentally without a lot of time scaling,

and (2) that the system open loop transfer function be of higher than

second order so that the describing function method is preferable over

the phase plane method of analysis. 3  (Also, the system open loop

transfer functions must be of higher than second order before self-

2A function is said to be odd periodic if f(t)=-f(-t).
A function is said to be odd harmonic if f(t) -f(tT/2), where T is
the period.

3For a description of phase plane analysis see the references (Ref

12:65ff).

5
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sustained oscillations can occur with nonlinearities that do not

introduce a phase shift.) Nine different linear forward transfer

functions to be used in unity feedback systems were chosen on these

bases. They are described qualitatively in Table I on the following

page. The table also indicates the nonlinearities with which each

was coupled. Since there are to be five describing functions inves-

tigated for each nonlinearity, the scope of the problem involves 220

amplitude and frequency predictions, and, since earh system must be

checked on the analog computer as a basis for evaluation of the accu-

racy of the predictions, 44 analog computer runs.

Analysis of the Problem

Assumptions. The basic assumptions which one must make in order

to use the describing function method of analysis to determine the

amplitude and frequency of self-sustained oscillations are (1) that

the system is unforced and does not vary with time, (2) that the non-

linearity is separable and is not frequency dependent,4 and (3) that

the linear transfer function provides sufficient low-pass filtering

to permit excluding the higher harmonics from consideration (Ref 2:348).

These assumptions are quite good for the nonlinearities and linear sys-

tems to be studied, and they are also generally true in practice.

Since these assumptions are well understood by users of the describ-

ing function method, they will not be further belabored.

4 Some authors extend the describing function to frequency dependent

nonlinearities as well; however, as indicated in the definition on
page 1, it would then be a "generalized transfer function" not a
"describing function."

6
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Table I

Qualitative Description of the Nine Linear
Forward Transfer Functions to Be Studied.

Linear Forward Transfer Functions
Nonlinearities

Type* Order** Stability Approximate Applied
(Direct Polar
Plot) Real Axis
Crossing***

0 3 Unstable 3

1 3 Unstable 3
2 3 Unstable 3 Saturation, Satura-

tion with Dead Zone,

Ideal Relay, Relay
2 3 Unstable -10 with Hysteresis,

Relay with Dead Zone,
0 5 Unstable -0 Relay with Dead Zone

and Hysteresis.

1 5 Unstable -10

2 5 Unstable -10

Conditionally _ 33 3 Stable # Dead Zone

3 Conditionally -103 Stable #

*Type 0, 1, and 2 systems are called position, velocity, and

acceleration control systems, respectively, by some authors. The
numbers 0, 1, and 2 refer to the power of the separable s, the
Laplacian operator, in the denominator of the linear transfer
function.
**The number of poles minus the number of zeros.
***he gain of each system was set for one of the two distinct
crossings listed in order to provide a wide variation in the ampli-
tudes of the sustained oscillations.
# It is necessary to use a conditionally stable system in order to
reach a stable limit cycle with a dead zone nonlinearity.

7



QGC/ /64-16

The new rms describing function has not been extended, as yet,

to the analysis of nonlinearities with memory (Ref 2:384). In the

author's opinion, however, this scheme can be applied quite easily

to nonlinearities with memory that result in a phase shift of the

output wave that can be calculated algebraically, such as for the

hysteresis nonlinearities included in this paper. If the axes are

shifted through the proper phase, the output of the nonlinearity

becomes an odd-harmonic, odd-periodic function, and the new rms

describing function method can easily be applied to determine the

magnitude of the describing function. Furthermore, the shift in

phase becomes the phase angle of the resulting new rms describing

function.

The idea behind the corrected-conventional describing func-

tion is that perhaps the effect of harmonics higher than the first

in the Fourier Series expansion of the output of the nonlinearity,

each receiving a different degree of attenuation through the linear

portion of the system, can be approximated by including the unat-

tenuated effect of the third harmonic only.5 This effect is "aver-

aged in" by the same method one would use to obtain the combined

effective rms value of two sine waves of different frequencies when

the rms value of each is known. The square root of the sum of the

squares of the first and third Fourier harmonics is therefore taken

as the amplitude of the equivalent sinusoidal output of the non-

linearity, rather than just the first harmonic as in the conven-

5 This exolanation assumes that the output of the nonlinearity is
odd harmonic in which case the third harnonic is the firs har-
monic above the fundamental.
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tional describing function. It would seem that the corrected-

conventional describing function would tend to overcompensate for

the error caused by higher harmonics, especially as the order of the

system is increased. However, the magnitude of the corrected-conven-

tional describing function ir! generally less than that of the new

rms describing function, thus making it applicable to a wider range

of intermediate-order systems than the new rms describing function

which tends to overcompensate (Ref 3:1321).

Criteria. It would be nice if the engineer could be guaren-

teed that one of the describing function schemes could provide him

with predictions that were always within ten percent of the actual

value and generally within three percent of the actual value of the

amplitude and frequency of the self-sustained oscillations. To

prove rigorously that a certain describing function generating

scheme would always provide describing functions which were within

ten percent of the true outcome would certainly be a complex and

difficult, if not impossible, task. It is possible to postulate,

however, based on the more or less arbitrary s6lection of linear sys-

tems for this experiment, that a particular method generally pro-

vides predictions which are within three percent of the true outcome,

and/or is generally better than the other methods of prediction.

Procedure. The preceding criteria intrinsically call for a

comparison of some kind between the various describing-function

generating schemes. This was done in the following manner: (1)

each of the 35 describing functions previously mentioned was derived,

9
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(2) the direct polar plots of the linear systems and the negative

inverse plots of the describing functions were compared to determine

the intersection points, (3) the stable intersections were inter-

preted as predictions of the amplitude and frequency of self-sus-

tained oscillations in the unforced, closed-loop system employing

the nonlinearity, (4) the predictions were tabulated along with

experimental data obtained by simulation of the actual nonlinear

system on the analog computer, and (5) the experimental results were

used as a basis oI comparison of the accuracy of the various describ-

ing functibns so that a preferable describing-function generating

scheme could be selected.

By this procedure a "best" method of describing each of the

selected nonlinearities will be postulated. In this way some guide-

lines will be added to the describing function method of nonlinear

circuit analysis so that the control engineer may obtain quanti-

tative as well as qualitative results from his work. In addition,

the various methods of transient-response prediction which depend

on the accuracy of the describing function may be improvei.
6

6
For example, computing the closed-loop frequency response of non-
linear systems as described in the refcrences (Ref 12:195-208).

A_
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II. Linear Systems

Table I in Chapter I qualitatively describes the forward trans-

fer functions of the linear systems selected as representative of

those often encountered in practice for the purpose of study. Since

the conclusions and recommendations postulated in the last chapter of

this paper are largely dependent on just how arbitrary and represent-

ative the linear systems are, this entire chapter is devoted to their

description.

General Block Diagrams

The general block diagam of the linear systems discussed in

the introduction is shown in Figure l(a) below. Figure l(b) shows

the same system with a nonlinearity introduced. The nomenclature

indicated in Figure 1(b) will be used throughout the remainder of

this paper.

4) G r-O x Nc

(a) (b)
Figure 1

Unity feedback systems: (a) linear, (b) nonlinear, where G - linear
forward transfer function, N - describing function which represents
the nonlinearity when x(t) - X sin ct.

11
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Linear -Pransfer Functions

Three third-order and three fifth-order linear forwardi transfer

functions were originally chosen to be used in this study. Their

transfer functions are as follows, each written in two common forms:

G (a) 180 o
1 (s+l)(8+2)(s+3)

30(2
G 10-') -(l+j'j)(1+j.5..)(l+J0.33_1w)(2

G (a) 18 o
2' 9(s+15(s+2)o

G2(Jt) i3l~ij)l+jo.5Z

4.76(s+0.1) o
3 93 2(8+1)2

G ( jJ) 0.476(1+jlou) W
3 ~jd) 2(i1+ jv.)2

G4(s) .(s+l)(s+2)(s+3)('s+4)(s+5) o

G 40W) -(+wl 38.75(5

G ()-301 0or5 a(s+l)(s+2)(s+3)(B+4)

G (J-) 12.54(6
5~j ji(l+iw(+jO.5,-)(+jO.333w)(l+jQ.25&j)(6

Ge) 222a01 or
6(a a 2(+1)2 (8+5)2

12
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o. 09717(1+110w) (7)
6 (jsO) - (jw) 2 (l+j W) 2 (l+jO.2 W) 2

In a block diagram arrangement such as that of Figure l(a), Eqs

(2), (3), and. (4) become type 0, 1, and 2 systems, respectively.

They are third order because their denominators are of order three

higher than their numerators. Furthermore, their gains have been

adjusted so that they cross the real axis of their direct polar plots

at approximately -3. (See Figures 2, 3, and 4 at the end of this

chapter.) Similarly, Eqs (5), (6), and (7) become type 0, 1, and 2

systems, respectively. They are fifth order because their denomi-

nators are of order five higher than their numerators. Their gains

have been adjusted so that they cross the real axis of their direct

polar plots at approximately -10. (See Figures 5, 6, and 7 at the

end of this chapter.) fhese transfer functions are believed to be

somewhat representative, since they, as most well-designed control

systems, have no more than three to five dominant (closed-loop)

roots, and also, the three types of systems generally encountered

in practice are included. Furthermore, by establishing two sep-

arate real axis crossing points for each order group, both "large"

and "small" (relatively speaking) limit cycle amplitudes can be

obtained when the nonlinearities are introduced. However, in order

to ietermiine if the difference in accuracy between the predictions

lor G (s), G 2(s), and G3(s) and the predictions fcr G4 (s), G5(8),

and G6 s) was due to limit cycle amplitude or system order, the

gain oi G3(s) in Eq (4) was increased, allowing it to cross the real

axis of the direct polar plot at the same point as G6(s) in Eq (7).

Phus a seventh linear transfer function was introduced for study:

13
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G16.57 (e+0.1), orG3A(s) 16 5(s+l)

G3A~jw ) - 1. 657(i+jlI04)
(J 0)2(1+j &)2 (8)

The direct polar plot of this function is similar to that of Figure

4, except that the real axis crossing occurs at -10.339 instead of

-2.975.

Eqs (2) through (8) comprise a set of representtative linear

functions into which to introduce the nonlinearities. Upon analysis

of these systems, however, it was found that none would produce

stable oscillations with a dead zone nonlinearity. Thereftore, in

order to study the accuracy with which each type of dead zone de-

scribing function can predict the amplitude and frequency of self-

sustained oscillations, it is necessary to first devise a linear

system which will produce stable oscillations when dead zone is

introduced. Eqs (9) and (10) below are the forvard. transfer func-

tions of two such systems.

OT~) =248-626(s+1)2

G( s3 (s+lO)2  or

O(j) 2.48626(1+j ej)2

7 (jco)3 (l+jO.. w) 2  (9)

G£s) - 828.753(_8+1)2
7A 835+0 2 ors3 (s+lO) 2o

G 8.28753(l+j W) 2 (I0)
7A(W) (j .J)3 (1+jO. 1o)2

14
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As can be seen from an analysis of Figures 8(a) and (b) at the

end of this chapter, these conditionally stable, type 3, third-order

linear systems will exhibit stable oscillations when coupled with a

dead zone nonlinearity. (The direct polar plot of G7A (S) is similar

to that in Figure 8(a), except that the real axis crossings occur at

-0.6o6633 and -10, instead of at -0.20605 and -3 as shown for system

G7 (s)-)

Eqs (2) through (10) are the forward transfer functions of the

so-called arbitrary, representative linear systems into which the

nonlinearities covered in this study were introduced, with the

exceptions noted. In future discussions in this paper, the linear

functions of Eqs (2) through (10) will often be referred to by their

subscripted symbols; i.e., G1(S) or G3A(jo), as has been done in

several places in this chapter. With the linear systems thus estab-

lished and understood, the next step is to generate some describing

functions for the nonlinearities mentioned in Chapter i. This will

be done in the next chapter.

15
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Figur* 3

Direct polar plot of Eq (3): G2 ~ (+i +O
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Figure 6

Direct polar plot of Eq (6):

Gr.(j~)12-54
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III. Describing Functions

The general definition of a describing function is given on

page one in the introduction of this paper. In this chapter that

definition is expanded in order to define each of the specific

describing-function generating schemes included in the study: con-

ventional, minimum average error, equivalent gain, new rms, and

corrected-conventional. Then the describing function that each

scheme produces is listed for each of the nonlinearities included

in the study: dead zone, saturation, saturation with dead zone,

ideal relay, relay with hysteresis, relay with dead zone, and relay

with both dead zone and hysteresis.

Definitions

Since the describing-function generating schemes differ only in

the way the equivalent output sine wave from the nonlinearity is

chosen, the definition of each scheme can be placzd in a more or less

standardized format based on the general definition of the describ-

ing function. This procedure will facilitate comparison of the

methods. In each of the following definitions

x(t) = X sin Wt = the input to the nonlinearity;

y(t) = the actual nonsinusoidal output from the nonlinearity.

The Conventional Describing Function. The conventional describ-

ing function is equal to the amplitude and phase of an equivalent

output sine wave, chosen as the fundamental frequency term in the

Fourier series expansion of the actual nonsinusoidal output of the

23
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nonlinearity, divided by the amplitude and phase of the input sine

wave. In equation form (Ref 12:146)

- A:,-+ B, ____(n)

where Oy(t) cos Wt d ot

B1 - O(t) sin t djct

The Xinimun Average Error Describing Function. The min~im

average error describing function is equal to the amplitude and phase

of an equivalent output sine wave, so chosen as to minimize the aver-

age error between itself and the'actual nonsinusoidal output of the

nonlinearity, divided by the amplitude and phase of the input sine

wave (Ref 2:381). Let j be the phase difference between the input

sine wave and the output periodic waveform. (The phase of the out-

put is taken as the shift in axes necessary to make the output wave odd

periodic.) The average error can be minimized by setting the dif-

ference of the area under a half cycle of the actual output and a

half cycle of the equivalent sinusoidal output equal to zero. In

equation form:

average error Q 0 (t) dt - 1 sin(wt -#) dct

y(t) d wt - 2Y1  (12)

where Y1 sin(w t -$) is the equivalent output sinusoid. From Eqs

,12) and (1) the describing function is, the .:%r

2 y(t) dcwt

24
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The Equivalent Gain Describing Function. The equivalent gain

describing function is equal to the amplitude and phase of an equiv-

alent output sine wave, chosen to have an amplitude equal to the peak

value of the actual nonsinusoidal output of the nonlinearity, divided

by the amplitude and phase of the input sine wave (Ref 10:217). In

equation form

S Y(t)pak (14)

where 0 is the phase difference between the input sine wave and the

outpit periodic waveform. (The phase of the output is taken as the

shift in axes necessary to make the output wave odd periodic.)

The New RMS Describing Function. The new rms describing function

is equal to the amplitude and phase of an equivalent output sine

wave, so chosen as to have the same rms value as the rms value of the

actual. nonsinusoidal output of the nonlinearity, divided by the

amplitude and phase of the input sine wave. In equation form (Ref

2:382)

0 SYt)]2 d wtJj

X /00(15)

where is the phase difference between the input sine wave and the

output periodic waveform. (The phase of the output is taken as the

ift i :-es necessary to make the output wave odd periodic.)
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The Corrected-Conventional Describing Function. The corrected-

conventional describing function is equal to the amplitude and phase

of an equivalent output sine wave, chosen to have an amplitude equal

to the square root of the sum of the squares of the coefficients of

the fundamental and third harmonic in the Fourier series expansion of

the actual nonsinusoidal output of the nonlinearity and a phase

equal to the phase of the fundamental frequency term in the expansion,

divided by the amplitude and phase of the input sine wave. In

equation form

Al2 + 2 + A32 + B2) /tanl( )

N- xZ .(6)
X A 0 16.)

where A m- y(t) cost d wt

B1 rfo y(t) coo tot d cot

1 Trf (t) cs 3Wt d t

2 T

B3  If y(t) sin 3wt dwt

7Only nonlinearities which produce odd-harmonic outputs are considered
thus far in the definition; therefore, the third harmonic is the first
harmonic above the fundamental.
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The application of the 5 foregoing definitions to the 7 non-

linearities to be considered yields the 35 describing functions to

be studied.

Derivations

The 35 describing functions are listed in Tables II through VIII

on the following pages, with one table for each nonlinearity to be

considered. The various describing functions listed are nondimen-

sionalized to the extent necessary to enable graphic presentation of

describing function by a single curve or family of curves. These

describing functions were derived by applying Eqs (11), (13), (14),

(15), and (16) to each nonlinearity. A list of where some of these

derivations can be found is given in Appendix E. The derivations of

the corrected-conventional describing functions, which are new, can

be found in Appendix A, and plots of these can be found in Appendix

D. Appendix B contains the derivations of the new rms describing

functions for a relay with hysteresis and a relay with both dead zone

and hysteresis. These describing functions had not heretofore been

derived since Gibson had not yet extended the new rms describing

function to nonlinearities which are not single-valued (Ref 2:384).

With the linear systems of Chapter II and the describing func-

tions of this chapter thus established, it is now possible to proceed

to the amplitude and frequency predictions and the comparison of

those predictions with experimental results.
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Table II

Desozibing Funotions for Dead Zone an Derived by Various Desoribing-
Funotion Generating Sohemes.

For each describing funotion in the tables oUtl

Definition of nonlinearity and parameters: ,'2 / =

Definition of variable: m~ - i f

ConditionsP 0 O( /2 Iznput: x - X sincJt

Desoribing-Funotion Nondimensionalized Describing Funotion
Generati g Sohee

Conventional x 1
y ;-7r- 2sed - min 20 )

winiWA Average A (ad 7 1) in OL + 005 Ocd
Arror 2 d

EQuival'ent Gain I- -

NwR N2 c~ 3 sin 2,K4 d 2A]=- r + (2- 44()in2
L1 ~7 -IF ~

Correcoted-
Conventional I 7- a- 2od -sin 2.d) 2 + 1 sin 4'+

8 sin. 2vrd sin. Or~j sin 2 Ord)i

*This condition implies that d/24 X<oo. Also, if X - d/2,

there is no output and N/K - 0.
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Table III

Describing Functions for Saturation as Derived by Various Describing-
Function Generating Schemes.

For each describing function 
in the tablet

3 plop*

Definition of nonlinearity and parameter: 
- I K

~T7 S inpat
Definition of Variables " sin 2

Conditions* O s KrO/2 Input: x - I sin tit

Desoribing-Funotion Nondimensionalized Describing Function
Generating Schem~e

Conventional N+ in 2,

Minimum Average N .i -.(j- %)si-nO Co*
Error I

Equivalexat Gain N w in*

K L a
K + (2-)r7n

Correoted-
Convention.1 12 + sin 2%)24+ ( sin 2 -

1sin 4 sin 2% sin2 )2

*This condition implies that S/2!X<oo. Also, if X l4 S/2,
there is a linear output and N/K - 1.
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Table IV

Desoribing Functions for Saturation with Dead Zone as Deriv'4 through
the Application of Various Describing-Funotion Generating Schemes.

For each desoribing funotion in the tables output

d
Definition of nonlinearity and parameterss 7 2 d _ 1

slope d B

Definition of variables: 0d - sin-l 2 2

-l W

Condlitions s* O of d Z/0a 7772 Input: x - I sinct

Desoribing-Funotio Nondienionalised Desoribing Funotion
Generating Scheme

Conventional ICo=,= o -jK2P . - 20. + min 2. -sin, 2o )

Kiniui' verae -(ad - 0,) sin oc.d + [.or)(hin. oc - sin otd.) +

00 0 d - 003 x a

Equivalent Gain N
If sin 0( - sin O4

lew RKS

N~.(7#{2(O - Xd) - sin 2pts - 3 sin 2oud +

8 [c6s K. + (cts -7r s'. posjsin Xd +

(2 -d d 04 (Z f2})

Corrected-
Conventional 1 ,-)7 +

(29. - 21xd + sin 2%~ - sin 2~

sin 2.'a -j - sin 2~d 2: min 4o,+

1 16 3 , o 2
1 sin4 4 ~ L6 sizL3 005 I(5 +

l~ 3

1T Sin 3

*These conditions imply that S/2 4 X<o0 and S > d. If X < S/2,

Table II applies.
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Table V

Describing ftnctions for an Ideal Relay as Derived through the

Application of Various Desoribing-Funotion Generating Schemes.

For each describing function in the table: K outt

Definition of nonlinearity and parameters: i--u-

Conditionst OZ I / c Input: x a X sin wt

Describing-Function Nondimensionalize. Describing Function

Generating Scheme

Conventional X 4 1.273

Minimum Average N 7" 1.51
Error K 2-f I

Equivalent Gain N 1

New RMS N Y 1.414

Corrected- N 1jfi0 1.342
Conventional K =  9"

31



GGCiE/64-16

Table VI

Desoribing Functions for a Relay ith Hysteresis as Derived through
the Application of Various Desoribing-Funotion Generating Schemes.

output

For each describing function in the table:

Definition of nonlinearity and parameters:binu

Definition of variable:, M sin -X

Conditions: h/2L X Zoo Input: x- X sin 4t

Desoribing-Function Nondimensionalied Doscribing Funtion*
Generating Scheme

Conventional 1 1.273
__ __ __ K " X

Mininum Average N - -57
Error K I 

Dquivalent Gain N 1 1

New BMS N 1.414

Corrected- N .342
Conventional K - I

0 is complex number notation for 1
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Table VII

Describing Functions for a Relay with Dead Zone as Derived through
the Application of VArious Describing-Function Generating Schemes.

utput
For each describing funotion in the 

tablet K--

4
Definition of nonlinearity and parameterst - 1

Definition of variables 0( sin A2

Conditionst* OJ--- 1 /2 Inputs x - X sin wt

Desoribing-Function
Generating Scheme

Conventional Nd s i

Minimum Average Nd 1~2(4 i (

Equivalent Gain Nd
-Y-_ _ 2 sin o(M

New RMS Wd 2 40dsin-- = 2  -"j sinO

Corrected- Fd
Conventional r- sn 2 05d 11+ -4si6(

*This condition implies that d/2 _ X<oo. Also, if X _ d/2,
there is no output and Nd/K . 0.

33



;GC/EE/64-16

Table VIII

Describing Funotions for a Relay with Dead Zone and Hysteresis as
Derived through the Applioation of Various Describing-Function

Generating Schemes.
output

For each describing function in the table: -d+ K

Definition of nonlinearity and parameters:

Definition of Variables: 0%.. - 17 d+h - d- h

/3 -7r- si-l--)

Conditionu,* O4 o( e1772 Inputt x - I sinwt

Desoribing-Funotion Nondimenionlised Describing Function
G enerat IM Scheme ___________________Describing _Function

Conventional J(d+h) 8 2 si( - r 4j ( +1)

_ _ _ _ _ K I si c s n 2 - a 22

Minimum Average N(d+h) - sin x 2
Error -K)

Equivalent Gain (d+h) 2 +inL6 2

New RUS ]J(d+h) )sn0( 02
K

Corrected- N(d+h) 8
Conventional K " 2 s

7r o + I
4 o a2 -)] e(12 2

*This condition implies that (d+h)/2 /- X<oo. Also, if 2, 4 (d+h)/2,
there is no output and N (d+h)

K 0.
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IV. Amplitude and Frequency Predictions

In order to preserve continuity in the discussion to follow,

only one nonlinearity will be discussed at a time. That is, for

each nonlinearity the technique used to predict the amplitude and

frequency of the self-sustained oscillations will be presented,

followed by a comparison with the experimental results and a dis-

cussion of a few conclusions which may be drawn from the comparison,

before moving on to another nonlinearity. Thus this chapter repre-

sents several small studies within a larger study, but this is a

necessary consequence of the nature of the problem. The answer to

the question "Which describing function is best?" may depend on the

particular nonlinearity under consideration.

In the analysis to follow, the "gain," K, of the nonlinearity

is sometimes other than unity. However, this does not defeat the

purpose of having two separate axis crossings for the linear portion

of the system (See Figure 2 through 8 in Chapter II) by changing

the loop gain, as one might think. The main reason for having two

separate axis crossings for the linear transfer functions was to

provide an adequate separation of the systems into two groups, so

that the "gain," K, of each nonlinearity could then be adjusted to

provide a "small" amplitude limit-cycle group and a "large" ampli-

tude limit-cycle group. That is, exactly where the "large" signal

and "small" signal portions of the describing function curve occur

depend on the nature of each individual nonlinearity. Therefore, the

value of K must be selected individually for each nonlinearity, so
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that the separation will actually provide what may be considered

"large" and "small" limit-cycle amplitudes for that nonlinearity.

Saturation.

If a saturation nonlinearity is introduced into one of the

linear systems, Gl(s) through G6(6), or 03A(S), in the manner shown

in Figure l(b) on page 11, a stability analysis will reveal that

stable, self-sustained oscillations will result. A normalized plot

of each of the five saturation describing functions listed in Table

III on page 29 is shown in Figure 9 on page 38. The values of the

parameters of the saturation nonlinearity were chosen as S - 3 and

K - 0.5. The amplitude and ftequency predictions by each of the

five describing functions for each of the seven systems were calcu-

lated in the following maner:

(1) Use Eqs (2) through (8) or Figures 2 through 7 in Chapter

II to calculate the negative real axis crossing point of G.L ( ) ox

the direct polar plot. The value of n( jco) at the negative real

axis crossing is equal to -1/N 1 and the value of O at the negative

real axis crossing is the predicted frequency of the self-sustained

oscillations.

(2) Calculate the value of -K/N and use Figure 9 to determine

the value of 2X/S for each system and each describing function.

(3) Calculate the value of X from the known values of 2X/S and

S. X is then the predicted amplitude of the self-sustained oscil-

lations for that particular describing function and system.

The results of the application of the foregoing procedure are

tabulated in Table IX on page 39. In order to determine the accu-
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racy of the predictions, each of the seven nonlinear systems was

simulated on an analog computer. (The circuits used in the simula-

tion are shown in Appendix C.) The analog computer experimental

results are also shown in Table IX, along with the percentage of

error of each prediction based on the experimental results.

Table X on page 40 is a comparison, based on the error figures

in Table IX, of the various saturation describing functions. It

shows that the saturation nonlinearity seems to favor the conven-

tional describing function, although it can be seen from an analysis

of Table IX that the accuracy of the corrected-conventional describ-

ing function becomes generally better as the amplitude of the limit

cycle is increased. The situation is somewhat different, however,

when dead zone is added to the saturation, which is the next non-

linearity to be discussed.

37



G(;C/!,.E/6'-16

.......... ..
+Fi+ +..... ..... ..... .....

...... ..... .....

..........

to 
I .........

0 4

.... ..................

..... ...... . ...... Cd............... 0 9
0

V
V2 (D

>
0 r-4

Cd 'd 0 r............
...... .... .. .. .. ... (D

.... .. . z r cc

F4 > -H

0 a
:8, z u 0

r-I C'i 'I

CY .... .. .. .. ...
. .... ... .....

cm cn

38



G;GC/n/64-16

.ZottnbsxL r4 r- r UN H N~ '.0 -P

_ _ _ _+_ +. +

d Og/w \ m4\0 \

\0 ~ ~ 14 H %

fn r- 0 FH 0 0 0

-unbx Ha- Nl t- en t- 0

H cm M e l- -

A 4 V . . 9 . . . .
*3 0 r0' $3N H U'\4 H

%0 \1
4T4 0 0) t- 0

4a No N0 N 0 0

4A .q H \H HN N
dH N. c - Hq t-0 U., C8

H.4 aT~T% o=, o 'la, f N0 00

0 0 48 N r

0 V- t- 9" 9 Ice

Cl cZ% * N 9 4j * \
H4 H HH0

4-V t- gl __8_ +- +\ co +\D+ +

r4 FS HO~ N 4' c

i tA. 1 1 1'1.

C- .0 04 u, tr n9

04 *pnr 4r N *~ N cm - H- r- r--

0 N 0
0 LN N NK 0'. Po-0 .

oo C

C3 ~ ~ ~ ~ . .4t .- t\ I~ dC

4

00 08 0 0 04 0 *0

4a C~ U'% CO39



GGC/Yu-./6A4-16

H 0 0 0 I

H4 -4 H r+, o 0 rn 0 0 ;>
0) - WFa A .0 H N ~ -f0.'

o> to0 yF 4  0 r. A
F 4*4 H H. H t - -

07 tO C 4 + + + .7H
0' p 4-3 0 _ _ __ _ _ _

o 4- 0 >, -H

-F. 4 .o 0. 4.

4 0~) 040 3

,.0 0~0C 0f C' H(N

0 0 0 4-3 Cd

0~ (D
F, k0 0 0~

t o4 N I\ H O V> q40
.74 OH d 4)' CHf 0 H 00r

0) 0~ 0 ON% H r3 3

-v k ~ * 9fl r- 0 d9-

F4 01) g en
:1 IV+' 4 + + ~N

43 4.1 _ _ _ _ _ _ _ _

0d 4.3 43 4'*
/ 4 -4 -P 430.0 --

z 9 4' i-I N' 00j ,j -4
0 1 H 0 H~ H 4 0 \D N4a)4 z w

4 0 4 d 0N >j~ (NJ H!3 H C),
-A 00. 40 Hr 0 '. (J0 CM0 CM c0 O
4.74 P4 4 -P*7 0 :3 rt .40 42

N, 4 0N O0 H 4H -H i
Cd 4 0 vi Nd 0

(a0 j0 ~0 0 ' 94N3M 0 P No
P0 ' -H ~43 7. r 10 \ tl 4 r- H

k 4-10 0 .0 N HOj 4 00 I
o ~ - v ., 00 9

A 0~ (D '.0 0 ON H r4
.rq IfN to0 to+H

z N4P 00 0 .g ON CJ 41 Pi04

0 00 No 0 9HH H H .
*74-r4 0 > 0 04 + + 4> 4) O

0 4' -P 4 fr 0 0D

0~ 4-0 N 0
r44 H70N 0 _______ _m

C) 0 0 @ H0
r-44 Q CH 9 4
cd -P I j

0 4-- 0. 9 d9

N CMr 0 .4 ,.. Hr 0

Id 0 0 k) * '

4H .0. 0 0 .44
s 0+' B.. 0)- 4, Q r

07  .4 I H 0 -, 0 +3

0 t I -03_ 0 Cd a) 4 s 0 Q 0C Ea 0

S0 47 H.t - I1 -
0 >74 oS 43 43 H~ 4-
0 ) 0~ 0 TN .,I 00

F4 p 00C4H 4 F4 043 0
N oa 0 .74g 3

~ ~0 .40)40



GGC/E/64-16

Saturation Combined with Dead. Zone

If a nonlinearity consisting of saturation combined with dead

zone is introduced into one of the linear systems, Gl(s) through

0 6(a), or G3A(s), in the manner shown in Figare l(b) on page ji,

a stability analysis will reveal that stable, self-sustained oscil-

lations can exist. A normalized plot of each of the five satura-

tion describing functions listed in Table IV on page 30 is shown

in Figure 10 on page 43 for the case of s/d = 2. The values of the

parmeters of the nonlinearity were chosen as S - 4, d - 2, and K - 1

for the purpose of analysis. The predictions of the amplitude and

frequency of the self-sustained oscillations by each of the five

describing functions for each of the seven systems mentioned were

calculated in a manner similar to that used for saturation:

(1) Use iqs (2) through (8) or Figures 2 through 7 in Chapter

II to calculate the negative real axis crossing point of Gn(Jw) on

the direct polar plot. The value of Gn (jo) at the negative real

axis crossing is equal to -/1N, and the value of W at the negative

real axis crossing is the predicted frequency of the self-sustained

oscillations.

(2) Calculate the value of -K/N and use Figure 10 to determine

the value of 2-X/d for each system and each describing function.

(3) Calculate the value of X front the known values of 2X/d and

d. X is then the predicted amplitude of the self-sustained oscil-

lations for that particular describing function and system.

The results oi the application of' the foregoing procedure are

tabulated in Table XI on page 44. In order to determine the accu-

racy of the predictions, each of the seven nonlinear systems was
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simulated on an analog computer. (The circuits used for the simula-

tion are shown in Appendix C.) The analog computer experimental

results are also shown in Table XI, along with the percentage of

error of each prediction based on the experimental results.

Table XII on page 45 is a comparison, based on the error figures

in Table XI, of the various saturation-plus-dead-zone describing

f'unctions. It shows that the saturation + dead zone nonlinearity

seems to favor the corrected-conventional describing function;

furthermore, analysis of Table XI shows that this is true for both

large and small limit-cycle amplitude. Thus, the addition of dead

zone to the saturation must have increased the harmonic content of

the output of the nonlinearity to the point that a correction was

needed for all amplitudes instead of just for high amplitudes. A

similar thing happens when the ideal relay is analyzed.
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Ideal Relay

If an ideal relay nonlinearity is introduced into one of the

linear systems, 0l(a ) through G6 (8), or 3 in the manner shown

in Figure l(b) on page 11, a stability analysis will reveal that

stable, self-sustained oscillations will result. A plot of each of

the five ideal relay describing functions listed in Table V on page

31 is shown in Figure 11 on page 48. The value of K was chosen to

be unity i cr the analysis. The predictions of the amplitude and

frequency of the self-sustained oscillations by each of the five

describing functions for each of the seven systems mentioned above

were calculated in the following manner:

(1) Use iqs (2) through (8) or Figures 2 through 7 in Chapter

II to calculate the negative real axis crossing point of Gn(jw) on

the direct polar plot. The value of 0 n(Jb) at the negative real axis

crossing is equal to -1/N, and the value of W at the negative real

axis crossing is the predicted frequency of the self-sustained

oscillations.

(2) Calculate the value of -K/N and use Figure 11 or the describ-

ing function equations in Table V to determine the value of X, the

predicted amplitude of the self-sustained oscillations for that

particular describing function and system.

The results of the application of the foregoing procedure are

tabulated in Table XIII on page 49. In order to determine the accu-

racy of the predictions, each of the seven nonlinear systems was

simulated on an analog computer. (The cLrcuits used for the simu-

lation are shorn in Appendix C.) The analog computer experimental

46



GGC/EE/64-16

results are also shown in Table XIII, along with the percentage of

error of each prediction based on the experimental results.

Table XIV on page 50 is a comparison, based on the error figures

in Table XIII, of the various ideal relay describing functions. It

shows that the i&eal relay nonlinea.rity strongly favors the corrected-

conventional describing function for the systems considered The

same thing seems to be true of all the various relay nonlinearities,

insofar as amplitude accuracy is concerned, as will be seen in the

next three sections.

47



GGC EE/64-16

R:-

HHPi T

10 42
-44

P; ca

elo
1-4

'o
0

4-D F4
+31
o

H co
P.4

-+4. + -

..........

T
T

Go

M.

;4 Cd

0
-A 4) F4
0 

4##

o W 42 M "MY,
%0

Cd
k 0 r-I 0 1:M C) cd

0 Tl 1 9 4JI0
4) 43 4.11

0

7H P4 -4 (D 0 0

T
"'TITT.

T,
..........

IV
CY 4 oj rn -Kr Lf,%

+
-4-

i4t

r4 CY co 0

z

48



GGC/Er/64-16

UOTtOPJT g '
aCunba H a% 0 ' a,% C fn 45

U Tnr C~ P -4 Y en '
+ ++ + + +H

*t oaanb '0 4Q H11
H r-4 n nc*

(oog/pwo) 10 o qt ac

lourtbz -4 H N %

en~m.~d~ H 04 r:; A 0 0

0N r-
0~ o-

rn en a, CQ r

0f
4  0 0 NR o c

45.4 OT T -rr u

4JP ~ 0 0 Mdy 4 4 'A 'A A;'
u u r-4 H- 0-4 r-4

A CY\ rn 0 U- OD aN t-

SI N r lt f N NM
0 0u1 'r-4 " rl -t aN 0 &

45 A A N 6

0 +~ +~ + + 11

0 40 0 op51W U 1* t iP - ~ i

f-4 rq I II f- 4 5

H en H
o4 en co rn .

A W 4H CH

E-4 H 1- 1 H 1t 1

r-- r- U"\ iC-r N a\ HU

0 H H Hq H *4

N- N- 0l- aq ol -it ..

%0 0o 0

SII HpT~ ~ rq Sl S q
0 44s .

H ' N t- en\

43 0 00 0

49~ C



GGC/M,;/64-16

9.4 0 H4 A
+p' tv, (~ r4

c 0 CN. a*

04 +0r + +

-A *0 r 0 04

H 54
0 cd

.0 %3 1 Id Z* tog 0C 0 4
.94 0 V F3

0

H: o 0 -

0 C; 0

0 0 0 C00 4-4

El 40 Id 0 0 44

44 0 t- 0C >I 4-vI

.9.4 0

*dQ 4 r- ()
H S ~4 4 0 2 rj

0 1 84- -4 0
* 4) 4 040 si ai 6 0.P4 0

A 00-r

O 94b 0 .. lM COj -

>440 0 40H
pq + 2 4b

o * 7 454C) Vs40 kW

4) ~ ~ r 05 0 5 0,~

E-) 04 3. 'd 44
.4 %t-4 4

0 1 0
.r 0 0'0 F .- -

F4 A 4- co 0ot 4
A 000 ~0 w o 0 r,,

0. Id .- 4 0. 04 $4 -4 F-

0H +0r.4 +, 0
44 0

0
0 O - 14 0 4 (pi 00

.r4I 'd 4)-

42 ;)
o 0 4-4..- +31 5 3~4 ~ 9

-H Aq f-0 0 *4.5 0

5 0 to. r4H r
?4-4 rg r4 ~

0_Id_4-3

04 V 4 C ~ o*0



oGc/EB/64-16

Rela with H'Isteresis

If a nonlinearity such as a relay with hysteresis is introduced

into one of the linear systems, Gl(S) through G6 (s), or G3 A(s), in

the manner shown in Figure l(b) on page 11, a staoility analysis will

reveal that stable, self-sustained oscillations will occur. A

comparison of Tables V and VI (pages 31 and 32) shows that the magni-

tude variations of the relay-with-hysteresis describing functions

are the same as those of their ideal relay counterparts; however,

the hysteresis introduces an amplitude-dependent phase shift. Figure

11 on page 48 is thereiore a valid plot of -IKI versus X for the

relay with hysteresis. In order to analyze the relay-with-hystere-

sis describing functions, values of h = 6 and K = 1 were chosen,

and the five describing functions of Table VI were plotted in a

psuedo magnitude-angle diagram fashion as shown in Figure 12 on

page 54. (A magnitude rather than log-magnitude scale was used in

order to preserve accuracy.) On the same graph, the magnitude

versus angle relationship of each of the seven previously mentioned

linear forward transfer functions was plotted. The intersection of

a Gn (jw) curve with a negative inverse describing function curve

is the operating point at which that particular type of describing

iunction predicts a stable limit cycle. One can use Figure 12,

therefore, to make the amplitude and frequency predictions in the

following manner:

(1) Use the magnitude-angle condition at the intersection to

solve the appropriate Gn (Jw) equation (Eqs (2) through (8) in

Chapter I:) forwO. This value of 4o is the predicted frequency cf
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the sell-sustained oscillations.

(2) The magnitude value at each intersection is equal to)l

for that particular system and describing function. Therefore

Figure 11, or the magnitude portion of the describing function

defining equation, can be used to determine X, the predicted ampli-

tude of the self-sustained oscillations.

The results of the application of the foregoing procedure are

tabulated in Tables XV and XVII on pages 55 and 57. In order to

determine the accuracy of the predictions, each of the seven non-

linear systems was simulated on an analog computer. (The circuits

used for the simulation are shown in Appendix C.) The analog com-

puter experimental results are also shown in Tables XV and XVII,

along with the percentage of error of each prediction based on the

experimental revults.

Table XVI on page 56 is a comparison based on the amplitude

prediction error figures in Table XV, of the various relay + hys-

teresis describing functions. It shows that the relay-plus-hystere-

sis nonlinearity seems to favor the corrected-conventional describ-

ing function insofar as amplitude accuracy is concerned. However,

Table XVIII on page 58, which is a comparison based on the frequency

prediction error figures in Table XVII, shows that the relay-vith-

hysteresis nonlinearity favors the equivalent gain describing "unc-

tion for frequency prediction accuracy. And, from an analysis of

Table X-VII, the i re.uency prediction accuracy of the e-,uivalent

gain method apparently increases as the limit-cycle amplitude ie

increased. ihis problem of a varia.tion in the :re-uency preliction
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does not arise in the next section, since a relay with 
dead zone

will not cause a phase shift.
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Relay with Dead Zone

If a nonlinearity such as a relay with dead zone is introduced

into one of the linear systems, G1 (S) through G6 (s), or G3 )(S), in

the manner shown in Figure l(b) on page 11, a stability analysis

will reveal that stable, self-sustained oscillations can exist. A

normalized plot of each of the five relay-with-dead-zone describing

functions listed in Table VII on page 33 is shown in Figure 13 on

page 61. For the analysis, the values of the parameters of the non-

linearity were chosen to be d - 3 and K = 1. The predictions of

the amplitude and frequency of the self-sustained oscillations by

each of the five describing finctions for each of the seven systems

mentioned were calculated as follows:

(1) Use Eqs (2) through (8) or Figures 2 through 7 in Chapter

II to calculate the negative real axis crossing point of Gn (J&) on

the direct polar plot. The value of Gn(j ) at the negative real

axis crossing is equal to - IN, and the value of j at the negative

real axis crossing is the predicted frequency of the self-sustained

oscillations.

(2) Calculate the value of - K/Nd and use Figure 13 to deter-

mine the value of 2X/d for each system and each describing function.

(3) Calculate the value of X from the known values of 2X/d and

d.. X is then the predicted amplitude of the ;!elf-sustained oscil-

lations for that particular describing function and system.

The results of -he application of the foregoing procedure are

tabulated in 1able XIX on page 62. In order to determine the accu-

racy of the .relictions, each of the seven nonlinear systems was
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simulated on an analog computer. (The circuits used for the simu-

lation are shown in Appendix C.) The analog computer experimental

results are also shown in Table XIX, along with the percentage of

error of each prediction based on the experimental results.

Table XX on page 63 is a comparison, based on the error figures

in Table XIX, of the various relay-plus-dead-zone describing func-

tions. It shows that the relay + dead zone nonlinearity seems to

favor the corrected-conventional describing function. This is true

because, as Table XIX shows, for small amplitude limit-cycles when

the harmonic content 'is apparently smaller, the conventional and the

corrected-conventional describing functions are (nearly) the same;

whereas, when the limit-cycle amplitude is increased, the coricected-

conventional describing function automatically compensates for the

increase in harmonic content of the output of the nonlinearity.

When hysteresis is added to the relay with dead zone, the

problem of frequency variation between the predictions again arises.
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Rel with Dead Zone and Hysteresis

If a nonlinearity such as a relay with both dead zone and hys-

teresis is introduced into one of the linear systems, G1(3) through

S6(s)' or G3 A (s), in the manner shown in Figure l(b) on page 11, a

stability analysis will reveal that stable, self-astained oscilla-

tions can occur. A normalized plot of the magnitude of each of the

five relay-with-d-ead-zone-and-hysteresis describing functions listed

,n Table VIII on page 34 is shown in Figure 14 on page 67 for the case

of d/h = 1. The negative magnitude is used as the ordinate to permit

comparison with the other describing function plots in this chapter.

The angle variation, which is the same for all of the describing

function schemes, is shown in Figure 15 on page 68. In order to ana-

lye the relay-with-dead-zone-and-hysteresis describing functions,

values of d - h - 2 and K - 0.8 were chosen, and the five describing

functions of Table VIII were plotted in another psuedo magnitude-

angle diagram shown in Figure 16 on page 69. On the same graph, the

magnitude-versus-angle relationship of each of the seven previously

mentioned linear forward transfer functions was plotted. The inter-

section of a Gn(JW ) curve with a negative inverse describing func-

tion curve is the operating point at which that particular type of

describing function predicts a stable limit cycle. One can use Fig-

ure 16, therefore, to make the amplitude and frequency predictions in

the following manner:

(1) Use the magnitude-angle condition at the intersection to

solve the appropriate Gn (jw) equation (iqs (2) through (8) in Chapter

II) for to. Phis value of' &)is the predicted frequency of the self-
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sustained oscillations.

(2) The magnitude at the intersection is the prciicted operating

valre of N~ for that particular system and describing function.

Therefore, Figure 14 can be used to deterzine the value of 2X/d by

calculating -jK/N' I+h)j and then picking 2X/d off of the proper curve.

Alternately, the angle value at the intersection is the predicted

operating value of /, so Figure 15 can be used to find 27./d

directly from /-1/N.

(3) Calculate the value of X from the known values of 2X/d and

d. X is then the predicted amplitude of the self-sustained oscilla-

tions for that particular describing function and system.

The results of the application of the foregoing procedure are

tabulated in Tables 'UI and XXIII on pages 70 and 72, respectively.

In order to determine the accuracy of these precictions, each of the

seven nonlinear systetas was simulated on an analog computer. (The

circuits used in the simulation are shown in Appendlix C.) The analog

computer experimental results are also shown in Pables XXI and XXIII,

along with the percentage of error of each prediction bas'i on the

experimental results.

Table XXII on page 71 is a comparison, based on the amp!ituie

prediction error figures in Pable XXI, of the various relay-with-

dead-zone-and-hysteresis dIscribing functions. It shows that the

relay + dead zone + hysteresis nonlinearity favors the corrected-

conventional describing function insofar as amplitude accuracy is

concerned. However, Table XXIV on age 73, which is a comparison

based on the frequency prediction error figurcs in Pable XXIII.
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shows that the relay + dead zone + hysteresis nonlinearity favors

the equivalent gain describing function for frequency prediction

accuracy. Again, as in the case of a relay with hysteresis, the accu-

racy of the equivalent gain frequency prediction seems to increa se

with limit-cycle amplitude as Table XXIII illustrates.

The last nonlinearity to be appraised by the various describing

function schemes is dead zone. Since it does not provide a stable

limit cycle when coupled with systems G1 (s) through G6 (s), or G 3(s),

as pointed out in Chapter II, it was only analyzed with two condi-

tionally stable systems, or rather, the same system at two gains.

Therefore, the comparisons are less conclusive than for the other

nonlinearities, but they are still interesting and necessary for

completeness.
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Dead Zone

If a dead zone nonlinearity is introduced into one of the

linear systems, G7 (jto) or G7A(jw), in the manner illustrated in

Figure l(b) on page 11, a stability analysis will reveal that sta-

ble, self-sustained oscillations will result. (See Figure 8, page

22.) A normalized plot of each of the five dead zone describing

functions listed in Table II on page 28 is shcwn in Figure 17 on

page 77. Interestingly, the new rms describing function and the

corrected-conventional describing function for dead zone differ

by such a small amount that, in effect, they plot as the same curve.

For the analysis, the amount dead zone was set at d = 6 and the

gain of the nonlinearity at K = 0.5. The predictions of the ampli-

tude and frequency of the self-sustained oscillations by each of

the five describing functions for each of the two systems men-

tioned were calculated as follows:

(1) Use Eqs (9) and (10) to calculate the negative real axis

crossing point of the direct polar plot of G7 (jC ) and G A(j ),

respectively. (Again, see Figure 8, page 22. The pertinent cross-

ing of G7 (j w) was set at - 3 and G7A(jL4) at - 10, of course, as

discussed in Chapter II.) The value of G (j4o) at the crossingn

outside of the - I point is equal to - 1/N, and the value of co at

this crossing is the predicted frequency of the self-sustained

oscillations.

(2) Calculate the value of - K/N and use Figure 17 to deter-

mine the value of 2X/d for each system and describing function.

(3) Calculate the value of X from the known values of 2X/d
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and d. X is then the predicted amplitude oi the seli-sustained

oscillations for that particular describing function and system.

The results of the application of the foregoing procedurc are

tabulated in Table XXV on page 76. In order to determine the accu-

racy of the predictions, both of the nonlinear systems were simu-

lated on an analog computer. (The circuits used for the simula-

tion are shown in Appendix C.) The analog computer exierimental

results are also shown in Table XXV, along with the percentage of

error of each prediction based on the experimental results. The

frequency error for system GT7 (ju0) was far greater than any other

frequency error in the entire study. This can probably be explained

with Figure 18 on page 76. As can be seen in Figure 18, the basic

describing function assumption that x(t) is approximately sinus-

oidal is quite poor for system G7A(JUO) with dead zone, whereas

it was a good assumption in every other case. However, it is inter-

esting to note that the amplitude predictions were not seriously

affected by the failure of this assumption.

Table XXVI on page 79 is a comparison, based on the error

figures of Table XXV, of the various dead zone describing functions.

It shows that the dead zone nonlinearity favors both the new rms and

the corrected conventional describing functions since they give

essentially the same results (to three or four place accuracy).

The describing function comparison tables at the end of each

section of this chapter have used four error criteria as a basis

for drawing conclusions about the accuracy of each type of describ-

ing function. These criteria were chosen because, in the author's
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opinion, the "best" describing function should:

(1) have an arithmetical mean error (or average error) very

close to zero, indicating that the errors encountered with that

describing function will be randomly distributed about zero error,

rather than about some positive or negative error value, so that

chances of having an error of almost zero are maximum;

(2) have a median error close to the value of the arithmetical

mean error to indicate, to some extent, that the data gathered was

representative and not "lopsided";

(3) have the smallest maximum magnitude of error possible in

orker to give an indication of its maximum "tolerance"; and

(4) have the smallest arithmetical mean of absolute error as

an indication of the error magnitude that can usually be expected.

This concludes the analysis of the describing function schemes

as they apply to specific nonlinearities. In the next chapter an

overall, general comparison will be made.
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V. Conclusions

Some readers may feel that, while attempting to find which

describing function is more accurate, the author has only compli-

cated the problem by adding still another scheme to the field.

However, as this chapter attempts to show, although the corrected-

conventional describing function may be more empirical than theo-

retical, it does remove some of the restraints and add a lot of

accuracy to the analysis of a wide range of intermediate-order non-

linear feedback control systems.

Overall Comparison of the Describing-Function Generating Schemes

Table XXVII on the following page is an overall comparison of

the amplitude prediction errors of the various types of describing

functions included in this study. It shows quite conclusively that

in general, to obtain amplitude prediction accuracy when using the

describing function technique of stability enalysis, one should

use the corrected-conventional describing-function generating scheme

to derive the describing function. Table XXVII shows that the cor-

rected-conventional describing function is generally about two

percent more accurate than the conventional describing function

for intermediate-order nonlinear systems such as those included in

this study. It also shows thatf in general, no advantage is gained

by using the new rms describing function instead of the conventional

describing function. (However, the new rms describing function pro-

vided a slight improvement for the various relay nonlinearities
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discussed in Chapter IV, but the improvement was not nearly as

significant as that provided by the oorrected-conventional describ-

ing function.) In summary, the corrected-oonventional describing

function provides certain advantages over the other describing

function schemes for every type of nonlinearity tested avl, in

general, it has a mean and a median closer to zero than any other,

a maximum magnitude of error less than any other, and an average

absolute error less than any other describing function tested, inso-

far aw amplitude prediction accuracy is concerned.

Trends in Describing Function Predictions

Since there are an infinite number of nonlinearities which

could be introduced into an infinite number of feedback systems,

the 44 varieties analyzed in this paper certainly do not constitute

a conclusive proof of the corrected-conventional describing func-

tion's superior accuracy. But on the basis of this study, it cer-

tainly seems permissible to postulate that the corrected-conventional

describing function can usually give the control engineer a more

quantitative answer to his stability problem than he was able to

previously obtain from the conventional describing function, except

perhaps in a very complex system which provides almost perfect low

pass filtering. The reason for this can be gleaned to some extent

from the prediction tables in Chapter IV. A close analysis of the

prediction tables in Chapter IV shows that the amplitude accuracy

of the conventional describing function decreases as the limit-

cycle amplitude, X, increases. This is so because, as Thaler and

Pastel poilt out (Ref 12:1'12), the conventional describing func-
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tion becomes less dependable as the signal level increases. In

addition, the amplitude accuracy of the conventional describing

function decreases as the order of the system decreases, since les

filtering of the higher harmonics occurs. And, as the tables show,

the amplitude accuracy of the conventional describing function also

seems to depend on system type, decreasing as the system type is

increased. The corrected-conventional describing functions, on the

other hand, seem to be relatively unaffected by changes in limit-

cycle amplitude, system type, or system order for the intermediate

order systems of the study. This seems to come about from the

inherent correction in the variation afforded by the third harmonic.

Thus, by using the corrected-conventional describing function, the

engineer Pan remove the small-signal limitation and relax somewhat

the sine-wave inpat assumption, thus providing a more quantitative

analysis tool for his real-life problems.

The amplitude accuracy of the new rms describing function is

also relatively insensitive to limit-cycle amplitude and system

order changes in the intermediate-order system range. However, it

is not as accurate as the corrected-conventional describing func-

tion, and it seems to be quite sensitive to changes in system type.

For the purpose of attaining accurate amplitude predictions

with the describing function stability analysis technique, it

appears that the minimum average error and equivalent gain schemes

are completely out oi the question. This is to be expected, how-

ever, since Gibson introluced the minimum average error technique

only as an example, and Prince's equivalent gain technique is
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intended Primarily for analytical-graphical, closed-loop frequency

response analysis. Graphical methods for producing the closed-

loop frequency response from any describing function scheme do

exist, however, (Ref 12:195-210) and the corrected-conventional

describing function applied in this marnner might produce more accu-

rate results than Prince's method, at least for nonjinearities

which do not produce a phase shift.

All five types of describing functions presented in this paper

predict the same frequency of oscillation, except when the nonlin-

earity produces a phase shift, as the relay + hysteresis and relay

+ dead zone + hysteresis nonlinearities in this study do. In those

cases it seems that the equivalent gain describing function is more

accurate for frequency prediction, with 'he accuracy increasing as

the limit-cycle amplitude is increased. This increase in accuracy

with amplitude may be due in part to the same sort of phenomenon

explained by Johnson for the conventional describing function (Ref

6:175); that is, as the limit-cycle amplitude is increased, the inter-

section of the negative inverse describing function locus and the

direct polar plot locus become more orthogonal (see Figures 12 and

16, pages 54 and 69), and it is the nearly tangential intersections

which give misleading results.

If the corrected-conventional describing function is to be

acceptable to the control system engineer, it must be shown why, in

fact, this new technique should produce more accurate amplitude pre-

dictions than the conventional describing function, or any of the

others.
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ihe Case for the Corrected-Conventional Describing Function.

The only two methods of generating describing functions which

have met with much success prior to this study, insofar as predic-

ting accurate limit-cycle amplitudes is concerned, are the conven-

tional and new rms techniques (Ref 3:1321). In order for the con-

ventional technique to be completely accurate, it is necessary for

the linear portion of the loop to act as a perfect low-..jass filter.

However, for intermediate order systems, the linear portion of the

loop is far from being a perfect low-pass filter. Consequently,

some higher harmonics, although attenuated, are fed back to the

input of the nonlinearity along with the fundamental. For inter-

mediate order systems, the conventional describing function will,

therefore, underestimate the amplitude, X, oi the signal returning

to the nonlinearity.

The new rms describing function, on the other hand, assumes

that their is no liltering of the higher harmonics by the linear

portion of the loop, but rather, that the output sinusoid is just

reshaped into a fundamental frequency sine wave of equal energy

(Ref 2:31;1). Appendix F shows that the new rms describing function,

in effect, takes as the amplitude of the equivalent output sine wave

irom the nonlinearity, the square root of the sum of the squares of

all the Fourier coolficients in the Fourier -.)pansion of the actual

output of the nonlinearity. Obviously, some Iiltering of harmonics

higher than the fundamental will result in an intermediate order

system, so the new rms describing iunction will, therefore, over-

cstimate the amplitude, X, ol the signal returning to the non-

85



GGC/EE/64-16

linearity.

What actually happens to the higher harmonics lies between what

the conventional and new rms methods assume. The real case for the

corrected-conventional describing function is, therefore, that it

considers only the most prominent higher harmonic, in addition to

the fundamental, by taking as the amplitude of the equivalent output

sine wave, the square root of the sum of the squares of the first

and third Fourier coefficients in the Fourier Series expansion of the

actual output of the nonlinearity. The corrected-conventional method

therefore assumes that the joint effect of all of the higher harmon-

ics, each attenuated by a different amount through the linear portion

of the loop, can be adequately approximated by including the unatten-

uated effect of the third harmonic only. Thus, the prediction

afforded by the corrected-conventional describing -function will lie

between that of the conventional and new rms techniques and will

therefore be more realistic than either. The re., -. ts of the exper-

imental portion of this study support this cc 3ion quite well.

Recommendations

Use of the third harmonic for amplitude prediction correction

of the conventional describing function by the technique of the

corrected-conventional describing function defined on page 26 has met

with much success, as attested by this paper. Perhaps by applying

some sort of correction to the angle, as well as to the magnitude of

the conventional describing function, the loss in frequency prediction

accuracy for nonlinearities which produce phase shifts could be

reclaimed, or even improved. That is, a suitable describing func-
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tion for future study might be defined by the relation

2 2

£A2BSA2BD2 + B 2

1 (/7)

where Al, A Bi, and B3 are defined as on page 26. This defini-

tion would give the same describing function as the corrected-

conventional definition when the nonlinearity output is naturally

odd periodic, but would modify the angle of the corrected-conven-

tional describing function when the output of the nonlinearity is

not naturally odd periodic. Although the resulting describing

functions might appear very complex, they -ould be tabulated easily

with the aid of a digital computer and plotted. Once an accurate

plot is obtained, it makes little difference how complex the rela-

tionship was from which it came.

The success of the corrected-conventional describing function

in improving the prediction of the amplitude of self-sustained

oscillations in a nonlinear feedback system perhaps warrants further

exploration. The corrected-conventional describing functions of

nonlinearities not included in this paper should be derived, cata-

logued, and tested for accuracy. Such additional nonlinearities

might include negative defficiency (Ref 12:150), backlash, nonlin-

earities described by algebraic equations sach as y w x.JxJ or

y x 3 , and nonlinearities described by differential equations.

Finally, it might be interesting to see which type of describ-.

ing function can most accurately predict the closed loop frequency

response and jump resonance.
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All of the questions posed by the preceeding recommendations

must be answered before the question "Which describing function is

best?" can be fully answered. However, based on the results of

this paper, it seems safe to recommend the following procedure for

treating the stability analysis of intermediate-order systems:

(1) For dead zone, dead zone with saturation, ideal relay, and

relay with dead zone nonlinearities, use the corrected-conventional

describing function for the best results in both amplitude and

frequency prediction of limit cycles.

(2) For relay with hysteresis and relay with both hysteresis

and dead zone, use the corrected-conventional describing function

for the amplitude prediction and the equivalent gain describing

function for the frequency prediction.

(3) For saturation nonlinearities, use the conventional de-

scribing function for small-signal analysis and the corrected-

conventional describing function for large-signal analysis; although

not much will be lost by using the corrected-conventional describing

function exclusively.
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Appendix A

Derivations of the Corrected-Conventional

Describing Functions Used in this S 2_

The definition of the correoted-conventional describing function

given in Eq (16) on page 26 is quite general, but the definition can

often be simplified by taking advantage of certain symmetries in the

output waveform. For odd-periodic, odd-harmonic outputs from the

nonlinearity, Eq (16) becomes simply (nondimensionalized)

NX (18)

where Y Fundamental amplitude (Ai + B), - Bl, since A, - 0;

- 3rd harmonic amplitude 2 B 2)* - B3 ,sneA

I - Amplitude of the sinusoidal input to the nonlinearity;

K - Gain of the nonlinearity.

Obviously, the derivation of the corrected-conventional describing

function is similar to that of the conventional, except that the

amplitude of the third Fourier harronic must be determined as well

as the fundamental. As a first example, consider the case of

saturation combined with dead zone.

Saturation Combined with Dead Zone

As Figure 19 on the following page shows, the output of the non-

linearity is both odd periodic and odd. harmonic; therefore, the coef-

ficients of the cosine terms in the Fourier expansion of the output

waveform are all zero, as are the coefficients of all the even sine
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terms. Also, because of this symmetry, the expression for the coef-

ficient of the fundamental is (Ref 1:436-7)

1 ASy(t) sinO de1 T 0

-A (XsinO - K) siiG dO + K(-d si OA (19)

which, when integrated, becomes

Tz "-r K' -2 + sin 20% - sin 20() 0
r1 20C(-a 2 (20)

1 ;r +siOc(-si2d

Similarly, the coefficient of the third harmonic is

Sy(t) sinri3AOde (21)
JOsT

A~ (KX sin e -Kd) sin 3edO + K(-)sin 30) dE

which, when integrated, becomes

Y MKX i( Isin2c -- 2 sin2 _ - 2 4 + -s3 Tl 3 s 3 d. 2 2 "Idc

16cosco + 16 s 3x d

3 s , d Cos exd) (22)

From Eqs (18), (20), and (22) the (ronlimensional) corrected-

conventional describing fanction for saturation combined with dead
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zone is therefore

(-2P 2, + sin 2% ,,in 2 d)2 + sin 2, sin2o -3 8

K in 1 16 .3 3

2in 4 -+ - sin 401d -' sirl cos LS +

1o i 3)00 (23)
3 - 4' Kdi

The (nondimensional) corrected-conventional describing function

for saturation can be found by letting oCd 0 in Eq (23); that is,

[ 2 + in 2ot)2 + (I sin 2% sin 4%

8 sin 2%sin, 2 )] (24)

Similarly, by letting o(, .1"/2 in Eq (23), one can find the (nondi-

mensional) corrected-conventional describing function for dead zone

to be

. I - i,2 si ()2 +-
K Tr~l 4 3 d 2

3 2

Eqs (24) and (25) can also be obtained by a Fourier analysis of the

output wave of the nonlinearity as vas done for saturation combined

with dead zone.

Relay with Dead Zone and Hysteresis

Using the same technique as in the preceding derivation, one

can derive the (nondimensional) corrected-conqentional describing
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function for a relay with dead zone and hysteresis, and then simplify

the result for the specific cases of a relay with dead zone only, a

relay with hysteresis only, and an ideal relay.

Figure 20 on the following page shows that the output of the

relay-dead zone-hysteresis nonlinearity is not symmetrical about the

origin. Eowever, odd-periodic and odd-harmonic symmetry can be

recovered by a phase shift of the axis by the amount (1T/2 + 2 )

This angle is therefore the angle of any describing function which

is generated by a scheme which does not introduce a phase shift when

applied to an odd-periodic, odd-harmonic function. Since all of the

describing-function generating schemes studied in this paper meet

this requirement, the expression for the angle of the corrected-

conventional describing function for a relay with dead zone and

hysteresis is

/ -(d+h)+ (26)

After the axis im shifted, the output waveform is odd-periodic

and odd-harmonic. Therefore, all of the cosine coefficients a-nd the

even sine coefficients are zero, and the amplitude of the funda-

mental (integrating with the axis shifted to - ) is

Y -4 y<t) sin d

r 71

S K sing d 0 (27)

or
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A ~2 K sin ede (28)

2 2

which, when integrated, becomes

S sin (L .)(29)1 7r 2

Similarly, the coefficient of the third harmonic is

3 y(s) sin 3e de3 1

rsan3Od (30)

2 2

which, when integrated, becomes

Y si k 4008(31)
3 3r2 L 211

From Eqs (18), (~9,and (31) the magnitude of tha (nondimen-

sional) corrected-conventional describing function for a relay-with

dead zone and hysteresis is

12 .-- sin ( 9 VI +.I[, -4 2 (32

d+h
or, substituting X - 2 sin'

8 sinc( sin I + f -4 cos2(1 4 (33)

K 2 ~9 L
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The (nondimensional) corrected-oonventional describing function

for a relay with dead zone only can be determined by letting h - 0

in the foregoing analysis; then,

c( asi 1 d 4W s - -2 (34)

f3 . 7r-- sin- 1 -d . 7-- C(e :

So Eq ( ) becomes

7. C~ d7T -+ 0 (36)
IN2 - "2

Therefore the describing function for a relay with dead zone is

determined from Eq (33) to be

N- A si 2c + (1 -4 . - ) (37)

Similarly, by letting d - 0

1ho(. - sin - a - a h, (38)

- V - s in - l - h

a 7r+ Ch (39)

And, by .substituting these values of OC and B into Eqs (26) and (32),

one can find the (nondimensional) corrected-conventional describing

function for a relay with hysteresis to be

.K (40)

1 0- 9 (41)
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Furthermore, for an ideal relay Oth a 0, and therefore

I - A -?,)*(42)

Eqs (37), (40), (41), and (42) can also be found by a Fourier

analysis of the output waveform of the respective nonlinearities as

vas done for saturation combined with dead zone and the relay vith

dead zone and hysteresis.

Plots ol all of the describing functions derived in this appen-

dix can be foimd in Appendix D.

ion,
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Appendix B

Derivations of the New WA4S

Describing Functions which Introduce Hysteresis

As pointed out on pages 6 and 8 of the introduction, one way

of extending the new rms describing function to polar-symmetrical

nonlinearities which are not single-valued is to let the angle of

the describing function be the angle of phase shift necessary to

make the output of the nonlinearity odd periodic. This, incidently,

is the same angle that is obtained for the conventional describing

function through a Fourier analysis. Again, as with the corrected-

conventional describing function derivations in Appendix A, one can

take advantage of the quarter-wave symmetry which occurs after the

shift in axes to modify Eq (15) on page 25 for simpler integration.

For example, after shifting the axes of the output of the relay +

dead zone + hysteresis nonlinearity shown in Figure 20 on page 96

to 19, the output becomes odd periodic, and the angle of the new

rms describing function is, therefore,

1 0C2 2 (43)

Then, the magnitude of the new rms describing function is

I -(' 2 -(44)

_ sin2 e d
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because of the quarter wave symmetry. Integrating, one will obtain

I -i

2 2

X2 fQ - sin 20) 2
2 4

So the (nondimensional) new rms describing function, with angle

expressed in exponential form, is

N 2e2 2 2 - e (46)

or. -bstituting X 2 d+h2 sin c('

K(d-h) 2 (I_() ein
2 4J 2 (47)

By letting d - 0 in Figare 20, one can find the (nondimensional)

new rms describing function for a relay with hysteresis. Then

C( = sin- I -h

~= Tr-in-1 -h (~t =7r- si - -h 7r + Kr (39)

So that, : rom Eq (46) ,

- e(48)
K X
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Appendix C

.xperimental Procedure and Analo Compute Circuits

In order to add credibility to the experimental results, as

well as to allow the reader to repeat the experiment, the experi-

mental procedure used by the author is explained in the following

discussion.

Procedure

Figure 21 on the following page shows the computer, plotter,

and test equipment arrangement used in the experimental determina-

tion of the amplitude and frequency of the self-sustained oscilla-

tions in the nonlinear feedback systems of the study. Figures 23

through 29 on pages 107 through 111 show general analog computer

circuits equivalent to the block diagram arrangement in Figure 22

for each of the linear forward transfer functions, G1 (s) through

G7 (s). The general circuit for G3A(s) is the same as that of G 3(s)

in Figure 25, but with the outer loop gain increased by a factor

of 3.475. Similarly, the general circuit for GA (s) is the same

as that of G7(s) in Figure 29, but with the outer loop gain in-

creased by 3.333. Figures 30 through 36 on pages 111 through 115

contain the diferential relay mechanizations of the various non-

linearities studied. These dilferential relay circuits were intro-

l icei in place oi the box labled "R"W in each oI the general cir-

ciits lor the specific tests required. Tht procedure for measure-

2.ent of t-le resulting oscillations was as follows (See Figure 21):'
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z1

Figure 21

Analog computer test arrangement for the measurement of the ampli-
tude and frequency of self-sustained oscillations: (1) RFAC Elec-
tronic Analogue Computer, Model C-101 Reeves Instrument Corpora-
tion; (2) Differential Relay Unit; (3) Variplotter Plotting Board,
Model 1100-E, Electronic Associates, inc.; (4) Dynagraph Recorder,
Type MC, Offner Electronics, Inc.; (5) Digital Voltmeter, Model
4011-4, Beckman Industries, Inc.
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(1) rhe dilferential relay circuit and general circuit for a

particular case to be tested were wired together on the RUC patch-

panel, after proper amplitude scaling based on the predicted ampli-

tude. (Note that the figures in this appendix have been labled in

terms of k, the amplitude scale tactor, in order to facilitate

scaling each run.) The potentiometers on the RIAC were then set to

four-place accuracy with the digital voltmeter.

(2) The RLAC was switched to "Operate" and the ensuing oscil-

lations were recorded on both the Variplotter and the Dynagraph.

An initial value of c which was greater than the dead zone was

required to initiate oscillations in the systems that had nonlin-

earities with dead zone.

(3) After the oscillation had stabilized for a few cycles, the

REAC was switched back to "Reset."

(4) rhe amplitude of the oscillation was then accurately deter-

mined by measuring the positive and negative initial condition vol-

tage (on the integrator from which X was being recorded) necessary

to move the pen ol the Variplotter precisely to the level o. the

positive and negative peaks of the previously recorded selz-sus-

tained oscillation. This initial condition voltage was measurtd

to four-place accuracy with the digital voltmeter. The amplitude

of the oscillation was then taken as the av:ige of the magnitude

of the positive and negative peak so measured. By using this

technique, one can eliminate any variation in tlie linearity of

the Varilotter, and vury accurate results can be obtained.
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(5) The frequency of the oscillation was accurately deter-

mined by measuring the period of a previously recorded self-sus-

tained oscillation from a Dynagraph recording. Since the Dyna-

graph was run at one of its maximum speeds during the test (100

or 250 =m/sec) and the frequency of oscillation was quite low (0.5

to 3.3 radians/sec), the measurement of the period of the oscil-

lation was also quite precise. The frequency in radians/sec is

then 27rdivided by the period.

Verification

In order to verify the accuracy of this experimental procedure,

one of the runs, G4 (s) plus saturation and dead zone, was programmed

and run on the digital computer. G4 (s) was chosen as the linear

function to be checked because it was the worst of all of the analog

circuit designs due to the high loop gains. The dead zone and

saturation nonlinearity was chosen because it was one of the more

complex nonlinearities studied from a standpoint of simulation

difficulty, and it was felt that the sensitivity of the differen-

tial relays might introduce a small error in the simulations, and

this error would be most prominent in a nonlinearity with several

relays.

A numerical integration time increment of 0.004 seconds was

used for the digital computer st-ady. The resultc indicated a limit

cycle at the output with an aplitude of 12.c32, and a frequency

of 1.822 rad/sec. The analog computer run gave an ampliitude of

12.88 and a frequency of 1.816 rad/sec for the same problem.
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Since the dizierence between the digital and analog results

was less than half a percent (see Table XXVIII below) in what is

considered to be one of the least accurate analog runs, it is felt

that the validity of' the entire set of analog computer results is

sulficient for a basis of comparison of the various describing

functions.

Table XXXIII

Comparison of' Analog and Digital Simulations

Amplitude Frequency

Digital Computer Result 12.832 1.822

Analog Computer Result 12.88 1.816

i Difference in Results 0.3741 0.3293

lOT



OGC!/64-16

-Nonlinear Linear
Element Element

Figure 22

General block diagram of a feedback system with a ^- .... it-

#18 #

2 " -kc

Figure 23

Geneil! analog comut~er circuit for the determination of the
amplitude and frequency of sustained oscillations in a closed
loop with linear system G1 (s) and a nonlinearity.

180 18
Transfer functions Gl(S) - 18l0s2)s+3 "~

Mechanized differential equation: D 3c - I8Oy - 6D 2c -

i IIDo - 6c
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/"--- - -k3

kx #12 -kc

<18 Cs

2x -k

Figure 25

Gene~ral analog comuter circuit for the determination of the
amplitude and frequency of sustained oscillationsa in a closed
loop with linear system. G2( a) and a nonlinearity.

Transfer functions G3(a) - 1876(C4).)
2~~ *(s+i)W 2T Ts

M echanized differential equation s D 3o8 - 3D76  2 0. a --D

#12 -2)

476
1#3~2 o#> 1 Doc~

1 4 500#
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12 ,.. k.

1 - -ko_

. # "-- 4 # #-- #

.8
#16

#1 5625

ix - -a

Figure 26

General analog computer circuit for the determination of the
amplitude and frequency of sustained oscillations in a closed
loop ith linear system 04(s) and a nonlinearity.

Transfer functiozu 04(a) - J§0 Cs4 (s+l)'(s+2) (s+3) s+4) (s+5 5. Ts

Mechanized differential equations

5 4 32D o - 4650.3y - 15D c - 85D o -225D 2 o - 274Do - 120c

110



GGC /EE/64-Ji

#1 - .kb kI

x .752 rek27

General4 anlo c#pue cir1i #o t1 dee#6tino
ampltud an1rjec fssandoclain nacoe

loo wih lne~ sytem05()ad olnaiy

Tranferfuntion oss) 30

87 181 4 #s+3(s+6

Figure 27

General analog computer circuit~ for the dietermination of the
amplitue and frequency of sustained oscilations in a closed
loop ith linear system G6 () and a nonlinearity.

Transfer function: G () 442. 01 C.(.l)
5 s(s+l) s)(s) 74 T\s)

Xechanized differential equation:

5 4
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Figure 29

General analog compter circuit for the determination of the
aplitude az~4 frequency of eustaind oscillations in a closed

loop wilh linear system Gq( a) and. a nonlinearity.

. rafer function, 07(3) 248.62(s.)

336 +0) # 2 Cs}

Kochanised. &ifzarential eqvAation:

#1 1

#2 4 246 L 21 #6

#14

(a)
(18 -100

-2 7Th r 30

Mechanization of dead zone (d = 6, K - 0.5) with ifferential
relays: (a) transfer characteristic, (b) analog compiuer circdit.o

(Fr-og Ref 5:192;

amltd and frqec of sutie osilain in a closed
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+1 0 0 0 10

1 DR A o----

(a) #5 #

(b) -o100

Figure 31.

Xechanization of saturation (S - 3, x - 0.5) with differential
relays: (a) transfer characteristio, (b) analog computer circuit.

(Y'row Ref 5 :188)J

0 1-2 -1 1" ;I/ i

_1 Ax

Figure 32
(e:ha-4zation of sataxation with dead zone (- 2, S - 4, 1 - 1) ith

differential relay's: (a) transfer characteristic, (b) analog coipiter

113
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-100

+1 7 K
19L___0 DR2 A 0- - 15

z 0'
-- - - - 1 ---- # 3

(a,) (bo) 61oo

Figure 
33

Xechantsation of an ideal relay (K - 1) with differential relays:

(a) transfer oharactsriatio, (b) analog oomputor circuit.

(Pro. Ref 510

# -- 100

1 1

DR2 A #1

(a) 0 # -O 100

-100

DR3A

(b)

Figure 34

Mechanization of a relay with hysteresis (h - 6, K - 1) with

differential relays: (a) transfer oharaoteristic, (b) analog

oomputer circuit.
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Y

+1

+1.5-1.5

1

(a.)

+I0D>_ kx KA o #1

+1 01 [

-100
#5 0*

(b)

Figure 35
Mechanization of a relay with dead zone (d = 3, K 1 i) with
differential relays: (a) transfer characteristic, (b) analog
computer circuit.
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7

+0.8tziz---- z-

.11 K' 0

-'1 A 0
1

100 3'

#9 (0#n

Fisure 36

K.chanlsaion of a relay with dead zone ani hysteresia(4 - h - 2,

K - 0.8) vith diffrntial. relay's: (a) tanfer characteritio.
(b) analog otote oir*uit.
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Appendix D

Plots of the Corrected-Conventional Describing Functions

Figures 37 through 44 on the following pages are plots of the

corrected-conventional describing functions derived in Appendix A

and listed in Tables II through VIII in Chapter III. The plots

are normalized as were those in Chapter IV, but the ordinate and

the abscissa are the reciprocal of those in the graphs of Chapter

IV. This is done so that the entire graph can be plotted, without

having one scale or the other become infinite. (fhe ideal relay

plot is an exception, but it is merely a straight line relation-

ship.) Therefore each curve is a complete presentation of the

corrected-conventional describing function for that nonlincarity.
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t ~t

0.2

0 0.2 0.4 0 0.8 1.0
d/2X

Figure 39

A family of curves for the non-4imensionalized corrected-
conventional describing function of dead zone combined with
saturation, where ,otu

-S d
-~ -- , :lope K

slope Kd S ~
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h/2X

-30

i

60 i

-60O

Figure 41

Ang],h o-iL the corrected-conventional describing~ furoction of' a
rm1ay with hysteresis, (the magnitude variation o.' the describ._
ing function of' a relay with hysteresis is the same as for an
ideal relay, and therefore the curve on the preceding page can
be used) where I, otput

-K
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Figure 43

A~ family of curves f'or the maenitude of the non-dimensiorialized
corrected-conventional describing function of a relay witb dead
zone and hysteresi6, where y'otu

-d+h K_ _
2 _

-- x, input
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Appendix E

Other Describing Function Derivations

Although each of the 35 describing functions listed in Tables

II through VIII in Chapter III was derived by the author, only the

derivations of the important n'3w describing functions are included

in this paper (Appendices A and B). The following tables are in-

cluied, therefore, for the scrutinizing reader who desires to check

the derivations of the other describing functions.

Table XXIX

References where Derivations of the Conventional
Describing Functions Used in this Study May Be Found.

Nonlinearity Reference

Dead Zone 1:434

Saturation 1:435

Dead Zone + Saturation 1:436

Ideal Relay 9:457

Relay + Hysteresis 11:740

Relay + Dead Zone 9:458

Relay + Dead Zone + Hiysterccis 4:5S)
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T'able XXX

References where Some of' the Unconventional Describing
Flunctions Used in this Study Ka:Be Fo-..nd.

Describing Function Nonlinearity Reference

New RKS Saturation 3:1321

Iieal Relay 2:362

Relay + Dead Zone 2:382

Minimum Average Error Ideal Relay 2:381
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Appendix F

Analyis of the New Rlt Describin Yunation

In Chapter III the new rms describing function is defined as

2T[y(t)] 2 d~vo - 15

where X - the amplitude of the sinusoidal input to the nonlinearity

and y(t) - the actual output from the nonlinearity. By comparison

with Eq (1) in Chapter I, Eq (15) indicates that the amplitude of the

equivalent output sine wave from the nonlinearity has been chosen as

III ."1 [y(t)] 2 dotl (49)

That is, the equivalent outrut sine wave has the same r~s value as

the actual output of the nonlinearity. If y(t) is an odd-harmonic.

odd-periodic function, as is often the case, and is expanded in a

Fourier Series, then Eq (49) becomes

T_ (YI1 sin wt + 13 sin 3" +rt + sin 5cjt + d..)2

2 22
= 0(TI min2,At + 2YI1YT3 sinwt sin Y +YI 5 sin,,jt tin 50t

+ ... + Y 2 sin 23't + 2Y3 Y5 sin 3.A tin 5,-t +...
335

+ in 2 it 4 ....Y) 2UJi (50)

but 5Otsin m" sin n(rt dcot - 0 if Z" n (51)
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and 2i 2o dwt 
(52

jo

~_'0
(Yr 2V - 21 + Y 2

Therefore,9JY IT -1; ( 1 + T 31 5

- ~2+ .Y +~ Y- +(3
1 3 5

Stating the above analysis in words, the nev rs Ilecribing function,

in effect, takes as the amplitude of the equivalent output 
sine wave

from the nonlinearity, the square root of the sum of the squares of

all the Fourier coefficients in the Fourier Series expansion of the

actual output of the nonlinearity.


